
 

Adaptive isogeometric digital height correlation: application to
stretchable electronics
Citation for published version (APA):
Kleinendorst, S. M., Hoefnagels, J. P. M., Fleerakkers, R. C., van Maris, M. P. F. H. L., Cattarinuzzi, E.,
Verhoosel, C. V., & Geers, M. G. D. (2016). Adaptive isogeometric digital height correlation: application to
stretchable electronics. Strain, 52(4), 336-354. https://doi.org/10.1111/str.12189

DOI:
10.1111/str.12189

Document status and date:
Published: 22/07/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 26. Aug. 2022

https://doi.org/10.1111/str.12189
https://doi.org/10.1111/str.12189
https://research.tue.nl/en/publications/aefe38bf-6d6d-4388-a592-8b03ec05a1f0


Adaptive Isogeometric Digital Height Correlation:
Application to Stretchable Electronics

S. M. Kleinendorst*, J. P. M. Hoefnagels*, R. C. Fleerakkers*, M. P. F. H. L. van Maris*, E. Cattarinuzzi†,
C. V. Verhoosel* and M. G. D. Geers*

*Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
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ABSTRACT: A novel adaptive isogeometric digital height correlation (DHC) technique has been developed in which the set of shape

functions, needed for discretization of the ill-posed DHC problem, is autonomously optimized for each specific set of profilometric height

images, without a priori knowledge of the kinematics of the experiment. To this end, an adaptive refinement scheme is implemented, which

refines the shape functions in a hierarchical manner. This technique ensures local refinement, only in the areas where needed, which is beneficial

for the noise robustness of the DHC problem. The main advantage of the method is that it can be applied in experiments where the

deformation mechanisms are unknown in advance, thereby complicating the choice of suitable shape functions. The method is applied to a

virtual experiment in order to provide a proof of concept. A second virtual experiment is executed with stretchable electronics interconnects,

which entail localized buckles upon deformation with complex kinematics. In both cases, accurate results were obtained, demonstrating the

beneficial aspects of the proposed method. Moreover, the technique performance on profilometric images of a real experiment with stretchable

interconnects was demonstrated.

KEY WORDS: adaptivity, digital height correlation, digital image correlation, hierarchical splines, isogeometric analysis, quasi-3D, stretchable electronics

Introduction

Digital image correlation (DIC) is nowadays an almost

indispensable technique in experimental mechanics [1, 2].

Subsequent images of a test specimen taken during

an experiment are correlated to determine displacement

fields. Initially, DIC was developed to analyse in-plane,

two-dimensional displacements. Meanwhile, several

extensions of themethod have been developed. Themethod

has been extended to 3D by correlating images from two

cameras in stereo to obtain the displacement of a surface in

three dimensions: stereo-DIC [1, 3, 4]. Furthermore, the

method has been advanced to a fully 3D method: digital

volume correlation (DVC), where also the internal

kinematics of the sample is tracked, rather than solely the

surface deformation [5, 6]. This is achieved by using for

example X-ray tomography scans instead of planar

photographic images.

Another recent development concerns the correlation of

profilometric images in order to identify both in-plane and

out-of-plane deformation fields: digital height correlation

(DHC). In Figure 1A–C, examples from literature are shown

where this technique is applied. In all three cases, accurate

results were obtained on the microscale. Han et al. included

mode-I crack displacement fields in the algorithm to

describe the kinematics of a propagating crack in a glass

specimen [7]. Bergers et al. included the function describing

the shape of a single-clamped beam in the algorithm, which

was required to calculate the curvature of a bending

microbeam with a resolution of �1.5 �10� 6
μm� 1 [8].

Neggers et al. used globally defined, continuously

differentiable polynomial functions to accurately capture

the local strain and curvature fields of a bulging membrane

under pressure [9], which enables the measurement of the

local plane strain and biaxial elastic moduli within �2%

accuracy. The results in these cases were convincing;

however, in all cases, the discretization of the DHC problem

(necessary because of the intrinsic ill-posed nature of a DHC

formulation) was adapted to the specific mechanics of the

considered experiment. However, in most mechanics

problems, it is not possible to assess the kinematics of the

unknown displacement field a priori, for instance, in the case

of Figure 1D, where a copper stretchable electronic

interconnect delaminates from the rubber substrate and

buckles in specific local areas, which is an active field of

research [10, 11]. Therefore, a more generic DHC framework

is called for, which preferably autonomously adjusts to the

kinematics, without using prior knowledge.

For the case of in-plane, two-dimensional DIC, a novel

adaptive isogeometric global digital image correlation

(iso-GDIC) scheme was recently developed [12].

Isogeometric shape functions for the discretization, both of

the sample domain and the unknown displacement field,

were used, i.e. non-uniform rational B-splines (NURBS). It

was shown that this type of shape function is versatile and

able to capture a wide range of kinematics. This type of

shape functions is used increasingly in a DIC setting, both

in 2D [12–14] and 3D (stereo-vision) [15–17]. NURBS have

proven to be less sensitive to noise than finite elements

(FE) [18]. Moreover, NURBS originate from CAD-modelling

and are able to describe many shapes exactly. In the case

of stretchable electronics, this is of particular interest. In

the three examples shown in Figure 1A–C, a rectangular
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mesh for the discretization of the DIC problem sufficed
for the purpose of the correlation procedure. Yet, to be
able to describe both the complex shape of the
interconnects and the buckle pattern, which occurs
mainly at the edges of the interconnect, to accommodate
the sample’s edges, a more advanced mesh must be used.
Furthermore, the continuity of NURBS functions across
the element edge is adjustable by inter alia choosing the
polynomial order of the shape functions. This is
beneficial in the case where one, for example, is

interested in the calculation of the curvature field, which
requires at least C1 continuity. In [12], the DIC algorithm
was combined with an adaptive refinement procedure, in
order to autonomously optimize the shape functions. The
number of degrees of freedom (DoFs) thereby remains
limited, which is beneficial for the noise robustness.
Refinement is executed locally, such that a finer
discretization is only used in areas where this is necessary
for accurately capturing the kinematics of the unknown
displacement field, thereby compromising noise

