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Summary

We investigate the variable selection problem for Cox’s proportional hazards model, and

propose a unified model selection and estimation procedure with desired theoretical prop-

erties and computational convenience. The new method is based on a penalised log partial

likelihood with the adaptively-weighted L1 penalty on regression coefficients, providing what

we call the adaptive Lasso estimator. The method incorporates different penalties for dif-

ferent coefficients: unimportant variables receive larger penalties than important ones, so

that important variables tend to be retained in the selection process, whereas unimportant

variables are more likely to be dropped. Theoretical properties, such as consistency and

rate of convergence of the estimator, are studied. We also show that, with proper choice

of regularisation parameters, the proposed estimator has the oracle properties. The con-

vex optimisation nature of the method leads to an efficient computation algorithm. Both

simulated and real examples show that the method performs competitively.

Some key words: Adaptive Lasso; Penalised partial likelihood; Proportional hazards model; Variable

selection.
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1. Introduction

In the study of the dependence of survival time T on covariates z = (z1, . . . , zd)T. Cox’s

proportional hazards model (Cox 1972, 1975) includes a hazard function h(t|z) of a subject

with covariates z of the form

h(t|z) = h0(t) exp(βTz), (1)

where h0(t) is a completely unspecified baseline hazard function and β = (β1, . . . , βd)T is

an unknown vector of regression coefficients.

In practice, not all the d covariates may contribute to the prediction of survival outcomes:

some components of β may be zero in the true model. When the sample size goes to

infinity, an ideal model selection and estimation procedure should be able to identify the

true model with probability one, and provide consistent and efficient estimators for the

relevant regression coefficients. In this paper, we propose a new procedure, the adaptive

Lasso estimator, and show that it satisfies all theoretical properties.

Many variable selection techniques for linear regression models have been extended to

the context of survival models. They include the best-subset selection, stepwise selection,

asymptotic procedures based on score tests, Wald tests and other approximate chi-square

testing procedures, bootstrap procedures (Sauerbrei & Schumacher, 1992), and Bayesian

variable selection (Faraggi & Simon, 1998; Ibrahim et al., 1999). However, the theoretical

properties of these methods are generally unknown (Fan & Li, 2002). Recently a family of

penalised partial likelihood methods, such as the Lasso (Tibshirani, 1997) and the smoothly

clipped absolute deviation method (Fan & Li, 2002) were proposed for Cox’s proportional

hazards model. By shrinking some regression coefficients to zero, these methods select im-

portant variables and estimate the regression model simultaneously. The Lasso estimator
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does not possess the oracle properties (Fan & Li, 2002). The smoothly clipped absolute

deviation estimator, proposed first by Fan & Li (2001) for linear models, has better theoret-

ical properties than the Lasso, but the nonconvex form of its penalty makes its optimisation

challenging in practice, and the solutions may suffer from numerical instability.

Our adaptive Lasso method is based on a penalised partial likelihood with adaptively

weighted L1 penalties on regression coefficients. Unlike the Lasso and smoothly clipped

absolute deviation methods which apply the same penalty to all the coefficients, the adaptive

Lasso penalty has the form λ
∑d

j=1 |βj |τj , with small weights τj chosen for large coefficients

and large weights for small coefficients. In contrast to the Lasso, the new estimator enjoys

the oracle properties. In contrast to the smoothly clipped absolute deviation method, the

adaptive Lasso penalty has a convex form, which ensures the existence of global optimisers

and can be efficiently solved by standard algorithms (Boyd & Vandenberghe, 2004).

2. Variable Selection Using Penalised Partial Likelihood

Suppose a random sample of n individuals is chosen. Let Ti and Ci be the failure time

and censoring time of subject i (i = 1, . . . , n), respectively. Define T̃i = min(Ti, Ci) and

δi = I(Ti ≤ Ci). We use zi = (zi1, . . . , zid)T to denote the vector of covariates for the ith

individual. Assume that Ti and Ci are conditionally independent given zi, and the censoring

mechanism is noninformative. The data then consists of the triplets (T̃i, δi, zi), i = 1, . . . , n.

The proportional hazards model (1) is assumed for the failure times Ti. For simplicity,

assume that there are no ties in the observed failure times. When ties are present, we may

use the technique in Breslow (1974). The log partial likelihood is then given by

ln(β) ≡
n∑

i=1

δi[βTzi − log{
n∑

j=1

I(T̃j ≥ T̃i) exp(βTzj)}]. (2)
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To select important variables under the proportional hazards model, Tibshirani (1997) and

Fan & Li (2002) proposed to minimise the penalised log partial likelihood function,

− 1
n

ln(β) + λ

d∑

j=1

J(βj). (3)

The Lasso penalty is J(βj) = |βj |, which shrinks small coefficients to zero and hence results

in a sparse representation of the solution. However, estimation of large values of βj ’s may

suffer from substantial bias if λ is chosen too big, while the model may not be sufficiently

sparse if λ is chosen too small. Fan & Li (2002) suggested the smoothly clipped absolute

deviation penalty, which cleverly avoids excessive penalties on large coefficients and enjoys

the oracle properties.

