
 
 
 
 

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents 
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha 
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats 
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats 
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la 
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita 
de parts de la tesi és obligat indicar el nom de la persona autora. 
 
 
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes 
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha 
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos 
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción 
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. 
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). 
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus 
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la 
persona autora. 
 
 
WARNING. On having consulted this thesis you’re accepting the following use conditions:  
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the 
titular of the intellectual property rights only for private uses placed in investigation and teaching 
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability 
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the 
TDX service is not authorized (framing). This rights affect to the presentation summary of the 
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate 
the name of the author�



Adaptive Learning and

Mining for Data Streams

and Frequent Patterns

Doctoral Thesis presented to the
Departament de Llenguatges i Sistemes Informàtics
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Abstract

This thesis is devoted to the design of data mining algorithms for evolving
data streams and for the extraction of closed frequent trees. First, we deal
with each of these tasks separately, and then we deal with them together,
developing classification methods for data streams containing items that
are trees.

In the data stream model, data arrive at high speed, and the algorithms
that must process them have very strict constraints of space and time. In
the first part of this thesis we propose and illustrate a framework for devel-
oping algorithms that can adaptively learn from data streams that change
over time. Our methods are based on using change detectors and estima-
tor modules at the right places. We propose an adaptive sliding window
algorithm ADWIN for detecting change and keeping updated statistics from
a data stream, and use it as a black-box in place or counters or accumula-
tors in algorithms initially not designed for drifting data. Since ADWIN has
rigorous performance guarantees, this opens the possibility of extending
such guarantees to learning and mining algorithms. We test our method-
ology with several learning methods as Naı̈ve Bayes, clustering, decision
trees and ensemble methods. We build an experimental framework for data
stream mining with concept drift, based on the MOA framework, similar
to WEKA, so that it will be easy for researchers to run experimental data
stream benchmarks.

Trees are connected acyclic graphs and they are studied as link-based
structures in many cases. In the second part of this thesis, we describe a
rather formal study of trees from the point of view of closure-based min-
ing. Moreover, we present efficient algorithms for subtree testing and for
mining ordered and unordered frequent closed trees. We include an analy-
sis of the extraction of association rules of full confidence out of the closed
sets of trees, and we have found there an interesting phenomenon: rules
whose propositional counterpart is nontrivial are, however, always implic-
itly true in trees due to the peculiar combinatorics of the structures.

And finally, using these results on evolving data streams mining and
closed frequent tree mining, we present high performance algorithms for
mining closed unlabeled rooted trees adaptively from data streams that
change over time. We introduce a general methodology to identify closed
patterns in a data stream, using Galois Lattice Theory. Using this method-
ology, we then develop an incremental one, a sliding-window based one,
and finally one that mines closed trees adaptively from data streams. We
use these methods to develop classification methods for tree data streams.
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1
Introduction

In today’s information society, extraction of knowledge is becoming a very
important task for many people. We live in an age of knowledge revo-
lution. Peter Drucker [Dru92], an influential management expert, writes
“From now on, the key is knowledge. The world is not becoming labor
intensive, not material intensive, not energy intensive, but knowledge in-
tensive”. This knowledge revolution is based in an economic change from
adding value by producing things which is, ultimately limited, to adding
value by creating and using knowledge which can grow indefinitely.

The digital universe in 2007 was estimated in [GRC+08] to be 281 ex-
abytes or 281 billion gigabytes, and by 2011, the digital universe will be 10
times the size it was 5 years before. The amount of information created, or
captured exceeded available storage for the first time in 2007.

To deal with these huge amount of data in a responsible way, green
computing is becoming a necessity. Green computing is the study and prac-
tice of using computing resources efficiently. A main approach to green
computing is based on algorithmic efficiency. The amount of computer
resources required for any given computing function depends on the effi-
ciency of the algorithms used. As the cost of hardware has declined rela-
tive to the cost of energy, the energy efficiency and environmental impact
of computing systems and programs are receiving increased attention.

1.1 Data Mining

Data mining (DM) [HK06, HMS01, WF05, MR05, BL99, BL04, LB01], also
called Knowledge Discovery in Databases (KDD) has been defined as ”the
nontrivial extraction of implicit, previously unknown, and potentially use-
ful information from data” and ”the science of extracting useful informa-
tion from large data sets or databases”. Data mining is a complex topic and
has links with multiple core fields such as statistics [HTF01], information
retrieval [BYRN99, Cha02a, LB01], machine learning [Lan95, Mit97] and
pattern recognition [DHS00, PM04].

Data mining uses tools such as classification, association rule mining,
clustering, etc. Data is generated and collected from many sources: sci-
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CHAPTER 1. INTRODUCTION

entific data, financial data, marketing data, medical data, demographical
data, etc. Nowadays, we are also overwhelmed by data generated by com-
puters and machines: Internet routers, sensors, agents, webservers and the
grid are some examples.

The most important challenges in data mining [Luc08] belong to one of
the following:

Challenges due to the size of data Data is generated and collected perma-
nently, so its volume is becoming very large. Traditional methods
assume that we can store all data in memory and there is no time lim-
itation. With massive data, we have space and time restrictions. An
important fact is that data is evolving over time, so we need meth-
ods that adapt automatically, without the need to restart from scratch
every time a change on the data is detected.

Challenges due to the complexity of data types Nowadays, we deal with
complex types of data: XML trees, DNA sequences, GPS temporal
and spatial information. New techniques are needed to manage such
complex types of data.

Challenges due to user interaction The mining process is a complex task,
and is not easily understandable by all kind of users. The user needs
to interact with the mining process, asking queries, and understand-
ing the results of these queries. Not all users have the same back-
ground knowledge of the data mining process, so the challenge is to
guide people through most of this discovery process.

In this thesis, we deal with two problems of data mining that relate to
the first and second challenges :

• Mining evolving massive data streams

• Mining closed frequent tree patterns

In the last part of this thesis, we focus on mining massive and evolving
tree datasets, combining these two problems at the same time.

1.2 Data stream mining

Digital data in many organizations can grow without limit at a high rate of
millions of data items per day. Every day WalMart records 20 million trans-
actions, Google [BCCW05] handles 100 million searches, and AT&T pro-
duces 275 million call records. Several applications naturally generate data
streams: financial tickers, performance measurements in network monitor-
ing and traffic management, log records or click-streams in web tracking
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1.2. DATA STREAM MINING

and personalization, manufacturing processes, data feeds from sensor ap-
plications, call detail records in telecommunications, email messages, and
others.

The main challenge is that ‘data-intensive’ mining is constrained by lim-
ited resources of time, memory, and sample size. Data mining has tradition-
ally been performed over static datasets, where data mining algorithms can
afford to read the input data several times. When the source of data items
is an open-ended data stream, not all data can be loaded into the memory
and off-line mining with a fixed size dataset is no longer technically feasible
due to the unique features of streaming data.

The following constraints apply in the Data Stream model:

1. The amount of data that has arrived and will arrive in the future is
extremely large; in fact, the sequence is potentially infinite. Thus, it
is impossible to store it all. Only a small summary can be computed
and stored, and the rest of the information is thrown away. Even if
the information could be all stored, it would be unfeasible to go over
it for further processing.

2. The speed of arrival is large, so that each particular element has to be
processed essentially in real time, and then discarded.

3. The distribution generating the items can change over time. Thus,
data from the past may become irrelevant (or even harmful) for the
current summary.

Constraints 1 and 2 limit the amount of memory and time-per-item that
the streaming algorithm can use. Intense research on the algorithmics of
Data Streams has produced a large body of techniques for computing fun-
damental functions with low memory and time-per-item, usually in com-
bination with the sliding-window technique discussed next.

Constraint 3, the need to adapt to time changes, has been also intensely
studied. A typical approach for dealing is based on the use of so-called
sliding windows: The algorithm keeps a window of size W containing the
last W data items that have arrived (say, in the last W time steps). When a
new item arrives, the oldest element in the window is deleted to make place
for it. The summary of the Data Stream is at every moment computed or
rebuilt from the data in the window only. If W is of moderate size, this
essentially takes care of the requirement to use low memory.

In most cases, the quantity W is assumed to be externally defined, and
fixed through the execution of the algorithm. The underlying hypothesis is
that the user can guess W so that the distribution of the data can be thought
to be essentially constant in most intervals of size W; that is, the distribution
changes smoothly at a rate that is small w.r.t. W, or it can change drastically
from time to time, but the time between two drastic changes is often much
greater than W.
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Unfortunately, in most of the cases the user does not know in advance
what the rate of change is going to be, so its choice of W is unlikely to be
optimal. Not only that, the rate of change can itself vary over time, so the
optimal W may itself vary over time.

1.3 Frequent tree pattern mining

Tree-structured representations are a main key idea pervading all of Com-
puter Science; many link-based structures may be studied formally by means
of trees. From the B+ indices that make our commercial Database Manage-
ment Systems useful, through search-tree or heap data structures or Tree
Automata, up to the decision tree structures in Artificial Intelligence and
Decision Theory, or the parsing structures in Compiler Design, in Natu-
ral Language Processing, or in the now-ubiquitous XML, they often repre-
sent an optimal compromise between the conceptual simplicity and pro-
cessing efficiency of strings and the harder but much richer knowledge
representations based on graphs. Accordingly, a wealth of variations of
the basic notions, both of the structures themselves (binary, bounded-rank,
unranked, ordered, unordered) or of their relationships (like induced or
embedded top-down or bottom-up subtree relations) have been proposed
for study and motivated applications. In particular, mining frequent trees
is becoming an important task, with broad applications including chemical
informatics [HAKU+08], computer vision [LG99], text retrieval [WIZD04],
bioinformatics [SWZ04] [HJWZ95], and Web analysis [Cha02b] [Zak02].
Some applications of frequent tree mining are the following [CMNK01]:

• Gaining general information of data sources

• Directly using the discovered frequent substructures

• Constraint based mining

• Association rule mining

• Classification and clustering

• Helping standard database indexing and access methods design

• Tree mining as a step towards efficient graph mining

For example, association rules using web log data may give useful in-
formation [CMNK01]. An association rule that an online bookstore may
find interesting is “According to the web logs, 90% visitors to the web page
for book A visited the customer evaluation section, the book description
section, and the table of contents of the book (which is a subsection of the
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book description section).” Such an association rule can provide the book-
store with insights that can help improve the web site design.

