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The increased power of small computers makes the use of parameter estimation methods attractive. Such
methods have a number of usas in analytical chemistry. When valid models are available, many methods work
well, but when models used in the estimation are in error, maost methods fail. Methods based on the Kalman
filter, a linear recursive estimator, may be modified to perform parameter estimation with erronecus models.
Modifications to the filter involve allowing the filter to adapt the measurement model to the experimental data
through matching the theoretical and observed covariance of the filter innovations sequence. The adaptive
filtering methods that result have a number of applications in analytical chemistry.
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1. Introduction

The increased computational power available from
small computers has prompted a re-evaluation of the
methods used in reducing data obtained from a chemical
analysis. Many of the responses obtained from chemical
analyses are suited to mathematical analysis by methods
which estimate the parameters that generate the re-
sponse; these parameters are generally concentrations.
For parameter estimation to be successful, an accurate
model of the behavior of the chemical system is neces-
sary. The model used need not be theoretical; empirical
models based on experimental results or on a numerical
simulation of the chemical system are often satisfactory
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as well. When valid models are available, the parameters
associated with the model may be obtained with a vari-
ety of methods. Some that have seen extensive use in
analytical chemistry include analysis of the chemical
data using linear least squares [1], nonlinear least squares
analysis [2,3], and Kalman filtering [4-61."

The methods mentioned above all work well with
accurate models, buet are much less satisfactory when
used with models containing errors that can arise from
many sources. Theoretical models, or models based on
simulation, may not describe the physics or chemistry of
a system well enough to predict system responses to the
accuracy desired. Somall changes in the experimental
conditions used for data acquisition may perturb
experimentally-obtained models, leading to errors when
these models are used to analyze subsequent experi-
ments. And, it may be impossible, because of the effects
of chemical equilibria, to obtain independent responses
for some of the chemical species included in 2 model for
a complex system, leading to “chemical” model errors.

Relatively few methods have been developed to com-
pensate for model errors affecting multicomponent

quantitation. Approaches using factor analysis [7] have

1 Bracketed figures indicate literature references.



been developed for situations where the model is un-
known, but these approaches are generally limited to
very few components [8], and it is difficult to incorpo-
rate additional g priori information into such methods.
An alternative approach has used the Kalman filter. The
Kalman filter is a linear, recursive estimator which
yields optimal estimates for parameters associated with
a valid model [9,10]. Several methods, classified under
the term “adaptive filtering,” have been developed to
permit the filter to produce accurate parameter esti-
mates in the presence of model errors (11-15]. This pa-
per summarizes the development of an adaptive Kalman
filter for use in the mathematical analysis of overlapped
multicomponent chemical responses.

2. Theory

Kalman Filtering, The Kalman filter has received
some attention for the analysis of multicomponent
chemical responses [4,6,16,17]. Because most models re-
lating chemical responses to concentrations are linear,
application of the Kalman filter is straightforward. The
filter model is comprised of two equations. The system
model, which describes the time evolution of the desired
parameters, is, in state-space notation

X(k)=F(k Jk — 1)X(k — 1)+ w(k) @.1)

where X is a #n X 1 column vector of state variables de-
scribing the chemical system, where Fis an n X n matrix
describing how the states change with time, w is a vector
describing noise contributions to the system model, and
where k indicates time or some other independent vari-
able which meets the noise requirements given below.
For state-invariant systems, F reduces to the identity
matrix I. Because multicomponent analysis is most often
performed under conditions where concentrations are
constant over the time frame involved, the case where X
is time-invariant is considered here.

The second equation describes the measurement pro-
cess by relating the measured response z(k), to the filter
states. For a single sensor, the measurement model] is
given by

z(k) =H'(k)X(k)+v (k) 2.2)
where H’(k) is a I Xn vector relating the response at
point & to the » states, and the scalar v(k) is the noise
contribution of the measurement process. For example,
in absorption spectrophotometry, z(k) is an absorbance
measurement at some wavelength £, and H™(k) is the
vector of absorption coefficients at that wavelength for
all chemical species included in the model. The mea-
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surement model is easily extended to systems with mul-
tiple sensors.

