
Received May 5, 2020, accepted May 23, 2020, date of publication May 27, 2020, date of current version June 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2997899

Adaptive Learning: A New Decentralized
Reinforcement Learning Approach for
Cooperative Multiagent Systems

MENG-LIN LI , SHAOFEI CHEN, AND JING CHEN
College of Intelligence Science and Technology, National University of Defence Technology, Changsha 410073, China

Corresponding authors: Shaofei Chen (chensf005@163.com) and Jing Chen (chenjing001@vip.sina.com)

This work was supported by the National Natural Science Foundation of China under Grant 61702528.

ABSTRACT Multiagent systems (MASs) have received extensive attention in a variety of domains, such

as robotics and distributed control. This paper focuses on how independent learners (ILs, structures used

in decentralized reinforcement learning) decide on their individual behaviors to achieve coherent joint

behavior. To date, Reinforcement learning(RL) approaches for ILs have not guaranteed convergence to

the optimal joint policy in scenarios in which communication is difficult. Especially in a decentralized

algorithm, the proportion of credit for a single agent’s action in a multiagent system is not distinguished,

which can lead to miscoordination of joint actions. Therefore, it is highly significant to study the mechanisms

of coordination between agents in MASs. Most previous coordination mechanisms have been carried out

by modeling the communication mechanism and other agent policies. These methods are applicable only

to a particular system, so such algorithms do not offer generalizability, especially when there are dozens

or more agents. Therefore, this paper mainly focuses on the MAS contains more than a dozen agents.

By combining the method of parallel computation, the experimental environment is closer to the application

scene. By studying the paradigm of centralized training and decentralized execution(CTDE), a multi-agent

reinforcement learning algorithm for implicit coordination based on TD error is proposed. The new algorithm

can dynamically adjust the learning rate by deeply analyzing the dissonance problem in the matrix game

and combining it with a multiagent environment. By adjusting the dynamic learning rate between agents,

coordination of the agents’ strategies can be achieved. Experimental results show that the proposed algorithm

can effectively improve the coordination ability of a MAS. Moreover, the variance of the training results is

more stable than that of the hysteretic Q learning(HQL) algorithm. Hence, the problem of miscoordination

in a MAS can be avoided to some extent without additional communication. Our work provides a new way

to solve the miscoordination problem for reinforcement learning algorithms in the scale of dozens or more

number of agents. As a new IL structure algorithm, our results should be extended and further studied.

INDEX TERMS Reinforcement learning, multiagent system, intelligent control.

I. INTRODUCTION

In the past decade, multiagent systems (MASs) have

attracted considerable attention in many fields, especially

for intelligent multirobot systems, road traffic signal control,

distributed system control [1], etc. Hence, MASs are very

convenient for practical applications. Indeed, a decentralized

MAS point of view offers several potential advantages, such

as increased speed, scalability and robustness [2]. In this

paper, we focus on the coordination mechanism in a fully

cooperative multiagent reinforcement learning algorithm.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mostafa M. Fouda .

Recently, with the development of machine learning,

a branch called reinforcement learning has become increas-

ingly important in the field of control. In particular, in the

control of physical models [3], reinforcement learning has

reached amazing levels. Therefore, the researchers focus on

how to use the advantage of the reinforcement learning algo-

rithm to solve the challenges of the MAS.

To date, behavior coordination between cooperative agents

has remained a difficult problem to solve in the MAS.

In centralized learning, joint action learners (JALs) [4] and

centralized learning strategies can theoretically fit the value

function of all joint actions and find the optimal joint behav-

ior. However, this approach also creates serious problems.
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As the number of agents increases, the curse of dimension-

ality emerges. This makes such algorithms difficult to adapt

to the actual requirements of current multiagent systems.

A reinforcement learning algorithm with a structure based on

independent learners (ILs) [4] can avoid the curse of dimen-

sionality while satisfying current computing power require-

ments. Therefore, this decentralized structure has become the

dominant structure in use today [5]. The fundamental goal in

such a system is to fit a joint value function by coordinating

the value functions maintained by all of the decentralized

agents. In this context, one of the main problems to be solved

for cooperative MASs is how to coordinate the behavior

between agents such that the joint action can overcome the

limitations of individual behaviors.

To this end, there are many methods of combining the

centralized and decentralized approaches, such as QMIX [6]

and QTran [7]. In essence, the goal of these methods is to fit

a centralized joint Q-value by summing the local Q-values of

the decentralized agents. These are improved methods based

on value decomposition networks [8]. Similar to the loss of

partial information, these methods somewhat alleviate the

computational pressure imposed by centralized algorithms.

However, in the face of a system with a large number of

agents, these methods cannot completely solve the prob-

lem of excessive computation. Although, the paradigm of

centralized training and decentralized execution(CTDE) has

worked well in the small-scale MAS, such as PySC2 [9]

and SC2LE [10]. In large scale MAS, explicit centralization

training is bound to increase the computation and affect the

practicability of the algorithm. Therefore, it is particularly

important to weaken the centralization among agents while

preserving coorperation. The CTDE paradigm with parallel

algorithm proposed in this paper can effectively solve the

computational difficulties caused by the curse of dimension-

ality. While weakening the centralization of the algorithm,

it can effectively improve the coordination performance of

agents in large-scale MAS.

Another solution for achieving such centralization in a

MAS is to add a communication mechanism between agents,

as in the methods proposed in [11], [12]. Indeed, this is an

intuitive way to solve the problem of collaboration between

agents. However, it is necessary to consider the possibility

of channel obstruction in the real world. At the same time,

because this kind of algorithm needs a special network struc-

ture, its generalizability is not strong. In addition, in the face

of the increasing demand for a larger number of agents, it is

particularly important to study how to improve the coordi-

nation of such algorithms. No agent communication mecha-

nism is explicitly added in this article. Instead, by analyzing

the joint-action information contained in TD error in each

agent of a cooperative MAS, each agent can cooperate more

effectively. Because we think that the TD error contains the

influence of a single action on the joint action, which can

be used as the evaluation standard of agent action reliabil-

ity distribution. In this way, the generalization performance

of the algorithm in large-scale system is guaranteed, and

conditions are provided for the practical application of the

algorithm.

To meet the requirements of large-scale and practicability

of the algorithm in practice, this paper studies a reinforcement

learning algorithm for a collaborative multiagent system con-

sisting of ILs. Based on game theory, we propose a method

of simplifying a multiagent system in section 3. Through

this simplification, the reasons for the unsatisfactory results

obtained by the existing algorithms with an IL structure

are analyzed. By analyzing the causes of many kinds of

miscoordination, we propose a standard dynamic evaluation

function A that is similar to a membership function [13] in

section 4. Using function A, agents can assess the effects

of their actions on joint actions. We combine the CTDE

paradigm with parallel computing and propose a new algo-

rithm. By combining the training of the shared model and

A function, we can weaken the centralization requirement

and improve the coordination performance of the algorithm

among agents. The structure of the new algorithm is more

close to the current large-scale MAS application scenario in

the experimental environment. Meanwhile, this enhances an

agent’s ability to identify the effects of its actions on the

system. With no additional communication between agents,

the improved performance of the proposed algorithm is veri-

fied by experiments.

Through our research results, we hope to provide a new

way to coordinate the joint actions of multiple agents(Dozens

of agents). Different from the perceptual cognition of

enhanced communication mechanisms, we propose a mech-

anism of quantizing agent strategies to dynamically adjust

the agent’s actions on the basis of the joint action reliability.

Our research provides a new way to avoid miscoordination in

cooperative multiagent systems, which require high reliabil-

ity in practical applications. At present, considerable research

prospects still remain for quantitative evaluation criteria of

this kind.

II. RELATED WORKS

In this section, related works addressing RL algorithms

in cooperative MASs are reviewed, with an emphasis on

research related to Q-learning [14] and Q-learning variants

for ILs. The research focuses in this paper is put on the coor-

dination of movement between agents. In this part, we sum-

marize the algorithms to solve the agent coordination problem

and their disadvantages.

So far, the multi-agent reinforcement learning algorithm

can be divided into three paradigms according to the

way of training and execution:1. Centralized training and

centralized execution(CTCE); 2. Centralized training and

decentralized execution(CTDE); 3. Decentralized training

and execution(DTDE). We sorted out the recently popular

algorithms according to this classification and select some

important algorithms to detail.