3. Adaptive Lasso Estimation

3·1. The estimator

Our adaptive Lasso estimator is the solution of

min
β
{− 1

n
ln(β) + λ

d∑

j=1

|βj |τj}, (4)

where the positive weights τ = (τ1, . . . , τd)T are chosen adaptively by data. The values

chosen for the τj ’s are crucial for guaranteeing the optimality of the solution. Our proposal

is to use τj = 1/|β̃j |, where β̃ = (β̃1, . . . , β̃d)T is the maximiser of the log partial likelihood

ln(β). Since β̃ are consistent estimator (Tsiatis, 1981; Andersen & Gill, 1982), their values

well reflect the relative importance of the covariates. We therefore focus on the problem

min
β
{− 1

n
ln(β) + λ

d∑

j=1

|βj |/|β̃j |}. (5)

Any consistent estimator of β can be used, and β̃ is just a convenient choice. Note that

the adaptive penalty term in (5) is closely related to the L0 penalty
∑d

j=1 I(|βj | 6= 0), also
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called the entropy penalty in wavelet literature (Donoho & Johnstone 1998; Antoniadis &

Fan 2001). As a result of the consistency of β̃j , the term |βj |/|β̃j | converges to I(βj 6= 0) in

probability as n goes to infinity. Therefore the adaptive Lasso procedure can be regarded

as an automatic implementation of the best-subset selection in some asymptotic sense.

3·2. Theoretical properties of the estimator

We study the asymptotic properties of the estimator from two perspectives. Consider the

penalised log partial likelihood function based on n samples,

Qn(β) = ln(β)− nλn

d∑

j=1

|βj |/|β̃j |. (6)

Write the true parameter vector as β0 = (βT
10, β

T
20)

T, where β10 consists of all q nonzero

components and β20 consists of the remaining zero components. Correspondingly, we write

the maximiser of (6) as β̂n = (β̂T
1n, β̂T

2n)T.

Define the counting and at-risk processes Ni(t) = δiI(T̃i ≤ t) and Yi(t) = I(T̃i ≥ t),

respectively. In this section, the covariate z is allowed to be time-dependent, denoted by

z(t). Without loss of generality, assume that t ∈ [0, 1]. Then the Fisher information matrix

is

I(β0) =
∫ 1

0
v(β0, t)s(0)(β0, t)h0(t)dt,

where

v(β, t) =
s(2)(β, t)
s(0)(β, t)

−
(

s(1)(β, t)
s(0)(β, t)

) (
s(1)(β, t)
s(0)(β, t)

)T

,

and s(k)(β, t) = E[z(t)⊗kY (t) exp{β′z(t)}], k = 0, 1, 2. The regularity conditions (A)-(D)

used in Anderson & Gill (1982) are assumed in the whole section. Let I(β0) be the Fisher

information matrix based on the log partial likelihood and let I1(β10) = I11(β10, 0), where

I11(β10, 0) is the first s× s submatrix of I(β0) with β20 = 0. The following theorem shows
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that β̂n is root-n consistent if λn → 0 at an appropriate rate.

Theorem 1. Assume that (z1, T1, C1), ..., (zn, Tn, Cn) are independently and identically

distributed, and that Ti and Ci are independent given zi. If
√

nλn = Op(1), then the adaptive

Lasso estimator satisfies ‖β̂n − β0‖ = Op(n−1/2).

Next we show, when λn is chosen properly, the adaptive Lasso estimator

has the oracle property (Donoho & Johnstone, 1994); that is, as n goes to

infinity, the adaptive Lasso can perform as well as if the correct submodel

were known.

Theorem 2. Assume that
√

nλn → 0 and nλn → ∞, then, under the conditions of

Theorem 1, with probability tending to 1, the root-n consistent adaptive Lasso estimator β̂n

must satisfy the following conditions:

(i) (Sparsity) β̂2n = 0;

(ii) (Asymptotic normality)
√

n(β̂1n − β10) → N{0, I−1
1 (β10)} in distribution as n goes

to infinity.

Proofs of both theorems are given in the Appendix 1. Since the proofs only require the

root-n consistency of β̃, it is worth noting that, any root-n consistent estimator of β0 can be

used as the adaptive weights τ without changing the asymptotic properties of the adaptive

Lasso solution.