Closure-based mining on purely relational data, that is, itemset mining,
is by now well-established, and there are interesting algorithmic develop-
ments. Sharing some of the attractive features of frequency-based summa-
rization of subsets, it offers an alternative view with several advantages;
among them, there are the facts that, first, by imposing closure, the num-
ber of frequent sets is heavily reduced and, second, the possibility appears
of developing a mathematical foundation that connects closure-based min-
ing with lattice-theoretic approaches such as Formal Concept Analysis. A
downside, however, is that, at the time of influencing the practice of Data
Mining, their conceptual sophistication is higher than that of frequent sets,
which are, therefore, preferred often by non-experts. Thus, there have been
subsequent efforts in moving towards closure-based mining on structured
data.

Trees are connected acyclic graphs, rooted trees are trees with a vertex
singled out as the root, n-ary trees are trees for which each node which is not
a leaf has at most n children, and unranked trees are trees with unbounded
arity.

We say that t1, . . . , tk are the components of tree t if t is made of a node
(the root) joined to the roots of all the ti’s. We can distinguish betweeen the
cases where the components at each node form a sequence (ordered trees)
or just a multiset (unordered trees). For example, the following two trees are
two different ordered trees, but they are the same unordered tree.

In this thesis, we will deal with rooted, unranked trees. Most of the
time, we will not assume the presence of labels on the nodes, however in
some sections we will deal with labeled trees. The contributions of this
thesis mainly concern on unlabeled trees.

An induced subtree of a tree t is any connected subgraph rooted at some
node v of t that its vertices and edges are subsets of those of t. An embed-
ded subtree of a tree t is any connected subgraph rooted at some node v of
t that does not break the ancestor-descendant relationship among the ver-
tices of t. We are interested in induced subtrees. Formally, let s be a rooted
tree with vertex set V ′ and edge set E ′, and t a rooted tree t with vertex
set V and edge set E. Tree s is an induced subtree (or simply a subtree) of t

(written t ′ � t) if and only if 1) V ′ ⊆ V , 2) E ′ ⊆ E, and 3) the labeling of V ′

is preserved in t. This notation can be extended to sets of trees A � B: for

7



CHAPTER 1. INTRODUCTION

all t ∈ A, there is some t ′ ∈ B for which t � t ′.
In order to compare link-based structures, we will also be interested in

a notion of subtree where the root is preserved. In the unordered case, a
tree t ′ is a top-down subtree (or simply a subtree) of a tree t (written t ′ � t)
if t ′ is a connected subgraph of t which contains the root of t. Note that
the ordering of the children is not relevant. In the ordered case, the order
of the existing children of each node must be additionally preserved. All
along this thesis, the main place where it is relevant whether we are using
ordered or unordered trees is the choice of the implementation of the test
for the subtree notion.

D

D

B

C

A

C

D

B

C C

B

D

B

C

A

B

Figure 1.1: A dataset example

Given a finite dataset D of transactions, where each transaction s ∈ D is
an unlabeled rooted tree, we say that a transaction s supports a tree t if the
tree t is a subtree of the transaction s. Figure 1.1 shows a finite dataset ex-
ample. The number of transactions in the dataset D that support t is called
the support of the tree t. A tree t is called frequent if its support is greater
than or equal to a given threshold min sup. The frequent tree mining prob-
lem is to find all frequent trees in a given dataset. Any subtree of a frequent
tree is also frequent and, therefore, any supertree of a nonfrequent tree is
also nonfrequent.

We define a frequent tree t to be closed if none of its proper supertrees
has the same support as it has. Generally, there are much fewer closed
trees than frequent ones. In fact, we can obtain all frequent subtrees with
their support from the set of closed frequent subtrees with their supports,
as explained later on: whereas this is immediate for itemsets, in the case
of trees we will need to organize appropriately the frequent closed trees;
just the list of frequent trees with their supports does not suffice. However,
organized as we will propose, the set of closed frequent subtrees maintains
the same information as the set of all frequent subtrees

8
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1.4 Contributions of this thesis

The main contributions of the thesis are the following:

Evolving Data Stream Mining

• Until now, the most frequent way to deal with continuous data
streams evolving on time, was to build an initial model from a
sliding window of recent examples and rebuild the model pe-
riodically or whenever its performance (e.g. classification er-
ror) degrades on the current window of recent examples. We
propose a new framework to deal with concept and distribu-
tion drift over data streams and the design of more efficient and
accurate methods. These new algorithms detect change faster,
without increasing the rate of false positives.

• Many data mining algorithms use counters to keep important
data statistics. We propose a new methodology to replace these
frequency counters by data estimators. In this way, data statis-
tics are updated every time a new element is inserted, without
needing to rebuild its model when change in accuracy is de-
tected.

• The advantages of using this methodology is that the optimal
window size is chosen automatically, from the rate of change ob-
served in the data, at every moment. This delivers the user from
having to choose an ill-defined parameter (the window size ap-
propriate for the problem), a step that most often ends up being
guesswork. The tradeoff between high variance and high time-
sensitivity is resolved, modulo the assumptions in the method’s
theoretical guarantees.

• The algorithms are general enough that a variety of Machine
Learning and Data Mining algorithms can incorporate them to
react to change and simulate access to permanently updated data
statistics counters. We concentrate on applicability to classifica-
tion and clustering learning tasks, but try to keep enough gen-
erality so that other applications are not necessarily excluded.
We evaluate our methodology on clustering, Naı̈ve Bayes classi-
fiers, decision trees, and ensemble methods. In our decision tree
experiments, our methods are always as accurate as the state of
art method CVFDT and, in some cases, they have substantially
lower error. Their running time is only slightly higher, and their
memory consumption is remarkably smaller, often by an order
of magnitude.

• We build an experimental framework for data stream mining
with concept drift, based on the MOA framework[MOA], sim-
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ilar to WEKA, so that it will be easy for researchers to run exper-
imental benchmarks on data streams.

Closed Frequent Tree Mining

• We propose the extension into trees of the process of closure-
based data mining, well-studied in the itemset framework. We
focus mostly on the case where labels on the nodes are nonexis-
tent or unreliable, and discuss algorithms for closure-based min-
ing that only rely on the root of the tree and the link structure.

• We provide a notion of intersection that leads to a deeper under-
standing of the notion of support-based closure, in terms of an
actual closure operator.

• We present a rather formal study of trees from the point of view
of closure-based mining. Progressing beyond the plain standard
support-based definition of a closed tree, we have developed a
rationale (in the form of the study of the operation of intersec-
tion on trees, both in combinatorial and algorithmic terms) for
defining a closure operator, not on trees but on sets of trees, and
we have indicated the most natural definition for such an oper-
ator; we have provided a mathematical study that characterizes
closed trees, defined through the plain support-based notion, in
terms of our closure operator, plus the guarantee that this struc-
turing of closed trees gives us the ability to find the support of
any frequent tree. Our study has provided us, therefore, with a
better understanding of the closure operator that stands behind
the standard support-based notion of closure, as well as basic
algorithmics on the data type.

• We use combinatorial characterizations and some properties of
ordered trees to design efficient algorithms for mining frequent
closed subtrees both in the ordered and the unordered settings.

• We analyze the extraction of association rules of full confidence
out of the closed sets of trees, along the same lines as the corre-
sponding process on itemsets. We find there an interesting phe-
nomenon that does not appear if other combinatorial structures
are analyzed: rules whose propositional counterpart is nontriv-
ial are, however, always implicitly true in trees due to the pe-
culiar combinatorics of the structures. We propose powerful
heuristics to treat those implicit rules.

Tree Mining in Evolving Data Streams

• The last contributions of this thesis are the meeting point of the
two previous parts: evolving data stream mining and closed fre-
quent tree mining.
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• We propose a general methodology to identify closed patterns
in a data stream, using Galois Lattice Theory. Our approach is
based on an efficient representation of trees and a low complex-
ity notion of relaxed closed trees, and leads to an on-line strat-
egy and an adaptive sliding window technique for dealing with
changes over time.

• Using this methodology, we develop three closed tree mining
algorithms:

– INCTREENAT: an incremental closed tree mining algorithm

– WINTREENAT: a sliding window closed tree mining algo-
rithm

– ADATREENAT : a new algorithm that can adaptively mine
from data streams that change over time, with no need for
the user to enter parameters describing the speed or nature
of the change.

• And finally, we propose a XML tree classifier that uses closed
frequent trees to reduce the number of classification features.
As we deal with labeled trees, we propose again three closed
tree mining algorithms for labeled trees:INCTREEMINER, WIN-
TREEMINER and ADATREEMINER.

1.5 Overview of this thesis

The structure of the thesis is as follows:

• Chapter 2. We introduce some preliminaries on data mining, data
streams and frequent closed trees. We review the classic change de-
tector and estimator algorithms and we survey briefly the most im-
portant classification, clustering, and frequent pattern mining meth-
ods available in the literature.

• Chapter 3. We study the evolving data stream mining problem. We
present a new general algorithm framework to deal with change de-
tection and value estimation, and a new experimental framework for
concept drift.