In [15], the author directly applied a deep Q-network

to the gym-pong [16] environment with two agents. The

author discusses the tasks of implementing zero-sum games
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with different return values under different types of reports

and agent interactions. This laid the foundation for the use

of the deep Q reinforcement learning (RL) algorithm in a

multi-agent environment. Moreover, the two-agent environ-

ment can be simplified as a game matrix to be solved. As an

early algorithm used in a multiagent environment, it was

not discussed in relation to the ‘‘curse of dimensionality’’

faced with an increasing number of agents, nor did the author

study whether a Q-learning algorithm can converge in an

uncertain environment. Nevertheless, this study undeniably

laid the foundation for the application of deep reinforcement

learning in a multiagent environment and it was fallen in

CTDE paradigm.

Another natural way to address cooperative MARL prob-

lem is the centralized approach, which views the MAS as a

whole and solves it as a single-agent learning task [17]. These

methods are also fallen in the CTCE paradigm. In such set-

tings, existing reinforcement learning (RL)techniques can be

leveraged to learn joint optimal policies based on agents joint

observations and common rewards [18]. However, the cen-

tralized approach usually scales not well, since the joint

action space of agents grows exponentially as the increase

of the number of agents. Furthermore, partial observation

limitation and communication constraints also necessitate

the learning of decentralised policies, which condition only

on the local action-observation history of each agent [19].

Commnet [20], and Bicnet [21] can be fallen in this paradigm.

This algorithm is a good solution to the problem of full

collaboration. However, with the increase of the number of

agents required by the application of UAVs in MAS algo-

rithm [22], this algorithm is faced with the shortcoming of

poor practicability.

CEDT is a paradigm that combines the advantages of

the first two paradigms. The MADDPG [23] is the basis

of these algorithms. Thus, the MADDPG algorithm can

simultaneously solve the multi-agent problem in the cooper-

ative environment or competitive environment, and a mixed

environment. Another classical algorithm under the CEDT

paradigm called actor-critic. The actor-critic assumes that

each agent has its independent critic network and actor

network, and each agent has its independent reward function.

The value decomposition network(VDN) [8] can be also

fallen in this paradigm. At the same time, this method can

obtain better results in MAS than the previous two traditional

methods. The basic idea of the VDN is to train a federated Q

network centrally, which is obtained by adding up the local

Q networks of all agents. In this way, not only the problems

caused by non-stationary environment can be dealt with by

centralized training, but also the complex interrelationships

between agents can be decoupled because the local model

of each agent is learned. The QMIX algorithm [6] is the

follow-up work of the VDN algorithm. Its motivation is to

address the issue that the joint q-value decomposition of the

VDN is just a simple sum, which will make the local Q func-

tion expression ability of the learned limited, and there is no

way to capture the more complex interaction between agents.

The QTRAN algorithm [7] is a further improvement of the

VDN and the QMIX algorithm. The whole approximation

process is divided into two steps: Firstly, the local Q function

of the sum is obtained by using VDN as the approximation

of joint Q function. Then the difference between the local Q

function and the joint Q function is fitted. Paper theoretically

derives a linear decomposing formation fromQtot to eachQi.

To date, Starcraft 2 is one of the main platforms for

verifying algorithms as a complex environment that can

control multi-agent microoperations. In this environment,

another method that can achieve good results is q-value path

decomposition (QPD) [24], which is also based on the idea

of value decomposition. This algorithm leverage the inte-

grated gradient attribution technique into deep MARL to

directly decompose global Q-values along trajectory paths

to assign credits for agents. Then, the COMA proposed in

this paper [19] aims to solve the problem of multi-agent

credit assignment in the decentralized partially observable

Markov decision process(Dec-POMDP) problem, i.e., the

problem of multi-agent credit assignment. However, the fully

centralized critic of COMA suffers difficulty in evaluating

global Q-values from the joint state-action space especially

when there are more than a dozen agents, and it is hard to

give an appropriate multiagent baseline. By summarizing the

above algorithms, it is not difficult to see that the CEDT

paradigm has achieved good results in multi-agent reinforce-

ment learning. It is worth noting that the centralization condi-

tions of these algorithms are very strong, and centralization in

a realMASsmay be unstable. Therefore, the CEDT paradigm

algorithm that can be applied to the real environment should

weaken the centralization condition appropriately.

With the expansion of the MAS, the instability of a multia-

gent environment has gradually become a major obstacle for

such algorithms. In [25], the question of ‘‘relative overgen-

eralization’’ was raised. Relative overgeneralization occurs

when a suboptimal Nash equilibrium in the joint space of

actions is preferred over an optimal Nash equilibrium because

each agent’s action in that suboptimal equilibrium is individu-

ally a better choice when matched with arbitrary actions from

the collaborating agents [25]. For instance, consider the con-

tinuous game depicted in Figure 1. The i and j axes represent

the various actions that agents Ai and Aj may perform (we

assume that the agents are performing deterministic actions),

and the reward(i, j) axis represents the joint reward received

by the agents from a given joint action (hi, ji). Joint actionM

has a higher reward than joint action N .

To date, the CTDE paradigm with good results has strong

centralization conditions. At the same time, as the number

of agents increases, this centralization brings heavy pres-

sure on computing. On the other hand, the algorithm has to

solve the problem of environmental instability introduced by

decentralization. We want to use an algorithm that avoids

algorithm instability and inherits the advantages of the CTDE

paradigm. Therefore, we study the method of weakening the

centralization in ILs to meet the large scaleMAS. In this case,

it is very important that the algorithm does not depend on

99406 VOLUME 8, 2020



M.-L. Li et al.: Adaptive Learning: A New Decentralized RL Approach for Cooperative MASs

FIGURE 1. The relative overgeneralization pathology in multiagent
learning. The axes i and j are the various actions that agents Ai and Aj

may perform, and the axis reward(i, j) is the joint reward received by the
agents from a given joint action

〈

i, j
〉

. Higher rewards are better. Joint
action M has a higher reward than joint action N. However, the average
(or sum) of all possible rewards for action iM , of agent Ai is lower than
the average of all possible rewards for action iN . To illustrate this, bold
lines show the set of outcomes from pairing iM or iN instead with other
possible actions in j [25].

the centralization of its own coordination performance. So we

looked at the following two approaches.

An algorithm called hysteretic Q-learning was presented

in [26]. This algorithm is a form of optimistic learning with a

strong empirical track record in fully observable multiagent

reinforcement learning. Originally introduced to prevent the

overestimation of Q-values in stochastic games, hysteretic

learners use two learning rates: a learning rate α for updates

that increase the value estimate (Q-value) for a state-action

pair and a smaller learning rate β for updates that decrease the

Q-value [27]. Hysteretic learners’ struggles in these domains

have been attributed to the interdependency of the learning

rate β with the exploration strategies of other agents [28].

Lenient learners offer an alternative to the hysteretic

approach and have been empirically shown to converge

towards superior policies in stochastic games with a small

state space [25]. Lenient methods have received criticism in

the past for the time they require to converge [25], the dif-

ficulty involved in selecting the correct hyperparameters,

the additional overhead required for storing the temperature

values, and the fact that they were originally proposed only

for matrix games [28].

To date, many researchers have focused on improv-

ing the network structure [11], improving the agent com-

munication mechanism [29] and modeling the adversarial

strategy [30]. To meet the demand of large-scale MAS,

this paper mainly analyzes how to improve the coordina-

tion performance between agents in the cluster environment

(more than 10 agents) by improving the algorithm itself

while preserving the traditional network structure andweaken

centralization requirements.

III. THE GAMES AND MULTIAGENT REINFORCEMENT

LEARNING

Research on learning algorithms in MASs is based on game

theory and, in particular, on repeated games. In this section,

we first establish this framework. Then, we simplify the

problem of influencing the convergence results in a mul-

tiagent reinforcement learning environment to a problem

of repeated matrix games. The feasibility and effective-

ness of the new algorithm are explained by analyzing this

problem.