Figure 1: Examples of DHC on microscopic height profiles. Top left (a): a topographic image, made with AFM, of a glass sample with a
crack, where DHC is used to calculate the three-dimensional displacement field. One component is shown here, from which the stress
intensity factors are determined. (Reproduced from [7]). Top right (b): the curvature of a bending cantilever microbeam. (Courtesy of Bergers
et al. [8]). Bottom left (c): a bulge test, where DHC is used to calculate local strain and curvature fields of a bulged membrane. (Courtesy of
Neggers et al. [9]). Bottom right (d): a stretchable electronics interconnect, which buckles as a results of deformation of the structure.
(Reproduced from [35])
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robustness [19], while retaining a coarser mesh in areas
where the kinematics allow for this, preserving noise
robustness. Furthermore, problem-specific choices on the
discretization are not required in advance. In this paper,
a generic nearly autonomous DHC framework is
developed, which requires adaptation of the 2D adaptive
iso-GDIC formulation towards quasi-3D: DHC. An
advanced meshing framework is thereby required, which
is generic for a myriad of shape function types,
polynomial orders and mesh generating interfaces. In
comparison to most global DIC formulations, the
proposed method is less user dependent, since the most
important choice, for the set of shape functions, is
automated. The potential of the novel method is
demonstrated on both virtual and real experiments with
interface delamination of stretchable interconnects.
In the “Methodology” section, the methodology used is

explained: first NURBS shape functions are introduced, the
discretization of the specimen shape is shown, and also,
the refinement procedure of the discretization is clarified.
Furthermore, the DHC algorithm is defined. In
“Demonstration: Virtual Experiment” Section, the novel
adaptive isogeometric global digital height correlation (iso-
DHC) technique is applied to two virtual experiments in
order to provide a proof of concept. Also, noise is included
in the analysis. The method is applied to a real experiment
with stretchable electronics in “Experiment: Application to
Stretchable Electronics” Section. Finally, conclusions are
drawn in “Conclusion” Section.

Methodology

In this section, themethodology for digital height correlation
is detailed. First, the parametrization procedure for the
sample geometry is clarified in “Isogeometric shape functions
and parametrization” Section. The required shape functions
are thereby introduced. These are also used for the DHC
algorithm, which is addressed in “Digital height correlation
algorithm” Section. Finally, the adaptive refinement
procedure is described in “Adaptive refinement” Section.

Isogeometric shape functions and parametrization

The shape functions that are used to parametrize and
regularize both the sample geometry and the unknown
displacement field are NURBS: non-uniform rational
B-splines. This type of shape function originates from CAD
(computer aided design) modelling but is used increasingly
in the computational analysis of mechanical problems:
isogeometric analysis (IGA) [20]. Both B-splines and their
generalization, NURBS, have been used in digital image
correlation methods [12, 14].
In this work, the CAD representation of the sample is

used directly in the DIC analysis. The procedure to generate

the initial discretization is explained by using the
commercial CAD program Autodesk AutoCAD [21]. The
geometry parametrization could also have been retrieved
from other CAD programs. An image of the undeformed
sample, the reference image, is loaded in AutoCAD to act
as a reference for the creation of the mesh. Thereafter, a
NURBS surface is inserted with the desired order and
number of degrees of freedom in both directions.
Associated with this surface are control vertices, or control
points, that can be translated to make the surface fit the
sample geometry, utilizing the inserted background image.
The geometry parametrization is described by

¯
xð
¯
ξÞ ¼

X

i

Nið
¯
ξÞ
¯
p
i
; (1)

where N ið
¯
ξÞ are the two-dimensional NURBS shape functions

defined on parametric coordinates
¯
ξ,

¯
p
i
are the control points,

and
¯
xð
¯
ξÞ represents the mapping of the created surface, or

mesh, to the physical domain. Since the DHC algorithm
concerns images that are defined on a regular grid of pixels,
it is necessary to evaluate the shape functions at the pixel
locations, instead of the local element grid resulting from
equation 1. This can either be done by interpolation, or, faster,
by a nearest neighbours search algorithm, which couples
the shape function value of the nearest local coordinate to
the pixel coordinate. A choice for the second option is made
because the loss of accuracy was found to be negligible for a
fine local element grid, while still keeping a considerable gain
in speed. This mapping procedure is illustrated in Figure 2.

The fundamental building block of a NURBS surface is the
univariate B-spline [20], which is a piecewise polynomial
function of order p that is defined over a knot vector
Ξ= {ξ1, ξ2,…, ξk}, where each knot determines an element
boundary in the domain. For NURBS, these knots are not
necessarily uniformly distributed. Also each knot can occur
more than once; the continuity of the shape functions
across an element border (knot location) is controlled by
the multiplicity m of the knot: Cp�m. The number of shape
functions (and hence number of degrees of freedom, DoFs)
is determined by the number of knots k and the polynomial
order (Figure 3).

In the isogeometric GDIC approach, it is necessary to
reconstruct the CAD shape functions and geometry in
the DIC code. Here, this information is obtained by
extracting the required data from the AutoCAD file (drawing
exchange format): (i) the chosen polynomial order of the
NURBS surface; (ii) the unique knot values in both
directions and their corresponding multiplicities; and (iii)
the control points and, possibly, their weights. Using the
knot information, the Bézier extraction procedure [22] is
applied to compute the element extraction operators

¯
Ce

¯
.

With these operators, the spline basis functions on an
element can be constructed as a linear combination of a
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canonical set of shape functions, in this case, the Bernstein
polynomials

¯
B:

¯
Ne ¼

¯
C
¯
e

¯
B (2a)

Ne
i ¼ Ce

ijBj: (2b)

This process is illustrated in Figure 4. The reader is referred
to [22] for details on the extraction procedure. The resulting
shape function Nið

¯
xÞ is composed of the contributions from

all elements:

Nið
¯
xÞ ¼ A

m

e¼1
Ne

i ð¯
xÞ: (3)

Some of the resulting shape functions for second-order
NURBS are plotted in Figure 3.

It is emphasized that this extraction is not restricted to
B-splines or NURBS but can also be used to construct,
e.g. T-splines [23]. From the perspective of the DIC
algorithm, this extraction process provides a unified
interface for the implementation of a variety of spline
technologies from different CAD interfaces.

The shape functions are not only important for the
parametrization of the sample geometry but also important
for the discretization of the DHC problem, as will be shown
in the next section.

