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ABSTRACT The traditional kernel correlation filter (KCF) algorithm has poor tracking results in complex
scenes with severe occlusion, deformation, and low resolution and cannot achieve long-term tracking. To
improve the accuracy of the tracking algorithm in complex scenes, an adaptive kernel correlation filter
algorithm is proposed. First, a multifeature complementary scheme is proposed that linearly weights the
responses of the histogram of oriented gradient (HOG) features and color features and learns a target position
estimation model to realize target position estimation. Then, an adaptive scale model for estimating the scale
transformation of the target is learned by extracting the HOG features of the object. Finally, according to
occlusion judgment criteria, the Kalman filter is introduced to correct the position of the tracking target. The
accuracy and success rate of the proposed algorithm are verified by simulation analysis on TC-128/OBT2015
benchmarks. Extensive experimental results illustrate that the proposed tracker achieves competitive
performance compared with state-of-the-art trackers. The distance precision rate and overlap success rate of the
proposed algorithm on OTB2015 are 0.899 and 0.635, respectively. The proposed algorithm effectively solves
the long-term object tracking problem in complex scenes. This study provides references for computer vision
processing, such as image retrieval, behavior analysis, and intelligent driving.

INDEX TERMS Object tracking, histogram of oriented gradient, Kalman filter, kernel correlation filter

I. INTRODUCTION
Object tracking technology [1-3] is an important research
direction in the current computer vision field. Moving object
tracking based on vision has been widely used in fields of
surveillance systems [4], drone vision systems, behavior
understanding, human-computer interaction, and unmanned
vehicle navigation [5]. Given the size and position in the
initial frame, the essence of object tracking is to predict the
size and position of the tracking object in subsequent frames.
At present, object tracking algorithms are mainly based on
the continuously adaptive mean shift (CAMShift), support
vector machines, correlation filters, and deep learning.
Bradski [6] proposed the CAMShift algorithm, which is a
tracking algorithm based on the color probability distribution.
The CAMShift algorithm has a good tracking effect for pure-
color objects on a black and white background, but if the
background color is close to that of the target, or there are
objects close to the target with a similar hue, the tracking will
fail. The CAMShift algorithm has been improved in terms of
feature extraction and position prediction. Based on the color
probability distribution, texture features [7] with

distinguishing ability were introduced to compensate for the
shortcomings of the traditional CAMShift algorithm. The
target histogram template [8] was generated based on the
combination of hue component H and saturation component S,
and the adaptability to complex environments was enhanced
using complete target color information features. The Kalman
filter was employed to predict the position of a specific target
in the next frame, but the accuracy of the target position was
affected by the interference of similar colors [9-11]. Due to
the excellent effect of the correlation tracking algorithm (CF),
it was introduced into target tracking [12-15]. Bolme [16]
first adopted the correlation filter framework, which used the
minimum output sum of square error (MOSSE) algorithm,
and the tracking speed was greatly improved. Henriques
proposed the circulant structure of tracking-by-detection with
kernels (CSK) algorithm [17-18], which used the
diagonalization of the circulant matrix in the calculation
process to simplify the calculation of nuclear regression, so
the target tracking speed was greatly improved, and its
tracking accuracy was also higher. Danelljan proposed a
discriminative scale-space tracker algorithm that used the
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histogram of oriented gradients (HOG) features to build a
scale pyramid for target scale estimation based on MOSSE
[19]. However, when the target scale continues to increase,
the convolution calculation for extracting target features and
training filters would increase, which would lead to a
decrease in target tracking speed. The kernel correlation filter
algorithm [20] is a further improvement of the CSK algorithm
that uses HOG to track the target and improves the accuracy
of tracking. The kernel correlation filter (KCF) algorithm [20]
is a further improvement of the CSK algorithm. The HOG
features were extracted to detect the object, improving the
accuracy of tracking. Karunasekera [21] discussed the latest
trends and the progress of tracking algorithms, compared the
performance of trackers based on correlated filters and
noncorrelated filters, and provided an important reference for
the research of target tracking algorithms. The spatially
regularized discriminative correlation filters (DCF) [22-24]
tracker adopt large space support to learn the correlation filters,
which effectively reduces the boundary effect but at a high
computational cost.

To account for the appearance changes over time,
considerable efforts have been made to design invariant
manual features to represent target objects, such as color
histograms [25], HOG [26], speed up robust feature (SURF)
[27], scale-invariant feature transform (SIFT) [28], texture
feature, and superpixels [29]. Combining HOG features and
color features [30], Bertinetto [31] proposed a real-time
tracking algorithm (CLRT) based on the ridge regression
framework with a speed of 50 FPS. The Kalman filter was
used to predict the state of the target, determine whether the
target was occluded, and mark it to predict the location of the
occluded target [32-33]. Zhang [34] established the
descriptors of rotation and scale normalization, fused the
color features and texture features to perform optimal
similarity matching on the descriptors in the candidate frames,
and obtained the optimal matching solution for object
tracking.

Voigtlaender [35] proposed a Siam redetection architecture,
combined with a trajectory-based dynamic planning
algorithm, using the first frame of annotation and the
previous frame to predict the target for double detection. The
complete history of tracked objects and potential interfering
objects is modeled, and the tracked objects can be redetected
after a long period of occlusion. Given that each frame of the
image was double-checked, the algorithm complexity was
high. Liu [36] designed an algorithm for long-term target
tracking. When the tracking failed, EdgeBox was employed
to generate suggested regions. Xiong [37] proposed a target
scale and rotation parameter estimation method based on
kernel correlation filtering for the problem of target scale and
rotation changes caused by long-term target tracking. When
the target tracking was lost, a target search method that
combined the color histogram and variance was started to
determine the possible position of the target in the current
frame, but the distance between the suggested area and the
real position was large. Gade [38] proposed a multiobject
tracking algorithm suitable for team sports to solve the
problem of target tracking in complex scenes with similar
target colors and rapid actions.