4. Computational Algorithm

4·1. The optimisation routine

The optimisation problem (5) is strictly convex and therefore can be solved by many stan-

dard software packages such as MATLAB, R and MINOS, and algorithms like the interior

point algorithm (Boyd & Vandenberghe, 2004). Here we present our algorithm for finding
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the maximiser β̂ of (5). We approximate the partial likelihood function using the Newton-

Raphson update through an iterative least squares procedure, at each iteration solving

the least squares problem subject to the weighted L1 penalty. Define the gradient vector

∇l(β) = −∂ln(β)/∂β and the Hessian matrix ∇2l(β) = −∂2ln(β)/∂β∂βT. Consider the

Cholesky decomposition of ∇2l(β), i.e. ∇2l(β) = XTX, and set the pseudo response vector

Y = (XT)−1{∇2l(β)β −∇l(β)}. By second-order Taylor expansion, −ln(β) can be approx-

imated by the quadratic form 1
2(Y −Xβ)T(Y −Xβ). Thus at each iterative step, we need

to minimise

1
2
(Y −Xβ)T(Y −Xβ) + λ

d∑

j=1

|βj |/|β̃j |. (7)

To solve the standard Lasso, Tibshirani (1996) suggested two algorithms based on quadratic

programming techniques, and Fu (1998) proposed the shooting algorithm. Recently Efron

et al. (2004) showed that, in the least squares setting, the whole solution path of Lasso

can be obtained by a modified least angle regression algorithm. To minimise (7), we have

slightly modified Fu’s shooting algorithm; see Appendix 2. For any fixed λ, the following is

the complete algorithm for solving (5).

Step 1. Obtain β̃ by minimising the negative log partial likelihood −ln(β).

Step 2. Initialise by setting k = 1 and β̂[1] = 0.

Step 3. Compute ∇l,∇2l,X and Y based on the current value β̂[k].

Step 4. Minimise (7) using the modified shooting algorithm, denoting the solution by

β̂[k+1].

Step 5. Let k = k + 1. Go back to Step 3 until the convergence criterion is met.

This algorithm gives exact zeros for some coefficients and it converges fast based on

our empirical experience. Similarly to Theorem 3 in Fu (1998), we can show that the

modified shooting algorithm is guaranteed to converge to the global minimiser of (7). The
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Lasso optimisation, as a special case with all weights equal to 1, can also be solved by this

algorithm.

4·2. Variance estimation and parameter tuning

For their estimations, Tibshirani (1996) and Fan & Li (2002) proposed standard error

formulae based on their approximated ridge solutions, and we follow their methods here.

Define A(β) = diag{1/β2
1 , . . . , 1/β2

d},

D(β) = diag
{

I(β1 6= 0)
β2

1

, . . . ,
I(βd 6= 0)

β2
d

}
, b(β) =

(
sign(|β1|)
|β̃1|

, . . . ,
sign(|βd|)
|β̃d|

)′
.

At the (k + 1)th step, the adaptive Lasso solution can be approximated by

β̂[k+1] = β̂[k] −
{
∇2l(β̂[k]) + λA(β̂[k])

}−1 {
∇l(β̂[k]) + λb(β̂[k])

}
.

Using similar to those in Fan & Li (2002), we can approximate the covariance matrix of the

adaptive Lasso estimator β̂ by the following sandwich formula:

{
∇2l(β̂) + λA(β̂)

}−1
Σ(β̂)

{
∇2l(β̂) + λA(β̂)

}−1
,

where Σ(β̂) = {∇2l(β̂) + λD(β̂)}{∇2l(β̂)}−1{∇2l(β̂) + λD(β̂)}.

Let β̂ = (β̂T
1 , β̂T

2 )T, where β̂1 corresponds to the r nonzero components. Correspondingly,

we may decompose the Hessian matrix as

G = ∇2l(β̂) =




G11 G12

G21 G22


 ,

where G11 corresponds to the first r× r submatrix of G. Similarly, let A11 be the first r× r

submatrix of A ≡ A(β̂). Define E = G22−G21G
−1
11 G12 and G̃11 = G11 + λA11. It is easy to

show that the estimator of the covariance matrix of β̂1 is

ˆcov(β̂1) = G−1
11 +

(
G−1

11 − G̃−1
11

)
G12E

−1G21

(
G−1

11 − G̃−1
11

)
. (8)
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If λ is small, then (8) can be well approximated by G−1
11 , the inverse of the observed Fisher

information matrix Î1. This is consistent with the asymptotic covariance matrix of β̂1 in

Theorem 2.

