
Adaptive Kalman Filtering for Anomaly Detection
in Software Appliances

Florian Knorn Douglas J. Leith
Hamilton Institute, Nation University of Ireland, Maynooth, Co. Kildare, Ireland

Abstract—Availability and reliability are often important fea-
tures of key software appliances such as firewalls, web servers,
etc. In this paper we seek to go beyond the simple heartbeat
monitoring that is widely used for failover control. We do this
by integrating more fine grained measurements that are readily
available on most platforms to detect possible faults or the onset
of failures. In particular, we evaluate the use of adaptive Kalman
Filtering for automated CPU usage prediction that is then used
to detect abnormal behaviour. Examples from experimental tests
are given.

I. INTRODUCTION

Software appliances (e. g. firewalls, web servers) are often
viewed as “mission critical” and thus required to have high
availability and reliability. Use of redundancy and failover
between devices has been the subject of considerable attention,
with simple heartbeat monitoring used for failover control.
However this primarily targets hardware failure and more
detailed software monitoring of operation within an individual
appliance is much less well developed.

Current best practice in software monitoring makes use of
basic event logging. However, the resulting logs are typically
presented in fairly raw form to human operators and, due
to the sheer volume of even basic event log data, this data
is often largely disregarded. That is, in practice faults are
typically detected as a result of a degradation in service or
user complaints, with the log data then used primarily for
diagnosis after the fact. This is highly inefficient on a number
of levels. Firstly, pro-active detection of faults (as opposed
to waiting for user complaints) can yield improved quality
of service. Secondly, although operators are already swamped
with log data, in fact this is only a very small subset of the
data which can be readily measured. Software appliances are
already instrumented to provide far more detailed measure-
ments than are provided by basic event logging. For example,
fine grained time histories of CPU and memory utlisation, file
system behaviour etc. are all available but unused (beyond
perhaps MRTG graphing of coarse 5 minute average data).
The potential wins from using this additional data, in addition
to early detection of fault conditions, include acceleration of
debugging and software fixes. At present, it can be extremely
time consuming (weeks or months) to track back from event
logs to the source of errors.

Many software appliances do provide manual setting of
threshold values for a few variables, with exceptions triggered
when a threshold is exceeded. However, anecdotal evidence
suggests that this functionality is rarely used. Not only are

guidelines for selection of the appropriate threshold values
not available, and expected to be strongly dependent on the
specific configuration of an appliance, it is clear that for some
important quantities simple thresholds are inappropriate. For
example, during normal operation CPU utilisation may reach
100 % and simple thresholding is of little use.

While in this context it is natural to consider the use of time
history information to support more discriminating inference,
solutions are subject to a number of key constraints. These
include: (i) any inference algorithm must have a small com-
putational/memory footprint and admit real-time operation, (ii)
be suited to unsupervised operation (i. e. without the need for
manual tuning and other intervention) and (iii) robust enough
to operate in a wide range of environments (although the range
is constrained by the fact that an appliance carries out a limited
number of tasks). On the plus side, we have access to plenty
of data and measurements are error free (no measurement
noise). Moreover, a potentially important feature is that false
positives need not carry a prohibitive cost. For example, if the
action taken is to log detailed debug information on detecting
an anomaly, to allow later debugging, false positives carry a
relatively low cost (namely, only increased storage) compared
with false negatives.

In this paper we propose a Kalman Filter based framework
for software appliance monitoring. This builds on early ex-
ploratory work reported in [1]. We investigate a number of
modelling options and propose use of a novel non-parametric
model structure that is both simpler to implement and signif-
icantly easier to tune than other approaches. Our approach is
suited to online processing of data and efficient implemen-
tation (low memory and CPU burden). Its effectiveness for
automated detection of fault conditions is demonstrated using
measurements from an experimental testbed under a range of
operating conditions and a variety of real faults.

