ADAPTIVE LAYERED SPACE-FREQUENCY EQUALIZATION FOR SINGLE-
CARRIER MIMO SYSTEMS

Ye Wu*+, Xu Zhu' and Asoke K. Nandi'

"Department of Electrical Engineering and Electronics, The University of Liverpool, Liverpool L69 3GJ, UK
"Department of Electronics and Information Engineering, Huazhong University of Science and Technology, P.R.China

ABSTRACT

We propose an adaptive layered space-frequency equaliza-
tion (ALSFE) structure to deal with the multiple-input mul-
tiple-output (MIMO) time-varying frequency selective
channels, where at each stage of detection, a group of se-
lected data streams are detected and are then cancelled from
the received signals. Two types of adaptive channel estima-
tion approaches are employed for ALSFE, assuming respec-
tively uncorrelated and correlated frequency bins. Noise
power estimation is also exploited, which is based on the
maximum likelihood (ML) criterion. It is shown that our
proposed multistage ALSFE significantly outperforms the
previous RLS based single-stage adaptive FDE without
channel estimation, at comparable complexity. In particular,
ALSFE based on the least-mean-square structured channel
estimation (LMS-SCE) approaches the performance of
LSFE with perfect channel state information (CSI) and has a
fast convergence speed.

1. INTRODUCTION

Frequency-domain equalization (FDE) [1-4] has been shown
to be an effective solution for frequency selective channels
in a single-carrier (SC) system. In a highly dispersive chan-
nel, FDE provides enhanced performance over time domain
decision feedback equalization (DFE), and requires less
complexity than maximum likelihood sequence estimation
(MLSE). FDE also has superiority over orthogonal fre-
quency division multiplexing (OFDM), with lower peak-to-
average ratio (PAR) and less sensitivity to carrier synchroni-
zation. In [5], FDE was used in multiple-input multiple-
output (MIMO) systems, where all the signals are detected
simultaneously. In [6], a layered space-frequency equaliza-
tion (LSFE) structure was proposed, which combines FDE
and successive interference cancellation to improve the per-
formance of the single-stage MIMO FDE [5]. However, [5]
and [6] only investigated quasi-static channels.

Adaptive FDE structures have been investigated in [2] and
[7], where the equalizer coefficients are directly calculated
based on the least-mean-square (LMS) or recursive-least-
square (RLS) criterion, without channel estimation required.
Another type of adaptive FDE structures are based on adap-
tive channel estimation [8] where the equalizer coefficients
are computed based on the channel estimates. However, the
work in [8] only assumed single-input single-output (SISO)
and single-input multiple-output (SIMO) systems.
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In this paper we propose an adaptive LSFE (ALSFE) struc-
ture for MIMO systems in time-varying frequency selective
channels. Our work is different in that we incorporate LSFE
with both adaptive channel estimation and noise power es-
timation for MIMO systems. Two types of adaptive channel
estimation methods are proposed. The first one operates
independently on each frequency bin and is referred to as
unstructured channel estimation (UCE). The second one is
called structured channel estimation (SCE) which utilizes
the fading correlation between adjacent frequency bins. The
channel estimates are updated by the LMS and RLS algo-
rithms and are used for computing the FDE coefficients.
Noise power estimation is also employed, which is based on
the maximum likelihood (ML) criterion. The channel esti-
mates and noise power estimates are then used to compute
the FDE coefficients in LSFE, where at each stage a group
of the best data streams in the minimum mean square error
(MMSE) sense are detected and are then canceled from the
received signals. The ALSFE structure provides perform-
ance enhancement especially at high SNR compared to RLS
based single-stage FDE without explicit channel estimation
[7]. In particular, the LMS-SCE based ALSFE performs
significantly better than RLS FDE with negligible increase
in computational complexity. Also the LMS-SCE ALSFE
performs much better than RLS-UCE ALSFE with much
less computation and this performance tends to reach that of
LSFE with perfect channel state information (CSI).