A. THE GAMES AND THE MARKOV DECISION

PROCESS(MDP)

1) THE GAMES DEFINITIONS AND REINFORCEMENT

LEARNING

A matrixgame, also called a strategy game, is a multia-

gent, single-state framework. It can be defined as a tuple

〈n,A1, . . . ,An,R1, . . . ,Rn〉, where n is the number of play-

ers, Ai is the set of actions available to player i and A is the

joint action space A1, . . . ,An [27].

Stochastic games (SGs) can be seen as the extension of

matrix games to a multistate framework [31]. Specifically,

each state of an SG can be viewed as a matrix game. SGs

were examined first in the field of game theory and more

recently in the field of multiagent RL [27]. A stochastic game

is defined as a tuple 〈n, S,A1, . . . ,An,T ,R1, . . . ,Rn〉. Unlike

in repeated games, state transitions occur in stochastic games.

Here, T is a transition function that defines the transition

probabilities between states.

An important problem to be solved in reinforcement learn-

ing is the sequential execution of strategies in an environ-

ment with state transitions. Only static and random reward

functions are allowed in standard games. At the same time,

the standard game system cannot carry out state transition

and there is no such concept. This is the core problem of the

concept of the MDP. We used ILs for the MDP. An MDP can

be represented as a tuple (n, S,A1, · · · ,An,R1, · · ·Rn,T ).

Where n is the number of agents in the system. S =
{

s1, · · · , sN
}

represents a collection of system states. Ak is

the action set of learner k . Rk is the agent’s reward. T is the

transition function.

The straightforward extension of centralized Q-learning

to the MDP considers joint actions for the computation of

Q-values. Thus, the update equation from a centralized per-

spective is:

Q (s, a1, · · · , an) ← (1− α)Q (s, a1, · · · , an)

+α

[

r + γ max
a1,...,an

Q
(

s′, a′1, · · · , a
′
n

)

]

(1)

where s′ is the new state, α is the learning rate and γ ∈ [0,1]

is the discount factor. This algorithmmodel is classified as an

algorithm based on joint action learners (JALs). The problem

with this kind of algorithm is that its spatial complexity

greatly increases as the scale of the problem increases. This

makes it difficult for the algorithm to cope with a large

number of agents.

Another class of algorithms is based on independent

learners (ILs). Such an algorithm is a decentralized algorithm.
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In this framework, the Q-learning update equation is:

Q (s, ai)←(1−α)Q (s, ai)+α

[

r+γmax
a′
Q

(

s′, a′
)

]

(2)

The Qi tables for ILs are smaller. However, each agent has

only a local view because it has no access to the actions of

the other agents [27]. Since we wish to address applications

involving a large number of agents, the algorithm structure

used in this paper is based on ILs.

B. ENVIRONMENT SIMPLIFICATION

Reinforcement learning is a process in which an agent selects

an action acting on the environment through an appropriate

strategy and the environment provides a reinforcement signal

as feedback to the agent to optimize its strategy [32]. In a

MAS, the actions acting on the environment are joint actions

between agents. Based on the selected action, the environ-

ment transitions to the next state and rewards the agent in

accordance with the rationality of the selected action selec-

tion with respect to a set benchmark. To more intuitively

describe the ideas applied in this paper, we consider two

agents as an example. Under this simplification, the joint

action returns can be thought of as a matrix. Unlike in

repeated games operating under the same matrix, the state of

the environment will change after the agents select actions.

The structure of the whole game is similar to the tree structure

shown in Figure 2.

FIGURE 2. Simplify MAS environment and environment transfer
examples. The gray box is a joint action selected by multiple agents. The
environment rewards the agent after the action is performed. Due to
environmental and observational uncertainties, the agent’s selection of
the same joint return will still result in different state transitions,
resulting in a tree structure.

Indeed, standard games cannot be modeled in MAS. But it

is not hard to see that the standard game is the basis of MDP.

The reason that affects the performance of reinforcement

learning inMAS is largely attributed to the results of the algo-

rithm in the standard game. Therefore, improving the ability

of the algorithm in the standard game becomes a sufficient

condition to solve the poor performance of reinforcement

learning in large-scale MAS. We summarized the ideas to

solve the problem in the Figure 3:

FIGURE 3. Effects of game theory on RL algorithm for MAS.

By analyzing the games and the MDP, we can see the

essential features of this complex environment more clearly.

By solving the problem of reinforcement learning in a matrix

game, we wish to optimize the convergence performance of

reinforcement learning in a large-scale environment.

In a repeated game, two agents perform repeated opera-

tions on the same game matrix. In the repetition process,

the agents constantly improve their strategies in accordance

with the benefits they receive. Although no state transitions

occur, it is nevertheless difficult to learn joint actions due

to the unknown nature of the opponent’s strategy. This is

similar to the IL-based structure that we use in our algorithm.

In addition, this game is also similar to the incomplete obser-

vation of the environment in the MAS at the beginning of

each game, which causes the action selection process to be

completely dependent on the initially defined strategy. There-

fore, we believe that the typical characteristics of repeated

games may also be one of the keys to solving the coordination

problem for ILs.

The ultimate goal of repeated games is to determine the

optimal Nash equilibrium by collecting a large number of

samples. Reinforcement learning follows a similar pattern.

However, due to the occurrence of state transitions and the

large state space, the convergence speed and quality of the

algorithm must be improved for the case of finite-state sam-

pling. Some environments will have multiple Nash equilibria.

However, a traditional IL-structured algorithm can easily fall

into suboptimal or worse Nash equilibria. If the convergence

speed and quality of the reinforcement learning algorithm for

matrix games can be improved, the problem of the difficulty

of coordination in multiagent reinforcement learning may be

alleviated to some extent.

Based on the current research, multiagent reinforcement

learning algorithms still face the following key problems:

i) In a multiagent environment with heterogeneous agents,

the existence of an optimal Nash equilibrium cannot be accu-

rately prove.

ii) In a collaborative multiagent system, miscoordination

may result from the existence of multiple suboptimal solu-

tions, which will ultimately affect the quality of coordination.

iii) How to obtain a better and more stable convergence

result in limited training time is also a problem to be

solved.
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To optimize the existing algorithm, we propose amethod of

simplifying the problem in this section. We wish to optimize

the multiagent reinforcement learning algorithm by mitigat-

ing the miscoordination problems that arise in matrix games.

C. MISCOORDINATION ANALYSIS

There are many reasons for miscoordination. In multiagent

reinforcement learning, the reasons for miscoordination may

arise from the instability of the environment and the timeli-

ness of the agents’ strategies [33]. This scenario may even

lead to miscoordination of the agents’ strategies because of

invalid experience gained through the experience playback

mechanism [34]. In this paper, we focus on how to coordinate

the system itself more effectively, while downplaying the

impact of outdated experience on the system. In this analysis,

we first discuss the causes of miscoordination mainly from

the perspectives of strategy and reward. By analyzing these

underlying causes, the structure of the basic algorithm can

be optimized, and an improved method approach to this kind

of algorithm can be provided, which is of great practical

significance.

First, we discuss the problem that the algorithm does not

optimally converge in a special case of the reward values

in a repeated game: relative overgeneralization [25]. This

problem is clearly illustrated in Figure 1. Relative overgen-

eralization occurs when a suboptimal Nash equilibrium in

the joint space of actions is preferred over an optimal Nash

equilibrium because each agent’s action in the suboptimal

equilibrium is individually a better choice whenmatchedwith

arbitrary actions of the collaborating agents [25].

The most important reason for this is that when the average

value of the suboptimal Nash equilibrium is significantly

higher than that of the optimal Nash equilibrium, the algo-

rithm will eventually tend to converge to the suboptimal

Nash equilibrium [25]. This situation can be converted into

a mathematical expression as follows. Agent Ai’s portion

of the joint action N (denoted by iN ) is individually pre-

ferred over its portion of the joint action M (denoted by iM ).

That is, quality(iM ) = Pjreward(iM , j) < quality(iN ) =

Pjreward(iN , j). This problem will occur in an environment

where there are more than 2 agents and the action space

is large [25]. It can be considered to be widely present

in cooperative, repeated games for independent learners.

Table 1 presents an example of relative overgeneralization in

a repeated game.

TABLE 1. The relative overgeneralization matrix.

In Table 1, we can see that 〈a, a〉 is the best joint move.

However, if the agents sample their actions randomly and

base their decisions on the average reward, action a will have

the worst score, action cwill have the best score, and bwill be

in the middle. Thus, the agents will tend to converge to 〈c, c〉.