II. RELATED WORK

Fault, anomaly or deviation detection is a classical research
topic and a great wealth of results has been obtained over the
years. See for example survey papers such as [2], [3], [4], [5],
[6], [7]. Existing techniques differ mainly in the representation
or model of the “normal behaviour”. This can be, for exam-
ple, strings or logic-based profiles, artificial neural networks,
clustering information, event transition probabilities, statistical
distributions, or stochastic models. Time series models, such
as ARMA models or Kalman Filters are used for example in
[8], [9], [10], [11]. Once residuals are generated, that is the

978-1-4244-2219-7/08/$25.00 (c)2008 IEEE

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on December 15, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

1092 1104 1116 1128 1140 1152

0

5

10

15

20

25

30

35

40

45

50

Step k

C
P

U
 lo

ad
 (

in
 p

er
ce

nt
)

Figure 1. Measured CPU usage as a function of time.

difference between predicted and measured values, statistical
significance tests, such as χ2 or generalized log-likelihood
ratios are used to decide whether the observed behaviour is
“abnormal” or not.

In the context of software appliances and computer systems,
statistical evaluations of variable distributions have been used,
[12], [13], [14], [15], [16]. Most of this work, however, makes
use of static models rather than time series models. Among
the few publications that consider time series models are Soule
et al. in [17], [18] who consider detecting anomalies in the
system wide traffic state of an enterprise or ISP network and
[19] who use, among other techniques, discrete time Markov
Chain and ARMA models.

III. PREDICTIVE MODELLING

Our aim is to develop simple predictive models of key soft-
ware appliance signals in order to capture baseline behaviour
which can then be used as the basis for anomaly detection.
While a range of signals are potentially of interest, here we
focus on modelling of CPU utilisation since this is a primary
signal of importance on all appliances. An example time
history of measured CPU utilisation on a software appliance is
shown in Figure 1. It can be seen that some tasks (e. g. cron
jobs) are carried out periodically, creating regular spikes in
CPU utilisation. The work load varies randomly, however, and
this is reflected in the variation in CPU load. Our basic idea is
therefore to model the signal of interest (i. e. CPU utilization)
yk at time k as consisting of a periodic component Ck, an
event-driven component Ek and additive noise component Dk

(to cover unmodelled or unexpected signal deviations). That
is,

yk = Ck + Ek + Dk (1)

While we consider a number of different modelling ap-
proaches, all fall within the class of linear time series models
with additive Gaussian noise. Statistical inference can there-
fore be efficiently carried out in an online manner by using
standard Kalman Filter tools [20], [21]. In more detail, we
assume the following linear state-space model{

xk+1 = Fxk + Buk + nk,

yk = hTxk + vk,
(2)

where xk are the n hidden states, yk is the observed variable
(e. g. CPU load), uk are the m inputs (e. g. based on the
syslog) and nk resp. vk are zero mean Gaussian process
resp. measurement noise with covariances

E{nk,nl} = Q δkl = qI δkl, E{vk, vl} = r δkl (3)

where I is the identity matrix of appropriate dimensions and
δkl is the Kronecker delta.

It is mainly the choice of structure for the matrices F , B
and vector hT that distinguishes the different models that we
consider.

For any model of the form (2), the prediction ŷk+1|k of
the signal yk+1 given measurements of y0, . . . , yk can be
calculated using a Kalman Filter. In more detail, we have

x̂k+1|k = F x̂k|k + Buk (4a)

Pk+1|k = FPk|kF T + Q (4b)

ŷk+1|k = hTx̂k+1|k (4c)

êk+1|k = yk − ŷk+1|k (4d)

where x̂k+1|k are predictions of the hidden model state,
Pk+1|k is the predicted (or a priori) covariance matrix of the
state, and

x̂k|k = x̂k|k−1 + Kk|kêk|k−1 (5a)

Pk|k =
(
I − Kk|khT

)
Pk|k−1 (5b)

Kk|k =
Pk|k−1h

r + hTPk|k−1h
(5c)

Here, Kk|k is called the Kalman Filter gain. Looking at
(4b), (5a) and (5c) in more detail, we can see how process
noise nk and measurement noise vk influence the predicted
error covariance matrix Pk+1|k: If r (the measurement noise
variance) is large, i. e. the measurement is corrupted by a lot
of noise, the filter gain Kk|k will be small, and thus the state
estimate x̂k|k will rely more on the prediction x̂k|k−1 than on
the new measurement yk. If in turn the process noise nk (and
thus Q) is large, the state error covariance matrix in (4b) (and
hence the filter gain) will be “large”, giving measurements
more weight.

