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Adaptive Iterative Learning Control for High Precision Motion Systems
Iuliana Rotariu, Maarten Steinbuch, Senior Member, IEEE, and Rogier Ellenbroek

Abstract—Iterative learning control (ILC) is a very effective
technique to reduce systematic errors that occur in systems that
repetitively perform the same motion or operation. However,
several characteristics have prevented standard ILC from being
widely used for high precision motion systems. Most importantly,
the learned feedforward signal depends on the motion profile
(setpoint trajectory) and if this is altered, the learning process
has to be repeated. Secondly, ILC amplifies non-repetitive dis-
turbances and noise. Finally, its performance may be limited due
to position-dependent dynamics. This paper presents the design
and implementation of a time–frequency adaptive ILC that is
applicable for motion systems which executes the same motion
or operation. It employs the same control system block diagram
as standard ILC, but instead of a fixed robustness filter it uses
a time-varying filter. By using the results of the time–frequency
adaptive ILC, i.e., the shape of the learned feedforward signal, a
“piecewise ILC” is proposed that leads to the design of a single
learned feedforward signal suitable for different setpoints. The
results are experimentally shown to work for a high precision
motion system.

Index Terms—Adaptive filtering, learning control systems, mo-
tion control, time–frequency analysis, time-varying filters.

I. INTRODUCTION

T HE ESSENTIAL steps in the manufacturing process of
integrated circuits (IC’s) are performed by lithographic

machines called wafer scanners. An important module of these
machines is the wafer stage. This is a high precision, 6 de-
grees-of-freedom (DOF) motion system, which repeatedly po-
sitions the silicon wafer with respect to the illumination optics.
As integrated circuits (ICs) become smaller, the required pre-
cision increases proportionally. Positioning tolerances are cur-
rently in the order of nanometers, and can only be met using a
very careful design of the machine’s mechanics, actuators, elec-
tronics, software, measurement and control systems, etc.

In particular in control system design, well known concepts
like proportional–differential (PD) feedback controllers in-
cluding notch-filters and rigid body acceleration feedforwards
are being used. In the future, more advanced designs will
be needed to achieve the desired tracking performance [1],
including multivariable feedback control.
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Fig. 1. Effects of extending or contracting the third-order setpoint (top) for
larger or smaller die sizes on its acceleration profile (bottom). Since the con-
sidered system behaves largely as a rigid body, a suitable feedforward signal is
very similar to this profile.

For motion systems that repeatedly perform the same move-
ment iterative learning control (ILC) [2] can be applied. This
technique uses an iterative process to incorporate past control in-
formation, i.e., the tracking error signal of the previous iteration
(called trial), into the construction of a new feedforward signal.
ILC can be viewed as a trial-domain integral action with zero
asymptotic error for constant disturbances. Such disturbances in
the trial domain are hence equivalent to fixed reference or fixed
disturbance profiles. Although ILC leads to good tracking per-
formance [3]–[5] several drawbacks remain. First, the learned
signal depends on the setpoint, so the whole learning process has
to be repeated if this setpoint is altered. For motion systems and
wafer scanners in particular, this constitutes the main drawback,
since the setpoint is related to the frequently changing size of
the die to illuminate (see Fig. 1). In Fig. 1, a typical third-order
motion setpoint is shown, for three different scan lengths. For
another die, hence another setpoint length, the learning process
has to be repeated (typically 5–10 additional scans) and this will
lower the overall wafer throughput of the machine. Second, ILC
amplifies noise and other non-repetitive disturbances [6], [7]. Fi-
nally, its performance is limited due to position-dependent dy-
namics when the position of the setpoint varies.

This paper proposes a solution for reducing the dependency
of the learned feedforward signal on the reference setpoint. In
[8] and [9], we show that the proposed method does not lead
to noise amplification. The final problem, position-dependent
behavior, is addressed in [10] and [11].