Digital height correlation algorithm

The shape functions are used not only for the parametrization
of the specimen geometry but also for regularizing the
displacement field,

¯
Uð

¯
xÞ, in DIC, i.e. in the correlation of the

images of a deforming test specimen. The first image, f, is

Figure 2: Illustration of the mapping procedure of the NURBS mesh from parametric coordinates
¯
ξ (left) to the global coordinates

¯
x (centre),

using equation 1. The control points
¯
p
i
are indicated by the red dots. After this mapping, the shape functions are known at a local element

grid of coordinates
¯
xeð

¯
ξÞ, as indicated in black in the zoom of an element in the right image. For the DHC algorithm, it is required that the

shape functions are evaluated at the pixel locations, indicated by the blue grid in the same image. Therefore, a nearest neighbour search
algorithm is employed, which for each pixel centre inside an element (blue dots) finds the nearest element grid point (green dots) and assigns
the value of the shape function at this point to the pixel. Note that for illustration purpose the pixel grid and element grid are depicted
coarse. In reality, the element grid is significantly finer than the pixel grid, such that the loss of accuracy of the nearest neighbour mapping
method is negligible

Figure 3: Discretization of a stretchable electronics interconnect. The mesh is plotted on top of the profilometric image, where the greyscale
intensity levels indicate height values. An example of a corner (a), edge (b) and central (c) shape function are plotted with the mesh, for the
case of second-order NURBS
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generally a representation of the undeformed, reference state
of the specimen, while the subsequent images g represent
deformed versions of the test sample.
In regular, two-dimensional DIC, the images are

characterized by the grey-scale intensities measured at the
pixel locations, and the corresponding brightness at the
material points is assumed to remain constant upon
deformation of the underlying material, i.e. brightness
conservation holds:

f ð
¯
xÞ � g∘

¯
Φð

¯
xÞ ¼ rð

¯
xÞ≈0; (4)

¯
Φð

¯
xÞ ¼

¯
xþ

¯
Uxyð

¯
xÞ; (5)

where rð
¯
xÞ is the residual image, which is zero in the absence

of noise, and
¯
Φð

¯
xÞ is a vector function which maps the

reference coordinate
¯
x to the deformed coordinate. Note that

throughout this article the same notation is followed as in
Ref. [24], i.e. the coordinate

¯
x refers to the (Lagrangian)

reference coordinates, while the deformed coordinates are
consistently expressed using the mapping function

¯
Φð

¯
xÞ. The

residual is minimized to achieve optimal correlation, thereby
obtaining the two-dimensional, in-plane displacement field

¯
Uxyð

¯
xÞ (see, e.g. [12, 25]).

For those cases where the out-of-plane deformation field
Wð

¯
xÞ is also desired, the DIC algorithm can be extended to

digital height correlation (DHC) [9]. In that case, the images
are not defined by the grey-scale intensities, but each pixel
contains a quantitative measurement of the height of the
surface, obtained with, e.g. optical profilometry, atomic
force microscopy, or scanning tunnelling microscopy. The
conservation relation therefore transforms to surface height
conservation, i.e.:

f ð
¯
xÞ � ðg∘

¯
Φð

¯
xÞ þWð

¯
xÞÞ ¼ rð

¯
xÞ≈0; (6)

¯
Φð

¯
xÞ ¼

¯
xþ

¯
Uxyð

¯
xÞ; (7)

where
¯
Uxyð

¯
xÞ is now the in-plane component of the total,

three-dimensional displacement field
¯
Uð

¯
xÞ ¼ Uð

¯
xÞ
¯
ex þ

Vð
¯
xÞ
¯
ey þWð

¯
xÞ
¯
ez, which is a function of the two-dimensional

position vector
¯
x ¼ x

¯
ex þ y

¯
ey.

Identifying the displacementfield thatwill satisfy equation 7
is an ill-posed problem, which deteriorates through the
inevitably present additional noise field. Therefore, DIC
methods approximate the true displacement field with a field
represented by a finite and limited set of unknowns,

and

where is a column of degrees of freedom (DoFs), i.e.
= [a1, a2,…, a3n]

T, with n DoFs for each of the three
components of the displacement field

¯
Uð

¯
xÞ. Applying more

pixels per DoF allows for attenuation of acquisition noise
(e.g. [26]), provided that the discretized displacement field
can adequately describe the true displacement field.

As is commonly done in DIC, the displacement field is
approximated as a linear summation of DIC basis
functions,

¯
φ
i
ð
¯
xÞ:

Note, however, that these basis functions are three-
dimensional vector-valued fields. For this purpose, the

Figure 4: Graphic representation of the Bézier extraction process. Left: the second-order Bézier functions
¯
B of a parent element

(with coordinate bξ ) are shown. After multiplication with extraction operators
¯
C
¯
e, the shape functions

¯
Ne on an element e (with parametric

coordinate ξ) are obtained (right). Note that the extraction process also involves a mapping from parent coordinate bξ to local, parametric
coordinate ξ
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same NURBS shape functions, Njð
¯
xÞ , that are used

for parametrization of the sample geometry (see
“Isogeometric shape functions and parametrization”
Section), are implemented. Note that the NURBS
functions are two-dimensional, scalar-valued functions,
and each NURBS function is used three times to describe
the three components of the displacement field with
independent DoFs:

¯
ϕ

i ¼ j
¼ N jð

¯
xÞ

¯
ex þ 0

¯
ey þ 0

¯
ez for j ¼ 1;…;n; (11a)

ϕi¼nþj ¼ 0
¯
ex þN jð

¯
xÞ

¯
ey þ 0

¯
ez for j ¼ 1;…;n; (11b)

¯
ϕ

i ¼ 2nþ j
¼ 0

¯
ex þ 0

¯
ey þ N jð

¯
xÞ

¯
ez for j ¼ 1;…;n: (11c)

Similar to regular 2D-DIC, a cost function Ψ(a) is defined
as the L2(Ω) norm of the residual

and a minimization problem is formulated to solve for the
DoFs and thus the optimal approximate solution to the
displacement field:

The conventional derivation of the DIC solution
scheme to determine the DoFs a in Eq. 13 involves, first,
linearization of the conservation equation, followed by
an iterative optimization algorithm (usually Gauss–
Newton), resulting in a two-step linearization with a
number of implicit assumptions. This two-step linearized
system of equations is then iteratively solved to retrieve
the optimal unknowns . In Ref. [24], however, it was
demonstrated that the non-linear conservation equation
can be minimized in a consistent mathematical setting,
yielding a one-step linearization, thereby highlighting
the implicit assumptions made. Here, the same one-step
linearization is followed, resulting in a system of
equations that is iteratively solved for the unknowns

where is the iterative update of the DoFs. As argued in
Ref. [24], the tangent operator contains three terms, of
which the second term is zero because the adopted basis is
here linearly independent, while the third term is neglected
as it contains the second gradient of the image making it
highly sensitive to measurement noise. In that case, only
one tangent operator term remains:

∀ i; jð Þ∈ 1;n½ �2;M ij ¼ ∫
Ω
½ð
¯
φi� ¯

GÞð
¯
G�

¯
φjÞ�d

¯
x; (15)

whereby the right-hand member of Eq. 14 is given by

Here,
¯
G is the true image gradient, i.e. the gradient of the

image g evaluated at the deformed coordinates:

¯
G ¼ grad
¯

gð Þ∘
¯
ϕ �

¯
ez ¼

∂g

∂x

����
¯
ϕ ðx

¯
Þ¯
ex þ

∂g

∂y

����
¯
ϕ ðx

¯
Þ¯
ey �

¯
ez: (17)

The term in the z-direction is added for DHC, to correctly
deal with the out-of-plane displacements. As detailed in Ref.
[24], using the deformation gradient tensor

¯
F
¯
, the true

gradient can be related to the gradient of the back-

transformed image,

grad
¯

gð Þ∘
¯
ϕ ¼ grad
¯

egð Þ�
¯
F
¯
�T

: (18)

Therefore, to simplify the true gradient to the one
typically found in literature, first, small deformations are

assumed, i.e.
¯
F
¯
T
≡
¯
I
¯
. Second, grad
¯

egð Þ is replaced with

grad
¯

fð Þ, which has been justified in the literature because eg

is updated at each iteration and converges towards f (see,
e.g. [27]),

For the present case, this simplification to grad
¯

fð Þ was
found to have a negligible effect on the accuracy, in
agreement with the guide lines given in Ref. [24]. Therefore,
grad
¯

fð Þ was implemented to reduce computational costs;
however, extension to the true gradient is trivial. In order
to determine in Eq. 19, the surface height values in
the deformed image gð

¯
xÞ need to be determined at the

deformed planar positions , which
requires interpolation. Interpolation is a source of error
and to minimize its impact a cubic spline interpolation
scheme is here implemented, as suggested by Schreier
et al. [28].

Adaptive refinement

In order to be able to accurately describe the kinematics of
the displacement field, the regularized displacement field

should be sufficiently rich, i.e. should have enough
degrees of freedom. However, if too many DoFs are used,
the solution becomes highly sensitive to noise [13, 29]. It
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is therefore important that the number of degrees of
freedom is balanced. In certain cases, where the kinematics
of the problem is known in advance, it is possible to make
a good estimation on the number and distribution of DoFs

(i.e. the configuration of the mesh) to obtain accurate

results, e.g. in the examples shown in Figures 1A–C.

However, in some cases, including the experiments with

stretchable interconnects considered in this work, shown in

Figure 1D, it is more difficult to assess the kinematics in

advance. Furthermore, displacement fields might be rather

complex and exhibit localized features, which calls for a

more detailed regularization in specific areas.
With an adaptive refinement algorithm, the mesh can be

optimized autonomously. This can be achieved by either

p-refinement, where the polynomial order of the shape
functions is elevated in designated elements of the mesh

[30], or by h-refinement, where the elements themselves are
refined [12], or isogeometric k-refinement [20]. Both

h-refinement and p-refinement can be done in an adaptive
fashion, where the algorithm autonomously determines in

which area refinement is required based on the error or
residual rð

¯
xÞ in that area. In that way, the solution is not

dependent on user experience. Furthermore, both methods
can be implemented efficiently, since only the refined shape
functions have to be added in case of p-refinement, or
substituted in case of h-refinement, in the column

¯
φð
¯
xÞ that

contains all shape functions. Hence, there is no need to
rebuild the entire set of shape functions. Which type of
refinement is used is a matter of taste. Nonetheless, in
the case of the three-dimensional deformation of
structures, including buckles and delamination, the
curvature of the material may be of interest, which
requires second-order derivatives of the displacement
field. Therefore at least C1, continuity across element
borders is required. Since for NURBS shape functions
continuity across element borders is Cp �m, with p the
polynomial order and m the multiplicity of knots at the
element border, C1 continuity can be achieved by using
second-order B-splines with multiplicity 1. With p-
refinement-based finite elements only C0 continuity can
be achieved, which is the reason why in this work it
was decided to employ isogeometric analysis. In
combination with h-refinement, this allows for the
refinement of the computational grid, while preserving
the necessary continuity properties.
The approach adopted in this paper is a hierarchical

refinement [31, 32] scheme, identical to the technique
used in [12]. In this method, multiple bases of shape
functions are defined, which represent subsequent levels
of uniform refinement. If refinement of a certain shape
function is desired, this shape function is replaced by
shape functions from the underlying basis that lie in
the same support area. The result of this concept is that

refinement occurs in a local fashion, in contrast to knot
insertion, where the tensor product structure induces
refinement of an entire row and an entire column of
elements. The idea of hierarchical refinement is depicted
in Figure 5.

Refinement indicator
The selection of shape functions for refinement is based on
the residual rð

¯
xÞ, since the residual is also used as an error

estimator in the DHC procedure itself. The residual gives
full-field information, which makes it possible to
distinguish between areas where correlation of the deformed
image to the reference image is successful, and areas where it
is not possible to approximate the displacement field
accurately. For each shape function, an averaged value of
the residual in the area of its support is calculated and
weighted:

Cj ¼
1

f max � f min

� � δf ;global
δf ;j

∫
Ωj
j r x̄
� �

jN j x̄
� �

d
¯
x

∫
Ωj
N j ¯

x
 !

d
¯
x

: (20)

First, the residual is weighted with the shape function Nj

itself, in order to couple the residual in a certain area to

the shape function with the largest influence in that area,

i.e. a larger value. Furthermore, this scaling assists in

preventing larger shape functions always being favoured

for refinement at the expense of basis functions with a

smaller support area. Additionally scaling with the mean

intensity gradient δf ¼ 1
mn

Xm

i¼1

Xn

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j∇f ð

¯
xi; kÞj

q
, which is

a measure for contrast, is applied. This is because the
residual is influenced not only by non-exact correlation
but also by changes in the contrast in the pattern of the
sample. Imagine two neighbouring pixels with a different
value (either grey scale intensity or height). Now,
correlation is slightly inaccurate, and the value of one pixel
is assigned to the other pixel in the back-transformed image
eg. Since the residual is defined as the difference between the
original value of this pixel and the value in the back-
transformed image, the residual will be larger if the
difference in value between the two neighbouring pixels is
larger, i.e. if the contrast in that area is larger. To
compensate for this the refinement indicator Cj is scaled
with the relative mean intensity gradient δf,global/δf,j, where
δf,j represents the contrast in the area of support of shape
function j and δf,global in the entire region of interest. Finally,
scaling with the range of pixel values f, here the range of
height values, is implemented. This makes it possible to base
the refinement criterium on the level of acquisition noise of
the images.