• Chapter 4. We propose our adaptive sliding window method ADWIN,
using the general framework presented in the previous chapter. The
algorithm automatically grows the window when no change is ap-
parent, and shrinks it when data changes. We provide rigorous guar-
antees of its performance, in the form of bounds on the rates of false
positives and false negatives. We perform some experimental evalu-
ation on Naı̈ve Bayes and k−means.
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• Chapter 5. We propose adaptive decision tree methods. After pre-
senting the Hoeffding Window Tree method, a Hoeffding Adaptive
Tree is presented using the general framework presented in Chapter
3 and the ADWIN method presented in Chapter 4.

• Chapter 6. We propose two new bagging methods able to deal with
evolving data streams: one that uses trees of different size, and one
that uses using ADWIN. Using the experimental framework of Chap-
ter 3, we carry our experimental comparison of several classification
methods.

• Chapter 7. We propose methods for closed tree mining. First we
present a new closure operator for trees and a powerful representa-
tion for unlabelled trees. We present some new mining methods for
mining closed trees in a non incremental way.

• Chapter 8. We propose a way of extracting high-confidence associa-
tion rules from datasets consisting of unlabeled trees. We discuss in
more detail the case of rules that always hold, independently of the
dataset.

• Chapter 9. We combine the methods of Chapters 3 and 4, and Chap-
ters 7 and 8 to propose a general adaptive closed pattern mining
method for data streams and, in particular, an adaptive closed tree
mining algorithm. We design an incremental closed tree mining me-
thod, a sliding window mining method and finally, using ADWIN an
adaptive closed tree mining algorithm.

• Chapter 10. We propose a new general method to classify patterns,
using closed and maximal frequent patterns. We design a frame-
work to classify XML trees, composed by a Tree XML Closed Frequent
Miner, and a classifier algorithm.

1.5.1 Publications

The results in this thesis are documented in the following publications.

• Chapter 3 contains results from [BG06] and part of [BHP+09]

[BG06] Albert Bifet and Ricard Gavaldà. Kalman filters and adaptive
windows for learning in data streams. In Discovery Science,
pages 29–40, 2006.

[BHP+09] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Richard Kirkby,
and Ricard Gavaldà. New ensemble methods for evolving data
streams. Submitted, 2009.
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• Chapter 4 contains results from [BG07c, BG06]

[BG07c] Albert Bifet and Ricard Gavaldà. Learning from time-changing
data with adaptive windowing. In SIAM International Conference
on Data Mining, 2007.

[BG06] Albert Bifet and Ricard Gavaldà. Kalman filters and adaptive
windows for learning in data streams. In Discovery Science,
pages 29–40, 2006.

• Chapter 5 is from [BG09]

[BG09] Albert Bifet and Ricard Gavaldà. Adaptive parameter-free learn-
ing from evolving data streams. Technical Report LSI-09-9-R,
Universitat Politècnica de Catalunya, 2009

• Chapter 6 is from

[BHP+09] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Richard Kirkby,
and Ricard Gavaldà. New ensemble methods for evolving data
streams. Submitted, 2009.

• Chapter 7 contains results from [BBL06, BBL07b, BBL07c, BBL07a,
BBL09]

[BBL06] José L. Balcázar, Albert Bifet, and Antoni Lozano. Intersec-
tion algorithms and a closure operator on unordered trees. In
MLG 2006, 4th International Workshop on Mining and Learning with
Graphs, 2006.

[BBL07b] José L. Balcázar, Albert Bifet, and Antoni Lozano. Mining fre-
quent closed unordered trees through natural representations.
In ICCS 2007, 15th International Conference on Conceptual Struc-
tures, pages 347–359, 2007.

[BBL07c] José L. Balcázar, Albert Bifet, and Antoni Lozano. Subtree test-
ing and closed tree mining through natural representations. In
DEXA Workshops, pages 499–503, 2007.

[BBL07a] José L. Balcázar, Albert Bifet, and Antoni Lozano. Closed and
maximal tree mining using natural representations. In MLG
2007, 5th International Workshop on Mining and Learning with Graphs,
2007.

[BBL09] José L. Balcázar, Albert Bifet, and Antoni Lozano. Mining Fre-
quent Closed Rooted Trees. Submitted to Journal, 2009. Includes
results from [BBL06, BBL07b, BBL07c, BBL07a].

13



CHAPTER 1. INTRODUCTION

• Chapter 8 contains results from [BBL08]

[BBL08] José L. Balcázar, Albert Bifet, and Antoni Lozano. Mining im-
plications from lattices of closed trees. In Extraction et gestion des
connaissances (EGC’2008), pages 373–384, 2008.

• Chapter 9 contains results from [BG08]

[BG08] Albert Bifet and Ricard Gavaldà. Mining adaptively frequent
closed unlabeled rooted trees in data streams. In 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2008.

• Chapter 10 is from

[BG09] Albert Bifet and Ricard Gavaldà. Adaptive XML Tree Classifica-
tion on evolving data streams Submitted, 2009.
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and by a Formació d’ Investigadors (FI) grant through the Grups de Recerca
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14



2
Preliminaries

In the first part of this thesis, the data mining techniques that we will use
come essentially from Machine Learning. In particular, we will use the
traditional distinction between supervised and unsupervised learning. In
supervised methods data instances are labelled with a “correct answer”
and in unsupervised methods they are unlabelled. Classifiers are typical
examples of supervised methods, and clusterers of unsupervised methods.

In the second part of this thesis, we will focus on closed frequent pat-
tern mining. Association rule learning is the task of discovering interesting
relations between patterns in large datasets, and it is very closely related to
pattern mining.

2.1 Classification and Clustering

Classification is the distribution of a set of instances of examples into groups
or classes according to some common relations or affinities. Given nC dif-
ferent classes, a classifier algorithm builds a model that predicts for every
unlabelled instance I the class C to which it belongs with accuracy. A spam
filter is an example of classifier, deciding every new incoming e-mail, if it
is a valid message or not.

The discrete classification problem is generally defined as follows. A
set of N training examples of the form (x, y) is given, where y is a discrete
class label and x is a vector of d attributes, each of which may be symbolic
or numeric. The goal is to produce from these examples a model f that will
predict the class y = f(x) of future examples x with high accuracy. For
example, x could be a description of a costumer’s recent purchases, and y

the decision to send that customer a catalog or not; or x could be a record
of a costumer cellphone call, and y the decision whether it is fraudulent or
not.

The basic difference between a classifier and a clusterer is the labelling
of data instances. In supervised methods data instances are labelled and
in unsupervised methods they are unlabelled. A classifier is a supervised
method, and a clusterer is a unsupervised method.
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Literally hundreds of model kinds and model building methods have
been proposed in the literature (see [WF05]). Here we will review only
those that we will use in this thesis.

2.1.1 Naı̈ve Bayes

Naı̈ve Bayes is a classifier algorithm known for its simplicity and low com-
putational cost. Given nC different classes, the trained Naı̈ve Bayes classi-
fier predicts for every unlabelled instance I the class C to which it belongs
with high accuracy.

The model works as follows: Let x1,. . . , xk be k discrete attributes, and
assume that xi can take ni different values. Let C be the class attribute,
which can take nC different values. Upon receiving an unlabelled instance
I = (x1 = v1, . . . , xk = vk), the Naı̈ve Bayes classifier computes a “proba-
bility” of I being in class c as:

Pr[C = c|I] ∼=

k∏

i=1

Pr[xi = vi|C = c]

= Pr[C = c] ·
k∏

i=1

Pr[xi = vi ∧ C = c]

Pr[C = c]

The values Pr[xi = vj ∧ C = c] and Pr[C = c] are estimated from
the training data. Thus, the summary of the training data is simply a 3-
dimensional table that stores for each triple (xi, vj, c) a count Ni,j,c of train-
ing instances with xi = vj, together with a 1-dimensional table for the
counts of C = c. This algorithm is naturally incremental: upon receiving a
new example (or a batch of new examples), simply increment the relevant
counts. Predictions can be made at any time from the current counts.

2.1.2 Decision Trees

Decision trees are classifier algorithms [BFOS94, Qui93]. In its simplest
versions, each internal node in the tree contains a test on an attribute, each
branch from a node corresponds to a possible outcome of the test, and each
leaf contains a class prediction. The label y = DT(x) for an instance x is
obtained by passing the instance down from the root to a leaf, testing the
appropriate attribute at each node and following the branch corresponding
to the attribute’s value in the instance.

A decision tree is learned by recursively replacing leaves by test nodes,
starting at the root. The attribute to test at a node is chosen by comparing
all the available attributes and choosing the best one according to some
heuristic measure.
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2.1.3 k-means clustering

k-means clustering divides the input data instances into k clusters such that
a metric relative to the centroids of the clusters is minimized. Total distance
between all objects and their centroids is the most common metric used in
k-means algorithms.

The k-means algorithm is as follows:

1. Place k points into the data space that is being clustered. These points
represent initial group centroids.

2. Assign each input data instance to the group that has the closest cen-
troid.

3. When all input instances have been assigned, recalculate the posi-
tions of each of the k centroids by taking the average of the points
assigned to it.

4. Repeat Steps 2 and 3 until the metric to be minimized no longer de-
creases.

2.2 Change Detection and Value Estimation

The following different modes of change have been identified in the litera-
ture [Tsy04, Sta03, WK96]:

• concept change

– concept drift

– concept shift

• distribution or sampling change

Concept refers to the target variable, which the model is trying to predict.
Concept change is the change of the underlying concept over time. Concept
drift describes a gradual change of the concept and concept shift happens
when a change between two concepts is more abrupt.

Distribution change, also known as sampling change or shift or virtual
concept drift , refers to the change in the data distribution. Even if the
concept remains the same, the change may often lead to revising the current
model as the model’s error rate may no longer be acceptable with the new
data distribution.