The reason for this problem is that the reinforcement learn-

ing algorithm does not distinguish the effects of self-behavior

on the reinforcement signal when updating the value function.

In other words, the TD-error-based update policy is rarely

fully used to distinguish the contribution of a single agent to

a joint action. Sometimes, one agent’s strategy is better but

is forced to be adjusted because of the quality of the other

agent’s strategy. This is the reason for the convergence perfor-

mance of the algorithm. In the IL-based framework, if mea-

surement factors could be added to infer whether a worse

joint action is chosen because of a particular agent’s strategy,

the algorithmwould no longer be prone to completely random

updates. This method would disrupt the updating strategy

based on the calculation of mathematical expectations and

make the algorithm more likely to converge to the optimal

Nash equilibrium.

On the other hand, even with full cooperation, there is

potential competition between agents. We illustrate this with

the classic prisoners’ dilemma from game theory. In a system

of ILs, reinforcement learning relies on global rewards to

update the agents’ strategies. However, each agent maintains

its own Q-value and adopts the maximization strategy to

update its Q-value. This is analogous to the classic prisoners’

dilemma problem in a repeated game. The payoff matrix

can be regarded as representing the Q-values of the agents’

respective optimization problems. The matrix is shown

in Table 2.

TABLE 2. The prisoners’ dilemma matrix.

When selecting strategies, the reinforcement learning algo-

rithm will attempt to make the Q-value maintained by each

agent as large as possible. However, as is the case in the

prisoners’ dilemma, even if both sides adopt what seems to be

the best strategy, they can never achieve the Pareto-optimal

solution. We consider cooperative actions that are numeri-

cally scattered in the range [0,1]. The total revenue of the

game can be seen in Figure 4.

We can see in Figure 4 that the total benefits at the Nash

point are significantly higher than those at the other points.

However, due to the updating strategy of the IL agents,

the optimization of the algorithm in the joint action rewards

plane ultimately moves in the direction of a secondary

advantage.

First, from the perspective of the mathematical expecta-

tion of the outcome of the game between the two sides,

the profit expectation of choosing betrayal is higher than that
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FIGURE 4. Total reward in the prisoners’ dilemma.

of choosing cooperation. A theoretical assumption is adopted

here, that is, if both sides know that the number of games

is infinite, i.e., both sides of the business are endless, then

both strategies will continue to choose cooperation, and the

final game will be fixed at (1, 1), which is a Nash equilib-

rium. Unfortunately, however, our algorithm needs to find

the correct solution in finite steps. Especially in multiagent

reinforcement learning, the occurrence of state transitions

limits the number of times that a particular state is traversed.

The payoff in this problem can be thought of as the Q-value

maintained by each agent among the ILs. Often, with a large

number of samples, agents tend to be rational in their mathe-

matical expectations. By optimizing their respective Q-value

functions in the direction of their respective rational Q-values,

the agents will cause the final joint return to converge to the

secondary advantage at the intersection between the light and

dark regions in Figure 4. This is why it is worthwhile to affect

the algorithm’s ultimate rewards.

A multiagent sequential decision problem is usually

composed of such game matrices (tensors,when there are

more than 3 players). This is an important reason for the

final ‘‘miscoordination’’ of multiple agents in an IL-based

structure. In other words, in a multiagent environment, each

agent generates samples through its interactions with the

environment, but the time available to reach ergodicity for

each environment is limited. If the reinforcement learning

algorithm can converge to the Nash equilibrium (even in

the absence of the multiagent case, it can converge to a

better solution) more quickly and stably, it can converge to

the Nash equilibrium more quickly with fewer visits to the

prisoner environment. Finally, it is possible to obtain better

convergence results when the algorithm is applied to a MAS.

IV. ADAPTIVE REINFORCEMENT LEARNING

A. Q-LEARNING

In the traditional reinforcement learning algorithm, the value

function of each state–action pair is recorded in the Q-table.

Taking a single state as an example, the formula of the

algorithm for updating the value function is shown as follows:

Q (s, ai)← (1−α)Q (s, ai)+α

[

r+γmax
a′
Q

(

s′, a′
)

]

(3)

where ai is the chosen action of agent i, r is the reward

received, Qi (ai) is the value of action ai for agent i and

α ∈ [0, 1] is the learning rate. It can be seen from the update

strategy of the Q-learning algorithm that the updating and

convergence performance of the algorithm mainly depends

on the choice of the learning rate. Therefore, we consider

whether the algorithm can adjust its learning rate based on its

state environment to optimize its convergence performance.

The idea of TD-error evaluation is that when the algorithm

is negatively updated, if the overall error is small, it can be

considered that the direction of agent a itself (X-axis) needs to

be adjusted by means of a small gradient on the tensor. At the

same time, other agents also use this principle as the basis

for dynamic adjustment. Through this evaluation mechanism,

we hope to increase the number of times the optimal Nash

equilibrium is traversed. Finally, the convergence quality

can be improved, thereby improving the performance of the

algorithm.

1) HYSTERETIC Q-LEARNING

In a MAS with an IL-based structure, the reinforcement

received by an agent relies on the actions chosen by the team.

Thus, an agent can be punished because of a poor choice

by another member of the team even if the agent itself has

chosen an optimal action. Therefore, it would be preferable

for each agent to be able to distinguish whether an instance of

worse behavior was caused by its own action. A common idea

for this purpose is distributed Q-learning, with the following

equation:

δ ← r − Qi (ai)

Qi (ai) ←

{

Qi (ai)+ αδ if δ > 0

Qi (ai) else
(4)

However, optimistic agents do not achieve coordination

among multiple optimal joint actions [35]. Due to this key

issue, [27] proposed a new update strategy for the algorithm.

Agents must not be altogether blind to penalties, at the risk of

remaining in suboptimal equilibria or continuing to miscoor-

dinate on the same optimal joint action. The update equation

is modified as follows:

δ ← r − Qi (ai)

Qi (ai) ←

{

Qi (ai)+ αδ if δ > 0

Qi (ai)+ βδ else
(5)

where α and β are the rates of increase and decrease, respec-

tively, for the Q-values. Hysteretic Q-learning (HQL) is a

decentralized process: each IL builds its own Q-table, whose

size is independent of the number of agents and linear in

the number of the agent’s own actions. We find that when

the HQL algorithm is used, the results are greatly affected

by the chosen rate of decrease, and the convergence speed
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and outcome of the algorithm are both strongly dependent

on the chosen value of β. This affects the generalizabil-

ity of the algorithm. Moreover, the algorithm distinguishes

only between positive and negative TD errors, which does

not solve the problem of reliability allocation introduced by

agents with negative updates. This will affect the convergence

rate of the algorithm in a MAS. Therefore, we propose an

adaptive Q-learning (AQL) method with an adaptive evalua-

tion function to determine the learning rate and apply it in a

deep Q-network.

2) LEINENT Q-LEARNING

Lenient Q-learning(LQL) was originally introduced by

Potter and De Jong [36] and has later been applied to

multi-agent learning as well [37]. It was designed to prevent

relative overgeneralization [38], which occurs when agents

gravitate towards a robust but sub-optimal joint policy due

to noise induced by the mutual influence of each agent’s

exploration strategy on others’ learning updates.

It has been shown that leniency can increase the likelihood

of convergence towards the globally optimal solution in state-

less coordination games for reinforcement learning agents.

Lenient learners achieves this by effectively forgiving (ignor-

ing) sub-optimal actions by teammates that lead to low

rewards during the initial exploration phase. While initially

adopting an optimistic disposition, the amount of leniency

displayed is typically decayed each time a state-action pair

is visited. As a result, the agents become less lenient over

time for frequently visited state-action pairs while remaining

optimistic within unexplored areas. This transition to average

reward learners helps lenient agents avoid sub-optimal joint

policies in environments that yield stochastic rewards

During training the frequencywithwhich lenient reinforce-

ment learning agents perform updates that result in lowering

the Qvalue of a state action pair (s, a) is determined by

leniency and temperature functions, l (st , at) and Tt (st , at)

respectively [35]. The relation of the temperature function

is one to one, with each state action pair being assigned a

temperature value that is initially set to a defined maximum

temperature value, before being decayed each time the pair is

visited. The leniency function:

l (st , at) = 1− e−K×Tt (st ,at ) (6)

uses a constant K as a leniency moderation factor to

determine how the temperature value affects the drop-off in

lenience. Following the update, Tt (st , at) is decayed using

a discount factor β ∈ [0,1] such that Tt+1 (st , at) =

βTt (st , at).