The two noise processes in the Kalman filter, w(k)
and v(k), are usually assumed to be independent, zero-
mean, white noise processes. The matrix Q(k), defined
as the covariance of the noise in the system model, is
taken as approximately zero for the time invariant sys-
tem discussed in this paper. The scalar quantity R (k) is
the variance of the noise in the measurement process.

The Potter-Schmidt square-root algorithm, one im-
plementation of the Kalman filter [18], is given in table
I. The details of this algorithm have been discussed
elsewhere [18,19]. Initial guesses for the filter states and
for the covariance matrix P are required to start the
filter. Estimates of X and P depend on %, and because
both are projected ahead of the data (in eqs 2.3 and 2.4)
by the filter, the notation (j|k) is used to indicate that
the estimate is made at point j, based on data obtained up
through point k. The filter output consists of estimates
X, as well as P. In analytical chemistry, these are often
estimates of concentrations and of the error in the con-
centrations.

Table 1, Algorithm equations for the square root Kalman filter.

State estimate extrapolation

Xk |k—1=F(k|k-1)Xk-1|k=1) 2.3
Covariance square root extrapolation
Sk |k —D=F(k,k—1)-Sk—1|k—1)}FTkk-1) (2.4}
where
Flie,k—1)y=I
P=5.87
Kalman gain:
K(k)y=a.S(k |k —1)-G(k) (2.5)
where
Gk)=8T(k |k —1)-H(k) (2.6)
1/a =GTk)Gk)+ R (k) 2.7
d=(1+(a-R{E)"H! 2.8
State estimate update:
Xk 1k)=X(k | k£ ~ 1)+ KK)[z(k)—HT(k}X(k | £ —1)] 2.9)
Covariance square root update:
Sk | k)=Sk |k —1)—ad Sk |k —1)Gk)GTk) (2.10)

Adaptive Kalman Filtering, Errors can occur in both of
the models used in the Kalman filter. Errors in the sys-
tem model arise if the system was taken as time-
invariant, but was actually composed of time-dependent
states. Errors in the measurement model arise from un-
derestimating the number of components involved in



the state vector (which can be thought of as incorrectly
setting values in H'(k) to zero for one of the possible
elements in the state vector), or by use of inaccurate
values in H'(k). Either type of error produces a sub-
optimal filter, in that the accuracy of the filter’s esti-
mates are severely degraded. Many methods for com-
pensating these model errors make use of the filter
innovations sequence, v(k), defined as

v(k)=z(k)—Hk)XKk |k —1). 2.11)
The innovations sequence can be used to construct a
measure of the optimality of the filter; a necessary and
sufficient condition for an optimal filter is that this se-
quence be a white noise process [10]. An optimal filter is
one that minimizes the mean square estimation error
E{(X-X)X—X)"}. A suboptimal filter may generate
results which show large estimation errors, or even a
divergence of the errors [11]. The aim of an adaptive
filter is to reduce or bound these errors by modifying, or
adapting, the models used in the Kalman filter to the real
data. '

Several methods for controlling error divergence in
the filter have been reported [I1-15]. Most involve
cases where @ is poorly known, the situation which
arises when the time-dependence of states is incorrectly
modeled. These include methods based on Bayesian esti-
mation and maximum likelihood estimation [14], cor-
relation methods [14], and covariance matching tech-
niques [14,15]. The last method has also been suggested
for use when @ is known, but R is unknown, the situ-
ation that arises when the number of components in the
state is underestimated, or when the measurement
model is otherwise incorrect. Because errors in the num-
ber of components and in the response factors used in
the measurement model are common in multicomponent
chemical analysis, covariance matching is used to de-
velop the filter discussed here.