Deep features are learned through a large number of
training samples, which are more discriminative than
manually designed features. Therefore, tracking methods
using depth features can usually obtain a good effect with
ease. The HCFT [44] method used the convolutional features
of each layer of the convolutional neural network and further
improved the tracking effect based on the correlation filter.
To effectively contend with the change in object shape, an
object tracking algorithm based on hierarchical convolution
features [39], and a scale-adaptive kernel correlation filter
[40-42] combined HOG and color features [43] were used to
achieve good results in open datasets. Ma [44] improved
tracking accuracy and robustness by pretraining deep CNNs,
extracting the last three layers of convolutional features, and
learning adaptive correlation filters. In recent years, as the
number of layers in the backbone network of deep trackers
has gradually deepened, online model updates have gradually
increased the effect of tracking efficiency. Therefore, most
deep trackers have not introduced online update strategies,
but model updates are still an important way to maintain
robustness of long-term tracking.

Different tracking algorithms still have unsatisfactory or
low efficiency in solving some different complex scenes or
difficult problems. Therefore, further research on target
tracking technology is necessary to improve the tracking
efficiency and effect. In this paper, we mainly focus on the
problem of long-term tracking in a complex environment,
especially when the target object is under full occlusion,
exhibits deformation, and contains objects of similar colors.
Two models are established by kernel correlation filtering: a
target position estimation model and an adaptive scale model.
A target position estimation model 1CF is learned by
extracting HOG and color features. The multifeature response
complementary scheme is proposed, and the response of the
two features is linearly weighted to realize the target position
estimation. By extracting the HOG features of the target, an
adaptive scale model 2CF is learned and used to estimate the
target scale transformation. The average peak-to-correlation
energy (APCE) [45] is introduced to determine whether the
target is blocked. When the target is occluded, the Kalman
filter is used to estimate the occluded target position based on
the target’s historical path data. The key contributions of the
proposed algorithm are summarized as follows:

 By extracting HOG and color features, a
multifeature response complementary scheme is
proposed based on the correlation filter framework, and
the response of the two features is linearly weighted to
realize the target position estimation. The
complementary scheme can adaptively and perfectly
combine these advantages of different features and solve
the problem of long-term tracking in a complex
environment, such as occlusion and background clutter.
 By extracting the HOG features of the target, an
adaptive scale model 2CF is learned and used to
estimate the target scale transformation, which can
prevent the the model drift.
 Two judgment criteria consisting of the response
peak maxf and APCE are used to determine whether to
update the target model, which can solve the tracking
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drift problem caused by an incorrect template update
mode.

The remainder of this study is organized as follows. Section
II describes the principle of the nuclear correlation filter.
Section III describes different feature extraction methods.
Section IV describes a robust target tracking model and
discusses the execution steps of the algorithm in detail. Section
V verifies the effectiveness and robustness of the proposed
algorithm through experiments in two aspects, namely,
quantitative and qualitative analysis. Section VI summarizes
the conclusions.

II. KERNEL CORRELATION FILTER
The filter is trained by cyclically shifting the target sample to
obtain the negative sample, and the kernel function is
designed to predict the target position to solve the problem of
insufficient training samples. The cycle of the vector can be
obtained by the permutation matrix P . Assuming
vector  TnaaaA ,,, 21  , the permutation matrix P is
expressed as follows:
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0100

0010
0001
1000

























 







. (1)

The two-dimensional image can be cyclically moved
through the x-axis and y-axis, which can be realized by matrix
Q, as described in (2), to acquire the movement of different
positions. The matrix Q is shown as follows:
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First, the target position of the initial frame is given, and
rectangular areas are drawn around the center of the target.
The rectangular area is 1.5 to 2 times the target area, and it
can contain enough samples and some background
information so that the trained filter template is more robust.
The rectangular area can be expressed as

)1()(),( paddingtargetsizeofHW  , where W and H are
the width and height of the area, respectively. The center
position coordinate is  2  2W H， . A training set is formed by a
cyclic shift of feature x, and each shift sample

   , ( , ) 0,1, , 0,1, ,ijx i j W H   has an expected output. The
expected value is produced by a Gaussian function, and its
peak is the target center position. Then, the expected output
of the training image is

2 2

2
( /2) ( /2)
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i W j H

ijy e 
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
 , (3)

where  is the core bandwidth. The center position has the
highest expectation, which is ( / 2, / 2) 1W Hy  . As the shift
operation progresses, the farther the deviation from the target
is, the lower the expected output, and ijy will change from 1

to 0. The goal of the KCF algorithm is to find a classifier 

with the same size as x to minimize the error between the
output of the filter and the expected output.  is defined as
follows:

2 2* arg min ( )ij ij
ij

f x y


     , (4)

where  is the regularization parameter to prevent
overfitting, and ( ) Tf x x is the output function. The
solution describing the above problem is as follows:

1( )H TX X I X Y    . (5)
Each row of 1 2=[ , , , ]TnX x x x represents a vector.
HX represents the complex conjugate transpose matrix, that

is, TH XX )( * . I is the identity matrix. Y is a column
vector in which each element represents the expected
output    , ( , ) 0,1, , 0,1, ,ijy i j W H   . The circulant matrix
X can be diagonalized in the Fourier domain, and the result

in the Fourier domain can be obtained by using this feature:
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The addition and division in (6) are carried out by element,
where  means multiply by element. It is easy to find the
time domain  through the inverse Fourier transform, which
is 1 ˆ= ( ) F . The x̂ in (6) is described as ˆ=x nFx , and F is
the discrete Fourier constant matrix. F is expressed by the
following formula:
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To improve the accuracy of tracking, the input data ix are
mapped to a high-dimensional space while solving  by way
of introducing a nonlinear mapping function )( ix , and the
nonlinear regression problem can be converted into a linear
solution.  can be expressed as )( ii i x  . The kernel

function  )(),(),( iiii xxxxk  is introduced; then, (6) is
modified to the following form:
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The symbol ^ represents the result of the Fourier transform.
xxk represents the first-row vector of the circulant matrix,

which is expressed as )],(),,(),,([ 1xPxkPxxkxxkk nxx   .
The Gaussian kernel is expressed as
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The feature vector of the image is represented by z , and
the response is calculated with the following formula:

1
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To speed up the calculation, formula (10) is processed by
diagonalization, and the result is expressed as:

ˆ ˆ ˆ( ) xzf z k   . (11)
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ˆ ( )f z implements the inverse Fourier transform to find the
position with the largest response as the final target area.

( )f z is calculated as:

   1 1ˆ ˆ ˆ( ) ( ) = xzf z F f z F k    . (12)

III. MULTICHANNEL FEATURE EXTRACTION
An effective target feature model can improve the accuracy
and efficiency of object tracking. Long-term target tracking
will encounter complex and changeable environments.
Determining how to effectively express the characteristics of
the tracking object is the key to tracking. Single manual
features, such as color histograms, HOG, scale-invariant
features, edge features and texture features, are often difficult
to meet the needs of long-term tracking. However, the
extraction model of depth features is generally more
complicated, which will affect the efficiency of the algorithm.
To balance the accuracy and execution efficiency, the
proposed algorithm combines HOG and color features to
represent the target object to solve the object tracking
problems, such as severe occlusions, deformations, light
changes, short-term out-of-sight occurrences, and similar
colors, during long-term tracking.

The feature sample x of the multichannel image is
composed of m channels in series, namely, ],[ 1 mxxx  .
The dot product of each channel is summed to obtain a
multichannel Gaussian kernel, which is described as follows:

2 2 1 *
2
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m
k x x F x x
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       

 
  . (13)

A. HOG FEATURE
HOG describes the appearance and shape of local regions by
calculating the distribution of directed gradients. These
gradient descriptors are robust to changes in illumination. The
image is divided into several connected regions, the
directional gradient histogram within the region is calculated,
and finally, the histogram of each region is combined to form
the feature description of the entire image. The pixel value of
a certain pixel ( , )x y in the image is ( , )H x y , and the
horizontal gradients SG and vertical gradients CG are
expressed as:

( 1, ) ( 1, )
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The gradient value and gradient direction of the pixel
( , )x y , respectively, are as follows:
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Since the gradient intensity is greatly affected by changes
in local illumination and contrast, it is also necessary to
normalize the gradient. The abovementioned area is divided
into multiple intervals, and then the gradient of the interval is
calculated. Fig. 1 shows the extraction result of the HOG
feature used to describe the target. Fig. 1(a) is the original
image, Fig. 1(b) is the visual display of HOG features with
clear gradient information, and Fig. 1(c) is a balanced
histogram of HOG features.

(a) (b) (c)

FIGURE 1. HOG features. (a) Image. (b) Visual display of HOG features. (c) Histogram of HOG features. The HOG feature is robust to target tracking under
illumination changes but is sensitive to object deformation.

B. COLOR FEATURE MODEL
The HOG feature contends with the serious deformation and
occlusion of the target with difficulty, and it is also more
sensitive to noise due to the nature of the gradient. Therefore,
it is not sufficient to use HOG features to represent images in
long-term target tracking. A color histogram is proposed to
reduce drifting since the color-based tracker is easily drifted
toward objects with a similar appearance. Therefore, the color
histogram can handle scenes with similar objects.

The RGB color space is easily affected by changes in
external lighting. Thus, converting the RGB color space into
an HSV color space (as shown in Fig. 2(a)) that is not
sensitive to changes in lighting is necessary. To improve the
robustness of tracking and reduce the influence of changes in
illumination brightness, only the H hue component is
extracted to build a color feature histogram (as shown in Fig.

2(e)). The H hue component (as shown in Fig. 2(b)) is the
basic attribute of color, and it represents the position of the
spectrum color.

Assuming that the center of the target area is 0x and that
 1 2, , nx x x are the other pixels in the target area, n
represents the total. The color feature value is set at

1, 2, ,u m  of each pixel, where m is the grading of the
color feature. The normalized histogram can be expressed as
follows:

0
1

( ) ( ( ) )
n

u i
i

h x C b x u


  , (16)

where C is the normalization coefficient, and ( )ib x is the
function that maps pixel ix to the corresponding color feature.
 is the impulse function, and its value range is in [0,1]. The
result of the color feature extraction is shown in Fig. 2.
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(a) (b)

(c) (d)

(e)

FIGURE 2. Color features. (a) HSV color space. (b) Hue component. (c)
Saturation component. (d) Value component. (e) The histogram of the H
hue component is used to build a color feature histogram. HSV color
space can well improve the robustness of tracking and reduce the
influence of changes in object deformation.