A shape function is selected for refinement if the
refinement indicator exceeds a certain threshold: Cj>T (see
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Figure 6). This threshold is set to T ¼ max Cþ σ;Tnl

� �
, where

C is the average of the refinement indicator Cj of all shape
functions, and σ is the standard deviation. This threshold
ensures that only shape functions are refined for which this
is necessary, i.e. for which the refinement indicator is
significantly large with respect to the other shape functions.
If the differences in refinement indicator between the shape
functions are too small, e.g. when the displacement field is
homogeneous and no refinement is required, this threshold
assures that no shape functions are selected for refinement.
The value Tnl is an absolute threshold which corresponds
to the noise level of the images, which has to be determined
for each set of experimental images separately, such that
refinement is not triggered by artefacts caused by image
noise. This choice for the threshold is in correspondence
to Ref. [12].
Since the correlation becomes highly sensitive to noise if

the number of degrees of freedom becomes too large
compared with the number of pixels, a minimum is set for
the number of pixels within an element. This threshold is
based on the correlation length, ℓc, which is a measure for
the in-plane length scale of the pattern, i.e. the average size
of the pattern features. At least several pattern features
should be present inside an element, otherwise noise is
dominant for correlation. Therefore, the minimum element
size is set to 10ℓc×10ℓc, corresponding to Ref. [12]. The
correlation length is determined automatically for each
experiment. If an element becomes smaller than this
threshold, the shape functions corresponding to this
element are excluded from further refinement.

The mathematical formulation allows to use a different
set of shape functions for each direction and thus only
refine the shape functions for one direction, e.g. only
for displacement in the height direction. Especially in
this particular example of buckling of a stretchable
electronics interconnect a different set of shape functions
in the out-of-plane direction and refinement of only this
set would make sense, considering the more complex
nature of the out-of-plane deformation with respect to
the in-plane deformation. However, this buckling case is
a specific example and implementation of a scheme that
relies on the known kinematics of the particular problem
(by either choosing a different set of shape functions for
one direction or refining only in this direction or
applying both) would imply a loss of generality.
Furthermore, the residual field is a result of the
correlation of the displacement fields in all directions,
and hence, it is not possible to distinguish between the
accuracy of the correlation in the different directions.
Therefore, the refinement is carried out in the shape
functions in all three directions, and thus, the same set
of shape functions is used for all x, y and z directions.

Demonstration: Virtual Experiment

The developed adaptive isogeometric digital height
correlation algorithm is applied in a virtual setting in
order to demonstrate the method. First, a proof of
concept is given with a virtual displacement field that

Figure 5: A graphical representation of the hierarchical refinement process: in the left figure, the initial mesh is depicted, plotted on top of
the undeformed image of the stretchable interconnect. One of the shape functions is shown, and the maxima of all shape functions are
indicated by blue dots. For this example, only the depicted shape function is selected for refinement, and the resulting refinedmesh is shown
in the middle figure. Note that all elements that form the support of the initial shape function, i.e. the top two-by-two elements in the left
figure, are refined. Again, one shape function is shown, and the maxima of all shape functions are indicated by blue dots. The refinement
process is repeated for the shape function of the middle figure, and the result is shown in the right figure
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represents a localized buckle pattern. Here, a rectangular
mesh is used. It is demonstrated that the developed
adaptive iso-DHC method is easily used for different
orders of the NURBS shape functions. Also the influence
of noise is investigated. In the subsequent example, a
more complex geometry is used: a stretchable electronics
interconnect, which requires the advanced meshing
framework introduced in “Isogeometric shape functions
and parametrization” Section.

Localized buckles

In this experiment, a virtual height profile is analytically
deformed. The height profile is in this case generated
analytically and contains both coarse and fine in-plane
features, making it suitable for DHC analysis [33]. The
applied out-of-plane displacement field represents a
localized buckling pattern, with two sinusoidal peaks of
different size, of which one is pointing upwards and the
other pointing downwards (see Figure 9A). The in-plane
displacement is zero in both x and y direction in the entire
domain and therefore not discussed in the results. In the
next example, a virtual experiment will be shown where
also the in-plane displacement is taken into account. The
out-of-plane displacement is applied in four increments in
which the amplitude of the sinusoidal peaks increases from
1 to 4μm. The reference image f, the final image g4 and
intermediate images g1 and g2 are shown in Figure 7. The
developed DHC method is applied, using second-order
(p=2) NURBS shape functions. The nearly autonomous
refinement algorithm adaptively refines the mesh in the
areas where refinement is required. The resulting meshes
are also shown in Figure 7.

Since refinement is based on the residual field, it is
interesting to analyse these fields. In Figure 8, the residuals
are shown for each refinement step, corresponding to the
meshes shown in Figure 7. In the first figure, it is observed
that the residual is high in the area where the peaks occur,
this means that the original set of shape functions, with
the mesh of Figure 7A, is not able to capture the kinematics
of these out-of-plane displacement peaks. The shape
functions which span the region where the residual is high
are refined, and the residual decreases (see Figure 8B). After
the last refinement step, the residual has decreased to almost
zero (Figure 8D) in the entire region, indicating that the new
set of shape functions is successful in describing the
displacement field.

The resulting calculated displacement field is shown
next to the analytical displacement field in Figure 9B. In
case of a virtual experiment, it is possible to determine
the exact error in the calculated displacement field, which
is the difference between the exact and calculated
displacement fields: εw ¼ wrefð

¯
xÞ �wð

¯
xÞ . The error field is

displayed in Figure 11B. In the error field, small ‘wiggles’
appear that are characteristic for polynomial shape
functions. However, looking at the values of the error
field, compared to the amplitude of the sinusoidal peaks,
the error is reasonably small. The method is therefore able
to calculate sufficiently accurate results due to the
autonomous refinements.

