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As the core of the integrated navigation system, the data fusion algorithm should be designed seriously. In order to improve
the accuracy of data fusion, this work proposed an adaptive iterated extended Kalman (AIEKF) which used the noise statistics
estimator in the iterated extended Kalman (IEKF), and then AIEKF is used to deal with the nonlinear problem in the inertial
navigation systems (INS)/wireless sensors networks (WSNs)-integrated navigation system. Practical test has been done to evaluate
the performance of the proposed method. �e results show that the proposed method is e�ective to reduce the mean root-mean-
square error (RMSE) of position by about 92.53%, 67.93%, 55.97%, and 30.09% compared with the INS only, WSN, EKF, and IEKF.

1. Introduction

As the development of automation indoormobile robots, how
to obtain accurate navigation information of indoor mobile
robots has received great attention over the past few decades.

To the integrated system, the global positioning systems
(GPS)/inertial navigation systems (INS) integrated system is
one of the most used methods for the outdoor navigation.
Many attempts try to improve the accuracy of the GPS/INS
integration. For example, Quinchia et al. compared di�erent
error modeling of MEMS applied to GPS/INS integrated sys-
tems in [1], Jwo et al. proposed a fuzzy adaptive strong track-
ing unscentedKalman lter for ultratightGPS/INS integrated
systems [2], Chen et al. proposed a GPS/INS system using
novel ltering methods for vessel attitude determination [3],
and Jwo et al. proposed a nonlinear ltering with IMM
algorithm for ultratight GPS/INS integration [4]. Meanwhile,
in order to overcome the GPS outage, some attempts try
to design bridge methods by using the articial intelligence
algorithms [5] such as Neural Networks (NN) [6–8] and least
squares support vector machine (LS-SVM) [9–11]. However,
since the accuracy of the integrated system is depending on
the GPS, it has poor performance in the indoor environment.

In order to get higher positioning accuracy indoor, some
literatures try to employ wireless localization to replace the
GPS in the integrated system. For instance, S. J. Kim and B.
K. Kim proposed an accurate hybrid global self-localization
algorithm for indoor mobile robots with two-dimensional
isotropic ultrasonic receivers [12], and an accurate pedestrian
indoor navigation by tightly coupling foot-mounted IMUand
RFID measurements was proposed in [13]. On the basis of
the navigation strategy, the data fusion algorithm should also
be designed seriously. In this eld, Kalman lter (KF) is able
to achieve the optimal state estimation [14]. However, it is
not suitable for nonlinear systems. �us, the extended KF
(EKF) is proposed to overcome this problem by Taylor series
expansion, which may introduce a truncated error [15]. In
order to overcome this problem, the iterated EKF (IEKF) is
proposed. However, the data fusion algorithms mentioned
above are di�cult to track the accurate state during the
target’s fastmovement since it employs a xed priori estimates
for the process and measurement noise covariances during
the whole estimation process [16].

In order to overcome these problems, we employed the
noise statistics estimator in the IEKF, which combines the
advantages of the AEKF and the IEKF. �e remainder of
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the paper is organized as follows. Sections 2 and 3 give
the introduction for AIEKF and its application to INS/WSN
integrated system. �e tests and discussion are illustrated in
Section 4. Finally, the conclusions are given.

2. Adaptive Iterated Extended Kalman Filter

In this section, a brief introduction to the EKF and IEKF will
be given, and then AIEKFwill be proposed. It is assumed that
a discrete-time model of a nonlinear system is given by

x� = � (x�−1) + ��,
y� = ℎ (x�) + ��,

(1)

where x� and y� are the state vector and the measurement
vector for the lter, �(⋅) and ℎ(⋅) are the dynamic model
function and the measurement function, respectively, and�� and �� are the process noise vector and measurement
noise vector, respectively. It is assumed that �� and ��
are independent zero-mean white Gaussian sequences with
covarianceQ and R, respectively.

2.1. Extended Kalman Filter. �e traditional EKF algorithm
is utilizing a set of equations as follows [17]:

X̂�|�−1 = A�|�−1X̂�−1|�−1 + q̂�, (2)

P�|�−1 = A�|�−1P�−1A
�
�|�−1 + Q̂�, (3)

K� = P�|�−1H�
�[H�P�|�−1H�� + R̂�]−1, (4)

�� = y� − h (X̂�|�−1) , (5)

X̂�|� = X̂�|�−1 + K���, (6)

P�|� = [I − K�H (X̂�|�)]P�|�−1, (7)

where A�|�−1 = �f(X̂�|�)/�X̂�|�,H� = �h(X̂�|�)/�X̂�|�.
2.2. Iterated Extended Kalman Filter. Compared with the
EKF, the IEKF employs a few simple iterative operations to
reduce the bias and the estimation error a�er getting X� in
(2) and P� in (3). �e corresponding recursive relations are