Given a TD-Error θ , where δ = Yt−Q (st , at ; θt), leniency

is applied to a Q-value update as follows:

Q (st , at)=

{

Q (st , at)+αδ if δ>0 or x> l (st , at)

Q (st , at) if δ60 or x6 l (st , at)
(7)

The random variable x ∼ U (0,1) is used to ensure that

an update on a negative θ is executed with a probability

1− l (st , at).

3) ADAPTIVE Q-LEARNING

In this paper, we are inspired by fuzzy control theory and

the concept of a membership function [39]. Based on this,

an algorithm that can dynamically adjust the learning rate is

proposed, which is called the adaptive Q-learning algorithm.

An appropriate evaluation function is designed that can be

used in combination with the currently widely used double

deep Q networks(DDQN) algorithm [40], [41]. The effec-

tiveness of the algorithm is verified based on a single-state

matrix game and the classic multi-intelligence predator-prey

environment. In this section, we will introduce the principles

and design concept of this algorithm.

Above, wementioned 3 methods of reinforcement learning

based on an IL architecture: distributed Q-learning, HQL

and LQL. From the ideas for the improvement of distributed

q-learning offered by HQL and LQL, it can be seen that an

adjusted learning rate can have an impact on the results of

the algorithm. The fundamental reason is that reinforcement

learning is a learning algorithm based on reinforcement sig-

nals. However, in the IL framework, the reinforcement signal

depends not simply on an agent’s own actions but on the joint

actions generated by multiple agents. When an agent receives

a negative signal, the source of this negative signal does

not necessarily lie in its own separately maintained Q-table

or network. If the reinforcement signal is received without

distinction in this respect, an agent may avoid choosing its

optimal action and cause the system to fall into a poor solution

because of the detrimental influence of other agents. The

HQL algorithm is designed with two different learning rates

and adjusts the reverse update strategy in the IL algorithm but

does not distinguish this strategy as suggested above. In other

words, the strategy for distinguishing between positive and

negative learning causes the negative updates of the algorithm

to be smaller than the positive updates, thereby reducing the

convergence rate of the algorithm. From the results of [27],

it can be seen that when the algorithm is negatively updated,

a smaller learning rate is uniformly adopted, which will

indeed cause such problems. This is undesirable in cases

of increasing numbers of agents and more complex envi-

ronments. As the complexity of the environment increases,

the probability that each environment can be sufficiently sam-

pled decreases. The new algorithm must converge to a better

solution more quickly with a finite number of environment

traversals. In other words, the algorithm should be able to

escape from suboptimal Nash equilibrium faster and more

efficiently. Only in this case will the algorithm have the

possibility of approaching Pareto optimality.

B. ADAPTIVE FUNCTION AND AQL

In this paper, we propose a new algorithm to dynamically

adjust the learning rate during a negative update, called

adaptive Q-learning. The idea of dynamic regulation comes

from the concept of a membership function in fuzzy control

theory [42].

When a negative update of the Q-value is small, we have

great reason to believe that the negative update associated
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with the current action is likely to be caused by unreasonable

actions of other agents. Taking Figure 1 as an example, when

agent j selects a better action but the Q-value update of this

agent is still negative, the action selection of agent i should

instead be more strongly adjusted. This is the main way in

which the algorithm can be optimized. To realize dynamic

adjustment, we introduce an evaluation function similar to

a membership function for a negative update. We define a

function A, which outputs the learning rate to be used based

on the input δ, i.e., the TD error.

Firstly, function A characterizes the mapping relationship

between the feedback of the environment and td-error to

learning rate generated in the agent network. We believe

that the reward from the environment is generated by joint

action. The Reward feedback on a single agent will contain

information about the promotion of rational joint action. The

purpose of designing A function is to find the relationship

between td-error and the reliability of action chosen by single

agent. The ultimate goal is to improve the coordination ability

on the premise of weakening the centralized control.

1) DEGREE OF MEMBERSHIP FUNCTION

Consider a set A of numbers A (x) ∈ [0,1] corresponding to

any element x in the theoretical field (the scope of study) U .

A is called a fuzzy set onU , andA(x) is called themembership

degree of x in A. When x changes in U , the function A (x),

called the membership function of A, shows how the degree

of membership of x in A changes. The closer A (x) is to 1,

the higher the degree to which x belongs to A, and the

closer A (x) is to 0, the lower the degree to which x belongs

to A [42].

The degree of membership is conceptualized as a fuzzy

evaluation function. Fuzzy comprehensive evaluation is a

very effective multifactor decision-making method for con-

ducting a comprehensive evaluation of things affected by

many factors. Its characteristic is that the evaluation result is

not simply a positive or negative value but a fuzzy set. Using a

similar idea, we define an adaptive function to allow an agent

to dynamically adjust its learning rate.

2) ADAPTIVE FUNCTION

In the case of continuous actions of an agent or a large

action space such that the actions can be considered con-

tinuous, rewards can be thought of as continuous planes or

tensors [43]. It can be seen in Figure 4 that when a nega-

tive update of the Q-value is small, we have great reason

to believe that the negative update associated with the cur-

rent action is likely to be caused by unreasonable actions

of other agents. Therefore, the negative update should be

appropriately reduced, that is, the existing policy should be

maintained in the next iteration. It can also be considered that

the sensitivity of the upper saddle points of tensors should be

improved when the algorithm is updated.

We use ILs for distributed learning to avoid many of the

problems caused by centralization. However, at the same

time, it is necessary to avoid the problem of miscoordination.

Through analysis, we can see that although the joint return is

the highest at Nash equilibrium points, the final optimization

direction will often be toward a secondary advantage in the

IL case. According to the above analysis of the prisoners’

dilemma and relative overgeneralization, the fundamental

reason for this behavior lies in the nondiscriminative update

strategy. This strategy, which approximates the expected

return, causes the algorithm to easily fall into suboptimal

solutions. Therefore, we consider dynamically adjusting the

learning parameters. In this way, updating in the direction of

the mathematical expectation can be avoided. At the same

time, we believe that if the TD error of an agent when updat-

ing is small, to a great extent, we can assume that this agent’s

own strategy had less impact on the improvement of the joint

return and that more focus should be placed on the adjustment

of the strategies of other agents. By combining these two

ideas, we need to establish a reasonable adaptive function.

We define a function A to dynamically determine the

value of the learning rate based on the TD error. In practice,

we should set the learning rate of the Q-learning algorithm in

a manner that is applicable to practical problems.

3) PARAMETER DESIGN

There is a coupling relationship between TD-error inter-

val and the learning rate we need to determine. Therefore,

we need to adopt a reasonable design method to determine

the appropriate mapping relationship between them. In this

paper, uniform design table [44], [45] is used to set reason-

able parameter mapping. Uniform design tables are usually

expressed in terms of Ux (mn). Where x represents the num-

ber of tests per test group,m is the number of proficiency tests

in our experiment and n is the number of coupling factors that

the experiment can accommodate. Two and three TD-error

segments were used, so aU12

(

1210
)

uniform design tablewas

applied. Detailed use method can be seen in the appendix.

C. ADAPTIVE Q ALGORITHM

In this section, we introduce the corresponding mathematical

formulas for updating the Q-table and updating the strategy of

the Q-network. The function model and specific parameters

used in our experiments will be specified in the section titled

Experiments.

1) Q-TABLE UPDATE

In the model of the matrix game problem, due to the small

state space, each agent maintains a Q-table to update its

strategy for action selection. Accordingly, the update formula

in our algorithm is:

δ ← r − Qi (ai)

Qi (ai) ←

{

Qi (ai)+ αδ if δ > 0

Qi (ai)+ A (δ) δ else
(8)

whereQi (ai) represents agent i’s Q-table for a repeated game.

Therefore, the state s is not used in this equation. δ represents

the TD error of the IL. Adaptive Q-learning is a decentralized
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process: each IL builds its own Q-table, whose size is inde-

pendent of the number of agents and linear in the number of

the agent’s own actions.