IV. ROBUST OBJECT TRACKING MODEL

A. OBJECT POSITION ESTIMATION MODEL BASED ON
THE MULTIFEATURE RESPONSE
The kernel correlation filter based on HOG features is robust
to motion blur and illumination changes but is very sensitive
to target deformation. However, color features have strong
robustness to target deformation. Therefore, a multifeature
response complementary scheme is proposed to solve the
problems of motion blur, illumination change, and target
deformation during long-term tracking. According to HOG
features and color features, two kernel correlation filters are
separately learned. The responses of HOG features and color
features are calculated, respectively, using (12), namely,

)(zfhog and )(zfcolor :

 1 ˆ ˆ( ) xz
hog hog hogf z F k   , (17)

 1 ˆ ˆ( ) xz
color color colorf z F k   . (18)

The final filtered output is calculated as follows:
( ) ( ) ( )hog hog color colorf z f z f z   . (19)

Using (19) to achieve target position estimation, the target
position estimation model 1CF is also obtained. The
contributions of the two characteristic responses are hog and

color satisfying + =1hog color  which can be described as:
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B. ADAPTIVE SCALE MODEL
The scale estimation model 2CF can prevent the tracking drift
problem caused by the deformation and blurring of the target
in the target tracking process. When training the scale filter,
only HOG features of the target position are extracted.
Suppose the image size is ),( HW ; then,

   , ( , ) 0,1, , 0,1, ,ijx i j W H   is obtained by cyclic shifting
the sample. According to formula (4), the loss function of the
scale estimation model can be obtained. Consequently, z is
obtained by cyclic shifting the characteristic samples and then
is substituted into (12) to obtain the maximum response of the
kernel correlation filter model.

By assuming that the scale of the t-th frame target is RP ,
the target scale pyramid with layers S is constructed around
the target position for scale estimation. The scale mp of any
image patch in the target scale pyramid is expressed as:

RaPap mm
m  . (21)
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1 SSm  ; a represents the

scale factor of different scale layers. The image blocks
obtained by (21) are readjusted to the same size as the target
scale to construct a scale pyramid. The HOG features of each
image patch in the scale pyramid are extracted and used to
calculate the filter response. Then, the optimal size n of the
target can be expressed as:

 )(max,),(max),(maxmaxarg 21 m
m

zfzfzfn  . (22)

When the confidence corresponding to the optimal size n
satisfies 1)(max Tzf n  , the model 2CF is updated;
conversely, when the confidence satisfies 1)(max Tzf n  ,
the model 2CF is not updated.

The size of the target is expressed as:
* *

1 1( , ) ( , ) (1 )( , )t t t t t tw h w h w h      , (23)
where * *( , )t tw h represents the width and height of the
candidate area with the maximum confidence, respectively,
and 1 1( , )t tw h  is the width and height of the previous
tracking target. Additionally,  is the damping factor, which
can control the smooth change of the center size and make the
tracking more stable.

C. OCCLUSION JUDGMENT AND POSITION
COMPENSATION
When the target is occluded, the traditional KCF algorithm
cannot predict the target position. In this case, the Kalman
filter is introduced to compensate for the target position to
predict the target position. Note that the target model is not
updated when the target is occluded.
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1) OCCLUSION JUDGMENT
Due to the influence of background interference, when the
target is occluded, the response value of the target is not
necessarily low. In this case, it will mistakenly believe that
the detection is correct and update the target template, failing
in follow-up tracking. APCE [36] is introduced as a basis for
judging whether there is occlusion, which is calculated as
follows:



















 2

,
min,

2
minmax

)(
hw

hw ffmean

ff
APCE , (24)

where maxf , minf , and hwf , denote the maximum, minimum,
and ),( hw response of )(zf , respectively. For sharper peaks
and less noise, i.e., the appearance of the target in the
detection scope, APCE will become larger and the response
map will become smooth except for only one sharp peak, as
shown in Fig. 3(b). When the target is occluded or tracking is
lost, the response graph will oscillate significantly, and the
value of APCE will also drop significantly (as shown in Fig.
3(d)). When APCE is greater than the threshold 2T , it means
that the target has no occlusion or a small area; when APCE
is less than the threshold 2T , it means that the target has a
large area of occlusion or has full occlusion.

(a) (b)

(c) (d)

FIGURE 3. Response graph of occlusion and no occlusion. (a) No
occlusion. (b) Response of no occlusion. (c) Occlusion. (d) Response of
occlusion. When the target is occluded, maxf and APCE will also drop
significantly.

2) POSITION COMPENSATION BASED ON KALMAN
FILTER
The Kalman filter is applied to target trajectory tracking,
especially in the case of target occlusion. Using the linear
system state equation through the input and output
observation data, the state of the system is optimally
estimated. The state vector of the target is ]~,~,,[ yxyxX  ,
and the observed value is TyxZ ],[ , where ),( yx is the
target position coordinate, and )~,~( yx is the target speed.