Some authors, as Stanley [Sta03], have suggested that from the practical
point of view, it is not essential to differentiate between concept change
and sampling change since the current model needs to be changed in both
cases. We agree to some extent, and our methods will not be targeted to
one particular type of change.
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2.2.1 Change Detection

Change detection is not an easy task, since a fundamental limitation ex-
ists [Gus00]: the design of a change detector is a compromise between de-
tecting true changes and avoiding false alarms. See [Gus00, BN93] for more
detailed surveys of change detection methods.

The CUSUM Test

The cumulative sum (CUSUM algorithm), first proposed in [Pag54], is a
change detection algorithm that gives an alarm when the mean of the input
data is significantly different from zero. The CUSUM input ǫt can be any
filter residual, for instance the prediction error from a Kalman filter.

The CUSUM test is as follows:

g0 = 0

gt = max (0, gt−1 + ǫt − υ)

if gt > h then alarm and gt = 0

The CUSUM test is memoryless, and its accuracy depends on the choice of
parameters υ and h.

The Geometric Moving Average Test

The CUSUM test is a stopping rule. Other stopping rules exist. For exam-
ple, the Geometric Moving Average (GMA) test, first proposed in [Rob00],
is the following

g0 = 0

gt = λgt−1 + (1 − λ)ǫt

if gt > h then alarm and gt = 0

The forgetting factor λ is used to give more or less weight to the last data
arrived. The treshold h is used to tune the sensitivity and false alarm rate
of the detector.

Statistical Tests

CUSUM and GMA are methods for dealing with numeric sequences. For
more complex populations, we need to use other methods. There exist
some statistical tests that may be used to detect change. A statistical test
is a procedure for deciding whether a hypothesis about a quantitative fea-
ture of a population is true or false. We test an hypothesis of this sort by
drawing a random sample from the population in question and calculating
an appropriate statistic on its items. If, in doing so, we obtain a value of
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the statistic that would occur rarely when the hypothesis is true, we would
have reason to reject the hypothesis.

To detect change, we need to compare two sources of data, and decide if
the hypothesis H0 that they come from the same distribution is true. Let’s
suppose we have two estimates, µ̂0 and µ̂1 with variances σ2

0 and σ2
1. If

there is no change in the data, these estimates will be consistent. Otherwise,
a hypothesis test will reject H0 and a change is detected. There are several
ways to construct such a hypothesis test. The simplest one is to study the
difference

µ̂0 − µ̂1 ∈ N(0, σ2
0 + σ2

1), under H0

or, to make a χ2 test

(µ̂0 − µ̂1)
2

σ2
0 + σ2

1

∈ χ2(1), under H0

from which a standard hypothesis test can be formulated.

For example, suppose we want to design a change detector using a sta-
tistical test with a probability of false alarm of 5%, that is,

Pr





|µ̂0 − µ̂1|
√

σ2
0 + σ2

1

> h



 = 0.05

A table of the Gaussian distribution shows that P(X < 1.96) = 0.975, so
the test becomes

(µ̂0 − µ̂1)
2

σ2
0 + σ2

1

> 1.96

Note that this test uses the normality hypothesis. In Chapter 4 we will
propose a similar test with theoretical guarantees. However, we could have
used this test on the methods of Chapter 4.

The Kolmogorov-Smirnov test [Kan06] is another statistical test used
to compare two populations. Given samples from two populations, the
cumulative distribution functions can be determined and plotted. Hence
the maximum value of the difference between the plots can be found and
compared with a critical value. If the observed value exceeds the critical
value, H0 is rejected and a change is detected. It is not obvious how to im-
plement the Kolmogorov-Smirnov test dealing with data streams. Kifer et
al. [KBDG04] propose a KS-structure to implement Kolmogorov-Smirnov
and similar tests, on the data stream setting.

19



CHAPTER 2. PRELIMINARIES

Drift Detection Method

The drift detection method (DDM) proposed by Gama et al. [GMCR04]
controls the number of errors produced by the learning model during pre-
diction. It compares the statistics of two windows: the first one contains
all the data, and the second one contains only the data from the beginning
until the number of errors increases. This method does not store these win-
dows in memory. It keeps only statistics and a window of recent data.

The number of errors in a sample of n examples is modelized by a bi-
nomial distribution. For each point i in the sequence that is being sampled,
the error rate is the probability of misclassifying (pi), with standard devia-
tion given by si =

√

pi(1 − pi)/i. It assumes (as can be argued e.g. in the
PAC learning model [Mit97]) that the error rate of the learning algorithm
(pi) will decrease while the number of examples increases if the distribution
of the examples is stationary. A significant increase in the error of the algo-
rithm, suggests that the class distribution is changing and, hence, the actual
decision model is supposed to be inappropriate. Thus, it stores the values
of pi and si when pi + si reaches its minimum value during the process
(obtaining ppmin and smin), and when the following conditions triggers:

• pi + si ≥ pmin + 2 · smin for the warning level. Beyond this level, the
examples are stored in anticipation of a possible change of context.

• pi + si ≥ pmin + 3 · smin for the drift level. Beyond this level the con-
cept drift is supposed to be true, the model induced by the learning
method is reset and a new model is learnt using the examples stored
since the warning level triggered. The values for pmin and smin are
reset too.

This approach has a good behaviour of detecting abrupt changes and
gradual changes when the gradual change is not very slow, but it has diffi-
culties when the change is slowly gradual. In that case, the examples will
be stored for long time, the drift level can take too much time to trigger and
the example memory can be exceeded.

Baena-Garcı́a et al. proposed a new method EDDM in order to improve
DDM. EDDM [BGCAF+06] is shown to be better than DDM for some data
sets and worse for others. It is based on the estimated distribution of the
distances between classification errors. The window resize procedure is
governed by the same heuristics.

2.2.2 Estimation

An Estimator is an algorithm that estimates the desired statistics on the
input data, which may change over time. The simplest Estimator algorithm
for the expected is the linear estimator, which simply returns the average
of the data items contained in the Memory. Other examples of run-time
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efficient estimators are Auto-Regressive, Auto Regressive Moving Average,
and Kalman filters.

Exponential Weighted Moving Average

An exponentially weighted moving average (EWMA) estimator is an al-
gorithm that updates the estimation of a variable by combining the most
recent measurement of the variable with the EWMA of all previous mea-
surements:

Xt = αzt + (1 − α)Xt−1 = Xt−1 + α(zt − Xt−1)

where Xt is the moving average, zt is the latest measurement, and α is the
weight given to the latest measurement (between 0 and 1). The idea is to
produce an estimate that gives more weight to recent measurements, on
the assumption that recent measurements are more likely to be relevant.
Choosing an adequate α is a difficult problem, and it is not trivial.

The Kalman Filter

One of the most widely used Estimation algorithms is the Kalman filter. We
give here a description of its essentials; see [WB95] for a complete introduc-
tion.

The Kalman filter addresses the general problem of trying to estimate
the state x ∈ ℜn of a discrete-time controlled process that is governed by
the linear stochastic difference equation

xt = Axt−1 + But + wt−1

with a measurement z ∈ ℜm that is

Zt = Hxt + vt.

The random variables wt and vt represent the process and measurement
noise (respectively). They are assumed to be independent (of each other),
white, and with normal probability distributions

p(w) ∼ N(0, Q)

p(v) ∼ N(0, R).

In essence, the main function of the Kalman filter is to estimate the state
vector using system sensors and measurement data corrupted by noise.

The Kalman filter estimates a process by using a form of feedback con-
trol: the filter estimates the process state at some time and then obtains
feedback in the form of (noisy) measurements. As such, the equations for
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the Kalman filter fall into two groups: time update equations and measure-
ment update equations. The time update equations are responsible for pro-
jecting forward (in time) the current state and error covariance estimates to
obtain the a priori estimates for the next time step.

x−
t = Axt−1 + But

P−
t = APt−1A

T + Q

The measurement update equations are responsible for the feedback, i.e.
for incorporating a new measurement into the a priori estimate to obtain
an improved a posteriori estimate.

Kt = P−
t HT(HP−

t HT + R)−1

xt = x−
t + Kt(zt − Hx−

t )

Pt = (I − KtH)P−
t .

There are extensions of the Kalman filter (Extended Kalman Filters, or EKF)
for the cases in which the process to be estimated or the measurement-to-
process relation is nonlinear. We do not discuss them here.

In our case we consider the input data sequence of real values z1, z2, . . . ,

zt, . . . as the measurement data. The difference equation of our discrete-
time controlled process is the simpler one, with A = 1, H = 1, B = 0. So the
equations are simplified to:

Kt = Pt−1/(Pt−1 + R)

Xt = Xt−1 + Kt(zt − Xt−1)

Pt = Pt(1 − Kt) + Q.

Note the similarity between this Kalman filter and an EWMA estimator,
taking α = Kt. This Kalman filter can be considered as an adaptive EWMA
estimator where α = f(Q, R) is calculated optimally when Q and R are
known.

The performance of the Kalman filter depends on the accuracy of the
a-priori assumptions:

• linearity of the difference stochastic equation

• estimation of covariances Q and R, assumed to be fixed, known, and
follow normal distributions with zero mean.

When applying the Kalman filter to data streams that vary arbitrarily over
time, both assumptions are problematic. The linearity assumption for sure,
but also the assumption that parameters Q and R are fixed and known – in
fact, estimating them from the data is itself a complex estimation problem.
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2.3 Frequent Pattern Mining

Patterns are graphs, composed by a labeled set of nodes (vertices) and a
labeled set of edges. The number of nodes in a pattern is called its size.
Examples of patterns are itemsets, sequences, and trees [ZPD+05]. Given
two patterns t and t ′, we say that t is a subpattern of t ′, or t ′ is a super-pattern
of t, denoted by t � t ′ if there exists a 1-1 mapping from the nodes in t to
a subset of the nodes in t ′ that preserves node and edge labeling. As there
may be many mappings with this property, we will define for each type of
pattern a more specific definition of subpattern. Two patterns t, t ′ are said
to be comparable if t � t ′ or t ′ � t. Otherwise, they are incomparable. Also
t ≺ t ′ if t is a proper subpattern of t ′ (that is, t � t ′ and t 6= t ′).