Section 2 presents the system model. The proposed ALSFE
structure is described in Section 3. The computational com-
plexity is analyzed in Section 4. Section 5 shows the simula-
tion results and the conclusion is drawn in Section 6.

2. SYSTEM MODEL

We investigate an uncoded MIMO system with K transmit
antennas and L receive antennas. Let 4(”'[i] denote the ith
(i=0,..M 1) data symbol in the pth block of M symbols
transmitted by the kth (k=1,..K) antenna, with unit average
symbol energy. The noise is AWGN with single-sided power
spectral density n,” over the pth block. The channel mem-
ory is assumed to be N, and #{’[i](i=0,..,N) denotes the

channel impulse response (CIR) between the kth transmit
antenna and the /th receive antenna over the pth block. Each
block is appended with a length-~ cyclic prefix (CP) which
is discarded at the receiver to prevent the interblock interfer-



ence (IBI) and to make the received block appear to be peri-
odic with period M. The received signals transferred into the
frequency domain by the FFT operation is given by

XP[m] = ZD“”[m]H“”[m]+N,“”[m] (1)
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3. ADAPTIVE LAYERED SPACE-FREQUENCY
EQUALIZATION

3.1 Algorithm Description

The proposed ALSFE structure is the same as LSFE [6] ex-
cept that adaptive channel estimation and noise power esti-
mation are employed. ALSFE consists of 1 to K detection
stages (K stages in fig.1), determined by the number of out-
put data streams at each stage. At a particular stage, it is
assumed that mo data streams are selected for detection, the
index set of which is denoted by Der. Letting 4(”'1i] and ail

(¢ Det) denote the soft estimate and hard estimate of
a{"'1irrespectively, the mean square error (MSE) is defined

as

MSEY = Eld"11) df'[if 3)
The selection process is based on the MMSE criterion, i.e.,
the mo data streams with the smallest MSEs are selected.
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3.2 FDE Coefficients
As shown in fig.1, the modified incoming signal vector
X [m]at the mth frequency tone at a particular stage is com-
posed of L entries x ' [m](/=1,---L) and can be written as

X [n]= £ D0 i1 e N ] @)
where n denotes the summation over the undetected data
streams, and H"'[m] is the estimate of 5[] composed of L
entries H?[m]( = 1,....L). Let w"[m](m =0,..M 1) denote the

FDE weight matrix with respect to the mth frequency tone,

which is of size L m,. The soft estimate is expressed as
J(p)[i] — LMZ:W(P}” [ ] [[]e/’ milM (5)
M =

where ()" denotes the complex-conjugate transpose. For
simplicity of presentation and without loss of generality,

Det={1,..m,}. Defining the error vector ¢"”)[i]=d ?[i] 4”11, the
optimum weights are determined to minimize

e 1) &) (6)

denotes the error autocorrelation matrix, and 7#(.)

ZMSEW — (

(»)

where g

represents the trace of a matrix. It can be shown that the op-
timum weight matrix w (»)[;5]is given by

W m]= RO [m]F 7] (7)
where
F% m:lH:" m . H}n’n [m]J (9)

3.3 Adaptive Channel Estimation

We propose two types of adaptive channel estimation
schemes by extending the work in [8] to MIMO systems.
The first one is based on the assumption of independent fre-
quency bins, referred to as unstructured channel estimation
(UCE). The second one utilizes the correlation between ad-
jacent frequency bins, and is referred to as structured chan-
nel estimation (SCE). As illustrated in fig.1, we define a
vector x{* as

x® :B‘P’H,‘/’) +NP

(10)
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and p» - which is of size M KM.