A. Form-free model

Given a periodic signal, an intuitive approach to predicting
the behaviour of a new cycle is to take, for each sample within
the cycle, the average over the corresponding samples from
previous cycles. In essence this is the idea underlying the
so-called form-free modelling approach. It is called form-free
because it makes few assumptions about the structure of the
data, aside from the fact that it is periodic. Instead the model
works directly in terms of the measurements. This represents
a key advantage since it provides great flexibility while at the
same time being intuitive and relatively easy to understand.

In more detail, recalling the general linear model structure
(2), a form-free model is obtained by setting the input matrix
B to be zero and selecting the system matrix as [22]

F = Zn =
[
0 In−1

1 0T

]
(6)

978-1-4244-2219-7/08/$25.00 (c)2008 IEEE

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on December 15, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

0 12 24 36 48 60 72 84 96 108
0

5

10

15

20

25

30

35

Step k

C
P

U
 lo

ad
 (

in
 p

er
ce

nt
)

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Figure 2. Illustrating application of form-free predictive model. The solid
line corresponds to the predictions, the + markers show the measured data,
and the circled markers on the bottom indicate two different types of events.

where Zn is the n dimensional cyclic-permutation matrix and
0 is the zero matrix (vector) of appropriate dimensions.

In this setting, the state xk can be interpreted as a vector
storing the running average of samples over a period (at k = 0
it is initialised with the first n measurements). The system
matrix F rotates (permutes) the state vector by one element
at each time step, and we have that xk+n = F nxk = xk i. e.
the state evolves in a cyclic manner with period n. We can
recover each sample by setting the output vector to

hT =
(
1 0 . . . 0

)
(7)

where hT has n entries. Figure 2 illustrates use of such a
form-free model to predict CPU utilisation.

The measurement and process noise covariances in (2)
determine, roughly speaking, the number of cycles that the
running average is taken over. By averaging over fewer cy-
cles we can adapt our predictions more rapidly to changing
conditions, but this comes at the price of increased errors and
uncertainty in the predictions. Conversely, by averaging over
more cycles we can reduce errors but at the cost of slower
adaptation.

In the form-free approach the size of the state vector xk

scales with the number of samples taken over a period and
this is a key design driver in the present context. The main
difficulty arises when a period involves a mix of time-scales
e. g. if the period of a signal is 24 hours but we want to model
events occurring at a much finer time scale of seconds or
minutes. Note that such situations are likely to be common
since there may be regular events at, for example, 5 minute
intervals or less plus daily and weekly events (e. g. backups).
Furthermore, this approach cannot be used if the periodicity
of the signal changes over time.

A related issue can also arise when two (or more) types
of events occur periodically, but with periods that are slightly
different. This is also illustrated in Figure 2. There are regular
spikes in CPU utilisation every 12 time steps — corresponding
to tasks processed every 60 s as 5 s time steps are used.
However it can be seen that there are also smaller spikes
occurring at a slightly different interval (roughly every 12.125

time steps). Since this interval is slightly longer than the first
series of spikes, over time these smaller spikes tend to “travel”
relative to the larger spikes. As shown in the figure, the form-
free model can accurately predict the large spikes but performs
less well at predicting the smaller spikes as they drift relative
to the large ones. This might be addressed by choosing the
model period n to be a value that is an integer multiple of
both 12 and 12.125, but the smallest value that satisfies this is
n = 1164, i. e. a large increase in state dimension is required.

To address these issues, in the following sections we aug-
ment the form-free model with an event-driven element to cre-
ate a new hybrid type of model that combines the advantages
of the form-free approach with the low state dimension of
event-driven approaches.

B. Event-driven model

Before proceeding to consider hybrid models, we briefly
introduce purely event-driven models. In contrast to form-free
models, they do not require any periodicity in the signal of
interest. Instead, the requirement is for a model input that
signals when an event has occurred and triggers a certain CPU
utilisation profile. The CPU utilisation profile can be stored
either in the form of parametric or form-free submodels.