The (infinite) set of all patterns will be denoted with T , but actually all
our developments will proceed in some finite subset of T which will act as
our universe of discourse.

The input to our data mining process, now is a given finite dataset D of
transactions, where each transaction s ∈ D consists of a transaction iden-
tifier, tid, and a pattern. Tids are supposed to run sequentially from 1 to
the size of D. From that dataset, our universe of discourse U is the set of all
patterns that appear as subpattern of some pattern in D.

Following standard usage, we say that a transaction s supports a pat-
tern t if t is a subpattern of the pattern in transaction s. The number of
transactions in the dataset D that support t is called the support of the pat-
tern t. A subpattern t is called frequent if its support is greater than or equal
to a given threshold min sup. The frequent subpattern mining problem
is to find all frequent subpatterns in a given dataset. Any subpattern of a
frequent pattern is also frequent and, therefore, any superpattern of a non-
frequent pattern is also nonfrequent (the antimonotonicity property).

We define a frequent pattern t to be closed if none of its proper superpat-
terns has the same support as it has. Generally, there are much fewer closed
patterns than frequent ones. In fact, we can obtain all frequent subpatterns
with their support from the set of frequent closed subpatterns with their
supports. So, the set of frequent closed subpatterns maintains the same
information as the set of all frequent subpatterns.

Itemsets are subsets of a set of items. Let I = {i1, · · · , in} be a fixed set
of items. All possible subsets I ′ ⊆ I are itemsets. We can consider itemsets
as patterns without edges, and without two nodes having the same label.
In itemsets the notions of subpattern and super-pattern correspond to the
notions of subset and superset.

Sequences are ordered list of itemsets. Let I = {i1, · · · , in} be a fixed
set of items. Sequences can be represented as 〈(I1)(I2)...(In)〉, where each
Ii is a subset of I, and Ii comes before Ij if i ≤ j. Without loss of gener-
ality we can assume that the items in each itemset are sorted in a certain
order (such as alphabetic order). In sequences we are interested in a no-
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tion of subsequence defined as following: a sequence s = 〈(I1)(I2)...(In)〉
is a subsequence of s ′ = 〈(I ′1)(I ′2)...(I ′n)〉 i.e. s � s ′, if there exist integers
1 ≤ j1 < j2 . . . < jn ≤ m such that I1 ⊆ I ′j1 , . . . , In ⊆ I ′jn .

Trees are connected acyclic graphs, rooted trees are trees with a vertex
singled out as the root, n-ary trees are trees for which each node which is not
a leaf has at most n children, and unranked trees are trees with unbounded
arity. We say that t1, . . . , tk are the components of tree t if t is made of a node
(the root) joined to the roots of all the ti’s. We can distinguish betweeen the
cases where the components at each node form a sequence (ordered trees)
or just a set (unordered trees).

2.4 Mining data streams: state of the art

The Data Stream model represents input data that arrives at high speed
[Agg06, BW01, GGR02, Mut03]. This data is so massive that we may not
be able to store all of what we see, and we don’t have too much time to
process it.

It requires that at a time t in a data stream with domain N, this three
performance measures: the per-item processing time, storage and the com-
puting time to be simultaneously o(N, t), preferably, polylog(N,t).

The use of randomization often leads to simpler and more efficient algo-
rithms in comparison to known deterministic algorithms [MR95]. If a ran-
domized algorithm always return the right answer but the running times
vary, it is known as a Las Vegas algorithm. A Monte Carlo algorithm has
bounds on the running time but may not return the correct answer. One
way to think of a randomized algorithm is simply as a probability distribu-
tion over a set of deterministic algorithms.

Given that a randomized algorithm returns a random variable as a re-
sult, we would like to have bounds on the tail probability of that random
variable. These tell us that the probability that a random variable deviates
from its expected value is small. Basic tools are Chernoff, Hoeffding, and
Bernstein bounds [BLB03, CBL06]. Bernstein’s bound is the most accurate
if variance is known.

Theorem 1. Let X =
∑

i Xi where X1, . . . , Xn are independent and indentically
distributed in [0, 1]. Then

1. Chernoff For each ǫ < 1

Pr[X > (1 + ǫ)E[X]] ≤ exp

(

−
ǫ2

3
E[X]

)

2. Hoeffding For each t > 0

Pr[X > E[X] + t] ≤ exp
(

−2t2/n
)
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3. Bernstein Let σ2 =
∑

i σ2
i the variance of X. If Xi − E[Xi] ≤ b for each

i ∈ [n] then for each t > 0

Pr[X > E[X] + t] ≤ exp

(

−
t2

2σ2 + 2
3
bt

)

Surveys for mining data streams, with appropriate references, are given
in [GG07, GZK05, Agg06].

2.4.1 Sliding Windows in data streams

An interesting approach to mining data streams is to use a sliding window
to analyze them [BDMO03, DGIM02]. This technique is able to deal with
concept drift. The main idea is instead of using all data seen so far, use
only recent data. We can use a window of size W to store recent data, and
deleting the oldest item when inserting the newer one. An element arriving
at time t expires at time t + W.

Datar et al. [DGIM02] have considered the problem of maintaining statis-
tics over sliding windows. They identified a simple counting problem
whose solution is a prerequisite for efficient maintenance of a variety of
more complex statistical aggregates: Given a stream of bits, maintain a
count of the number of 1’s in the last W elements seen from the stream.
They showed that, using O(1

ǫ
log2 W) bits of memory, it is possible to esti-

mate the number of 1’s to within a factor of 1+ǫ. They also give a matching
lower bound of Ω(1

ǫ
log2 W) memory bits for any deterministic or random-

ized algorithm. They extended their scheme to maintain the sum of the last
W elements of a stream of integers in a known range [0, B], and provide
matching upper and lower bounds for this more general problem as well.

An important parameter to consider is the size W of the window. Usu-
ally it can be determined a priori by the user. This can work well if informa-
tion on the time-scale of change is available, but this is rarely the case. Nor-
mally, the user is caught in a tradeoff without solution: choosing a small
size (so that the window reflects accurately the current distribution) and
choosing a large size (so that many examples are available to work on, in-
creasing accuracy in periods of stability). A different strategy uses a decay
function to weight the importance of examples according to their age (see
e.g. [CS03]). If there is concept drift, the tradeoff shows up in the choice of
a decay function that should match the unknown rate of change.

2.4.2 Classification in data streams

Classic decision tree learners like ID3, C4.5 [Qui93] and CART [BFOS94]
assume that all training examples can be stored simultaneously in main
memory, and are thus severely limited in the number of examples they
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can learn from. And in particular not applicable to data streams, where
potentially there is no bound on number of examples.

Domingos and Hulten [DH00] developed Hoeffding trees, an incremen-
tal, anytime decision tree induction algorithm that is capable of learning
from massive data streams, assuming that the distribution generating ex-
amples does not change over time. We describe it in some detail, since it
will be the basis for our adaptive decision tree classifiers.

Hoeffding trees exploit the fact that a small sample can often be enough
to choose an optimal splitting attribute. This idea is supported mathemat-
ically by the Hoeffding bound, which quantifies the number of observa-
tions (in our case, examples) needed to estimate some statistics within a
prescribed precision (in our case, the goodness of an attribute). More pre-
cisely, the Hoeffding bound states that with probability 1−δ, the true mean
of a random variable of range R will not differ from the estimated mean
after n independent observations by more than:

ǫ =

√

R2 ln(1/δ)

2n
.

A theoretically appealing feature of Hoeffding Trees not shared by other
incremental decision tree learners is that it has sound guarantees of per-
formance. Using the Hoeffding bound and the concept of intensional dis-
agreement one can show that its output is asymptotically nearly identical
to that of a non-incremental learner using infinitely many examples. The
intensional disagreement ∆i between two decision trees DT1 and DT2 is the
probability that the path of an example through DT1 will differ from its path
through DT2. Hoeffding Trees have the following theoretical guarantee:

Theorem 2. If HTδ is the tree produced by the Hoeffding tree algorithm with
desired probability δ given infinite examples, DT is the asymptotic batch tree, and
p is the leaf probability, then E[∆i(HTδ, DT)] ≤ δ/p.

VFDT (Very Fast Decision Trees) is the implementation of Hoeffding
trees, with a few heuristics added, described in [DH00]; we basically iden-
tify both in this thesis. The pseudo-code of VFDT is shown in Figure 2.1.
Counts nijk are the sufficient statistics needed to choose splitting attributes,
in particular the information gain function G implemented in VFDT. Func-
tion ǫ(δ, . . . ) in line 4 is given by the Hoeffding bound and guarantees that
whenever best and 2nd best attributes satisfy this condition, we can confi-
dently conclude that best indeed has maximal gain. The sequence of exam-
ples S may be infinite, in which case the procedure never terminates, and
at any point in time a parallel procedure can use the current tree to make
class predictions.

Many other classification methods exist, but only a few can be applied
to the data stream setting, without losing accuracy and in an efficient way.
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VFDT(Stream, δ)

1 Let HT be a tree with a single leaf (root)
2 Init counts nijk at root to 0

3 for each example (x, y) in Stream
4 do VFDTGROW((x, y), HT, δ)

VFDTGROW((x, y), HT, δ)

1 Sort (x, y) to leaf l using HT

2 Update counts nijk at leaf l

3 if examples seen so far at l are not all of the same class
4 then Compute G for each attribute

5 if G(Best Attr.)−G(2nd best) >

√

R2 ln 1/δ
2n

6 then Split leaf on best attribute
7 for each branch
8 do Start new leaf and initialize counts

Figure 2.1: The VFDT algorithm

We mention two more that, although not so popular, have the potential for
adaptation to the data stream setting.