Standard ILC—see for an extensive overview, and application
to a wafer stepper system the work of [4]—consists of the de-
sign of a learning filter and a robustness filter (see Fig. 2). A
compromise must be made in the design of the robustness filter,
since this filter influences both the reduction of the repetitive

1063-6536/$25.00 © 2008 IEEE
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Fig. 2. Block-schematic for standard ILC.

error and the amplification of noise. In this paper, a time-varying
robustness filter is introduced that adapts according to the mo-
mentary frequency content of the feedforward signal. This leads
to a time–frequency adaptive ILC similar to [12] and [13], while
achieving an equivalent suppression of repetitive errors [9]. The
main difference is that, in [12], the time–frequency analysis of
feedback signals is used in order to design a feedforward signal
that is updated iteratively based on the output of a B-splines net-
work. In [13], by means of time–frequency analysis, one designs
an adaptive nonlinear controller using a different ILC block dia-
gram than the one we employ here. The control signals in our re-
search exhibit a more pronounced multicomponent behavior and
require more accurate signal processing by means of time–fre-
quency analysis.

The adaptive ILC presented in this paper is based on the
time–frequency analysis of the error signals. First of all, this
analysis identifies the deterministic (stationary and non-sta-
tionary) and stochastic effects present in measured signals, and
is used to design an adaptive cutoff frequency of the robustness
filter . For the considered system, the cutoff frequency of the
time-varying filter could be taken even zero for those time
intervals where the measured control signals do not show any
deterministic content. Based on this, the adaptive ILC leads to a
single learned feedforward signal that can be used for different
setpoints. The technique—called piecewise ILC—solves part
of the setpoint dependency of ILC for classes of systems that
show little position-dependent behavior.

This paper is organized as follows. In Section II standard
ILC is applied to the motion system. Section III discusses joint
time–frequency analysis techniques in general and its applica-
tion to control signals relevant for ILC. The design of a time-
varying robustness filter is then described in Section IV, for
which a suitable bandwidth profile is sought in Section V. Fi-
nally, the concept and experimental results for the wafer scanner
using piecewise ILC are shown and discussed in Section VI.

II. ITERATIVE LEARNING CONTROL

In this section, standard ILC is applied to the motion system.
Consider a SISO LTI closed loop system with a plant and
a stabilizing feedback controller .

When the setpoint is the only disturbance acting on the loop
(i.e., ), the servo error is with

the sensitivity function. In the sequel, we will

Fig. 3. Bode-plot of the (SISO) measured frequency response function
� ����� at the center wafer position (thick line), together with the learning
filter ����� (thin line).

omit the addition of the Laplace symbol (s) for the signals, and
we will assume zero initial conditions. Standard ILC [14] is an
iterative technique that consists of the construction of a suitable
feedforward signal such that the servo error is reduced. Its
design consists of the design of the learning filter and the
robustness filter (Fig. 2). The ILC update law for trial is
given by

(1)

(2)

where , is the error signal, the feedfor-
ward signal, and an output disturbance. Note that and

, which modify the sequence , are designed offline.
The fixed-point theorem [15], provides a sufficient condition

for the convergence of ILC [14]

(3)

From this criterion, it follows that the learning filter
should approximate the inverse of the process-sensitivity func-
tion , such that . It also shows the role of the
robustness filter , which is used to make sure that the crite-
rion (3) is satisfied for all frequencies where

.
Note that convergence criterion (3) holds only when the ro-

bustness filter is steady state. Section IV will address the con-
vergence criterion for time–frequency adaptive ILC, i.e., when
the Q-filter is time-varying.

Some implementation issues will be briefly discussed. A first
step when applying ILC is the design of a learning filter .
Here, the ZPETC algorithm of Tomizuka [16] has been used to
provide a stable approximation of the inverse of the modeled
process-sensitivity function (see Fig. 3). In Fig. 3, a mea-
sured frequency response function is shown of the scanning di-
rection motion system of the wafer scanner under investigation.
Some of the mechanical resonances inherent in such systems
are clearly visible at higher frequencies. In the same figure the
frequency response is plotted of the learning filter designed.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on October 15, 2009 at 07:26 from IEEE Xplore.  Restrictions apply. 
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Fig. 4. Convergence criterion from (3) plotted for different positions along the
setpoint. Differences between the plotted lines are due to position-dependent
dynamics of the system, which become significant when applying ILC frequen-
cies around 830 Hz.