To estimate the tuning parameter λ, we use generalised crossvalidation (Craven &

Wahba, 1979). At convergence, the minimiser of (6) in Step 4 can be approximated by

a ridge solution (G + λA)−1XTY . Therefore, the number of effective parameters in the

adaptive Lasso estimator can be approximated by p(λ) = tr{(G + λA)−1G}, and the gen-

eralised crossvalidation constructed is GCV(λ) = −ln(β̂)/{n{1− p(λ)/n}2}.

5. Numerical Studies

5·1. Simulations

We compare the performance of the maximum partial likelihood estimators, Lasso, smoothly

clipped absolute deviation and adaptive Lasso, under Cox’s proportional hazards model. We

report the average numbers of correct and incorrect zero coefficients in the final model over

100 replicates. To measure prediction accuracy, we follow Tibshirani (1997) and summarise

the average mean squared errors (MSE) (β̂−β)TV (β̂−β) over 100 runs. Here V is the pop-

ulation covariance matrix of the covariates. Generalised crossvalidation is used to estimate

the tuning parameter λ in the Lasso, smoothly clipped absolute deviation, and adaptive

Lasso.

The failure times are generated from the proportional hazards model (1) in two settings.

Model 1: β = (−0.7,−0.7, 0, 0, 0,−0.7, 0, 0, 0)T, corresponding to large effects.

Model 2: β = (−0.4,−0.3, 0, 0, 0,−0.2, 0, 0, 0)T, corresponding to small effects.

The nine covariates z = (z1, ..., z9) are marginally standard normal with the pairwise cor-

relations corr(zj , zk) = ρ|j−k|. We assume moderate correlation between the covariates by
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taking ρ = 0.5. Censoring times are generated from a Un(0, c0) distribution, where c0 is

chosen to obtain the desired censoring rate. We used two censoring rates, 25% and 40%,

and three sample sizes, n = 100, 200 and 300.

Table 1 summarises the mean squared errors and variable selection results for Model

1, where important variables have large effects. Standard errors are given in parentheses.

Overall, the adaptive Lasso performs best in terms of both variable selection and prediction

accuracy. For example, when n = 100 and the censoring rate is 25%, the adaptive Lasso

selects important covariates most accurately; the true model size is 3, whereas the average

size from maximum likelihood is 9, from Lasso is 4.13, from smoothly clipped absolute

deviation is 3.62 and from adaptive Lasso is 3.27. Adaptive Lasso also gives the smallest

mean squared error. Between the two procedures with oracle properties, the adaptive

Lasso performs consistently better in term of variable selection. With regard to mean

squared error, the adaptive Lasso is better when n = 100; as n increases to 200 or 300,

two methods become equally good. In Table 2, we present the frequency with which each

variable was selected among 100 runs for the 25% censoring case. The adaptive Lasso

chooses unimportant variables much less often than the other two procedures in all the

settings, and the Lasso is the worst. Similar results are observed for the 40% censored case.

(Insert Tables 1 and 2 here)

To test the accuracy of the proposed standard error formula given in §3·2, we compare

the sample standard errors with their estimates. For the Lasso estimates, we use the

standard error formula in Tibshirani (1997). For the smoothly clipped absolute deviation

estimates, the formula in Fan & Li (2002) is used. Table 3 gives the mean of the estimated

standard errors and the sample standard errors from Monte Carlo simulations for the 25%

censoring case. Similar results are found for 40% censoring case. For all methods, there
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is a discrepancy between the estimated standard errors and the sample standard errors

when n is small, but it decreases when n gets large. Also, we observed that the smoothly

clipped absolute deviation solutions were not as robust as the other estimators, showing

large variability among replicated solutions. Therefore the values in Table 3 corresponds

to the robust estimator of the sample standard error (Fan & Li, 2002), which is calculated

as the median absolute deviation of the estimates divided by 0.6745, and compare it with

the median of the estimated standard errors. For the other procedures, standard variance

estimators are used.

(Insert Table 3 here)

In Model 2, important variables have smaller effects than in Model 1 and the coeffi-

cients are of different magnitudes. Table 4 shows that, for variable selection, the adaptive

Lasso is best in terms of selecting correct zeros. With regard to prediction accuracy, the

Lasso, adaptive Lasso and maximum likelihood give similar mean squared errors, with Lasso

slightly better, and the smoothly clipped absolute deviation method is consistently worse

than the others.