1) Parametric event submodel: Suppose that there are m
different types of events to be modelled. We associate input
uk,i with the ith type of event and set uk,i = γi when event i
occurs at time step k and zero otherwise. The value of γi can
be adjusted to provide flexibility to capture relevant features
of the event. The CPU utilisation profile associated with the
ith type of event may then be generated as the output of the
dynamic system

xk+1,i = Aixk,i + Biuk,i, yk,i = Cixk,i (8)

where xk,i is the state vector and the matrices Ai, Bi and
Ci are design parameters. In the simplest case we use a first
order dynamic system

xk+1,i = aixk,i + uk,i, yk,i = xk,i (9)

where xk,i is now a scalar. The parameter ai determines the
shape of the output profile, and by adjusting the magnitude γi

of the input the height of the pulse generated can be controlled.
2) Form-free event submodel: Event profiles can also be

stored in a form-free manner. The idea here is to “play back”
a stored profile whenever an associated event occurs. If the
shape consists of ni consecutive points, the dimension of the
state vector xk,i would be ni as well, and the submodel would
be

xk+1,i = Ak,ixk,i, yk,i = Ck,ixk,i (10)

Here, if the event i occurs at k = k′, we have

Ak,i =

{
Zni

for k = k′, . . . , k′ + ni − 1,

Ini
otherwise

(11)

and Ck,i of the form in (7) for k = k′, . . . , k′ + ni − 1, zero
otherise. The actual profile, if available, can be stored in the
initial condition of the state vector, or the filter can “find it”
by adapting the states, over time, from the measurements.

978-1-4244-2219-7/08/$25.00 (c)2008 IEEE

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on December 15, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

1092 1104 1116 1128 1140 1152

0

5

10

15

20

25

30

35

40

45

50

Step k

C
P

U
 lo

ad
 (

in
 p

er
ce

nt
)

1 1 1 1 1 12 2 2 2 2 23 3 3 3 3 3

Figure 3. Illustrating predictions using pure event-driven model. Shaded
region marks the one standard-deviation confidence interval.

3) Overall model: Combining the individual event sub-
models we obtain a system of the form (2), with state
xT

k =
(
xT

k,1 . . . xT
k,m

)
; and system and input matrices

having the block diagonal form

F =




A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 · · · · · · Am


 , B =




B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 · · · · · · Bm




(12)
and output vector

hT =
(
C1 C2 . . . Cm

)
(13)

Note that any mixture of parametric and form-free event
submodels can be used as appropriate.

An example result from the pure input model approach
is shown in Figure 3. The occurrence of the three events is
marked by, respectively, 1 , 2 and 3 . It can be seen than the
event-driven model accurately captures the CPU utilisation.

Since the event-driven model responds directly to observed
events it can readily accommodate events that happen on a
range of time-scales e. g. an event occurring every 5 minutes
and an event occurring once every 24 hours are essentially
treated in the same way, only the input ui,k changes. However,
the event-driven model does require appropriate inputs, and so
implicitly requires that the occurrence of all relevant events can
be detected. This issue is illustrated, for example, in Figure 3
— around k = 1120 there is an increase in CPU utilisation
that is not associated with any of the three events modelled.

Further, it can be seen that this purely event-driven approach
requires that individual models be defined that store the profile
associated with each event. The number of states in the
model therefore scales with the number of events, although
this might be mitigated by combining inputs i. e., effectively
reusing event models. For simple types of stored profile (pulses
etc.), the number of states in the individual event models is
typically higher in the form-free case than when a parametric
model is used. However, while the parametric form is more
compact, it has only very limited ability to adapt to changes
in observed behaviour (adaptation requires adjustment of the

model parameters Ai, Bi, Ci) whereas the form-free model
essentially stores the average of the last few instances of an
event in the state vector xk,i and so can automatically adapt
to changes.