The aim of covariance matching is to insure that the
residuals remain consistent with the theoretical covar-
iances. The covariance of the innovations sequence v(k)
is [14]

Elv(k) v(k) 1=H(k)P(k |k —DH(K)+R(K), (2.12)
If the actual covariance of v(k) is much larger than the
covariance obtained from the Kalman filter, either @ or
R should be increased to prevent divergence. In either
case, this has the effect of increasing P(k |k —1), thus
bringing the actual covariance of v(k) closer to that
given in eq 2.12. This also has the effect of decreasing
the filter gain matrix, K, thereby “closing” the filter to
new data which would otherwise be incorrectly inter-
preted because of errors in the measurement model. In

essence, this amounts to “covering” the errors in the
model with noise, then estimating the noise variance.
The adaptive estimate of R at the kth point, when Q is
known, is

R()=1/m[ 2k —)vik—D)]

—H(k)S(k |k — 1)S*(k |k — DH(k) 2.13)
where m is the width of an empirically chosen rectan-
gular smoothing window for the innovations sequence.
The smoothing operation improves the statistical signifi-
cance of the estimator for R (k), as it now depends on
many residuals.

Adaptive estimation of R allows accurate estimates
for the states to be obtained, even in the presence of
model errors, because only data for which an accurate
model is available are used in the filter. A new mea-
surement model can be constructed from the estimated
R (k), either by augmenting the H” vector, or by cor-
recting any one of its existing elements; choice of cor-
rection or augmentation is arbitrary, For augmentation,
the equations

HE (k) =b(OR (k +m)/2)]"7, for b(k)>0 (2.14)

HE (k)=0, for b(k)<0 (2.15)

apply, where H¥* (%) denotes an element which is in-
corporated in the H vector, The term (k +m /2) arises
from the lag induced by averaging m of the squared
innovations. The factor b(k) is defined as

b(k)=1, for _glv(k —j+m/2)/m >0 (2.16)
=

bk)=—1, for Elv(k —f+m/2)m <0, 2.17)
Equations 2.16 and 2.17 allow determination of the sign
of the model error by evaluating the average of the
innovations over the range for which R was calculated.
Equation 2.15 reflects the fact that the relation between
the chemical response and concentration, given by H',
is generally positive.

For correction of the ith component of the vector H’,
the expressions

H () =H,(k)+b ()[R (k +m /2], for
H#(k)>0 (2.18)

H¥(k)=0, for H*(k)<0 (2.19)

apply instead of those given in eqs 2.14 and 2.15. In
gither case, a valid measurement model can be generated
from the adaptive estimation of R.
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Two criteria must be met for this adaptive filter to be
useful in the mathematical analysis of multicomponent
responses. First, the model to be adaptively corrected
must already be correct for some of the values of %
where each of the known components of the model has
a measureable response. The second requirement is that
the adaptive correction must be performed on a single
component, For a single sensor, R is a scalar, and it is not
possible to distinguish the different portions belonging
to the different components. It is often feasible, how-
ever, to treat model errors as a single, unmodeled com-
ponent without affecting the accuracy of some or all of
the estimated quantities. Although it has been observed
that the adaptive estimation of R by covariance match-
ing is not a sufficient condition for obtaining an im-
proved measurement model [10], application of this ap-
proach in the mathematical analysis of muylticomponent
responses has shown that significant model im-
provement generally oceurs in practice [15,20].
Automation of the Adaptive Filter. The adaptive filter
requires an initial guess of the states and of their covar-
iances, just as in the ordinary filter. The adaptive esti-
mation of R affects the calculation of P, however, and
itis found that the diagonal elements of P decrease as R
decreases. Singe the size of R is directly related to the
quality of the measurement model, this relation provides
a means by which the quality of the final filter estimates
can be judged. Once results are obtained with minimum
values for the diagonal elements of the estimated P, the
resulting corrected measurement mode! better describes
the experimental data available, judging from the deter-
ministic variances of fitting before and after the model
correction. Because the innovations are not white in the
presence of model error, the filter resylts are no longer
guaranteed to be optimal, but now depend on the injtial
guess, Thus, the adaptive filter must be run several
times, with different initial guesses, X, and P, to locate
those best estimates. This process is easily automated,
however. Simplex optimization [21-23] can be used to
minimize the metric based on the diagonal elements of
the covariance matrix

Y= El log Py (2.20)
as a function of the initial guesses input to the adaptive
filter. We have previously demonstrated that the min-
ima in the variance surface ¥ =/(X,,P,) correspond well
to the minima in an error surface defined by the quan-
tities (X —X) [24].