2) NETWORK STRUCTURE OF THE ALGORITHM

To ensure that the algorithm can meet the requirements for

actual use, we study the algorithm using the proposed strat-

egy under the condition of using deep neural networks. At

present, the deep Q-network (DQN) framework is a mature

algorithm framework with a high frequency of use [46].

A deep Q-network (DQN) is a multilayered neural network

that outputs a vector of action values Q (s, ; θ) for a given

state s, where θ denotes the parameters of the network. The

Q-learning update for the parameters after action At is taken

in state St and the immediate reward Rt+1 and resulting state

St+1 are observed is expressed as:

θt+1 = θt + α

(

YQt − Q (St ,At ; θt)
)

∇θtQ (St ,At ; θt) (9)

where α is the learning rate and the target is defined as:

Y
Q
t = Y

DoubleQ
t

= Rt+1 + γQ

(

St+1, argmax
a

Q (St+1, a; θt) ; θ
′
t

)

(10)

where we use a double deep Q-network (DDQN) [40] for our

multiagent experiment. A DDQN consists of two networks.

The target network, with parameters θ−, is the same as the

online network except that its parameters are copied from the

online network every τ steps, at which times θ−t = θ−, and

are kept fixed in all other steps. Note that the action selec-

tion process, based on argmax, still depends on the online

weights θt . This means that, as in Q-learning, we are still

estimating the value of the greedy policy in accordance with

the current values, as defined by θt [40]. However, we use

the second set of weights θ ′t to fairly evaluate the value of

this policy. This second set of weights can be symmetrically

updated by switching the roles of θ and θ ′.

In summary, we modify the gradient update strategy of the

algorithm to:

δ ← YQt − Q (St ,At ; θt)

θt+1 ←

{

θt + αδ∇θtQ (St ,At ; θt) if δ > 0

θt + A (δ) δ∇θtQ (St ,At ; θt) else
(11)

where A is the function that takes the TD error as input

and outputs the learning rate of the network that is used to

update θ . Similar to Q-learning, the evaluation function A

determines whether an agent’s strategy needs to be adjusted

by judging the value of the TD error. The structure of AQL

can be seen in Figure 5.

We establish an implicit relation between agents through

the basic geometric relation of the joint return function.

Unlike in the case of explicit channel establishment, the con-

dition for establishing such an association requires only

that the joint reward is accepted by the agent and that an

appropriate dynamic evaluation function A is determined

as the standard. This is the core idea that we apply to

FIGURE 5. The structure of the AQL applied for parallel computation. The
algorithm adopts the architecture of parallel computation, and the agent
interacts with the environment simultaneously. By evaluating the value of
td-error, different learning rates are generated to update the estimator
parameters.

optimize the algorithm. Moreover, as the scale of the system

increases, the algorithm can be implemented by means of

parallel computation. Since the function A is embedded in

the structure of the algorithm, the neural network that serves

as the basis of the algorithm does not need to be changed.

This endows the algorithm with good generalizability.

V. EXPERIMENTS

In this section, we explain the reasons for the miscoordination

in current cooperativemultiagent systems based on the classic

‘‘prisoners’ dilemma’’ problem. Then, we prove that our

method can solve the ‘‘relative overgeneralization’’ problem,

in which the algorithm falls into a suboptimal solution in the

repeated game environment. We test a variety of multiagent

environments. These include the discrete environments of the

prisoners’ dilemma game and the relative overgeneralization

matrix as well as the large-scale continuous action environ-

ment of the pursuit domain.

We test various algorithms on both cooperative repeated

games (prisoner games): distributed Q-learning, hysteretic

Q-learning and adaptive Q-learning. Then, we apply our

approach to the pursuit domain. This is a popular multiagent

domain in which several agents, called predators, seek to

capture another agent, called the prey [27]. The environment

we use was provided by [47].

Through the matrix game experiments, we prove the abil-

ity of the proposed algorithm to solve a cooperative prob-

lem with two agents. After that, a multiagent environment

is considered to verify the improvement of the cooperative

performance of the intelligent system in the case of a large

number of agents.

A. PRISONERS’ DILEMMA

The prisoners’ dilemma (SG) can be understood as a matrix

game in the multiagent framework. Specifically, each state

of a repeated game can be viewed as its own matrix game.

These concepts were first examined in the field of game

theory. We wish to use them to explain the reasons for

miscoordination between agents in an IL-based structure.
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By solving this problem, the feasibility of proposed improved

algorithm is proven.

In this section, we consider the classical discrete game

matrix in game theory. This game matrix can be seen

in Table 2.

1) ANALYSIS

From the perspective of a rational analyst, both sides of the

game can obtain a positive reward by choosing silence. In this

case, we set the reward to a positive number 〈1, 1〉, which is

the Nash equilibrium for this game. Unlike traditional game

theory, in which prison time is used as a reinforcement signal,

this setting is more in line with the concept of reward in

reinforcement learning.

The problem of interest can be found either in the

Q-function (the network) maintained by an agent or in the real

effect of collaboration. From the point of view of the value

function, it is easy to compare with the numerical values in

the matrix game. An attempt is made to greedily optimize the

value functions maintained by the agents to achieve better

rewards. However, because the self-reward is equal to the

joint action reward, even the final direction of optimization

is towards the suboptimal Nash equilibrium. This is also an

important factor affecting the convergence performance of

multiagent reinforcement learning. On the other hand, from

the perspective of actual collaboration, the agents treat the

remaining agents as part of their environment. Therefore,

the choices of the actions of the other agents are not con-

sidered when selecting actions. Consequently, it is difficult

for the agents to make choices so as to avoid conflict. This is

also something that needs to be addressed in the coordination

strategy.

Unfortunately, due to the uncertainty of the environment,

the agents canmaximize their benefits only by choosing ratio-

nal behaviors without prior knowledge. From each agent’s

own point of view, to avoid being betrayed by the other side

and obtaining the worst gain of−5, an agent will often choose

to betray to obtain a less negative gain.

2) PARAMETER SETTINGS

A trial consists of 10000 repetitions of the game. At the

beginning of a trial, the Q-tables are initialized to 0. At the

end of each trial, we determine whether the last chosen joint

action is optimal. We set the learning rate α = 0.8 for both

methods and β = 0.1 for HQL. The adaptive function used

in AQL can be seen in Figure 6.

Where the function A is considered to be a piecewise

function: when the TD error is less than −6, the learning

rate is the same as α, whereas when the TD error is greater

than −6, the slope of the function is −0.004.

3) RESULTS

The rewards of the three algorithms from 10,000 repeated

experiments can be seen in Figure 7.

The decentralized Q-learning algorithm performs the

worst. When the algorithm converges, it finally converges

FIGURE 6. The linear evaluation function used in experiment 1.

FIGURE 7. Rewards obtained by the 3 algorithms in 10000 episodes.

to the suboptimal Nash equilibrium 〈−2,−2〉. By contrast,

the HQL and AQL algorithms both converge to an optimal

Nash equilibrium. It can be seen in Figure 7 that there is little

difference between the outcomes of the latter two algorithms

in the case of a small action space.

4) DISCUSSION

The experimental results show that the traditional Q-learning

algorithm is unable to solve such problems. At the same

time, the final convergence results of HQL and AQL show

that dynamic adjustment of the learning rate can give
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decentralized agents the ability to distinguish the merits of

their actions.

The reason why the results of the latter two algorithms are

similar is that when the action and state spaces are small,

the learning rate of the algorithmmay not requiremuch differ-

entiation. In fact, we find that using a completely continuous

function A to determine the learning rate will cause the algo-

rithm to fail to converge. In this scenario, we can regard the

HQL algorithm as a special case of AQL.With the addition of

the negative update evaluation function A, the AQL algorithm

can distinguish the quality of cooperation for different actions

of a single agent. We can see from the results that when the

environmental action space is small, the effect of the function

A is also close to that of the piecewise function.

In summary, these results indicate that in the case of mul-

tiagent reinforcement learning, the traditional decentralized

algorithm may fail to converge to a good result due to the

trapping of the algorithm at a near-optimal solution.