Last [Las02] has proposed a classification system IFN, which uses a
info-fuzzy network, as a base classifier. IFN, or Info-Fuzzy Network, is
an oblivious tree-like classification model, which is designed to minimize
the total number of predicting attributes. The underlying principle of the
IFN method is to construct a multi-layered network in order to test the
Mutual Information (MI) between the input and output attributes. Each
hidden layer is related to a specific input attribute and represents the inter-
action between this input attribute and the other ones. The IFN algorithm
is using the pre-pruning strategy: a node is split if this procedure brings
about a statistically significant decrease in the entropy value (or increase
in the mutual information) of the target attribute. If none of the remain-
ing input attributes provides a statistically significant increase in mutual
information, the network construction stops. The output of this algorithm
is a network, which can be used to predict the values of a target attribute
similarly to the prediction technique used in decision trees.

AWSOM (Arbitrary Window Stream mOdeling Method) is a method
for interesting pattern discovery from sensors proposed by Papadimitriou
et al. [PFB03]. It is a one-pass algorithm that incrementally updates the pat-
terns. This method requires only O(log n) memory where n is the length
of the sequence. It uses wavelet coefficients as compact information repre-

27



CHAPTER 2. PRELIMINARIES

sentation and correlation structure detection, applying a linear regression
model in the wavelet domain.

2.4.3 Clustering in data streams

An incremental k-means algorithm for clustering binary data streams was
proposed by Ordonez [Ord03]. As this algorithm has several improve-
ments to k-means algorithm, the proposed algorithm can outperform the
scalable k-means in the majority of cases. The use of binary data simplifies
the manipulation of categorical data and eliminates the need for data nor-
malization. The complexity of the algorithm for n points in Rd, is O(dkn),
where k is the number of centers. It updates the cluster centers and weights
after examining each batch of

√
n points rather than updating them one by

one.
LOCALSEARCH is an algorithm for high quality data stream clustering

proposed by O’Callaghan et al. [OMM+02]. An algorithm called STREAM
starts by determining the size of the sample and then applies the LOCAL-
SEARCH algorithm if the sample size is larger than a pre-specified equa-
tion result. This process is repeated for each data chunk. Finally, the LO-
CALSEARCH algorithm is applied to the cluster centers generated in the
previous iterations.

2.5 Frequent pattern mining: state of the art

There exist abundant work in closure-based mining on structured data,
particularly sequences [YHA03, BG07b], trees [CXYM01, TRS04, AU05],
and graphs [YH03, YZH05]. One of the differences with closed itemset
mining stems from the fact that the set theoretic intersection no longer
applies, and whereas the intersection of sets is a set, the intersection of
two sequences or two trees is not one sequence or one tree. This makes it
nontrivial to justify the word “closed” in terms of a standard closure op-
erator. Many papers resort to a support-based notion of closedness of a
tree or sequence ([CXYM01], see below); others (like [AU05]) choose a vari-
ant of trees where a closure operator between trees can be actually defined
(via least general generalization). In some cases, the trees are labeled, and
strong conditions are imposed on the label patterns (such as nonrepeated
labels in tree siblings [TRS04] or nonrepeated labels at all in sequences
[GB04]).

Yan and Han [YH02, YH03] proposed two algorithms for mining fre-
quent and closed graphs. The first one is called gSpan (graph-based Sub-
structure pattern mining) and discovers frequent graph substructures with-
out candidate generation; gSpan builds a new lexicographic order among
graphs, and maps each graph to a unique minimum DFS code as its canon-
ical label. Based on this lexicographic order, gSpan adopts the depth-first
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search strategy to mine frequent connected subgraphs. The second one
is called CloseGraph and discovers closed graph patterns. CloseGraph is
based on gSpan, and is based on the development of two pruning meth-
ods: equivalent occurrence and early termination. The early termination
method is similar to the early termination by equivalence of projected data-
bases method in CloSpan [YHA03], an algorithm for mining closed sequen-
tial patterns in large datasets published by the Illimine team. However, in
graphs there are some cases where early termination may fail and miss
some patterns. By detecting and eliminating these cases, CloseGraph guar-
antees the completeness and soundness of the closed graph patterns dis-
covered.

In the case of trees, only labeled tree mining methods are considered in
the literature. There are four broad kinds of subtrees: bottom-up subtrees,
top-down subtrees, induced subtrees, and embedded subtrees. Bottom-up
subtree mining is the simplest from the subtree mining point of view.

Algorithms for embedded labeled frequent trees include:

• Rooted Ordered Trees

– TreeMiner [Zak02]: This algorithm, developed by Zaki, uses
vertical representations for support counting, and follows the
combined depth-first/breadth traversal idea to discover all em-
bedded ordered subtrees.

• Rooted Unordered Trees

– SLEUTH [Zak05]: This method, also by Zaki, extends TreeM-
iner to the unordered case using two different methods for gen-
erating canonical candidates: the class-based extension and the
canonical extension.

Algorithms for induced labeled frequent trees include:

• Rooted Ordered Trees

– FREQT [AAK+02]. Asai et al. developed FREQT. It uses an ex-
tension approach based on the rightmost path. FREQT uses an
occurrence list base approach to determine the support of trees.

• Rooted Unordered Trees

– uFreqt [NK03]: Nijssen et al. extended FREQT to the unordered
case. Their method solves in the worst case, a maximum bipar-
tite matching problem when counting tree supports.

– uNot [AAUN03]: Asai et al. presented uNot in order to extend
FREQT. It uses an occurrence list based approach wich is similar
to Zaki’s TreeMiner.
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– HybridTreeMiner [CYM04]: Chi et al. proposed HybridTreeM-
iner, a method that generates candidates using both joins and ex-
tensions. It uses the combined depth-first/breadth-first traver-
sal approach.

– PathJoin [XYLD03]: Xiao et al. developed PathJoin, assuming
that no two siblings are indentically labeled. It presents the max-
imal frequent subtrees. A maximal frequent subtree is a frequent
subtree none of whose proper supertrees are frequent.

A survey of works on frequent subtree mining can be found in [CMNK01].

Arimura and Uno proposed CLOATT [AU05] considering closed mining
in attribute trees, which is a subclass of labeled ordered trees and can also
be regarded as a fragment of description logic with functional roles only.
These attribute trees are defined using a relaxed tree inclusion. Termier
et al. [TRS04] considered the frequent closed tree discovery problem for a
class of trees with the same constraint as attribute trees.

Labeled trees are trees in which each vertex is given a unique label. Un-
labeled trees are trees in which each vertex has no label, or there is a unique
label for all vertices. A comprehensive introduction to the algorithms on
unlabeled trees can be found in [Val02].

2.5.1 CMTreeMiner

Chi et al. proposed CMTreeMiner [CXYM01], the first algorithm to dis-
cover all closed and maximal frequent labeled induced subtrees without
first discovering all frequent subtrees. CMTreeMiner is to our knowledge,
the state of art method for closed frequent tree mining. It shares many fea-
tures with CloseGraph, and uses two pruning techniques: the left-blanket
and right-blanket pruning. The blanket of a tree is defined as the set of im-
mediate supertrees that are frequent, where an immediate supertree of a tree t

is a tree that has one more vertex than t. The left-blanket of a tree t is the
blanket where the vertex added is not in the right-most path of t (the path
from the root to the rightmost vertex of t). The right-blanket of a tree t is the
blanket where the vertex added is in the right-most path of t. The method
is as follows: it computes, for each candidate tree, the set of trees that are
occurrence-matched with its blanket’s trees. If this set is not empty, they
apply two pruning techniques using the left-blanket and right-blanket. If
it is empty, then they check if the set of trees that are transaction-matched
but not occurrence matched with its blanket’s trees is also empty. If this is
the case, there is no supertree with the same support and then the tree is
closed.

CMTreeMiner is a labeled tree method and it was not designed for un-
labeled trees. As explained in [CXYM01]:
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Therefore, if the number of distinct labels decrease dramatically
(so different occurrences for the same pattern increase dramat-
ically), the memory usage of CMTreeMiner is expected to in-
crease and its performance is expected to deteriorate. To study
the performance under this special case and to modify CMTreeM-
iner to handle it is a topic for future work.

In this thesis we will propose closed frequent mining methods for un-
labeled trees, that will outperform CMTreeMiner precisely in this case.

2.5.2 DRYADEPARENT

Termier et al. proposed DRYADEPARENT [TRS+08] as a closed frequent at-
tribute tree mining method comparable to CMTreeMiner. Attribute trees
are trees such that two sibling nodes cannot have the same label. They
extend to induced subtrees their previous algorithm DRYADE [TRS04].

The DRYADE and DRYADEPARENT algorithm are based on the compu-
tation of tiles (closed frequent attribute trees of depth 1) in the data and
on an efficient hooking strategy that reconstructs the closed frequent trees
from these tiles. Whereas CMTreeMiner uses a classical generate-and-test
strategy to build candidate trees edge by edge, the hooking strategy of
DRYADEPARENT finds a complete depth level at each iteration and does
not need tree mapping tests. The authors claim that their experiments have
shown that DRYADEPARENT is faster than CMTreeMiner in most settings
and that the performances of DRYADEPARENT are robust with respect to
the structure of the closed frequent trees to find, whereas the performances
of CMTreeMiner are biased toward trees having most of their edges on their
rightmost branch.

As attribute trees are trees such that two sibling nodes cannot have the
same label, DRYADEPARENT is not a method appropriate for dealing with
unlabeled trees.