Using the linear system state equation through the input
and output observation data, the state of the system is
optimally estimated. The system dynamic state equations at
time k are kX and kZ :

1k k kX AX W  , (25)

k k k kZ H X V  . (26)
Among them, A is the transition matrix of the system state,

and kH is the observation matrix of the system. kW and kV
are white noise sequences with a mean value of 0. The
motion state of the target in two adjacent frames can be
regarded as uniform linear motion, so A and kH are defined
as follows:
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A . (27)

t represents the interval between two adjacent frames.
The proposed algorithm uses the optimal result 1 1k kX   of the
previous state of the system to predict the current state of the
system, and the prediction result is 1k kX  , which is defined as
follows:

1 1 1k k k kX AX   . (28)
The error estimate covariance matrix of the optimal result

of the last state of the system is 1 1k kP   . The covariance of
1k kX  can be updated to:

1 1 1
T

k k k kP AP A Q    , (29)

where Q is the covariance of the system. According to (28)
and (29), the optimal prediction result k kX of the current
state is obtained, and ( )gK k is the Kalman gain. k kX and

( )gK k are, respectively, defined as follows:
1 1( )( )g kk k k k k kX X K k Z HX    , (30)

1 1( ) /T T
g k k k kK k P H HP H R   . (31)

Finally, to achieve the purpose of continuous tracking, the
covariance k kP of k kX in the state k is updated:

1=( ( ) )gk k k kP I K k H P  . (32)
The target position predicted by the target model is )ˆ,ˆ( yx ,

and the target position predicted by the Kalman filter is
)~,~( yx . The target position compensation strategy is

expressed as follows:
)~,~)(1()ˆ,ˆ(),( yxyxyx   , (33)

where  is the position compensation weight. When the
target is not occluded, the value of  is 1; when the target is
occluded, the value of  is 0. That is, when the target is
occluded, the Kalman filter is used to predict the target
position.

D. TARGET MODEL UPDATE BASED ON HIGH
CONFIDENCE
Some existing trackers update object models [13, 16] at each
frame without considering whether the detection is accurate
or not. However, when the target is severely occluded, the
target model is still updated, which is equivalent to updating
the background as the target, resulting in template drift.
Therefore, determining how to update the target model is the
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key to target tracking. The peak value and the fluctuation of
the response map, as shown in Fig. (3), can reveal the
confidence degree about the tracking results to some extent.
The ideal response graph should have a peak at the target
position and smoothly drop at other positions. When there is
more than one similar object in the scene, the tracker treats
the similar target as the background. However, affected by
background interference, the location with the highest
response may not necessarily be the target. Consequently, it is
inaccurate to update the template only based on the maximum
response value. Unimodal detection will regard the highest
response as the target leading to false detection. The proposed
target detection will redetect the areas centered at other peaks
to find the maximum peak among these response maps as the
correct subfigure and locate the correct position of the target.
Therefore, two discrimination methods are used as the basis
for the judgment of the target model, which ensures the
accuracy of the tracker. The first one is the maximum
response score maxf , which is defined as follows:

  1
max

ˆarg max ( ) ( )f f z F f z  . (34)

The other one is the APCE measure defined as (24). The
appearance, background, and environment of the target may
be constantly changing in the process of target tracking, and
the designed model should be able to adaptively adjust the
parameters to continuously adapt to the complex and
changeable environment. The training sample of frame t-1 is
recorded as 1tx , and the model parameter of ridge regression
is 1t . The new samples tx and model parameters t are
obtained at the t-th frame. If the response peak value maxf
and APCE of the current frame are greater than the threshold

1T and 2T , the target model is updated. By assuming the
learning rate is  , the update strategy is as follows:

ttt xxx   1)1( , (35)

ttt   1)1( . (36)

E. ADAPTIVE OBJECT TRACKING ALGORITHM
The use of a single feature makes it difficult to meet the
needs of long-term target tracking in a complex environment.
Combining HOG features and color features to represent the
object can solve long-term tracking problems, such as
occlusion, deformation, light changes, short-term out-of-sight
occurrences, and similar colors. The feature extraction
module is introduced in Section III. To improve the
robustness of long-term tracking, the target position
estimation model 1CF and scale model 2CF are trained. The
correlation filter 1CF (see Section IV-A for details) is used to
estimate the displacement of the target during the movement
and predict the position of the target. The correlation filter

2CF (see Section IV-B for details) is used to estimate the
optimal scale of the target. APCE is used to determine
whether the target is occluded, and the Kalman filter is
applied for position compensation, which solves the tracking
drift problem caused by occlusion (see Section IV-C for
details). Two template update methods are used to update the
template (see Section IV-D for details): maximum response

maxf and APCE, which solves the problem of subsequent
tracking failures caused by incorrect updating of the template.
The proposed algorithm model is shown in Fig. 4. The main
working steps of the algorithm are shown as Algorithm 1:

Algorithm 1. Proposed Tracking Algorithm
Input: Image tI , previous object
position: ),,,( 1111  tttt hwyx
Output: Estimated object position: ),,,( tttt hwyx

1: Crop the search window in tI centered at
)11,(  tt yx and extract HOG features and color

features.
2: Compute the response map )(zfhog using (17).

3: Compute the response map )(zfcolor using (18).
4: Compute the final response map )(zf using (19) and
APCE using Eq. 22.
5: if )&(&)( 21max TAPCETf  , then
6: Estimate the current position )ˆ,ˆ( tt yx and update the
position estimation filter 1CF .
7: else
8: Compensate position using (31) and obtain the new
current position ),( tt yx .
9: end if
10: Construct a target pyramid for scale estimation
around )ˆ,ˆ( tt yx and obtain the best scale n
11: if 1)(max Tzf n  , then
12: Update the scale model 2CF and obtain estimated
position ),,,( tttt hwyx .
13: end if

V. RESULT ANALYSIS AND DISCUSSION
We evaluated the proposed tracker by comparing it with some
state-of-the-art trackers, including CSK [17], KCF [20],
SRDCF [22], SRDCF* [23], CLRT [31], and HCFT [44] on
two widely used datasets TB-128 [46] and OTB2015[47].
The TC-128 benchmark contains 128 color video sequences
with 11 annotated attributes, and it aims at analyzing the
impact of color information on tracking. The OTB2015
contains more than 100 manually annotated datasets with 11
attributes that cover various challenging factors, including
scale variation (SV), illumination variation (IV), occlusion
(OCC), motion blur (MB), deformation (DEF), fast motion
(FM), out-of-plane rotation (OPR), out-of-view (OV), in-
plane rotation (IPR), background clutter (BC) and low
resolution (LR), which are summarized in Table I.