The adaptive iso-DHC method can readily be used with
other polynomials orders of the NURBS shape functions.
In the meshing procedure, the polynomial order is an input
setting in AutoCAD, which can be set to the desired order. In
the DHC algorithm, the Bézier functions for different orders

Figure 6: The refinement indicator Cj plotted for each shape function j (left). The position (top) of each shape function is shown in the right
figure. The red line in the left image represents the threshold T ¼ max Cþ σ;Tnl

� �
. All shape functions above this threshold are selected for

refinement, as indicated by the red circle. In this case, this concerns only one shape function, namely shape function nr. 6, which
corresponds to the refinement step between Figure 5A and 5B

© 2016 The Authors. Strain published by John Wiley & Sons Ltd | Strain (2016) 52, 336–354

344 doi: 10.1111/str.12189

Adaptive Isogeometric Digital Height Correlation : S. M. Kleinendorst et al.



need to be implemented in order to use them. In this
example, we repeat correlation of the above virtual
experiment with first- and third-order shape functions. The
same initial mesh (Figure 7A) is used. Note that the number
of DoFs is not the same for the three cases, since a set of
higher order shape functions consists of more functions
than a lower order basis. The refined meshes for the first-
and third-order NURBS are shown in Figure 10. As can be
seen, the refinement for the first-order shape functions
remains more local than the second-order, while the third-
order shape functions refine in a less local fashion. This is
because NURBS shape functions overlap multiple elements,
depending on their order. A first-order NURBS (not at the
edge of the domain) covers two-by-two elements, while a
third-order NURBS occupies four-by-four elements. As
explained in “Adaptive refinement” Section, the entire
support of the selected shape functions is refined, resulting
in less local refinement for higher order shape functions.
The resulting decrease in residual corresponding to the refined
meshes of Figure 10 is similar to that of the second-order
shape functions, shown in Figure 8, and therefore not shown.
The error fields resulting from the calculation of the

displacement field with the adaptive iso-DHC method with
first- and third-order NURBS are plotted in Figure 11A and

C. Especially for the third-order shape functions, the
characteristic ‘wiggles’ are again recovered; however, they
now spread out over a larger region, originating from the
larger support of the higher order functions. The level of
the error is similar to the error of the second-order shape
functions. The error field for the first-order shape functions
exhibits more local features due to the more local nature of
the lower order shape functions; however, its features have
significantly higher amplitude, indicating that, despite
refinement, these shape functions are not able to describe
the displacement field as accurately as the higher order
shape functions.

In this work, we demonstrate the method on stretchable
interconnects, which have a slender geometry, thereby
limiting the number of elements in the width direction.
Therefore, the refinement process should be local. First-
order shape functions were found to refine locally, but are
not optimally suited for capturing the kinematics of
localized buckling, while also providing only C0 continuity
on the element boundaries. Third-order shape functions
were found to be less local. Therefore, second-order shape
functions form an adequate compromise, with the preferred
element boundary continuity of C1. They will be used for
the remainder of the paper.

Figure 7: Evolution of the profilometric image and the mesh upon deformation. The reference image f (a) is shown with the initial mesh.
Intermediate images g1 and g2 are shown in (b) and (c), and the final deformed image can be seen in figure (d). The evolved meshes are shown
on top of the images. It is observed that the mesh refines in the areas where the sinusoidal peaks occur
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Noise analysis
The virtual experiment is repeated with shape functions of
the second order for a case where noise is present. From real
experimental data, the noise level is determined by
subtracting multiple images taken subsequently, with no
deformation, and calculating the RMS value of the residual.

The noise level is assessed at about 1.5%. A safety factor of 2
is administered, and random noise of 3% of the height level
range is artificially applied to the images f and g. The same
algorithm is applied, starting from the initial mesh that is
shown in Figure 7A, and the resulting mesh refinement
and residual field after refinement are shown in Figure 12.

Figure 8: Residual fields after each refinement step, using the corresponding meshes in Figure 7. In this example, all refinement steps occur
during correlation of image g1 with image f, where the buckle height equals 1 μm. This corresponds to the amplitude of the peaks in the first
residual field. It can be seen that the residual decreases significantly and reduces to almost zero after the last mesh refinement. Root mean
square (RMS) values are also reported beneath the figures

Figure 9: Reference (a) and calculated (b) out-of-plane displacement field wðx
¯
Þ after the final iteration

© 2016 The Authors. Strain published by John Wiley & Sons Ltd | Strain (2016) 52, 336–354

346 doi: 10.1111/str.12189

Adaptive Isogeometric Digital Height Correlation : S. M. Kleinendorst et al.



From this image and the corresponding root mean square
(RMS) value, it is observed that the residual decreases to
about the level of the noise (which has an RMS value of
0.0964μm), indicating that an optimal correlation has been
obtained. The refined mesh is essentially the same as the
case where no noise is present. The calculated displacement
field and corresponding error field, including the RMS value,
are similar to Figures 9B and 11B respectively and hence are
not displayed here. The results illustrate the noise
robustness of the proposed method.

Stretchable interconnect

Although the first virtual experiment provides a proof of
concept for the adaptive iso-DHC algorithm, a more
complex sample geometry and mesh are considered next.
The method is applied to a virtual experiment on a
stretchable interconnect (SI). To this end, a real height
profile (Figure 13A) from a stretchable electronics structure,
measured using a Sensofar PLμ2300 confocal optical
profilometer, is analytically deformed. The applied
displacement field again represents localized buckles, as

depicted in Figure 1D. The buckles are represented by two
sinusoidal peaks that are cut off at the edge of the SI
geometry. In this experiment, also in-plane deformation is
considered, namely uniaxial stretching in x-direction and
rigid body translation in y-direction. Like for the previous
case, the final displacement field is applied in four
increments, for which the resulting images in steps 2 and 4
are shown in Figure 13B and C.

The initial mesh is built with AutoDesk AutoCAD,
as described in “Isogeometric shape functions and
parametrization” Section. In this case, 6 ×2 elements are the
minimum to accurately describe the sample’s contour (see
Figure 13A). The DHC algorithm is solved, and the mesh
refines in the regions around the peaks (see Figure 13B and C).

From the residual images, shown in Figure 14, it is
observed that with the initial mesh, it is not possible to
accurately capture the kinematics of the buckles; therefore,
the residual is high in the area surrounding the buckles.
After refining the mesh, the residual decreases. Note that
the residual does not decrease to the low level achieved in
the virtual experiment of the previous section. This is due
to the limited amount of pixels, only 768× 558 used here

Figure 10: Refined meshes for first (left) and third (right) order NURBS, plotted on top of the undeformed image f

Figure 11: Error fields for the correlation of the virtual experiment, using first (a), second (b) and third (c) order NURBS shape functions.
Notice that the RMS value of the error for the 1st order NURBS (0.04496 μm) is much larger than for the 2nd (0.01670 μm) and 3rd-order
(0.01653 μm) NURBS
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compared to the image with a more common size of
1200× 1000 pixels of the previous experiment. To more
accurately describe the displacement field with localized
buckles, the mesh should presumably be refined one more
step. However, this is not allowed, since the number of
pixels in an element would become too small, and the
problem becomes more sensitive to noise. Therefore, this
result is the best that can be obtained with this image.
A quantitative measure for the accuracy of the method is

shown in Figure 15. The applied displacement fields uð
¯
xÞ ,

vð
¯
xÞ and wð

¯
xÞ, or reference fields, are shown in Figure 15A,

and the same fields calculated with the DHC algorithm are
depicted in Figure 15B. Since this is a virtual experiment,
we are able to calculate the exact error field, which is the
difference between the reference and calculated field. This
error field is shown for all three directions in Figure 15C. It
is observed that the displacement fields for both the in-
plane directions x and y and the out-of-plane direction z

are captured well. They are calculated rather accurately,
although the error is larger than in the previous test case.
However, this is partly due to the lower amount of pixels
in the image, which can be optimized by using a
profilometer with a high-resolution camera. The novel

method, with a complex mesh that was constructed using
the proposed meshing procedure, is adequately able to
autonomously determine the degrees of freedom that
optimally describe the localized displacement field with a
representative buckling profile.