When applying standard ILC to the motion system for a given
scanning trajectory, the cutoff frequency has to be tuned such
that the learned servo error is convergent overall along the scan-
ning trajectory, i.e., the fixed cutoff frequency is reduced such
that one accounts for position dependent dynamics within the
scanning trajectory [8]. The Q-filter is also used in order to in-
crease the robustness of the ILC against high-frequent noise am-
plification and plant/model mismatch. Therefore, the Q-filter is
given a low-pass characteristic. However, low-pass filters in-
troduce a phase shift to the filtered signal, which results in a
reduced tracking performance. Therefore, a filtering procedure
is used that first filters a signal normally and successively re-
stores its phase by applying the same filter backwards in time
(MATLAB’s filtfilt function).

A fourth-order Butterworth filter with a bandwidth of 500 Hz,
implemented using this technique has been found to insure con-
vergence for all positions along an arbitrary, fixed setpoint and
a very good tracking performance, i.e., factor ten improvement
with respect to tracking performance when acceleration feedfor-
ward control is applied, see [4]. Fig. 4 shows a magnitude plot
of the convergence criterion (3), evaluated for various positions
on the wafer.

When a standard third-order setpoint is performed with a rigid
body mass feedforward, a typical servo error results, as shown
in Fig. 5. The errors are obtained with a feedback bandwidth
of about 100 Hz, and a standard acceleration feedforward. The
residual error is in the order of 300 nm. Using ILC the results
are as shown in Fig. 6, after five learning iterations only. Clearly,
the error reduced significantly, up to a factor 10.

III. JOINT TIME–FREQUENCY ANALYSIS

In this section, we shortly introduce the concept of quadratic
time–frequency analysis of measured signals by means of
Wigner distribution as a quadratic time–frequency representa-
tion [8], [17].

The integration of time–frequency analysis with the field of
iterative learning control will be investigated for two purposes.

Fig. 5. Measured servo error, while performing a normal third-order setpoint
with a rigid body acceleration feedforward. The numbered intervals are the par-
tially overlapping pieces for time–frequency analysis. The analyzed pieces are
sewn together at the dotted lines.

Fig. 6. Time domain error signals obtained after convergence of Standard ILC
based on a fourth-order Butterworth filter (implemented using the filtfilt
method) and on a Gaussian filter; both with a bandwidth of 500 [Hz].

First of all to identify the deterministic (stationary and non-
stationary) and stochastic effects present in measured signals.
Second, time–frequency analysis is performed on the feedfor-
ward signal (see Fig. 2). This information will be used in
Section V to find a suitable profile for the bandwidth of the
time-varying robustness filter described in Section IV.

The Wigner distribution is defined by

(4)

where , , is the complex conjugate of the analyzed
time-signal and the frequency in hertz. The distribution is
real-valued and can—due to its quadratic form—be physically
interpreted as the distribution of the signal’s energy over both
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Fig. 7. Wigner distribution of the error signal in Fig. 5, created using [18].
Darker means higher relative energy. Seven intervals can be identified with
significant energy content, of which three spurious ones due to cross-terms.
Note that also the non-spurious third and fifth peaks are visibly distorted by
cross-terms.

time and frequency. Although the Wigner Distribution is espe-
cially appropriate for the analysis of nonstationary multicom-
ponent signals [17], the main deficiency in the time–frequency
analysis based on Wigner distribution is the cross-term infer-
ence: each pair of signal components or signal component and
noise create one additional cross-term in the spectrum, thus the
desired time–frequency representation may be confusing.

For the purpose of this research, we propose and explain next
a relatively easy numerical method that eliminates these infer-
ence terms, i.e., piecewise clipping algorithm of the considered
nonstationary multicomponent signal.