A. IMPLEMENTATION DETAILS
The proposed tracker is implemented in MATLAB R2018b
on an Intel Core i7-8550U 2.0 GHZ CPU with 8 GB RAM.
The optimization takes 10 iterations in the first frame and 3
iterations for each online update. The number of scales is 33,
and a scale factor of 1.02 is used in the scale model. To
compare each algorithm fairly, the same parameters are used
for experiments, as shown in Table II.
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FIGURE 4. Algorithm model. HOG and color features for the prediction are extracted around the location in the previous image and used to calculate the
response maps using correlation filter. The features have different discriminatory powers in different scenarios, which are combined with the fusion model.
Combining the scale model and high-confidence update strategy, the object target can be located accurately.

TABLE I
PART OF TEST VIDEOS CATEGORIZED WITH 11 ATTRIBUTES

Sequence SV IV OCC MBB DEF FM OPR OV IPR BC LR
Basketball √ √ √ √

Boy √ √ √ √ √
Car4 √ √
Deer √ √ √ √ √
Girl √ √ √ √

Jogging √ √ √
Lemming √ √ √ √ √ √

MotorRolling √ √ √ √ √ √ √
Singer1 √ √ √ √

SUV √ √ √
Walking √ √ √
Woman √ √ √ √ √ √ √

TABLE II
PARAMETER SETTINGS

Parameter Value
Regularization term  10-3

Padding 0.5
Learning rate  0.015

maxf threshold 1T 0.3

APCE threshold 2T 20
Gaussian kernel bandwidth  0.5

B. EVALUATION INDEX
1) DISTANCE PRECISION RATE (DPR)
The tracking algorithm estimates the Euclidean distance
between the center point of the target position and the center
point of the manually marked target. Otherwise, the smaller
the Euclidean distance is, the higher the tracking accuracy.
DPR represents the percentage of frames whose center
location errors are smaller than a given threshold. With
different thresholds, the ratios are different such that a curve
can be obtained, and the threshold is set to 20 pixels.
2) OVERLAP SUCCESS RATE (OSR)
OSR represents the percentage of frames whose overlap
scores with the ground truth are larger than another given
threshold. The overlap rate of the bounding box 1S of the
target position and the target position’s true bounding box

2S is used to estimate the tracking algorithm, which is
calculated by the following formula:

1 2

1 2

( )
( )

Area S S
S

Area S S





. (37)

3) CENTER POSITION ERROR (CPE)
To analyze the accuracy and stability of the proposed
algorithm, the concept of center position error is introduced
in the experimental analysis. The center position error refers
to the Euclidean distance between the estimated position

),( yx  obtained by iteration and the true position ),( yx ,
which can be calculated with (38):

22 )()( yyxxD  . (38)

C. ANALYSIS OF MAXIMUM, MINIMUM, AND APCE OF
THE RESPONSE
In this section, we analyze the maximum, minimum and
APCE of response maps to verify the effectiveness of the
proposed algorithm. The maximum response maxf and APCE
are compared with preset thresholds 1T and 2T , respectively,
to determine whether the tracking is successful or has failed.
Fig. 5(a) and Fig. 5 (b) are the APCE and the maximum and
minimum of the Walking image sequence, respectively. In
the whole tracking process, maxf is greater than 0.3,
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satisfying 2T , the condition of being greater than the
threshold 1T . APCE is greater than 16, satisfying the
condition of being greater than the threshold. The minimum
value of APCE at 16.0741 appears in frame 68.
Approximately 87 frames are affected by the occlusion of the
telephone poles, and APCE also reached 29.5708. The above
situation shows that the tracking effect of the Walking image
sequence is good, and there is no tracking drift and failure.

Fig. 5(c) and Fig. 5(d) are the APCE and the maximum of the
image sequence Jogging, respectively. Figs. 5(c-d) show that

maxf and APCE from the 69th-76th frame do not meet the
threshold 1T and 2T . In this case, the template should not be
updated, but the Kalman filter is used for position
compensation to predict the target position. After the target
reappears from frame 77 onward, the normal tracking state is
restored.

(a) (b)

(c) (d)

FIGURE 5. Response of frame. (a) APCE of Walking. (b) Maximum and minimum of Walking. (c) APCE of Jogging. (d) Maximum and minimum of Jogging.
The change curve clearly shows the response change of each frame in the video sequence (e.g., Walking and Jogging), which also verifies the rationality of
the proposed scheme.

Fig. 6 is the response diagram of the target in different
frames. Fig. 6(b) shows that when the target is not blocked,
the response value is the largest at the target position, and the
entire response curve has a relatively small oscillation. In Fig.

6(d), the target is severely occluded, the response diagram
exhibits a certain shock, and some small peaks appear near
the target. When maxf and APCE do not satisfy the threshold,
the Kalman filter is called for position compensation, and the
position and scale filters are not updated.

(a) (b)
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(c) (d)

FIGURE 6. Response of frame in the Jogging sequence of OTB2015. (a) Frame #0037. (b) Response of object in frame 37. (c) Frame #0068. (d) Response of
object in frame 68. The red bounding boxes indicate the tracking results of the proposed approach with the high-confidence update strategy. When the
target is occluded, maxf and APCE decrease obviously, and the template update is not carried out.