X̂
(1)
�|� = X̂�|�−1,

P
(1)
�|� = P�|�−1,

K
(�)
� = P�|�−1(H(�))�[H(�)P�|�−1(H(�))� + R]−1,
X̂
(�+1)
�|� = X̂

(�)
�|� + K

(�)
� [y� − h

(�) (X̂(�)�|�) −H
(�)

× (X̂�|�−1 − X̂
(�)
�|�)] ,

P
(�)
�|� = [I − K

(�)
� H
(�)]P(�)�|�−1,

(8)

where H(�) = �h(X̂��|�)/�X̂��|� and the superscript � (� = 1,2, . . . , �) is the number of iteration steps, And then,

X̂�|� = X̂
(�)
�|� ,

P�|� = P
(�)
�|� .

(9)

2.3. Adaptive Iterated Extended Kalman Filter. �eEKF over-
comes the nonlinear problem by ignoring the higher order
terms, whichmay introduce a truncated error.�us, the IEKF
overcomes this problem. However, it is evident that both
the Q and R for EKF and those for IEKF are prior estimates.
In practice, there are uncertainties in the noise description,
and the assumptions on the statistics of disturbances are
violated since the availability of precisely known model is
unrealistic practical situations. In order to overcome these
problems, we employed the noise statistics estimator into the
IEKF. Meanwhile, when the system noise is stable and the
error variance is small, it is able to employ observation noise
estimator only. �e corresponding recursive relations are

X̂
(1)
�|� = X̂�|�−1,

P
(1)
�|� = P�|�−1,

K
(�)
� = P�|�−1(H(�))�[H(�)P�|�−1(H(�))� + R̂

(�)
�−1]
−1,

X̂
(�+1)
�|� = X̂

(�)
�|� + K

(�)
� [y� − h

(�) (X̂(�)�|�) −H
(�)

× (X̂�|�−1 − X̂
(�)
�|�)] ,

P
(�)
�|� = [I − K

(�)
� H
(�)]P(�)�|�−1,

(10)

where R̂
(�)
� is computed by the time-varying noise statistics

estimators with the following equations:

R̂
(�)
� = (1 − ��−1) R̂(�)�−1

+ ��−1 ([I −H
(�)
� K�] ����� [I −H

(�)
� K�]�

+H
(�)
� P
(�)
�|�−1(H(�)� )�) ,

(11)

here, ��−1 = (1 − �)/(1 − ��), 0 < � < 1. And then,

X̂�|� = X̂
(�)
�|� ,

P�|� = P
(�)
�|� ,

R� = R
(�)
� .

(12)

3. Adaptive Iterated Extended Kalman Filter
for Integrated Navigation

In this work, we just consider the navigation information
for mobile robot in the relative coordinate. �e INS error is
the accumulation of errors in each time. In order to achieve
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Figure 1: Conguration of the hybrid system.

better estimation accuracy of INS error, the state vector is
dened by x = [��� ��� ��� ��� �Acc� �Acc�]. Here,(���,�, ���,�), (���,�, ���,�), and (�Acc�,�, �Acc�,�) are the
errors of position, velocity, and accelerometer measured by
INS in east and north direction. �e system equation for the
lter at time � is illustrated in.

[[[[[[[
[

���,����,��Acc�,����,����,��Acc�,�

]]]]]]]
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

x�

=
[[[[[[[
[

1 & &2/2 0 0 00 1 & 0 0 00 0 1 0 0 0
0 0 0 1 & &2/20 0 0 0 1 &0 0 0 0 0 1

]]]]]]]
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

A

[[[[[[[
[

���,�−1���,�−1�Acc�,�−1���,�−1���,�−1�Acc�,�−1

]]]]]]]
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

x�−1

+W�,

(13)

where & is sample time and W� is the process noise vector.
�emeasurement equation for the lter at time � is illustrated
in.

[[[[[[[[
[

Δ��,�Δ��,�Δ�21,�Δ�22,�
...