Experiment: Application to Stretchable

Electronics

A real experiment concerning a stretchable electronics
interconnect is executed in order to demonstrate the
adaptive isogeometric DHC method’s performance in a real
situation. If the interconnect is stretched, it buckles in
certain regions. The objective of this experiment is to
calculate the displacement field describing these buckles as
well as the in-plane displacements, with an autonomously
optimized set of shape functions.

Specimen and test set-up

The specimen used for this experiment is a stretchable
electronics interconnect consisting of a 10-μm-thick
polyimide substrate with a 1-μm-thick aluminium meander.

Figure 12: The refined mesh (a) and corresponding residual field (b) of the virtual experiment, for the case where a worst-case 3% noise level
is present. Note that the colour scale of the residual field is much smaller than in Figure 8

Figure 13: The reference image f (left) is shown along with deformed images g2 (middle) and g4 (right). The initial mesh and refined meshes
are plotted on top

© 2016 The Authors. Strain published by John Wiley & Sons Ltd | Strain (2016) 52, 336–354

348 doi: 10.1111/str.12189

Adaptive Isogeometric Digital Height Correlation : S. M. Kleinendorst et al.



Figure 14: The residual images are shown after correlation using the corresponding meshes from Figure 13. It can be seen that the buckles
cannot be described accurately with the initial mesh, resulting in a high residual in this area. After refinement in this region, the residual
decreases significantly. The RMS values are reported below the figures

Figure 15: Reference (a) and calculated (b) in-plane displacement fields uð
¯
xÞ (top) and vð

¯
xÞ (middle) and out-of-plane displacement fieldwð

¯
xÞ

(bottom) after the final iteration. In figure (c), the error, i.e. the difference between the reference and the calculated displacement field, is
depicted. The RMS values of the error in uð

¯
xÞ and vð

¯
xÞ are 0.070 pixels (0.0077 μm) and 0.105 pixels (0.0116 μm), respectively, and

0.060 μm for the error in the out-of-plane displacement
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This S-shaped aluminium interconnect structure has width
20μm, inner radius 20 μm and a 40-μm rectilinear segment
between the curvilinear sections (see Figure 16). For DHC,
a certain contrast in height values on the sample, or pattern,
is required. For this purpose, an Indium-Tin (In-Sn) layer is
deposited using a planar magnetron sputtering system. In
situ heating of the sample to 80 °C, close to the melting
temperature of In-Sn, in combination with a high
deposition rate is used to prevent deposition of a
homogeneous In-Sn layer, but instead achieve distinct
height features. Since the temperature during this pattern
deposition procedure is significantly lower than the
processing temperature of the sample, it is not degraded
using this technique.
The experimental set-up consists of a Kammarath&Weiss

uniaxial tensile/compression module placed underneath a
Sensofar Pl μ2300 confocal surface profilometer equipped
with a 150X objective. After deposition of the indium-tin
layer, the aluminium/polyimide interconnect is glued onto
disposable grippers that are clamped in the tensile stage
and stretched. After each elongation increment, a
topographic image is acquired.

Results

The dimensions of the specimen are very small and
therefore application of a pattern with sufficiently distinct
features and accurate, reproducible measurement of this
height profile with a profilometer is a known challenge,

as discussed for instance in [8]. For instance, when
comparing the profilometric images of different
increments, it is observed that the pattern features change
between the images (see Figure 17). This might be due to a
relatively high signal-to-noise ratio caused by steep edges
of the tiny pattern features, thereby working at the limits
of the profilometer. Measurement of the features from a
slightly different position and angle, due to in-plane
deformation and especially out-of-plane rotation of the
underlying sample, further decreases the measurement
reproducibility. These discrepancies between the
incremental images make correlation difficult, because
the residual will not reduce to (almost) zero for the correct
displacement field. The detrimental effects are somewhat
reduced by applying some Gaussian blurring (kernel size
10, σ =2) to the images before correlation, which is a
known technique to reduce bias error [34]. Still it was
found that shape functions with a small support are
sensitive to these measurement artefacts, especially the
shape functions in the corners of the domain. To
complicate the test further, it was observed that the
correlation length of the pattern is small. This, in
combination with the change in pattern features, makes
any DIC algorithm sensitive to a good initial guess. It is
a known feature of DIC algorithms that there is a
possibility of correlation to a local minimum instead of
the global minimum [2]. Starting from a coarse mesh with
limited degrees of freedom reduces this risk, while using
the correlation result of the coarse mesh as initial guess
for correlation for a refined mesh. In the virtual cases, this
was sufficient, and an initial guess of zero displacement
everywhere was acceptable, but in this experiment a good
initial guess is inevitable. This good initial guess for all
images was obtained by a correction for rigid body motion
of the specimen centre and running the algorithm first
over all images with the refinement option turned off,
i.e. with the large-area NURBS shape functions shown in
Figure 18A.

For the correlation, we zoom in on one of the rectilinear
parts, as this gives the most interesting displacement field,
since it buckles upon stretching. The images before and
after deformation are shown in Figure 18, with the initial
and refined mesh (after two refinement steps) plotted on
top. The buckles that occur are about 3.5μm high and
the mesh refines in the area of the buckles. However, the
sensitivity of the corner shape functions to the
measurement artefacts is clear in the refined mesh. The
mesh is refined in the corner elements, while there is no
kinematic reason for it. Refinement leads to more freedom
in this area, causing an even higher sensitivity to
experimental uncertainties and further refinement in the
same area. Also note that in the second image, it might
appear that the refined mesh does not correctly conform
the sample anymore, i.e. the mesh appears smaller than