(Insert Tables 4 here)

5·2. Primary biliary cirrhosis data

Data gathered in the Mayo Clinic trial in primary biliary cirrhosis of liver conducted between

1974 and 1984, are provided in Therneau & Grambsch (2000); a more detailed account can

be found in Dickson et al. (1989). In this study, 312 out of 424 patients who agreed to

participate in the randomised trial are eligible for the analysis. For each patient, clinical,

biochemical, serological and histological parameters are collected. In all, 125 patients died

before the end of follow-up. We study the dependence of the survival time on seventeen
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covariates: continuous variables are age (in years), alb (albumin in g/dl), alk (alkaline

phosphatase in units/liter), bil (serum bilirunbin in mg/dl), chol (serum cholesterol in

mg/dl), cop (urine copper in µg/day), plat (platelets per cubic ml/1000), prot (prothrombin

time in seconds), sgot (liver enzyme in units/ml), trig (triglycerides in mg/dl); categorical

variables are asc (0 denotes absence of ascites and 1 denotes presence of ascites), oed (0

denotes no oedema, 0.5 denotes untreated or successfully treated oedema and 1 denotes

unsuccessfully treated oedema), hep (0 denotes absence of hepatomegaly and 1 denotes

presence of hepatomegaly), sex (0 denotes male and 1 denotes female), spid (0 denotes

absence of spiders and 1 denotes presence of spiders), stage (histological stage of disease,

graded 1, 2, 3 or 4) and trt (1 for control and 2 for treatment).

We restrict our attention to the 276 observations without missing values. All seventeen

variables are included in the model. Table 5 gives the estimated coefficients by three meth-

ods, together with the corresponding standard errors. As reported in Tibshirani (1997),

the stepwise selection chooses eight variables, namely age, oed, bil, alb, cop, sgot, prot and

stage, sets of variables similar to that set are chosen by each of the Lasso, smoothly clipped

absolute deviation and adaptive Lasso methods (details clear in Table 5).

(Insert Table 5 here)

6. Discussion

For the adaptive Lasso procedure, the choice of the weights τj ’s is very important. We have

used τj = 1/|β̃j |. However, βj ’s may not be estimable in cases such as high-dimensional

gene expression data where the number of covariates d is much larger than the sample size

n, or the β̃j ’s may be unstable if strong collinearity exists among covariates. In such cases,

we suggest using robust estimators such as ridge regression estimators in order to determine
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the weights.
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Appendix 1

Proof of Theorems

We follow steps similar to the proofs of Fan & Li (2002). Throughout the paper, we

define sn(β) = ∂ln(β)/∂β and ∇sn(β) = ∂sn(β)/∂βT.

Proof of Theorem 1. The log partial likelihood ln(β) can be written as

ln(β) =
n∑

i=1

∫ 1

0
βTzi(s)dNi(s)−

∫ 1

0
log

[
n∑

i=1

Yi(s) exp{βTzi(s)}
]

dN̄(s), (A1)

where N̄ =
∑n

i=1 Ni. By Theorem 4.1 and Lemma 3.1 of Anderson & Gill (1982), it follows

that, for each β in a neighbourhood of β0,

1
n
{ln(β)− ln(β0)} =

∫ 1

0

[
(β − β0)T s(1)(β0, t)− log

{
s(0)(β, t)
s(0)(β0, t)

}
s(0)(β0, t)

]
λ0(t)dt

+ Op(
‖β − β0‖√

n
). (A2)

Consider the C-ball Bn(C) = {β : β = β0 + n−1/2u, ||u|| ≤ C}, C > 0, and denote its

boundary by ∂Bn(C). Note that Qn(β) is strictly convex when n is large. Thus, there

exists a unique maximiser β̂n of Qn(β) for large n. It is sufficient to show that, for any

given ε > 0, there exists a large constant C so that

Pr

{
sup

β∈∂Bn(C)
Qn(β) < Qn(β0)

}
≥ 1− ε. (A3)

This implies that, with probability at least 1 − ε, there exists a local maximiser of Qn(β)

in the ball Bn(C). Hence, the maximiser β̂n must satisfy ‖β̂n − β0‖ = Op(n−1/2).
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Furthermore, we have sn(β0)/
√

n = Op(1) and ∇sn(β0)/n = I(β0) + op(1). For any

β ∈ ∂Bn(C), by the second-order Taylor expansion of the log partial likelihood, we have

1
n
{ln(β0 + n−1/2u)− ln(β0)}

=
1
n

sT
n(β0)n−1/2u− 1

2n
uT{∇sn(β0)/n}u +

1
n

uTop(1)u

= − 1
2n

uT{I(β0) + op(1)}u +
1
n

Op(1)
d∑

j=1

|uj |,

where u = (u1, . . . , ud)T. Then we have

Dn(u) ≡ 1
n
{Qn(β0 + n−1/2u)−Qn(β0)}

=
1
n
{ln(β0 + n−1/2u)− ln(β0)} − λn

d∑

j=1

(
|βj0 + n−1/2uj |

|β̃j |
− |βj0|
|β̃j |

)