D(p)[M 1]
HPT[M 1]]7 which can also be written as
(11)

where h? = [h””[O] APINT.AL[0].. h””[N]] is the CIR vector

H" = [H}")T[O]
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of length K(v+1) at the /th receive antenna. f:(FOT...F{, I)T
where F, 0 m M 1 isa Kk k(N +1) block Toeplitz matrix
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3.3.1 LMS Unstructured Channel Estimation (LMS-UCE)
The LMS-UCE minimizes the cost function

~ ~ ~ 2
T A e

with respect to H{” which is the estimate of a#(» . This
produces
PAI,(pH) :ﬁ[;p) + E[(P) (14)
where is the step size and E/” is given by
E® — pwH [X,”” B(p)}};m] (15)

3.3.2 RLS Unstructured Channel Estimation (RLS-UCE)
The RLS-UCE aims at minimizing the cost function
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where  (0< <1 is the forgetting factor. H” satisfies the

recursive equation

I:I,(p*” - I:ij” +GPE® (17)
where E” is defined in (15) and
G = diag(G"[0].G VM 1)) (18)
is a block diagonal matrix, with ¢'”'[m] expressed as
(P)
G"[m)= S {m] (19)

+ D(p)[m]s(p) [m]D(p}H [m]
where $®[m] satisfies the recursion

S(1’+1)[m] - 1 I G(P)[m]D(P)" [m]D(ﬂ)[m]] s(l’)[m] (20)
Note that ¢'”’[m] and §”’[m] are independent of the index
[, implying that these are the same at each receive antenna.

3.3.3 LMS Structured Channel Estimation (LMS-SCE)
The cost function of LMS-UCE is given by

. ~ a2
JLus SCE(hI(m)ZE{"XI(p) D(p)th(m"} (I=1...L)

2

with respect to A* which is the estimate of 4" . This pro-
duces
,‘,I(pm _ ;,l(m + IFHE;I»

(22)

AW = AP+ FFYED (23)

3.3.4 RLS Structured Channel Estimation (RLS-SCE)
The objective of RLS-SCE is to minimize the cost function

JrLs sce (i'/(p)): g r (24)

This however requires prohibitive complexity as no recursion
can be used to compute the inverse of a matrix. Therefore,
we do not consider this method in the following.

3.4 Noise Power Estimation

We assume that the noise power is the same at each receive

antenna and constant over a frame. Therefore, the noise

variance ) =y, can be estimated frame by frame exploit-

ing the training blocks. Collecting (10) and (11) yields
X[(p) — 5(17)1?11[(”) + N/(p) (25)

where D is known (training block), the joint ML estimates

of andh™ (/=1,..L)based on the observation of x» are

found by maximizing the log-likelihood function
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Keeping
maximizing (26) with respect to p» produces

W =z z0) "z x () (27)
where z) = pF . Substituting (27) into (26) and maximiz-
ing with respect to ~?(»)gives the ML estimate of )

(28)

“,2(17) — ﬁH(I” Z(p)(z(ﬁ)Hz(ﬁ)) 'Z(n]H )X,(p) :

Averaging (28) over the received antennas and available
training blocks produces the following unbiased estimate

N0z M Siga (29)
1

0 /A NTL(M N)m:l =
with Ny being the number of training blocks.

TABLE I. Computational Complexity Per Detected block

Channel Estima- FDE Coefficients FFT+FDE
tion +IFFT
LMS- (0.5log, M +2L)KM
UCE
ALSFE KEM/3
I st
RLS- (0.5log, M +2L)KM (1 stage)
2
Ali(S:EE +(K+L+3)K*M K(K+1)2M /6 0.5LM (log, M)
+KM + KLM
(K stages)
le\é}sE (0.5logy, M +2L)KM +0.5KM (log , M)
+KLMlog, M
ALSFE ’
(0.5log, M +2L)KM
RLS
FDE 0 +(L+K+3)[*M
7 +LM

TABLE II. Normalized Computational Complexity Per Detected Block With
K=4, L=4 and M=64