D. CENTER POSITION ERROR ANALYSIS
In this section, we analyze the proposed tracker by comparing
the center position error with CSK [17], KCF [20], CLRT
[31], and HCFT[44] algorithms on the OTB2015 benchmark.
The smaller the D is, the higher the accuracy and stability of
the algorithm. Fig. 7(a) is the result of the center position
error in the Walking2 dataset. The CPE of the proposed
algorithm maintains a low value, and the maximum is only 21.
Starting from frame 370, the target is blocked, and the CPEs
of KCF, CLRT, and CSK algorithms exceed 70, resulting in

tracking drifts. After the target reappeared, the CPE of the
KCF algorithm decreases to 20, and the tracking is resumed.
However, the CPEs of CSK and CLRT algorithms are still
greater than 50, and the tracking cannot be correctly
completed in the subsequent frame. Fig. 7(b) is the result of
the center position error in the Car4 dataset. The average CPE
of the proposed algorithm is only 2.32. The average CPE of
the KCF algorithm is also low, which is 8.69. However, the
average CPEs of CLRE and CSK algorithms exceed 58,
which are affected by light changes, resulting in tracking
failure.

(a) (b)

FIGURE 7. Comparison results of center position error with state-of-the-art trackers (KCF, HCFT, CLRT, and CSK) in different test videos. (a) Comparison
result of the CPE in Walking2. (b) Comparison result of center position error in Car4. Our approach provides consistent results with the lowest pixel error in
challenging scenarios, such as illumination variation, background clutter and target rotations.

E. QUANTITATIVE ANALYSIS
In this section, to validate the effectiveness of the proposed
tracker, we make comparisons with some state-of-the-art
trackers, including CSK [17], KCF [20], SRDCF [22],
SRDCF* [23], CLRT [31], and HCFT[44], on the OTB2015
[47] dataset.

The images of OTB2015 are different in contrast,
background interference, and image noise. According to the
response of the HOG feature and color feature, the feature
contribution is adaptively adjusted to achieve a better
tracking effect. The Car1 video sequence has 1020 frames,
which have the characteristics of scale variation, fast motion,
illumination variation, and low resolution. Fig. 8 shows the

HOG feature (red curve) and color feature (blue curve)
contribution distribution of 500 frames in the Car1 video
sequence. The changing curve shows that the contribution of
HOG features is high. When the object deforms in some
frames, the contribution of color features is high, which
compensates for the shortcomings of HOG features that are
sensitive to deformation.

The tracking speed is described in terms of FPS (frame per
second) and is shown in Table III. Although our tracker is not
the fastest one, the accuracy of our tracker is better than some
of the most advanced trackers and can meet the basic real-
time tracking requirements
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TABLE III
COMPARISON OF THE TRACKING SPEED (FPS) ON THE OTB2015 DATASET

Trackers Ours CSK KCF SRDCF SRDCF* CLRT HCFT
Tracking

speed 55 53 109 6 4 50 15

FIGURE 8. Feature contribution. The red curve and blue curve represents
the contribution of the HOG feature and color feature, respectively. These
two features play a complementary role in different scenarios.

The evaluation index mentioned in Section B belongs to
the one-pass evaluation (OPE) standard. The tracking
algorithm may be more sensitive to the initial position given
in the first frame, and starting at a different position will have
a greater impact on the tracking. After disrupting the initial
state in time (starting from different frames) and space
(different target positions), the temporal robustness
evaluation (TRE), and spatial robustness evaluation (SRE)
are obtained, respectively. Fig. 9 shows the comprehensive
statistical results of the proposed algorithm and the

comparison algorithm on OTB2015.
Under the three evaluation criteria of OPE, TRE, and SRE,

the distance precision rate and overlap success rate of the
proposed algorithm are the highest. Particularly when using
the OPE evaluation criteria, the distance precision rate of the
proposed algorithm is 0.899, which is 9.63% higher than that
of the second-ranked HCFT algorithm (0.821). The overlap
success rate is 0.635, which is 9.29% higher than that of the
second-ranked HCFT (0.581).

Fig. 10 shows the tracking accuracy and tracking speed of
the proposed tracker and other compared trackers on the
OTB2015 dataset. From this figure, we can see that our
tracker has achieved favorable tracking accuracy. However,
the tracking speed still needs to be improved.

FIGURE 10. The comparison of OSR and tracking speed on the OTB2015
dataset. The horizontal and vertical coordinates represent the tracking
speed and overlap success rate, respectively.

(a) (b)

(c) (d)
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(e) (f)

FIGURE 9. OPE, SRE and TRE precision and success plots on OTB2015. (a) Precision plots of OPE. (b) Success plots of OPE. (c) Precision plots of SRE. (d)
Success plots of SRE. (e) Precision plots of TRE. (f) Success plots of TRE. The numbers in the legend indicate the representative precision at 20 pixels for
precision plots, and the average area-undercurve scores for success rate plots.

F. QUALITATIVE ANALYSIS
To demonstrate the effectiveness and robustness of the
proposed tracker indirectly, we compare it with four state-of-
the-art trackers, i.e., CSK [17], KCF [20], CLRT [31], and
HCFT [44] on some selected challenging sequences of
OTB2015. The images in the MotorRolling video sequence
have problems such as out-of-plane rotation, illumination
variation, deformation, and rotation. The images in the
Jogging video sequence have problems such as occlusion,
deformation, fast motion, and low resolution. The images in
the Walking video sequence have problems such as
deformation, low resolution, and dim light. The images in the
Car4 video sequence have problems such as uneven
illumination, similar colors, scale changes, fast motion, and
background doping.