Δ�2�,�

]]]]]]]]
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

y�

=
[[[[[[[[
[

���,����,�ℎ�1 (���,�, ���,�)ℎ�2 (���,�, ���,�)
...ℎ�� (���,�, ���,�)

]]]]]]]]
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

h(X�)

+ �̃�. (14)

Here, Δ�2	 is the di�erence between the distance form
reference node (RN) to the mobile robot measured by the

INS and WSN, respectively, at time �, and it is expressed as
follows:

Δ�2	,� = (�INS	 )2 − (�WSN
	 )2

= 2 (�INS
� − �RN,	

� ) ���,� + 2 (�INS
� − �RN,	

� ) ���,�
− (��2�,� + ��2�,�) , - = 1, 2, . . . , �,

(15)

where �INS	 and �WSN
	 are the distances from mobile robot

to -th RN measured by the INS and WSN, respectively,

(�INS
� , �INS
� ) is INS position for mobile robot, and (�RN,	

� ,
�RN,	
� ) is -th RN position. And (Δ��, Δ��) is the di�erence

of the WSN and INS velocities in east and north direc-
tion, respectively, and �̃� is measurement noise vector. �e
derivation of (15) has a very detailed description in [18]. �e
conguration of the hybrid system is shown in Figure 1.

4. Indoor Localization Tests and Discussion

4.1. �e Architecture of the Integrated Navigation System. In
this work, a real testbed is built to evaluate the performance
of the proposed method. Figure 2 displays the architecture of
the testbed. In this work, themobile robot (shown in Figure 3)
is used to run along the preset trajectory. �e IMU xed to
the robot are used to provide INS solution for the position,
velocity, and the attitude of the mobile robot. �e mobile
robot position measured by the WSN is used as ultrasonic
sender and the receiver. And the computer is used for saving
sensor data.

�e sample time used in the test is 0.02 s, and the mobile
robot runs along the trajectories shown in Figure 4 with
0.3m/s. Meanwhile, the RNs are denoted by yellow circles in
Figure 4.
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4.2.�e Performance of the Proposed Method. In this section,
the performance of the proposed method is discussed. �e
position errors for the INS only, WSN, EKF, IEKF, and the
proposed method are shown in Figure 5.

�e east and north position errors of ve estimation
strategies in the rst trajectory are shown in Figures 5(a) and

5(b), respectively. From these gures, it can be seen easily
that the INS position error is accumulated. WSN is able to
maintain the accuracy of position. It is evident that both
the EKF and the IEKF are e�ective in reducing the position
error compared with WSN. �e errors for the proposed
method are smaller than the ones for the IEKF. Figures 5(c)
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Figure 4: �e trajectory of the real test.

Table 1: Comparison of ve estimation strategies in terms of position error.

Method

RMSE (m)

�e rst trajectory �e second trajectory
Mean

East North East North

INS only 0.5912 0.4590 0.2108 0.3179 0.3947

WSN 0.1132 0.0787 0.1065 0.0697 0.0920

EKF 0.0721 0.0639 0.0736 0.0582 0.0670

IEKF 0.0433 0.0433 0.0462 0.0360 0.0422

�e proposed method 0.0333 0.0290 0.0309 0.0249 0.0295

Table 2: Comparison of ve estimation strategies in terms of velocity error.

Method

RMSE (m/s)

�e rst trajectory �e second trajectory
Mean

East North East North

INS only 0.1391 0.1682 0.1400 0.0957 0.1358

WSN 0.0595 0.0854 0.0650 0.0794 0.0723

EKF 0.0441 0.0539 0.0424 0.0437 0.0460

IEKF 0.0425 0.0556 0.0412 0.0482 0.0469

�e proposed method 0.0445 0.0546 0.0420 0.0462 0.0468

and 5(d) display the east and north position errors of ve
estimation strategies in the second trajectory. Similar to the
rst trajectory, it is evident that the proposed method has the
smallest error.

�e comparison of ve estimation strategies in terms of
position error is shown in Table 1. �e results show that
the proposed method has the lowest error in east and north
direction respectively. �e mean root-mean-square error
(RMSE) of position for the proposed method is 0.0295m. It
reduces the mean RMSE of position by about 92.53%, 67.93%,

55.97%, and 30.09% compared with the INS only, WSN, EKF,
and IEKF.

Table 2 shows the comparison of ve estimation strategies
in terms of velocity error. It can be seen that the EKF, IEKF,
and the proposed method are able to reduce the velocity
error compared with the IN S and theWSN, respectively.�e
result shows that themean RMSE of velocity for the proposed
method is 0.0468m/s. However, the velocity estimation
accuracy for the EKF, IEKF, and the proposed method is
close.
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Figure 5: �e position errors for the INS only, WSN, EKF, IEKF, and the proposed method. (a) and (b) �e rst trajectory. (c) and (d) �e
second trajectory.

5. Conclusions

In thiswork, the noise statistics estimator is employed into the
IEKF to combine the advantages of the AEKF and the IEKF.
�en, the AIEKF is used in INS/WSN integrated system.
�e experimental results show that the proposed method
is e�ective in reducing the position error compared with
the INS only, WSN, EKF, and IEKF; however, the velocity
estimation accuracy for the EKF, IEKF, and the proposed
method is close.
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