LMS-UCE RLS-UCE LMS-SCE RLS FDE [7]
ALSFE ALSFE ALSFE
64% (1 stage) 132% (1 stage) 101% (1 stage) 100%
113%(4 stages) | 181% (4 stages) | 149% (4 stages) (1 stage)

4. COMPLEXITY ANALYSIS

The computational complexity is approximately evaluated
by counting the number of complex multiplications per de-
tected block of signals. The complexities of multi-stage
LMS-UCE ALSFE, RLS-UCE ALSFE and LMS-SCE
ALSFE are shown in Table I. With K=4 transmit antennas,
L=4 receive antennas, and a data block size M=64, their
normalized complexity is demonstrated in Table II. We fo-
cus on 1-stage and K-stage ALSFE structures.

It can be derived that 1-stage LMS-UCE ALSFE requires
the least complexity and K-stage RLS-UCE ALSFE requires
the most complexity.

5. SIMULATION RESULTS

We use simulation results to show the performance of
ALSFE, using the three adaptive channel estimation meth-
ods shown in Tables I-II, with k=4 transmit and 2=4 receive
antennas. Each frame consists of 10 training blocks and 100
data blocks, each of which consists of #=64 QPSK symbols,
with a data rate of 2 Mbps. The transmit and receive filters
use a raised-cosine pulse with a roll-off factor of 0.35. We
consider a typical urban environment where the channel is
modeled by the following power delay profile [9] with a
normalized RMS delay spread 6 = 0.625 s. The overall

channel memory is N=6. Noise power estimation is em-
ployed and the Doppler frequency f; is S0Hz or 100Hz. The
SNR is defined as the spatial average ratio of the received
signal power to noise ratio. The step sizes for LMS-UCE
ALSFE, LMS-SCE ALSFE are =2 10° and =14 10°,

respectively. The forgetting factor for both RLS-UCE
ALSFE and RLS FDE is setto =0.8 .

Fig. 2 and fig.3 show the BER performance of the ALSFE
structures in Tables II with 10 training blocks for f,=50Hz
and f,=100Hz respectively. In fig.2, all the ALSFE structures
outperform RLS FDE without channel estimation [7], espe-



cially at high SNR. We can observe that RLS-UCE ALSFE
and LMS-SCE ALSFE significantly outperform RLS FDE
without channel estimation. In particular, LMS-SCE ALSFE
provides the best performance, approaching the performance
of FDE with perfect CSI. In fig.3, we can observe that LMS-
SCE ALSFE structure and RLS-UCE ALSFE structure still
outperform RLS FDE without channel estimation, especially
for LMS-SCE ALSFE at high SNR. In particular, LMS-SCE
ALSFE provides the best performance approaching the per-
formance of FDE with perfect CSI.

Fig. 4 illustrates the learning curves for the 4-stage LASFE
structures, in terms of MSE versus the number of training
blocks with £;=50Hz and an SNR of 16 dB. It can be seen
that 4-stage LMS-SCE ALSFE has the fastest convergence
speed with only 4 training blocks required, at the cost of a
modest increase of complexity compared to RLS FDE with-
out channel estimation. Meanwhile, 4-stage LMS-SCE
ALSFE has the lowest MSE in the steady state close to that
of 4-stage ALSFE with perfect CSI.

6. CONCLUSION

We have proposed an ALSFE structure which incorporates
LSFE with adaptive channel estimation and noise power
estimation to combat MIMO time-varying frequency selec-
tive channels. Two types of adaptive channel estimation
methods based on SCE and UCE are proposed. The ALSFE
structure provides performance enhancement especially at
high SNR compared to RLS based single-stage FDE without
explicit channel estimation [7]. Particularly, the LMS-SCE
based ALSFE performs significantly better than RLS FDE
with negligible increase in computational complexity. Also
the LMS-SCE ALSFE performs much better than RLS-UCE
ALSFE with much less computation and this performance
tends to reach that of LSFE with perfect channel state in-
formation (CSI).
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