Figure 16: Scanning electron microscopic image of the aluminium
stretchable interconnect on a polyamide substrate, taken after
deformation. The interconnect has delaminated from the substrate,
which exposes regions of the substrate that are not covered with an
Indium-Tin layer. The In-Sn layer is characterized by the granular
texture on top of the entire sample. In the rectilinear parts, the
lighter regions indicate the location of buckles
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the interconnect width; however, this illusion is caused by
the delamination and out-of-plane rotation of the
interconnect, causing the steep sides of the interconnect
to rotate into view, thereby exposing new area that in
the first image was not visible. This also becomes clear
from the zoomed images in Figure 17, where the yellow
encircled feature moves away from the ‘edge’ and another
feature appears below it.
Since this is a real experiment, it is not possible to

determine the accuracy of the correlation by means of

error fields, in contrast to the virtual experiments. The
accuracy therefore has to be determined using the residual
fields. These fields before and after mesh refinement are
shown in Figure 19. The buckles clearly show up in the
first residual field, as regions with an averaged value that
is systematically above (red) or below (blue) zero, which
indicates that a finer mesh is desired in these areas to
calculate the displacement field accurately. When the
mesh refines, in two steps, the final residual field does
not have regions with an averaged value systematically

Figure 17: Images f and g zoomed in at the same area (blue boxes in insets). It is observed that the pattern features look distinctly different in
the two images. For example, the feature in the circles is (almost) unrecognizable. This complicates correlation of the two images

Figure 18: The reference image f (left) is shown along with the deformed image g (right). Both images are blurred. The initial mesh and final
refined mesh are plotted on top
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different from zero anymore. Note that refinement in the
corners does not improve the residual in this area
significantly and occasionally even causes the residual to
increase, as for example in the right top corner. This is
because the increased number of degrees of freedom also
increases the sensitivity to the measurement artefacts,
which can lead to poorer correlation.
The out-of-plane displacement field (Figure 20C) clearly

shows the buckles observed in Figures 16 and 18B. The
in-plane deformation represents mainly the rigid body
rotation of the rectilinear part of the interconnect that
occurs upon stretching, as is also observed in these figures.
In all, the three-dimensional displacement field in
Figure 20 seems to have been measured accurately.
To conclude, since the height profiles resulting from this

experiment are difficult to process for any digital height
correlation algorithm, a good initial guess was necessary to
analyse the data with the adaptive isogeometric DHC
method. However, then the method was able to provide
accurate results, corresponding to the observed in-plane

and out-of-plane displacements in the measured height
profiles, and correlated to a relatively low residual field.
The mesh was optimized autonomously to be able to
describe the complex displacement field accurately, but
refined in unnecessary areas due to sensitivity of the small
corner shape functions to measurement artefacts. Still,
autonomy of the algorithm was partly lost due to the
necessity of the preconditioning. As the DHC algorithm
seems to work correctly, further improvement should be
obtained by application of a height pattern with larger
correlation length and more robust measurement of surface
height profiles.

Conclusion

A method has been developed which uses an adaptive
refinement algorithm to nearly autonomously refine shape
functions in a global digital height correlation technique.
This method is useful in experiments where the kinematics
of the deforming sample is not known in advance. The

Figure 19: The residual images are shown after correlation using the corresponding meshes from Figure 18. It can be seen that the buckles
cannot be described accurately with the initial mesh, resulting in a high residual in this area (RMS value 0.133 μm). After refinement in this
region the residual decreases significantly (RMS value 0.062 μm)

Figure 20: The calculated displacement fields uð
¯
xÞ in x-direction (a), vð

¯
xÞ in y-direction (b) andwð

¯
xÞ in z-direction (out-of-plane) (c) are shown

on top of undeformed image f. Combining the two in-plane displacement fields yields a rigid body rotation, which can also be seen from the
difference between Figures 18(a) and (b), as well as a slight elongation of the structure. In the out-of-plane displacement field, the observed
buckles appear clearly, indicating an accurate calculation of the displacement field
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mesh autonomously adjusts to the displacement field, i.e.
optimizing the set of shape functions for capturing the
displacement field. An optimized number of shape
functions, i.e. number of degrees of freedom, are beneficial
in DHC problems. Sufficient DoFs are needed to capture
the kinematics of the displacement field, but too many of
them make the problem too sensitive to noise. Another
advantage of this method is that only little user experience
is required to construct a reliable discretization of
the problem.
Non-uniform rational B-splines shape functions are used

both for the discretization of the DHC problem and the
parametrization of the sample geometry. NURBS were
originally developed for CAD modelling, and in this work,
the CAD representation of the sample is directly used for
DHC. NURBS shape functions are geometrically rich and
can describe many geometrical shapes and displacement
fields. With the use of a CAD program for constructing the
mesh, nearly any specimen geometry can be meshed.
Moreover, one is not restricted to a particular polynomial
order of the shape functions, as the order can simply be
selected in the CAD program. In this work, it was chosen
to use second-order NURBS, since for buckled samples, the
curvature of the buckles is of particular interest and to this
end second-order derivatives of the calculated displacement
field are desired. A hierarchical approach has been
implemented for the adaptive refinement of the shape
functions. This way refinement is executed in an efficient
way and stays local, in contrast to knot insertion where an
entire column and row of shape functions are refined due
to the tensor product structure. The adaptive refinement is
based on the residual field.
A proof of concept of the novel method is given with a

virtual experiment with an out-of-plane displacement
field with two sinusoidal peaks, representing a localized
buckle pattern. The algorithm works adequately and
refines in the expected area, yielding an accurate result.
The method is also applied to a virtual experiment where
a more complex sample shape is used: a stretchable
electronics interconnect. It was shown that the method
succeeds in capturing both in-plane and out-of-plane
deformation fields accurately and refines the mesh in
the expected areas.
Finally the adaptive iso-DHC method is tested in an

experimental setting, where an in situ tensile experiment
is performed on a stretchable interconnect in a
profilometer. This experiment formed a challenge, since
the structure is of such small dimensions that reproducible
measurement of the microscopic height pattern forms a
significant challenge. Successful correlation of the
resulting images would be difficult for any DIC algorithm.
The problems were overcome by applying blurring of the
images and supplying a good initial guess. This is a
compromise, since the autonomy of the algorithm is

decreased; however, the mesh is still autonomously refined
in the necessary regions yielding accurate three-
dimensional deformation fields. Further improvement
should be sought in more robust measurement of surface
height profiles.

Concluding, the novel-adaptive isogeometric DHC
algorithm is a versatile technique for correlating
displacement fields using the height profiles of many
different types of experiment, including samples of which
the deformation mechanism is unknown in advance (e.g.
stretchable electronics interconnects). The shape functions
used for discretizing the displacement field adjust
autonomously to enrich the kinematics in regions where
this is needed, obviating the need for detailed mechanical
knowledge in advance. Accurate results have been
obtained with the method, making this a promising
technique for experimental mechanics of solids.
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