As mentioned before, for a standard third-order setpoint with
a rigid body mass feedforward, a typical servo error results, as
shown in Fig. 5. This signal shows highly repetitive behavior
and contains short intervals with high energy, corresponding to
intervals of non-zero jerk in the setpoint. The Wigner distribu-
tion of this signal will contain many cross-terms that are situ-
ated—as explained—between all auto-terms, which results in
the image depicted in Fig. 7. Instead of the four expected high
energy peaks, as many as seven can be identified.

However, the cross-terms that dominate this image are elim-
inated if the signal is cut into four pieces, such that each piece
contains only one peak (see Fig. 5). Although this comes at the
cost of frequency resolution, it is easily justified by the advan-
tage of cross-term reduction and reduced computational costs.
Note from Fig. 5 that the pieces are chosen partially overlap-
ping. This keeps the partial time-signals as long as possible and
thus restricts the loss of frequency resolution.

Piece-wise analysis of the servo error signal in Fig. 5 results
in the image shown in Fig. 8. This shows significantly less cross-
terms when compared to the one in Fig. 7. The same piecewise
approach has been used to analyze the feedforward signal
(see Fig. 2), with a similar effect on cross-terms.

Fig. 8. Piece-wise Wigner analysis of the error signal in Fig. 5. The cross-terms
are significantly reduced in comparison to Fig. 7.

IV. ILC WITH ADAPTIVE ROBUSTNESS FILTER

When the time–frequency analysis (see Fig. 8) is applied for
the error signal from Fig. 5, it can be observed that the energy
of deterministic, high frequencies in the error signal is con-
centrated around the moments of non-zero jerk in the setpoint.
Therefore, a high Q-filter bandwidth is not required everywhere
in time.

Next, we introduce the time–frequency adaptive Q-filter
in the context of ILC. With the same learning filter
as for standard ILC, we replace the fixed Q-filter with a
time-varying Q-filter , namely a zero-phase
Butterworth filter of order and cutoff frequency , where

, is the initial time of the th cycle,
is the time required to perform the trajectory. The cutoff

frequency may vary throughout the length of
each trial. Therefore, at each time instant , the Q-filter might
change its cutoff frequency. In what follows, we denote by

the inverse Fourier transform of the Butterworth
filter as a function in the variable

(5)

Convergence Criterion of the Adaptive ILC: In [19] and [20]
a rigorous convergence analysis for a similar adaptive ILC has
been carried out. Next, we prove briefly the convergence of the
applied adaptive algorithm by use of an uniform version of the
fixed point theorem [21]. As explained in [8], in the case when
the adaptive filter is used, the update formula (2) remains the
same while (1) becomes

(6)

known as the nonstationary convolutional integral [22], [23]
which is an extension of the convolutional method to nonsta-
tionary processes. This theory can apply to any linear, nonsta-
tionary filter, with arbitrary time and frequency variation, in
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time, Fourier or mixed domain. In [23], it is also shown that
this theory applies to general time-variant filtering and forward
and inverse Q-filtering. Based on (2), (6), and the uniform fixed
point theorem, a sufficient but not necessary condition for the
convergence of the adaptive ILC can be derived. This conver-
gence criterion can be written as

(7)

, , . where is an
arbitrary chosen fixed small parameter. From this criterion, it
follows that the learning filter should approximate the inverse
of the process-sensitivity function such that

. The role of the adaptive robustness filter is to make sure
that the criterion (7) is satisfied for all frequencies where

is not very small (from Fig. 4 it can be seen that this
is valid up to 830 Hz). The Q-filter is therefore designed to have
a varying bandwidth of not more than about 500 Hz and a fast
roll-off, such that the convergence criterion is always satisfied
for all frequencies and any time instance in an uniform way with
respect to the iteration index and the time . It follows that

(8)

When designing the adaptive filter , it is easy to take care
numerically that the convergence criterion (8) is satisfied.