3. Application in Analytical Chemistry

Empirical Model [mprovement, Empirical models
have been used with the Kalman filter to study the
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chemical speciation of metal ions. One study [20] re-
ported the adaptive correction of the visible photo-
acoustic spectrum of Pr(EDTA)", This spectrum was
obtained from data collected on solutions containing
both Pr’* and Pr(EDTA)" species. Direct spectro-
scopic measurement of Pr(EDTA)" is not simple, A
similar approach was also used to obtain the spectrum of
(UO,):(OH)#, another ion whose spectrum is difficult to
observe in the absence of related chemical species [25].
These studies demonstrate the ability of adaptive fil-
tering to correct for “chemical” errors in the mea-
surement model.

Two other studies used adaptive filtering to model the
electrochemical response of an equilibrium mixture of
Cd** and Cd(NTA)~ [20,26). The adaptively modeled
component, attributed to the reduction of Cd** after
dissociation of the Cd(NTA)~ complex, was corrected
[26] from an approximate mode! based on digital simu-
lation [19]. The stability constant for the CA(NTA)~
species was estimated from the concentrations obtained
from the filter. These stydies illustrate the correction of
“theoretical” errors in the measurement model by adap-
tive filtering,

The adaptive filter has also been used to correct em-
pirical models for errors which occurred in data acquisi-
tion, An example is the correction of models used for the
resolution of overlapped electrochemical responses, Re-
solved peaks are generally needed to obtain estimates of
the component concentration. Small changes in experi-
mental conditions, occurring between the time when
data are obtained for use in empirical models and the
time when the mixtures are measured, change peak pos-
itions slightly. The resulting inaccuracy in the model
degrades the accuracy of the resolution obtained with
the Kalman filter, Adaptive filtering can correct for
these type of model errors, resulting in substantially im-
proved concentration estimates from multicomponent
electrochemical responses [20].

Removal of Imferfergnces. In many multicomponent
analyses, substances which interfere with the chemical
analysis are often present. Frequently, these species
must be chemically separated, because they are not eas-
ity removed in the mathematical analysis of the data.
Adaptive estimation of these unknown components of
the model is an alternative approach. The feasibility of
this has been demonstrated [24] in a visible spec-
trophotometric analysis, where adaptive filtering was
used to quantify UO3*, Ni**, Co’* and picric acid in the
presence of the “unkpown” contaminant Cu®**. The er-
rors in estimating species concentrations were typically
less than 5%. An adaptive estimation of Co** in the
presence of “unknown” Cu’**, Ni**, UO" and picric
acid, where interferent species responses strongly over-
lap that for the species of interest, gave an estimation



error of 149 with a five-fold excess of interferent spe-
cies. This estimation’s lower accuracy results from the
adaptive filter’s response when its madel restrictions are
not met, a situation which occurs here as a consequence
of the severe overlap of the analyte and interferent re-
sponses. Even though this result is of lower accuracy
than many of the others reported, it is still remarkable.
Unlike the other fitting, this result does not rely on the
use of a complete model. Using peak resolution based on
an ordinary filtering approach, with the same
incomplete measurement model, an error of 200-300%
is likely.

4, Conclusion

The automated, adaptive estimation of mea-

surement model covariance permits the application of
Kalman filtering in chemical systems where models are
poorly known, Although results obtained from the
adaptive filter are not guaranteed to be optimal by the-
ory, significant improvement in the accuracy of models
and estimated parameters is generally possible in prac-
tice.
Restrictions are fairly minor: parts of the model must
be known well enough to “open” the filter to the data,
and only one component of the model may be adap-
tively corrected at a time. Adaptive filtering should
yield resulis similar to those obtained from factor anal-
ysis using target transformation [27], but the adaptive
filter requires only one mixture response, while factor
analysis requires several,
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