Remark: In the event-driven approach, when two events oc-
cur simultaneously their CPU profiles are combined additively.
It is this that makes the model linear, and makes statistical
inference straightforward. However, in practice we know that
the CPU utilisation has a hard “saturation” constraint, namely
it cannot exceed 100 % (or go below 0 %). We note that this
issue is mitigated when using a coarse sampling interval for
CPU utilisation. For example, in our tests we sample CPU
utilisation at 5 s intervals. The sampled values are not the
instantaneous CPU utilisation at the sample time, but rather the
average CPU utilisation over the 5 s interval (CPU utilisation
is recorded by a counter, and the average value is just the
difference in counter values at sample instants, divided by the
interval duration). Unless the CPU utilisation remains at 100 %
for the full 5 s interval, the average utilisation will remain less
than 100 %.

C. Hybrid Model

The pure form-free model of Subsection III-A is simple
and flexible but is only suited to periodic signals and the
state dimension can become large when there are a mix of
time-scales. The pure event-driven model of Subsection III-B
can accommodate non-periodic events and a mix of time-
scales with ease, but requires an input trigger for all relevant
events plus the state dimension scales in proportion to the
number of events. We therefore propose a hybrid approach
that plays to the strengths of both approaches and tries to
avoid their weaknesses. Namely, regular periodic components
of the signal of interest are modelled using a form-free
approach and irregular events, or events at a different time-
scale from the main periodic components, are modelled using
an event-driven approach. The resulting hybrid model has F ,
B matrices of block diagonal form similar to (12), with each
block corresponding either to a form-free periodic model as in
Subsection III-A or an event submodel (which in turn might be
parametric as in III-B1 or form-free as in III-B2), and output
vector hT as in (13).

IV. AUTOMATED MODEL TUNING

To achieve automated operation we need to extend the
Kalman Filter to recursively adapt the input gains in (8) as
well as the noise and measurement covariances Q and r in
(4b) and (5c).

A. Input gain adaptation

Following a classical extended Kalman Filter approach, e. g.
see [23], we add m states (one for each input) to our linear
state space model (2)





(
xk+1

θk+1

)
=
(

Fxk + B(θk)uk

θk

)
+
(

nk

ζk

)

yk =
(
hT 0

)(xk

θk

)
+ vk

(14)

978-1-4244-2219-7/08/$25.00 (c)2008 IEEE

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on December 15, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

where B(θk) is such that the elements of θk constitute the
different input gains γk,i at time k from the different inputs i
to the corresponding states, and the new Gaussian white noise
sequence ζk has a very small variance covariance matrix S,
as we assume the true gains to be constant values.

It is straight forward to extend the Kalman Filter equations
from Section III with these states, noting that these states
do not (directly) affect the output variable yk. The new a
priori estimate of the state error covariance matrix of the filter
becomes

Pk+1|k =
[
F Lk|k
0 I

]
Pk|k

[
F Lk|k
0 I

]T
+
[
Q 0
0 S

]
(15)

with Lk|k = ∂
∂θ

[
F x̂k|k + B(θ)uk

]∣∣∣
θ=θ̂k|k

.

B. Noise estimation

Following Jazwinski et al. [24], [25] we used the following
method for estimating the process noise covariance (3)

q̂k = αq q̂k−1+(1−αq) h




ê2
k+1|k −

(
hTFP ′

k|kF Th + r
)2

hTh




(16)
where P ′

k|k is the top left block of P ′
k|k corresponding to the

states x̂, 0 < αq < 1 is a smoothing parameter (very close to
1 since, again, we assume the noise covariance to be constant)
and h(·) is the ramp function, that is h(x) = x if x > 0 and
zero otherwise. The update is executed prior to (4).

In a similar fashion, we use a recursion for the measurement
noise r, that is updated prior to (5)

r̂k = αr r̂k−1 + (1 − αr) h
(
ê2
k|k−1 − hTP ′

k|k−1h
)

(17)

V. ANOMALY DETECTION

With the Kalman Filter deployed and running, one could
simply declare an anomaly when a new measurement lies
outside the confidence interval around its predicted value, that
is ŷk ±σ2

k|k−1, where σ2
k|k−1 = (hTP ′

k|k−1h+ r̂k). However,
this simple approach leads to a large number of false positives,
as the decision is based only on a single data point / estimate.