2.5.3 Streaming Pattern Mining

There is a large body of work done on itemset mining. An important part
of the most recent work is related to data streams; see the survey [JCN07b]
and the references there. We can divide these data stream methods in two
families depending if they use a landmark window or a sliding window.
Only a small part of these methods deal with closed frequent mining. Mo-
ment [CWYM04], CFI-Stream [JG06], and IncMine [JCN07a] are the state-
of-art algorithms for mining frequent closed itemsets over a sliding win-
dow. CFI-Stream stores only closed itemsets in memory, but must maintain
all closed itemsets as does not implement a min-support threshold. Mo-
ment stores much more information besides the current closed frequent
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itemsets, but it has a min-support threshold to reduce the quantity of pat-
terns found. IncMine proposes a notion of semi-FCIs that consists in in-
creasing the minimum support threshold for an itemset as it is retained
longer in the window.

A lot of research work exist on XML pattern mining. Asai et al. [AAA+02]
present StreamT, a tree online mining algorithm that uses a forgetting model
and is able to maintain a sliding window, but it extracts only frequent trees,
not closed ones. Hsieh et al. [HWC06] propose STMer, an alternative to
StreamT to deal with frequent trees over data streams, but without using
a sliding window. In [FQWZ07], Feng et al. present SOLARIA*, a frequent
closed XML query pattern mining algorithm, but it is not an incremental
method. Li. et al [LSL06] present Incre-FXQPMiner, an incremental mining
algorithm of frequent XML query patterns, but it does not obtain the closed
XML queries, neither uses a sliding window.
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Evolving Data Stream Learning
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3
Mining Evolving Data Streams

In order to deal with evolving data streams, the model learned from the
streaming data must be able to capture up-to-date trends and transient pat-
terns in the stream [Tsy04, WFYH03]. To do this, as we revise the model by
incorporating new examples, we must also eliminate the effects of outdated
examples representing outdated concepts. This is a nontrivial task. Also,
we propose a new experimental data stream framework for studying con-
cept drift.

3.1 Introduction

Dealing with time-changing data requires strategies for detecting and quan-
tifying change, forgetting stale examples, and for model revision. Fairly
generic strategies exist for detecting change and deciding when examples
are no longer relevant. Model revision strategies, on the other hand, are in
most cases method-specific.

Most strategies for dealing with time change contain hardwired con-
stants, or else require input parameters, concerning the expected speed or
frequency of the change; some examples are a priori definitions of sliding
window lengths, values of decay or forgetting parameters, explicit bounds
on maximum drift, etc. These choices represent preconceptions on how
fast or how often the data are going to evolve and, of course, they may
be completely wrong. Even more, no fixed choice may be right, since the
stream may experience any combination of abrupt changes, gradual ones,
and long stationary periods. More in general, an approach based on fixed
parameters will be caught in the following tradeoff: the user would like
to use values of parameters that give more accurate statistics (hence, more
precision) during periods of stability, but at the same time use the opposite
values of parameters to quickly react to changes, when they occur.

Many ad-hoc methods have been used to deal with drift, often tied to
particular algorithms. In this chapter we propose a more general approach
based on using two primitive design elements: change detectors and es-
timators. The idea is to encapsulate all the statistical calculations having
to do with detecting change and keeping updated statistics from a stream
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an abstract data type that can then be used to replace, in a black-box way,
the counters and accumulators that typically all machine learning and data
mining algorithms use to make their decisions, including when change has
occurred.

We believe that, compared to any previous approaches, our approach
better isolates different concerns when designing new data mining algo-
rithms, therefore reducing design time, increasing modularity, and facili-
tating analysis. Furthermore, since we crisply identify the nuclear prob-
lem in dealing with drift, and use a well-optimized algorithmic solution to
tackle it, the resulting algorithms are more accurate, adaptive, and time-
and memory-efficient than other ad-hoc approaches.

3.1.1 Theoretical approaches

The task of learning drifting or time-varying concepts has also been stud-
ied in computational learning theory. Learning a changing concept is in-
feasible, if no restrictions are imposed on the type of admissible concept
changes, but drifting concepts are provably efficiently learnable (at least
for certain concept classes), if the rate or the extent of drift is limited in
particular ways.

Helmbold and Long [HL94] assume a possibly permanent but slow con-
cept drift and define the extent of drift as the probability that two subse-
quent concepts disagree on a randomly drawn example. Their results in-
clude an upper bound for the extend of drift maximally tolerable by any
learner and algorithms that can learn concepts that do not drift more than
a certain constant extent of drift. Furthermore they show that it is sufficient
for a learner to see a fixed number of the most recent examples. Hence a
window of a certain minimal fixed size allows to learn concepts for which
the extent of drift is appropriately limited. While Helmbold and Long re-
strict the extend of drift, Kuh, Petsche, and Rivest [KPR90] determine a
maximal rate of drift that is acceptable by any learner, i. e. a maximally
acceptable frequency of concept changes, which implies a lower bound for
the size of a fixed window for a time-varying concept to be learnable, which
is similar to the lower bound of Helmbold and Long.

3.2 Algorithms for mining with change

In this section we review some of the data mining methods that deal with
data streams and concept drift. There are many algorithms in the literature
that address this problem. We focus on the ones that they are more referred
to in other works.
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3.2.1 FLORA: Widmer and Kubat

FLORA [WK96] is a supervised incremental learning system that takes as
input a stream of positive and negative example of a target concept that
changes over time. The original FLORA algorithm uses a fixed moving
window approach to process the data. The concept definitions are stored
into three description sets:

• ADES description based on positive examples

• NDES descriptions based on negative examples

• PDES concept descriptions based on both positive and negative ex-
amples

The system uses the examples present in the moving window to incremen-
tally update the knowledge about the concepts. The update of the concept
descriptions involves two processes: a learning process (adjust concept de-
scription based on the new data) and a forgetting process (discard data that
may be out of date). FLORA2 was introduced to address some of the prob-
lems associated with FLORA such as the fixed window size. FLORA2 has
a heuristic routine to dynamically adjust its window size and uses a better
generalization technique to integrate the knowledge extracted from the ex-
amples observed. The algorithm was further improved to allow previously
extracted knowledge to help deal with recurring concepts (FLORA3) and
to allow it to handle noisy data (FLORA4).

3.2.2 Suport Vector Machines: Klinkenberg

Klinkenberg and Joachims [KJ00] presented a method to handle concept
drift with support vector machines. A proper introduction to SVM can be
found in [Bur98].

Their method maintains a window on the training data with an appro-
priate size without using a complicated parameterization. The key idea is
to automatically adjust the window size so that the estimated generaliza-
tion error on new examples is minimized. To get an estimate of the gen-
eralization error, a special form of ξα-estimates is used. ξα-estimates are
a particularly efficient method for estimating the performance of an SVM,
estimating the leave-one-out-error of a SVM based solely on the one SVM
solution learned with all examples.

Each example z = (x, y) consists of a feature vector x ∈ RN and a label
y ∈ {−1,+1} indicating its classification. Data arrives over time in batches
of equal size, each containing m examples. For each batch i the data is in-
dependently identically distributed with respect to a distribution Pri(x, y).
The goal of the learner L is to sequentially predict the labels of the next
batch.
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The window adaptive approach that employs this method, works that
way: at batch t, it essentially tries various windows sizes, training a SVM
for each resulting training set.

For each window size it computes a ξα-estimate based on the result of
training, considering only the last batch for the estimation, that is the m

most recent training examples z(t,1), . . . , z(t,m).

This reflects the assumption that the most recent examples are most
similar to the new examples in batch t + 1. The window size minimiz-
ing the ξα-estimate of the error rate is selected by the algorithm and used
to train a classifier for the current batch.

The window adaptation algorithm is showed in figure 3.1.

SVMWINDOWSIZE(Stream STrain consisting of t batches of m examples )

1 for h ∈ {0, . . . , t − 1}

2 do train SVM on examples z(t−h,1), . . . , z(t,m)

3 Compute ξα-estimate on examples z(t−h,1), . . . , z(t,m)

4 return Window size which minimizes ξα-estimate.

Figure 3.1: Window size adaption algorithm

3.2.3 OLIN: Last

Last in [Las02] describes an online classification system that uses the info-
fuzzy network (IFN) explained in Section 2.4.2. The system called OLIN
(On Line Information Network) gets a continuous stream of non-stationary
data and builds a network based on a sliding window of the latest exam-
ples. The system dynamically adapts the size of the training window and
the frequency of model re-construction to the current rate of concept drift

OLIN uses the statistical significance of the difference between the train-
ing and the validation accuracy of the current model as an indicator of con-
cept stability.

OLIN adjusts dynamically the number of examples between model re-
constructions by using the following heuristic: keep the current model for
more examples if the concept appears to be stable and reduce drastically
the size of the validation window, if a concept drift is detected.

OLIN generates a new model for every new sliding window. This ap-
proach ensures accurate and relevant models over time and therefore an
increase in the classification accuracy. However, the OLIN algorithm has a
major drawback, which is the high cost of generating new models. OLIN
does not take into account the costs involved in replacing the existing model
with a new one.
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3.2.4 CVFDT: Domingos

Hulten, Spencer and Domingos presented Concept-adapting Very Fast De-
cision Trees CVFDT [HSD01] algorithm as an extension of VFDT to deal
with concept change.

Figure 3.2 shows CVFDT algorithm. CVFDT keeps the model it is learn-
ing in sync with such changing concepts by continuously monitoring the
quality of old search decisions with respect to a sliding window of data
from the data stream, and updating them in a fine-grained way when it de-
tects that the distribution of data is changing. In particular, it maintains suf-
ficient statistics throughout time for every candidate M considered at every
search step. After the first w examples, where w is the window width, it
subtracts the oldest example from these statistics whenever a new one is
added. After every ∆n new examples, it determines again the best candi-
dates at every previous search decision point. If one of them is better than
an old winner by δ∗ then one of two things has happened. Either the orig-
inal decision was incorrect (which will happen a fraction δ of the time) or
concept drift has occurred. In either case,it begins an alternate search start-
ing from the new winners, while continuing to pursue the original search.
Periodically it uses a number of new examples as a validation set to com-
pare the performance of the models produced by the new and old searches.
It prunes an old search (and replace it with the new one) when the new
model is on average better than the old one, and it prunes the new search
if after a maximum number of validations its models have failed to become
more accurate on average than the old ones. If more than a maximum num-
ber of new searches is in progress, it prunes the lowest-performing ones.