≤ 1
n
{ln(β0 + n−1/2u)− ln(β0)} − λn

s∑

j=1

(|βj0 + n−1/2uj | − |βj0|)/|β̃j |

≤ 1
n
{ln(β0 + n−1/2u)− ln(β0)}+ n−1/2λn

s∑

j=1

|uj |/|β̃j |

= − 1
2n

uT{I(β0) + op(1)}u +
1
n

Op(1)
d∑

j=1

|uj |+ 1√
n

λn

s∑

j=1

|uj |/|β̃j |. (A4)

Since the maximum partial likelihood estimator β̃ satisfies ||β̃ − β0|| = Op(n−1/2), we have,

for 1 ≤ j ≤ s,

1
|β̃j |

=
1

|βj0| −
sign(βj0)

β2
j0

(β̃j − βj0) + op(|β̃j − βj0|) =
1

|βj0| +
Op(1)√

n
.

In addition, since
√

nλn = Op(1), we have

1√
n

λn

s∑

j=1

|uj |/|β̃j | =
1√
n

λn

s∑

j=1

( |uj |
|βj0| +

|uj |√
n

Op(1)
)

≤ Cn−1/2λnOp(1) = Cn−1(
√

nλn)Op(1) = Cn−1Op(1).

Therefore in (A4), if we choose a sufficiently large C, the first term is of the order C2n−1.

The second and third terms are of the order Cn−1, which are dominated by the first term.

Therefore (A3) holds and it completes the proof.
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Proof of Theorem 2. (i) Here we show that β̂2n = 0.

It is sufficient to show that, for any sequence β1 satisfying ‖β1 − β10‖ = Op(n−1/2) and

for any constant C,

Qn(β1, 0) = max
‖β2‖≤Cn−1/2

Qn(β1, β2).

We will show that, with probability tending to 1, for any β1 satisfying ‖β1 − β
(1)
0 ‖ =

Op(n−1/2), ∂Q(β)/∂βj and βj have different signs for βj ∈ (−Cn−1/2, Cn−1/2) with j =

s + 1, . . . , d. For each β in a neighbourhood of β0, by (A1) and Taylor expansion,

ln(β) = ln(β0) + nf(β) + OP (
√

n‖β − β0‖),

where f(β) = −1
2(β − β0)′{I(β0) + o(1)}(β − β0). For j = s + 1, . . . , d, we have

∂Qn(β)
∂βj

=
∂ln(β)
∂βj

− nλn
sign(βj)
|β̃j |

= Op(n1/2)− (nλn)n1/2 sign(βj)
|n1/2β̃j |

.

Note that n1/2(β̃j − 0) = Op(1), so that we have

∂Qn(β)
∂βj

= n1/2

{
Op(1)− nλn

sign(βj)
|Op(1)|

}
. (A5)

Since nλn → ∞, the sign of ∂Qn(βj)
∂βj

in (A5) is completely determined by the sign of βj

when n is large, and they always have different signs.

(ii) Here we show the asymptotic normality of β̂1n.

From the proof of Theorem 1, it is easy to show that there exists a root-n consistent

maximiser β̂1n of Qn(β1, 0), i.e. ∂Qn(β)
∂β1

|β={β̂T
1n,0T}T = 0. Let s1n(β) be the first q elements

of sn(β) and let Î11(β) be the first q × q submatrix of ∇sn(β). Then

0 =
∂Qn(β)

∂β1
|β={β̂′1n,0′}′

=
∂ln(β)
∂β1| |β={β̂′1n,0′}′ − nλn

(
sign(β̂1)

β̃1

, . . . ,
sign(β̂q)

β̃q

)′

= s1n(β0)− Î11(β∗)(β̂1n − β10)− nλn

(
sign(β10)

β̃1

, . . . ,
sign(βq0)

β̃q

)′
,
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where β∗ is between β̂n and β0. The last equation is implied by sign(β̂jn) = sign(βj0)

when n is large, since β̂n is a root-n consistent estimator of β0. Using Theorem 3.2 of

Anderson & Gill (1982), we can prove that s1n(β0)/
√

n → N{0, I1(β10)} in distribution and

Î11(β∗)/n → I1(β10) in probability as n → ∞. Furthermore, if
√

nλn → λ0, a nonnegative

constant, we have

√
n(β̂1n − β10) = I−1

1 (β10)
{

1√
n

s1n(β0)− λ0b1

}
+ op(1),

with b1 = (sign(β10)/|β10|, . . . , sign(βq0)/|βq0|)T, since β̃j → βj0 6= 0 for 1 ≤ j ≤ q. Then,

by Slutsky’s Theorem,
√

n(β̂1n − β10) → N{−λ0I
−1
1 (β10)b1, I

−1
1 (β10)} in distribution as

n →∞. In particular, if
√

nλn → 0, we have

√
n(β̂1n − β10) → N{0, I−1

1 (β10)}

in distribution as n →∞.