A combination of several measurements yields significantly
better (more robust) results. The likelihood of an observed
data point can be readily calculated based on the predicted
probability distribution provided by the Kalman Filter [24]

p(yk|yk−1, . . . , y0) =
1√

2πσ2
k|k−1

exp

(
−

ê2
k|k−1

σ2
k|k−1

)
(18)

If we now use a moving average (or low pass) filter on
the log likelihoods of past measurements, we can obtain a
significantly more robust anomaly indicator. Define

zk = αzzk−1 + (1 − αz) ln p(yk) (19)

with a suitable smoothing factor αz , and set a threshold for
alarm generation in case a certain value (log likelihood) is
undercut.

0 12 24 36 48 60

0

5

10

15

20

25

30

35

40

45

50

Step k

C
P

U
 lo

ad
 (

in
 p

er
ce

nt
)

1 1 1 1 12 2 2 2 2

0 10 20 30 40 50 60 70
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

Step k
A

ve
ra

ge
d

lo
g

lik
el

ih
oo

d

Figure 4. Detection of software fault triggered at k = 51.

VI. EXPERIMENTAL RESULTS

We carried out measurements for three different anomalies
to explore the utility of the proposed modelling approach for
anomaly detection.

(i) Figure 4 shows measurements for a known bug that
causes memory usage to grow and CPU load to increase
temporarily. Following the fault at k = 51 it can be seen that
the model prediction deviates significantly from the measured
CPU utilisation and the log likelihood drops.

(ii) Figure 5 shows data from a memory overflow fault at
k = 610. This fault is generated by forcing the appliance to
run out of memory, crashing the main software process.

(iii) Figure 6 shows a simulated fault, generated at step
k = 940, when a static 10 % CPU load is added on top of the
measured data.

It can be seen that the proposed modelling approach allows
a clear detection of these three anomalies, while generating no
false alarms in our tests.

VII. CONCLUSION

Availability and reliability are often important features of
key software appliances such as firewalls, web servers, etc.
In this paper we investigate going beyond simple heartbeat
monitoring by using more fine grained measurements that are
readily available on most platforms to detect possible faults or
the onset of failures.

We propose a new self-tuning, extended Kalman Filter
based framework and demonstrate the effectiveness of the
proposed approach using tests of real faults generated on

978-1-4244-2219-7/08/$25.00 (c)2008 IEEE

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on December 15, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

 576 588 600 612 624 636

0

10

20

30

40

50

60

Step k

C
P

U
 lo

ad
 (

in
 p

er
ce

nt
)

1 1 1 1 1 12 2 2 2 2 2

570 580 590 600 610 620 630
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

Step k

A
ve

ra
ge

d
lo

g
lik

el
ih

oo
d

Figure 5. Detection of out of memory fault at k = 610.

900 912 924 936 948 960

0

5

10

15

20

25

30

35

40

45

50

Step k

C
P

U
 lo

ad
 (

in
 p

er
ce

nt
)

1 1 1 1 1 12 2 2 2 2 23 3 3 3 3 3

900 910 920 930 940 950 960 970
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

Step k

A
ve

ra
ge

d
lo

g
lik

el
ih

oo
d

Figure 6. Detection of artificial fault generated at k = 940.

an experimental testbed. Our approach is suited to online
processing of data and efficient implementation (low memory
and CPU burden).

REFERENCES

[1] F. Knorn and D. J. Leith, “Real–time anomaly detection in software
appliances,” Poster presented at MLSys’07 Workshop, Whistler, BC,
Canada, 2007.

[2] A. S. Willsky, “A survey of design methods for failure detection
systems,” Automatica, vol. 12, pp. 601–611, 1976.

[3] R. Isermann, “Process fault detection based on modelling and estimation
methods—A survey,” Automatica, vol. 20, no. 4, pp. 387–404, 1984.

[4] ——, “Model–based fault-detection and diagnosis — status and appli-
cations,” Ann. Rev. Control, vol. 29, no. 1, pp. 71–85, 2005.