We shall apply the adaptation mechanism along the whole
trajectory length time-interval. First, the design of the time–fre-
quency Q-filter comprehends the use of the Wigner distribution.
Using Wigner distribution we identify the high and low fre-
quency components of the control signals (namely, the signals

at each iteration) as well as their energy levels so that one
could determine if there is deterministic (low or high frequency)
system dynamics at a particular time instant (for a given set-
point, time is equivalent to position) or just measurement noise.
The stochastic definition of the Wigner distribution allows us
to identify the stochastic effects presented in the control signals
(implicitly in the servo errors) and to consider these effects in
the control strategy.

The Q-filter bandwidth (cutoff frequency of the Butterworth
type filter ) varies according to the current frequency contents
present in the system signals. The filter effectively changes its
bandwidth (cutoff frequency) as a function of time and the high
frequency dynamics will enter into the learning feedforward
controlled process at the appropriate time instances. Also, the
bandwidth of the filter is reduced when the system dynamics do
not exhibit high frequency components and, therefore, it avoids
noise amplification when applying learning feedforward con-
trol. Therefore, the adaptation algorithm will adjust the band-
width frequency as a function of time to maximize the tracking
performance while still maintaining a good noise performance.

Remark 1: The time–frequency adaptive Q-filter can be
seen as a time-varying low-pass filter. The filter might change
very fast (the motion control considered has a sampling rate of
0.125 ms). The fast switching between the cutoff frequency of
different Q-filters which correspond to different time instances
is a major issue in switching control and hybrid system area.
For stability results of switched systems, which can indicate a
way to handle with the Q-filter, we refer to [24]. In the case
of the considered motion system, the cutoff frequencies are

Fig. 9. 3-D image of the Wigner distribution of the error signal filtered by the
learning filter. The semi-transparent horizontal plane represents the energy value
� that discriminates deterministic signal components from noise.

changing smoothly enough from one time instant to another.
The switching control law does not affect the stability of the
system.

Remark 2: The algorithm explained in this section is adap-
tive not only over the time interval within a considered trial, but
over iterations also. In this paper, we show the time domain per-
formance results when implementing the same time–frequency
adaptive filter for all trials. Therefore, the bandwidth of the
Q-filter changes in time within one trial, but does not adapt its
profile from one iteration to another one. Adaptive tuning of the
Q-filter bandwidth profile over iterations will be shown in a fu-
ture paper.

V. DESIGN OF A BANDWIDTH PROFILE

In this section, a bandwidth profile is constructed the time-
varying robustness filter described in Section IV. Information
obtained through time–frequency analysis (see Sections III and
IV) is used to update the bandwidth profile of the Q-filter during
the ILC process. This robustness filter is going to be imple-
mented in the closed loop LC configuration (see Fig. 2).

Consider the time vector and the initial band-
width profile . The elements of the vector are chosen
equal small values, whereas the initial feedforward signal is
chosen zero.

A step-by-step description of the adaptive learning process
will now be given. Note that these steps are taken with each
iteration.
Step 1) The learned feedforward signal is implemented, such

that a corresponding error signal can be measured.
This signal is filtered by the learning filter, with
which the feedforward signal from the previous iter-
ation is summed to obtain (see Fig. 2). The piece-
wise Wigner analysis described in Section III will be
performed on this signal. This provides information
on the location of relevant signal components in this
signal, which is to be filtered by the time-varying ro-
bustness filter from Section IV.

Step 2) Observe in Fig. 9—which shows the Wigner distribu-
tion from step one as a 3-D surface—that the energy

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on October 15, 2009 at 07:26 from IEEE Xplore.  Restrictions apply. 



1080 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 16, NO. 5, SEPTEMBER 2008

of noise on is significantly smaller than that of
the deterministic disturbances. Based on a time–fre-
quency analysis of the noise measured in the system
in rest (i.e., at stand still), an energy level rep-
resented by the horizontal plane in Fig. 9 is chosen
that discriminates between noise and deterministic
signal components at every point in the time–fre-
quency plane.
At a given arbitrary iteration , a frequency envelope

is now constructed, that encompasses the
frequencies of all signal components at each time-
instant, whose energy exceeds

for (9)

where is the Wigner distribution of the
error signal at iteration . Note that and

are not functions in the mathematical
sense.