Appendix 2

Modified shooting algorithm for adaptive Lasso

We present the modified shooting algorithm for minimising

n∑

i=1

(yi − β′xi)2 + λ
d∑

j=1

|βj |/|β̃j |.

Define F (β) =
∑n

i=1(yi − β′xi)2, Ḟj(β) = ∂F (β)/∂βj , j = 1, . . . , d, and write β as

(βj , (β−j)T)T, where β−j is the (d−1)-dimensional vector consisting of all βi’s other than βj .

The modified shooting algorithm is then initialised by taking β̂0 = β̃ = (β̃1, . . . , β̃d)T and

letting λj = λ/|β̃j | for j = 1, . . . , d. The mth iterative stage involves, for each j = 1, . . . , p,

16



letting F0 = Ḟj(0, β̂
−j
m−1) and setting

β̂j =





λj−F0

2(xj)′xj if F0 > λj

−λj−F0

2(xj)′xj if F0 < −λj

0 if |F0| ≤ λj ,

where xj = (x1j , . . . , xnj)T. A new estimator β̂m = (β̂1, . . . , β̂d)T is formed after updating

all the β̂j ’s. This is repeated until β̂m converges.
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Table 1: Simulation study. Mean squared error and model selection results for Model 1.

The numbers in parentheses are standard errors.

25% Censored 40% Censored

n Method Corr. (6) Incorr. (0) MSE Corr. (6) Incorr. (0) MSE

100 MLE 0 0 0.25 (0.02) 0 0 0.31 (0.03)

LASSO 4.87 0.00 0.19 (0.01) 4.67 0.00 0.20 (0.01)

SCAD 5.38 0.01 0.20 (0.02) 5.47 0.08 0.25 (0.03)

ALASSO 5.73 0.01 0.16 (0.01) 5.63 0.04 0.17 (0.01)

200 MLE 0.00 0.00 0.10 (0.01) 0.00 0.00 0.11 (0.01)

LASSO 4.94 0.00 0.10 (0.01) 4.69 0.00 0.11 (0.01)

SCAD 5.68 0.00 0.07 (0.01) 5.55 0.00 0.07 (0.01)

ALASSO 5.91 0.00 0.07 (0.01) 5.86 0.00 0.07 (0.01)

300 MLE 0 0 0.06 (0.00) 0 0 0.08 (0.00)

LASSO 4.82 0.00 0.06 (0.01) 4.72 0.00 0.07 (0.01)

SCAD 5.79 0.00 0.04 (0.00) 5.79 0.00 0.05 (0.01)

ALASSO 5.91 0.00 0.04 (0.00) 5.85 0.00 0.04 (0.00)

MSE, mean squared error; MLE, maximum partial likelihood; LASSO, Lasso method;

SCAD, smoothly clipped absolute deviation method; ALASSO, adaptive Lasso method;

Corr., average number of correct zeros; Incorr., average number of incorrect zeros.
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Table 2: Simulation study. Frequency of variable selection for Model 1 and 25% censoring.

n Method z1 z2 z3 z4 z5 z6 z7 z8 z9

100 LASSO 100 100 29 15 16 100 16 15 12

SCAD 99 100 11 15 9 100 7 12 8

ALASSO 99 100 5 7 3 100 2 4 6

200 LASSO 100 100 14 16 24 100 19 17 16

SCAD 100 100 4 4 6 100 5 7 6

ALASSO 100 100 1 1 2 100 2 3 0

300 LASSO 100 100 22 23 21 100 18 12 22

SCAD 100 100 4 4 4 100 0 2 7

ALASSO 100 100 2 1 2 100 0 2 2

LASSO, Lasso method; SCAD, smoothly clipped absolute deviation method; ALASSO,

adaptive Lasso method
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Table 3: Simulation study. Estimated and actual standard errors for estimates for Model

1 and 25% censoring. The numbers in parentheses are standard deviations of estimated

standard errors.