B. RELATIVE OVERGENERALIZATION

1) ANALYSIS

Relative overgeneralization is a specific and problematic sub-

case of the slightly more general notion of action shadowing,

occasionally used by the MARL community. To date, this

issue has also caused wide concern. Relative overgeneraliza-

tion can only arise if each agent has at least three actions avail-

able, ideally many more. In contrast, in CCEAs, the number

of ‘‘actions’’ is very high and often infinite, so the pathology

is a common occurrence in that context [25].

In this section, we study the problem of relative overgen-

eralization in discrete repetitive games. The game matrix is

shown in Table 1.

2) PARAMETER SETTINGS

A trial consists of 10000 repetitions of the game. At the

beginning of a trial, the Q-tables are initialized to 0. At the

end of each trial, we determine whether the last chosen joint

action is optimal. We set the learning rate α = 0.8 for both

methods and β = 0.1 for HQL. The adaptive function used

in AQL can be seen in Figure 8.

FIGURE 8. The linear evaluation function used in experiment 2.

As seen in Figure 8, the slope of the function is −0.025.

The piecewise function is partitioned at −10. In this experi-

ment, we appropriately raise the part of the function A that is

below the cutoff point, that is, when TD-error less than −10,

the learning rate is 1.1. The purpose of this improvement is

to make the algorithm adjust faster when its behavior needs

to be adjusted and ultimately accelerate the convergence per-

formance. In this section, we illustrate the improved conver-

gence performance of the algorithm by comparing HQL with

AQL with two different parameters.

3) RESULTS

Figure 9 shows the final convergence results of the three

algorithms.

It can be seen from the results that the Q-learning algorithm

cannot overcome the influence of relative overgeneralization.

By contrast, both the HQL and AQL algorithms can solve

such problems. In addition, we compare the TD-error differ-

ences between the HQL algorithm and the AQL algorithm

when different parameters are used in the learning process.

We can see from Figure 10 that when the maximum value

of learning rate in the AQL algorithm is the same as that

in the HQL algorithm, the fluctuations in the loss of the

AQL algorithm will be greater than those for HQL. When

the maximum learning rate for AQL is set to a larger value,

the loss fluctuations in the later period will decrease.

4) DISCUSSION

From this experiment, we can see that decentralized

Q-learning cannot solve the relative overgeneralization prob-

lem. By contrast, both HQL and AQL can solve the relative

overgeneralization problem in a 3D action space.

In addition, we have varied the range of the function A in

the AQL algorithm. The analysis shows that when the reverse

update of the TD error is large, the fluctuation of the algo-

rithm should be increased when adjusting the action strategy.

The purpose of doing this is to avoid the dilemma of optimiza-

tion to the expected value rather than global optimization,

with the same cause as in the original algorithm. To ensure

a larger difference between the TD errors, we adjust the

learning rate to be greater than one. This is done very rarely in

reinforcement learning algorithms. Usually, this value is set

to a positive number less than 1 to ensure that the algorithm

will converge. From the final loss value, it can be seen that

the algorithm can provide more stable convergence in the

later period. This shows that the role of the learning rate in

this problem is consistent with our expectations. On the other

hand, it also reflects the influence of the actions of single

agents on the performance of the joint actions through the

evaluation of the TD error. These findings further illustrate

the feasibility of using this method in RL for a MAS.

In addition, HQL differentiates between positive and neg-

ative updates. The performance of the HQL algorithm is

no different from that of the AQL algorithm for systems

with fewer agents and smaller action spaces. However, when

the return space changes from a two-dimensional space to
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FIGURE 9. Rewards obtained by the 3 algorithms in 10000 episodes.

a multidimensional tensor, this kind of distinction often

fails. Therefore, choosing an appropriate dynamic adjust-

ment function A is the key to the AQL algorithm and the

most important parameter to ensure the performance of the

algorithm.

C. PURSUIT DOMAIN

1) ANALYSIS

In this section, we apply the proposed algorithm to the

‘‘pursuit domain’’. As a relatively practical environment,

this problem has become known as a benchmark for testing

algorithms [27]. The pursuit problem is a popular multiagent

domain in which several agents, called predators, seek to

capture another agent, called the prey. Unlike the traditional

pursuit domain, this environment contains far more agents

than the four preys in the traditional pursuit domain. This can

effectively simulate the agent collaboration problem existing

in the large-scale system.

FIGURE 10. Losses obtained by 2 algorithms in 10000 episodes (with
different A parameters in AQL).

In this experiment, we use the ‘‘MAgent’’ environment to

test the algorithm [47]. A large-scale world grid is used as the

fundamental environment for the large population of agents.

Each agent has a rectangular body with a local detailed

perspective. Each predator’s possible actions are to move,

turn or attack. The prey’s only action is to move. In addition,

the speed of the prey is faster than that of the predators.

Therefore, if the predators cannot learn how to cooperate,

they cannot obtain the reward. Both types of agents should

be trained for beneficial behavior in obtaining a good reward.

We use a DQN for training the prey as a benchmark.

We use a discrete 50 × 50 toroidal grid environment in

which 50 predators must explicitly coordinate their actions to

attack 20 prey. The actions of the agents are discrete actions.

They can move, attack or turn, as shown in Figure 11.
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FIGURE 11. Possible actions of a predator showed in grids.

Where each point represents a valid action of the predator.

By contrast, the prey can only move and turn. The complete

state–action space accordingly consists of all combinations of

the predators’ and preys’ relative positions. This yields either

a Q-table with dimensions of 49× 48× 1350 in a centralized

view or two Q-tables with dimensions of 49 × 48 × 13 in

a decentralized view. Obviously, it is difficult to update the

Q-table in a centralized algorithm. This shows the necessity

of using a decentralized IL-based algorithm structure. During

training, we collect all trajectories and train a shared network

model in each agent, so the training is centralized.

The reinforcement signal in this environment is for a preda-

tor to attack prey within the attack range. When a predator

attacks prey, the predators receive a +1 reward. The prey,

when attacked, will receive a−1 reward. When the predators

attack incorrectly, they receive a punishment of −0.2.

To demonstrate the performance of AQL, we compare

the new algorithm to a suitable benchmark in this environ-

ment. Three benchmark algorithms are provided in the liter-

ature: A2C [48], [49], Deep Recurrent Q Network(DRQN)

[46], [50] and Deep Q Network(DQN) [31]. Among these

benchmark algorithms provided in [47], DQN has the best

performance; therefore, we take DQN as the benchmark for

comparison. Then, we convert HQL into HQN. By com-

paring these two algorithms, the results of the Adaptive Q

Network(AQN) algorithm are proven.

2) PARAMETER SETTINGS

In the neural network, we directly take the observation as the

input and output the state value function Q of the optional

action. The actions are selected by the Q-network using the

epsilon policy, where the network we use has the structure

of DDQN [41]. The parameters of the three algorithms are

shown in Table 3.

TABLE 3. Algorithm parameters.

Where the memory size represents the capacity of the

experience memory replay (EMR) used for sample storage

in the algorithm [51]. After several preliminary adjustments,

we determined that the convergence speed and outcome of

the neural network are optimal with a batch size of 256.

The learning rates are different among the three algorithms.

DDQN uses a fixed learning rate with a value of 10−4.

In HQN, α is 0.8, and β is 0.1. The A used in the AQN

algorithm in this experiment is a discrete piecewise function

rather than a continuous linear function. This function is

shown in Figure 12. The epsilon strategy is used as the action

selection strategy, in which the choice is between following

the existing strategy or performing random selection. We set

its rate of descent to be the same. ‘‘Tar update freq’’ is the

parameter update frequency of the target network.

FIGURE 12. The linear evaluation function used in experiment 3.

In accordance with the concept described above, when the

TD error is less than 0, we evaluate it using the function A.

For this experiment, we define the evaluation function to have

three segments. The domain of the first segment is [0,−0.01].

The domain of the second segment is [−0.05, −0.01]. The

domain of the third segment is less than −0.05.

3) RESULTS

In this section, we compare the new algorithm with the two

previous algorithms with the best results in this experimental

environment. Due to the randomness of the experimental

environment and the uncertainty of the gradient descent

method, we trained each algorithm 10 times, with each train-

ing run consisting of 500 episodes. The means and standard

deviations of the rewards obtained by different algorithms

were calculated to show the convergence performance and

stability of the algorithms. The performance of the agents in

the actual test indicates their ultimate coordination ability.