Step 3) The envelope is used as a gain in an adap-
tive update law. This law changes the bandwidth
profile after each iteration, when the effects of
the previous change on the measured error are eval-
uated. After a new bandwidth profile has been im-
plemented, its benefit is evaluated by the function

, which compares the local norm of the
current error to that of the error at the previous iter-
ation, such that

(10)

where

(11)

gives the width of the window where the
signals are locally compared.

The difference becomes a second gain in the update
rule, which is given by

(12)

where is a global gain to be tuned later, and

(13)

is introduced to add the following logic to the mechanism: if the
bandwidth was previously increased , while
the error decreased , this change was beneficial
and the bandwidth may be further increased. On the other hand,
if an increase in the bandwidth resulted in a larger error, this
was obviously not the case and the bandwidth should be lowered
again. The combination results in this kind of
update behavior.

In order to minimize the loss of tracking performance due to
bandwidth variation (see Remark 1, Section IV), the obtained
bandwidth profile is smoothed before it is used. This is done by

Fig. 10. Approximately converged bandwidth profile � ��� for � � �� re-
sulting from the adaptive algorithm.

applying a low-pass Gaussian filter with a bandwidth of approx-
imately 20 Hz. Simulations have shown this bandwidth value to
give the best results.

Finally, the feedforward signal for the next trial is
obtained by performing the time-varying filtering operation on

(see Step 1).
Tuning and Results: In the description of the adaptive algo-

rithm, three parameters have been introduced that have been de-
signed using simulations. They are the energy level , the
global update gain , and the window width .

should be chosen such that the level plane in Fig. 9 lies
just above the highest peaks of the Wigner distribution of the
noise (determined at stand still). However, it cannot be chosen
too tight above the real noise level as the Wigner distribution
of will contain cross-terms between noise and deterministic
signal components, which could exceed the plane and thus affect
the envelope .

The bandwidth update gain influences the highest band-
width values of , see (12). In (11) and (12), as well
as in simulations, it has been observed that the window width

influences the width of the high-bandwidth peaks around
the jerk-moments (see Fig. 10). It has been tuned such that the
penalty on tracking performance (see Section IV) plays no sig-
nificant role.

Evaluation: For the considered test-rig, the time–frequency
adaptive ILC achieves a tracking performance that is compa-
rable to standard ILC [8], while the bandwidth of its Q-filter
is much lower for most time-instances. Therefore, it leads to a
smaller amplification of non-repetitive disturbances and noise.

After tuning, a bandwidth profile is typically obtained as de-
picted in Fig. 10. A learned feedforward signal is produced,
which looks very much as expected (see Fig. 11). It shows high-
frequent behavior around time-instants of non-zero jerk in the
setpoint, while it is almost constant in between these intervals,
where the Q-filter has a low bandwidth.

Remark: When the bandwidth profile is changed by the up-
date rule (12), this affects the tracking error in three ways. It
changes the suppression of repetitive disturbances (I) as well

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on October 15, 2009 at 07:26 from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 16, NO. 5, SEPTEMBER 2008 1081

Fig. 11. Comparison of feedforward signals resulting from standard (dashed
line) and adaptive ILC (thick line). Note that in order to improve the axis scales,
the signals are plotted as the difference to the rigid body acceleration feedfor-
ward.

as the amplification of noise (II). Further, it leads to a different
performance penalty due to bandwidth variation (III). Since a
change in noise amplification has a much smaller influence on
the evaluation function than the other two effects, this
has relatively little influence on the realization of the bandwidth
profile. Therefore, the bandwidth profile found using the adap-
tive algorithm does not necessarily lead to the smallest tracking
error achievable through application of ILC with a time-varying
robustness filter. The results are very much dependent on the
values of the parameters , , and on the bandwidth
smoothing operation, which complicates the tuning process.