β̂1 β̂2 β̂6

n Method SE ASE SE ASE SE ASE

100 MLE 0.192 0.169 (0.019) 0.214 0.186 (0.020) 0.216 0.185 (0.021)

LASSO 0.154 0.105 (0.017) 0.153 0.104 (0.016) 0.158 0.096 (0.016)

SCAD 0.196 0.153 (0.028) 0.224 0.150 (0.024) 0.155 0.134 (0.016)

ALASSO 0.206 0.155 (0.023) 0.201 0.155 (0.016) 0.175 0.138 (0.015)

200 MLE 0.119 0.111 (0.008) 0.121 0.121 (0.009) 0.148 0.123 (0.009)

LASSO 0.109 0.081 (0.007) 0.096 0.081 (0.006) 0.116 0.075 (0.007)

SCAD 0.119 0.106 (0.009) 0.094 0.105 (0.010) 0.120 0.095 (0.008)

ALASSO 0.128 0.107 (0.007) 0.116 0.106 (0.007) 0.131 0.096 (0.007)

300 MLE 0.095 0.088 (0.006) 0.108 0.098 (0.005) 0.102 0.098 (0.006)

LASSO 0.087 0.069 (0.005) 0.092 0.070 (0.004) 0.085 0.065 (0.005)

SCAD 0.091 0.086 (0.005) 0.093 0.087 (0.005) 0.068 0.078 (0.006)

ALASSO 0.100 0.086 (0.005) 0.107 0.087 (0.005) 0.094 0.078 (0.005)

SE, sample standard error; ASE, the average of estimated standard error; MLE, maxi-

mum partial likelihood; LASSO, Lasso method; SCAD, smoothly clipped absolute deviation

method; ALASSO, adaptive Lasso method.
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Table 4: Simulation study. Mean squared error and model selection results for Model 2.

The numbers in parentheses are standard errors.

25% Censored 40% Censored

n Method Corr. (6) Incorr. (0) MSE Corr. (6) Incorr. (0) MSE

200 MLE 0.00 0.00 0.08 (0.00) 0.00 0.00 0.10 (0.00)

LASSO 5.43 0.38 0.08 (0.00) 5.32 0.43 0.08 (0.01)

SCAD 5.64 0.61 0.13 (0.00) 5.64 0.82 0.15 (0.01)

ALASSO 5.82 0.75 0.08 (0.00) 5.80 0.73 0.09 (0.01)

300 MLE 0.00 0.00 0.05 (0.00) 0.00 0.00 0.06 (0.00)

LASSO 5.35 0.15 0.05 (0.00) 5.25 0.19 0.05 (0.00)

SCAD 5.58 0.43 0.10 (0.01) 5.46 0.42 0.08 (0.00)

ALASSO 5.86 0.45 0.06 (0.00) 5.73 0.44 0.06 (0.00)

MSE, mean squared error; MLE, maximum partial likelihood; LASSO, Lasso method;

SCAD, smoothly clipped absolute deviation method; ALASSO, adaptive Lasso method;

Corr., average number of correct zeros; Incorr., average number of incorrect zeros.
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Table 5: Primary biliary cirrhosis data. Estimated coefficients and standard errors given in

parentheses.

Covariate MLE LASSO SCAD ALASSO

trt -0.124 (0.215) 0 (-) 0 (-) 0 (-)

age 0.029 (0.012) 0.033 (0.004) 0.033 (0.009) 0.019 (0.010)

sex -0.366 (0.311) 0 (-) 0 (-) 0 (-)

asc 0.088 (0.387) 0.107 (0.052) 0 (-) 0 (-)

hep 0.026 (0.251) 0 (-) 0 (-) 0 (-)

spid 0.101 (0.244) 0 (-) 0 (-) 0 (-)

oed 1.011 (0.394) 0.648 (0.177) 1.250 (0.341) 0.671 (0.377)

bil 0.080 (0.025) 0.084 (0.013) 0.065 (0.018) 0.095 (0.020)

chol 0.001 (0.000) 0 (-) 0.001 (0.000) 0 (-)

alb -0.742 (0.308) -0.548 (0.133) -0.684 (0.274) -0.612 (0.280)

cop 0.003 (0.001) 0.003 (0.001) 0.003 (0.001) 0.002 (0.001)

alk 0.000 (0.000) 0 (-) 0 (-) 0 (-)

sgot 0.004 (0.002) 0.001 (0.000) 0.003 (0.002) 0.001 (0.000)

trig -0.001 (0.001) 0 (-) 0 (-) 0 (-)

plat 0.001 (0.001) 0 (-) 0 (-) 0 (-)

prot 0.233 (0.106) 0.125 (0.040) 0 (-) 0.103 (0.108)

stage 0.455 (0.175) 0.265 (0.064) 0.519 (0.152) 0.367 (0.142)

MLE, maximum partial likelihood; LASSO, Lasso method; SCAD, smoothly clipped abso-

lute deviation method; ALASSO, adaptive Lasso method.
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