We show the standard deviations and average rewards in

the last 20 to 150 episodes to show the rates of algorithm

convergence and the results. We can see in Figure 13(a) that

DDQN earns the worst reward among the three algorithms

and that its increase is relatively gradual. For the first 120 of

these episodes, the trends and values of the HDQN and

AQNalgorithms are similar. Then, HDQN’s rewards level off,

while those of AQN continue to rise.

Figure 13(b) shows the trends of variation of the stan-

dard deviation from 150 episodes to 20 episodes. Where the

DDQN algorithm has the best stability. The AQN algorithm

is more stable than the DDQN algorithm.

To more clearly compare the algorithms, we show the

complete rewards in the last 30 and 100 episodes for the

different algorithms. We also use the averages and standard

deviations in the last 30 and 100 episodes to illustrate the

effectiveness and stability, respectively, of the algorithms.
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FIGURE 13. The rewards and STD values of the algorithms in the last
20 to 150 episodes.

FIGURE 14. Reward the algorithms got in the last 100 episodes.

It can be seen in Figure 13. In the last 30 episodes, the average

rewards of DDQN, HQN and AQN are 2951, 3024 and 3191,

respectively, and the corresponding standard deviations are

134.68, 185.56 and 189.08. In the last 100 episodes, the aver-

age rewards of DDQN, HQN and AQN are 2782, 2945

FIGURE 15. Three different algorithms act as estimators in the real world.
The red square represents the predator. The blue square represents the
prey. The gray squares represent obstacles.

and 2998, respectively, and the corresponding standard devi-

ations are 258.63, 200.00 and 223.41.

In Figure 15, the red points are predators, and the blue

points are prey. To increase the uncertainty of the environment

without excessively increasing the impact of the environment

on the performance of the algorithm, we randomly added a

few obstacles, represented by gray dots. The predators can

use these obstacles to help catch prey if necessary. However,

it can bee seen that in this experiment, because we set up

relatively few barriers, few predators learned the strategy of

using obstacles to capture prey.

4) DISCUSSION

It is not difficult to see from the data that the speed of theAQN

algorithm in obtaining results is better than that of DDQN
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or HQN, and the final results of the new algorithm in this

realistic environment are superior to those of the former two.

In addition, AQN is slightly more stable than HDQN.We can

see from Figure 13 and Figure 14 that each algorithm will

fluctuate around a baseline after convergence. This baseline

can be thought of as the average of the results. Moreover,

we can see that the fluctuations of theAQN algorithm are sim-

ilar to those of HQN before the last 120 episodes. Thereafter,

the HDQN algorithm fluctuates more smoothly. By contrast,

AQN still shows the same rate of growth until the last

30 episodes. Among the three algorithms, DDQN has the best

stability, but its convergence results are not satisfactory. It can

be clearly seen that using AQN for multiagent cooperative

tasks can significantly improve the final convergence results.

At the same time, we can also see from the experimental

results that the AQN algorithm can be more efficient in the

same environment. In the AQN algorithm, the agents can find

the optimal cooperation strategy faster and more stably. With

limited environment interactions, the AQN algorithm can find

a better collaboration strategy. Therefore, it can be seen from

this simulation environment that the AQN algorithm signifi-

cantly improves the coordination ability of intelligent agents.

Although HQL can also somewhat address these problems

in a low-dimensional environment, its stability is worse than

that of AQL due to its low TD-error discrimination capability.

Therefore, its effect is not as good as that of AQL when

dealing with high-dimensional problems, and the cooperative

effect is not well optimized in a real environment. In the new

algorithm, we distinguish among different TD errors, which

is equivalent to adding an implicit coordination mechanism.

This allows the algorithm to find significantly better joint

actions than the previous algorithms. This is why the new

algorithm can ultimately earn greater rewards.

Under the same structure, we tested the Advantage Actor

Critic(a2c) algorithm [52] and the Deep Recurrent Q network

(DRQN) algorithm [53]. The results are shown in appendix.

It can be seen that the results obtained by DAQN algo-

rithm are obviously superior to the other two algorithms.

Similar to the MADDPG algorithm, the a2c algorithm is

not suitable for the large-scale systems. When there are too

many agents, the a2c algorithm will not converge. However,

the DRQN algorithm converges too early to achieve the effect

of multi-agent coordination.

VI. CONCLUSION

To mitigate the problem of the poor result quality caused

by miscoordination in ILs for large-scale MAS, this

paper analyzes two main reasons for this miscoordination.

Considering the two kinds of miscoordination that are likely

to occur in a multiagent cooperative environment, this paper

proposes an algorithm called adaptive Q-learning to judge

whether a particular agent’s strategy affects the benefit of

the corresponding joint action according to the TD error.

By analyzing the differences in the quality of joint actions,

we find that to a large extent, it can be assumed that a small

TD error in the network maintained by a given agent may

indicate irrational actions of other agents. Therefore, we use

the TD error as an evaluation standard and propose the AQL

algorithm based on a membership function. This algorithm

is different from previous algorithms that have incorporated

communication mechanisms or adopted a JAL-based archi-

tecture, and it inherits many advantages of IL-based algo-

rithm. We use parallel computation to train the same network

model to achieve the purpose of weakening the centralized

control. This method enhances the adaptability of the algo-

rithm in the large-scale MAS. At the same time, it offers

improved joint action coordination.

Through application to matrix games, we prove that the

proposed method can solve the problem of miscoordination

in the traditional IL-based framework. The convergence per-

formance of the new algorithm is obviously improvedwithout

increasing its time complexity. At the same time, it can be

seen from its ability to solve the prisoners’ dilemma and rela-

tive overgeneralization problems that the proposed algorithm

has a strong ability to overcome the tendency to converge

to suboptimal solutions. This ability provides a foundation

for the algorithm to achieve desirable performance in a

large-scale multiagent reinforcement learning environment.

The enhancement of the coordination of the algorithm is a

sufficient condition for the application in large-scale MAS.

So, we apply the proposed algorithm to a classic multiagent

RL benchmark environment known as the ‘‘pursuit domain’’.

Compared to the traditional ‘‘pursuit domain’’, our environ-

ment contains more agents and has a larger action space. This

environment is more likely to give rise the miscoordination

problem of interest here. At the same time, the agents’

partial observations of the environment and the instability

of the communication channel make the environment closer

to a practical application. Thus, it is demonstrated that the

adaptive Q-learning algorithm successfully achieves the goal

of coordination in various IL-based multiagent scenarios.

In fact, in the large-scale pursuit domain, we can also

see that the AQL algorithm offers an improved convergence

speed. With less training, this algorithm can achieve better

results than other algorithms with an IL-based architecture.

This is one of the advantages of the proposed algorithm.More

importantly, the algorithm provides a new way to improve the

performance of multiagent reinforcement learning without

modifying the network structure. Weaken centralized control

endows the method with a strong generalization ability and

introduces a newmeans of improving the performance of col-

laborative reinforcement learning. As a method of improving

collaborative performance in large-scale MAS, the proposed

algorithm can be combined with decentralized heterogeneous

multiagent systems. In the absence of reliable communica-

tion channels, the new algorithm can be used to guarantee

the coordination performance in a MAS. Therefore, it is of

great significance for applications of multiagent reinforce-

ment learning in practical systems [43], such as cooperative

systems of UAVs [22] under combat conditions.

In the future, we intend to develop a more convenient

method of defining the function A for the proposed algo-
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rithm. In this paper, to make the neural network more stable,

we designed the function A as a piecewise function. Although

this improves the stability of the algorithm under the existing

conditions, it also reduces the differentiation ability of the

function A with respect to the TD error. Moreover, in this

paper, the method used to determine the function parameters

was the uniform design table [13]. This approach is expensive

and requires testing a large amount of data. In subsequent

work, we intend to use a neural network to fit the functionA to

obtain a more effective function to improve the performance

of AQL.

APPENDIX A

ADDITIONAL EXPERIMENTAL RESULTS

See Fig. 16.

FIGURE 16. The rewards got by the DAQN compared with the a2c and the
DRQN.

APPENDIX B

THE UNIFORM DESIGN TABLE FOR SETTING FUNCTION

A PARAMETERS

See Tables 4 and 5.

TABLE 4. U12(1210).

TABLE 5. The application table of U12(1210).
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