Fig. 11 shows the qualitative comparison of the five
trackers on these challenging sequences. When the target is
severely occluded and occluded for a long time, the proposed
algorithm and the HCFT algorithm achieve better tracking
results, as shown in Fig. 11(a). Other comparison algorithms
show tracking drift and can recover redetection. The object in
the Jogging video sequence shown in Fig. 11(b) is also
severely occluded, and the shape of the target is constantly
changing. The proposed algorithm and CSK have achieved
better tracking results. After the object reappears, the
proposed algorithm immediately resumes normal tracking,

while the KCF algorithm has a short-term tracking loss, but
the tracking ability is quickly restored. The CLRT algorithm
shows tracking drift in the tracking results of the Walking
video sequence, as shown in Fig. 11(c), and other comparison
algorithms achieve better tracking results. The object in the
Car4 video sequence shown in Fig. 11(d) has a fast speed and
large illumination changes, which leads the proposed
algorithm to some errors in tracking when the target changes
lanes; however, no failure occurs. Other comparison
algorithms show varying degrees of drift and even lead to
tracking failures. The qualitative analysis results show that
the advantages of the proposed algorithm are obvious, which
further verifies the effectiveness of the redetection module in
the tracking process.

G. EXPERIMENT ON TC-128
In this section, we use the TC-128 [46] dataset to validate the
performance of the proposed tracker. The comparison with
some state-of-the-art trackers, including CSK [17], KCF [20],
SRDCF [22], SRDCF* [23], CLRT [31], and HCFT[44], is
shown in Table IV. Among them, the proposed tracker
obtains the best distance precision rate (73%), and SRDCF*
obtains the best overlap success rate (53.4%). Compared with
HCFT, the proposed tracker achieved significant
improvements, which clearly shows the benefits of using the
high-confidence update strategy.

TABLE IV
DPR AND OSR COMPARISON OF THE ABOVEMENTIONED TRACKS ON TC-128

Algorithms Ours CSK KCF SRDCF SRDCF* CLRT HCFT
DPR 0.73 0.54 0.549 0.696 0.729 0.591 0.68
OSR 0.525 0.407 0.387 0.509 0.534 0.483 0.492

(a)
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(b)

(c)

(d)

FIGURE 11. Qualitative comparison of our tracker and other representative trackers (CSK [17], KCF [20], CLRT [31], and HCFT [44]) on some visual object
tracking sequences. (a) Test video of MotorRolling. (b) Test video of Jogging. (c) Test video of Walking. (d) Test video of Car4. The proposed model
provides consistent results in challenging scenarios, such as occlusions, illumination variation, fast motion, background clutter, and target rotations.

H. DISCUSSION
In this section, we mainly discuss the impact of several
factors that are essential to our tracking performance and
speed using the OTB2015 dataset, including the
regularization term  , maxf threshold 1T , and APCE
threshold 2T .
1) ANALYSIS OF THE REGULARIZATION TERM
The regularization term is used to prevent model overfitting,
and its value directly affects the tracking performance. If 
is too small, the regularization term is inactive. In contrast, if
 is too large, the regularization term dominates the overall
error. The DPR and OSR achieved by our tracker with
different  values are listed in Table V. It shows that the best
performance is achieved at approximately 310 .

TABLE V
DPR AND OSR RESULTS ACHIEVED WITH DIFFERENT VALUES OF

THE REGULARIZATION TERM 
Regularization term  DPR OSR

1 0.726 0.552
10-1 0.801 0.603
10-2 0.826 0.623
10-3 0.899 0.635
10-4 0.845 0.628
10-5 0.792 0.582

2) ANALYSIS OF THRESHOLDS 1T AND 2T

The maximum response threshold 1T and APCE threshold 2T
are used to determine when to update the tracker model. If 1T
and 2T are too small, the tracker can easily drift due to noisy

updating. However, if 1T and 2T are too large, the tracker
cannot adapt to the appearance changes of the tracking object.
Table VI shows the DPR and OSR results achieved by the
proposed tracker with different values of 1T and 2T .

TABLE VI
DPR AND OSR RESULTS ACHIEVED WITH DIFFERENT VALUES OF

1T AND 2T

maxf threshold 1T APCE threshold 2T DPR OSR

0.6 50 0.626 0.532
0.5 40 0.821 0.594
0.4 30 0.887 0.613
0.3 20 0.899 0.635

0.25 15 0.885 0.578
0.2 15 0.632 0.482

VI. CONCLUSIONS
To solve the problem of long-term moving object tracking in
complex scenes, a scale-adaptive correlation filtering
algorithm combined with the Kalman filter is proposed to
achieve good performance on TC-128/OTB2015 benchmarks.
The proposed algorithm started with the extraction of robust
features and analyzed the features with different
discrimination capabilities. The following conclusions can be
drawn:

 A target position estimation model 1CF and an
adaptive scale model 2CF are learned to locate the
target position and estimate the target scale
transformation, respectively.
 Two judgment criteria are used to determine whether
to update the target model, which can solve the tracking
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drift problem caused by the incorrect template update
mode.
 Aimed at the tracking failure caused by the severe
occlusion of the target, the Kalman filter is introduced to
correct the position of the tracking target to ensure the
accuracy of the tracking result.

The proposed algorithm shows good tracking performances
when contending with challenging video scenes, such as
occlusion, scale conversion, and uneven illumination.
However, its tracking ability is slightly weaker under video
sequences with attributes of rotation and low resolution. In
future studies, the algorithm will be improved by extracting
image hierarchical convolution features.
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