[5] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N. Kavuri, “A
review of process fault detection and diagnosis part 1,” Comp. Chem.
Eng., vol. 27, no. 3, pp. 293–311, 2003.

[6] V. Venkatasubramanian, R. Rengaswamy, and S. N. Kavuri, “A review
of process fault detection and diagnosis part 2,” Comp. Chem. Eng.,
vol. 27, no. 3, pp. 313–326, 2003.

[7] V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, and K. Yin, “A
review of process fault detection and diagnosis part 3,” Comp. Chem.
Eng., vol. 27, no. 3, pp. 327–346, 2003.

[8] P. M. Frank, “On–line fault detection in uncertain nonlinear systems
using diagnostic observers: a survey,” Int. J. Sys. Science, vol. 25, no. 12,
pp. 2129–2154, 1994.

[9] C. M. Hajiyev and F. Caliskan, Progress in system and robot analysis
and control design. Springer, 1999, ch. Fault Detection in Flight Control
Systems via Innovation Sequence of Kalman Filter, pp. 63–74.

[10] L. An and N. Sepehri, “Hydraulic actuator circuit fault detection using
extended kalman filter,” in Proc. ACC’03, vol. 5, Denver, CO, USA,
2003, pp. 4261–4266.

[11] Y. Chetouani, “Fault detection in a chemical reactor by using the
standardized innovation,” Process Safety and Envir. Protection, vol. 84,
no. B1, pp. 27–32, 2006.

[12] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, and
S. Ma, “Critical event prediction for proactive management in large-
scale computer clusters,” in Proc. SIGKDD’03, Washington, DC, USA,
2003, pp. 426–435.

[13] M. Burgess, H. Haugerud, S. Straumsnes, and T. Reitan, “Measuring
system normality,” ACM Trans. Comp. Sys., vol. 20, no. 2, pp. 125–
160, 2002.

[14] N. Ye, Q. Chen, and C. M. Borror, “EWMA forecast of normal system
activity for computer intrusion detection,” IEEE Trans. Rel., vol. 53,
no. 4, pp. 557–566, 2004.

[15] R. Powers, M. Goldszmidt, and I. Cohen, “Short term performance
forecasting in enterprise systems,” HP Laboratories, Palo Alto, CA,
USA, Tech. Rep. HPL-2005-50, 2005.

[16] V. A. Siris and F. Papagalou, “Application of anomaly detection algo-
rithms for detecting SYN flooding attacks,” in Proc. GLOBECOM’04,
vol. 4, Dallas, TX, USA, 2004, pp. 2050–2054.

[17] A. Soule, K. Salamatian, and N. Taft, “Combining filtering and statistical
methods for anomaly detection,” in Proc. IMC’05, Berkeley, CA, USA,
2005, pp. 331–344.

[18] A. Soule, A. Lakhina, N. Taft, and K. Papagiannaki, “Traffic matrices:
balancing measurements, inference and modeling,” in Proc. SIGMET-
RICS’05, 2005, pp. 362–373.

[19] G. A. Hoffmann, F. Salfner, and M. Malek, “Advanced failure prediction
in complex software systems,” Humbold Univ. Berlin, Dep. of Comp.
Science, Berlin, Germany, Research Report 172, 2004.

[20] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” J. Basic Eng., vol. 82, pp. 34–45, 1960.

[21] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation. Prentice–
Hall International, Inc., 2000.

[22] M. West and J. Harrison, Bayesian Forecasting and Dynamic Models.
New York, NY, USA: Springer, 1997.

[23] C. K. Chui and G. Chen, Kalman Filtering with Real–Time Applications.
New York, NY, USA: Springer, 1998.

[24] A. H. Jazwinski and A. E. Bailie, “Adaptive filtering,” Interim report,
No. 67-6, 1967.

[25] A. H. Jazwinski, “Adaptive filtering,” Automatica, vol. 5, no. 4, pp. 475–
485, 1969.

978-1-4244-2219-7/08/$25.00 (c)2008 IEEE

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on December 15, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