VI. PIECEWISE ILC

It has been shown in the previous section, that learning is
only important around time-instants of non-zero jerk in the set-
point where unwanted excitation of the system dynamics must
be suppressed. Sufficient tracking performance is obtained by
applying a constant feedforward signal in between these inter-
vals.

Based on this knowledge, the concept of piecewise ILC
will now be introduced. From the feedforward signal given
in Fig. 11, which has been learned for a particular setpoint, a
feedforward signal has been derived that is suitable for different
setpoints.

As explained in the introduction, the length of the illumina-
tion interval is the most relevant parameter of the setpoint to be
able to vary. In Fig. 12, the four jerk intervals of a third-order set-
point are numbered and shown in the acceleration profile. When
a die of different size needs to be illuminated, the learned feed-
forward signal is split into an acceleration part (pieces 1 and
2) and a deceleration part (pieces 3 and 4). For larger dies, the
signal is extended by inserting zeros in between the two parts,
and for smaller dies both parts can be superpositioned. The
latter can be justified because the system shows highly linear
behavior.

Remark: Although the piecewise approach has only been
used to vary the illumination length, more elaborate variations

Fig. 12. Piece-wise ILC uses the four marked pieces of the learned feedforward
to construct a suitable feedforward for many third-order setpoints.

Fig. 13. Measured error signals for application of piecewise ILC for various
step sizes, but starting at the same position (see wafer-position schematic at the
bottom-right). The signals are plotted together with their corresponding accel-
eration profiles (not to scale).

should be possible for third-order setpoints. The velocity during
the illumination interval may be changed by adjusting the dis-
tance between pieces 1 and 2 as well as between 3 and 4, while
the acceleration levels may be adjusted by a linear scaling op-
eration on the whole signal. The only constraint is that the jerk
level is related to the acceleration level.

Experimental Results: When the explained methods con-
cerning the adaptation of the scan length are implemented on
the wafer scanner test rig, very good results are obtained (see
also [9]). Fig. 13 shows the servo errors obtained for both
longer and shorter setpoints. The error signals obtained for
different illumination lengths show peaks that do not occur for
the learned setpoint and are—as will be discussed in the next
paragraph—due to position-dependent disturbances.

VII. CONCLUSION

In this paper, time–frequency analysis of the servo error of
a wafer stage motion system has led to the design of a time-
varying robustness filter for ILC. By varying the bandwidth of
a zero-phase Butterworth filter over time, such that only deter-
ministic disturbances are learned, the amplification of noise can
be restricted. For the considered system, the cutoff frequency
of the time-varying -filter should be taken as small as pos-
sible, i.e., ideally constant zero values for some time intervals
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where the measured control signals do not show any determin-
istic content. Several issues concerning time-varying filtering
that affect the learning performance have been identified. To in-
sure a good tracking performance, a bandwidth profile must be
very smooth. Further, the frequency domain characteristics as
well as the shape of the corresponding impulse response func-
tions of the filter at each time-instant are important. Based on the
time–frequency analysis of the learned feedforward signal we
proposed “piecewise ILC” that leads to design a single learned
feedforward signal suitable for different setpoints.

Time-frequency adaptive ILC applied for a fixed setpoint
improves the tracking performance for all positions along the
trajectory, i.e., a factor ten improvement with respect to tracking
performance when acceleration feedforward is applied. The
comparison in [9] shows that the proposed method achieves a
similar tracking performance as standard ILC, that it converges
faster, and that it reduces noise amplification.

Further research might focus on the combination of wavelet
analysis and filtering [25], which might provide a solution to
both the cross-term problem in time–frequency analysis and the
performance loss due to time-varying filtering, see also [7], [26].

Other applications of time-varying filtering in the field of
ILC should also be explored. For systems with significant po-
sition-dependency and thus time-varying dynamics, the benefit
of a time-varying robustness filter looks interesting. However,
non-stationary behavior is not necessarily restricted to the ro-
bustness filter of ILC: a time or position-dependent learning
filter is also a possibility. One promising way is the use of the
lifted ILC approach, see for instance [5], [27]. The work re-
ported here can also be used for design of the bandwidth profile
for such a method.
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