3.2.5 UFFT: Gama

Gama, Medas and Rocha [GMR04] presented the Ultra Fast Forest of Trees
(UFFT) algorithm.

UFFT is an algorithm for supervised classification learning, that gener-
ates a forest of binary trees. The algorithm is incremental, processing each
example in constant time, works on-line, UFFT is designed for continuous
data. It uses analytical techniques to choose the splitting criteria, and the
information gain to estimate the merit of each possible splitting-test. For
multi-class problems, the algorithm builds a binary tree for each possible
pair of classes leading to a forest-of-trees. During the training phase the
algorithm maintains a short term memory. Given a data stream, a limited
number of the most recent examples are maintained in a data structure that
supports constant time insertion and deletion. When a test is installed, a
leaf is transformed into a decision node with two descendant leaves. The
sufficient statistics of the leaf are initialized with the examples in the short
term memory that will fall at that leaf.
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CVFDT(Stream, δ)

1 Let HT be a tree with a single leaf(root)
2 Init counts nijk at root
3 for each example (x, y) in Stream
4 do Add, Remove and Forget Examples
5 CVFDTGROW((x, y), HT, δ)

6 CHECKSPLITVALIDITY(HT,n, δ)

CVFDTGROW((x, y), HT, δ)

1 Sort (x, y) to leaf l using HT

2 Update counts nijk at leaf l and nodes traversed in the sort
3 if examples seen so far at l are not all of the same class
4 then Compute G for each attribute

5 if G(Best Attr.)−G(2nd best) >

√

R2 ln 1/δ
2n

6 then Split leaf on best attribute
7 for each branch
8 do Start new leaf and initialize counts
9 Create alternate subtree

CHECKSPLITVALIDITY(HT,n, δ)

1 for each node l in HT that it is not a leaf
2 do for each tree Talt in ALT(l)
3 do CHECKSPLITVALIDITY(Talt, n, δ)

4 if exists a new promising attributes at node l

5 do Start an alternate subtree

Figure 3.2: The CVFDT algorithm
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The UFFT algorithm maintains, at each node of all decision trees, a
Naı̈ve Bayes classifier. Those classifiers were constructed using the suffi-
cient statistics needed to evaluate the splitting criteria when that node was
a leaf. After the leaf becomes a node, all examples that traverse the node
will be classified by the Naı̈ve Bayes. The basic idea of the drift detection
method is to control this error-rate. If the distribution of the examples is
stationary, the error rate of Naı̈ve-Bayes decreases. If there is a change on
the distribution of the examples the Naı̈ve Bayes error increases. The sys-
tem uses DDM, the drift detection method explained in Section 2.2.1. When
it detects an statistically significant increase of the Naı̈ve-Bayes error in a
given node, an indication of a change in the distribution of the examples,
this suggest that the splitting-test that has been installed at this node is no
longer appropriate. The subtree rooted at that node is pruned, and the node
becomes a leaf. All the sufficient statistics of the leaf are initialized. When
a new training example becomes available, it will cross the corresponding
binary decision trees from the root node till a leaf. At each node, the Naı̈ve
Bayes installed at that node classifies the example. The example will be cor-
rectly or incorrectly classified. For a set of examples the error is a random
variable from Bernoulli trials. The Binomial distribution gives the general
form of the probability for the random variable that represents the number
of errors in a sample of n examples.

The sufficient statistics of the leaf are initialized with the examples in
the short term memory that maintains a limited number of the most re-
cent examples. It is possible to observe an increase of the error reaching
the warning level, followed by a decrease. This method uses the infor-
mation already available to the learning algorithm and does not require
additional computational resources. An advantage of this method is it con-
tinuously monitors the online error of Naı̈ve Bayes. It can detect changes in
the class-distribution of the examples at any time. All decision nodes con-
tain Naı̈ve Bayes to detect changes in the class distribution of the examples
that traverse the node, that correspond to detect shifts in different regions
of the instance space. Nodes near the root should be able to detect abrupt
changes in the distribution of the examples, while deeper nodes should
detect smoothed changes.

3.3 A Methodology for Adaptive Stream Mining

The starting point of our work is the following observation: In the data
stream mining literature, most algorithms incorporate one or more of the
following ingredients: windows to remember recent examples; methods
for detecting distribution change in the input; and methods for keeping
updated estimations for some statistics of the input. We see them as the
basis for solving the three central problems of
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xt

Estimator Alarm
Change Detector

Estimation

Memory

Figure 3.3: General Framework

• what to remember or forget,

• when to do the model upgrade, and

• how to do the model upgrade.

Our claim is that by basing mining algorithms on well-designed, well-
encapsulated modules for these tasks, one can often get more generic and
more efficient solutions than by using ad-hoc techniques as required.

3.3.1 Time Change Detectors and Predictors: A General Frame-
work

Most approaches for predicting and detecting change in streams of data
can be discussed in the general framework: The system consists of three
modules: a Memory module, an Estimator Module, and a Change Detector
or Alarm Generator module. These three modules interact as shown in
Figure 3.3, which is analogous to Figure 8 in [SEG05].
In general, the input to this algorithm is a sequence x1, x2, . . . , xt, . . . of data
items whose distribution varies over time in an unknown way. The outputs
of the algorithm are, at each time step

• an estimation of some important parameters of the input distribution,
and

• a signal alarm indicating that distribution change has recently oc-
curred.

We consider a specific, but very frequent case, of this setting: that in
which all the xt are real values. The desired estimation is usually the ex-
pected value of the current xt, and less often another distribution statistics
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such as the variance. The only assumption on the distribution is that each
xt is drawn independently from each other.

Memory is the component where the algorithm stores all the sample
data or summary that considers relevant at current time, that is, that pre-
sumably shows the current data distribution.

The Estimator component is an algorithm that estimates the desired
statistics on the input data, which may change over time. The algorithm
may or may not use the data contained in the Memory. The simplest Es-
timator algorithm for the expected is the linear estimator, which simply re-
turns the average of the data items contained in the Memory. Other exam-
ples of run-time efficient estimators are Auto-Regressive, Auto Regressive
Moving Average, and Kalman filters.

The change detector component outputs an alarm signal when it detects
change in the input data distribution. It uses the output of the Estimator,
and may or may not in addition use the contents of Memory.

In Table 3.1 we classify these predictors in four classes, depending on
whether Change Detector and Memory modules exist:

No memory Memory

Type I Type III
No Change Detector Kalman Filter Adaptive Kalman Filter

Type II Type IV
Change Detector Kalman Filter + CUSUM ADWIN

Kalman Filter + ADWIN

Table 3.1: Types of Time Change Predictor and some examples

• Type I: Estimator only. The simplest one is modelled by

x̂k = (1 − α)x̂k−1 + α · xk.

The linear estimator corresponds to using α = 1/N where N is the
width of a virtual window containing the last N elements we want
to consider. Otherwise, we can give more weight to the last elements
with an appropriate constant value of α. The Kalman filter tries to
optimize the estimation using a non-constant α (the K value) which
varies at each discrete time interval.
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• Type II: Estimator with Change Detector. An example is the Kalman
Filter together with a CUSUM test change detector algorithm, see for
example [JMJH04].

• Type III: Estimator with Memory. We add Memory to improve the
results of the Estimator. For example, one can build an Adaptive
Kalman Filter that uses the data in Memory to compute adequate val-
ues for the process variance Q and the measure variance R. In partic-
ular, one can use the sum of the last elements stored into a memory
window to model the Q parameter and the difference of the last two
elements to estimate parameter R.

• Type IV: Estimator with Memory and Change Detector. This is the most
complete type. Two examples of this type, from the literature, are:

– A Kalman filter with a CUSUM test and fixed-length window
memory, as proposed in [SEG05]. Only the Kalman filter has
access to the memory.

– A linear Estimator over fixed-length windows that flushes when
change is detected [KBDG04], and a change detector that com-
pares the running windows with a reference window.

In Chapter 4, we will present ADWIN, an adaptive sliding window
method that works as a type IV change detector and predictor.

3.3.2 Window Management Models

Window strategies have been used in conjunction with mining algorithms
in two ways: one, externally to the learning algorithm; the window system
is used to monitor the error rate of the current model, which under stable
distributions should keep decreasing or at most stabilize; when instead this
rate grows significantly, change is declared and the base learning algorithm
is invoked to revise or rebuild the model with fresh data. Note that in this
case the window memory contains bits or real numbers (not full examples).
Figure 3.4 shows this model.

The other way is to embed the window system inside the learning algo-
rithm, to maintain the statistics required by the learning algorithm contin-
uously updated; it is then the algorithm’s responsibility to keep the model
in synchrony with these statistics, as shown in Figure 3.5.

Learning algorithms that detect change, usually compare statistics of
two windows. Note that the methods may be memoryless: they may keep
window statistics without storing all their elements. There have been in the
literature, some different window management strategies:
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input output
DM Algorithm
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Change Detect.

Figure 3.4: Data mining algorithm framework with concept drift.
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DM Algorithm
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Estimator2

Estimator3
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Figure 3.5: Data mining algorithm framework with concept drift using es-
timators replacing counters.

• Equal & fixed size subwindows: Kifer et al. [KBDG04] compares one
reference, non-sliding, window of older data with a sliding window
of the same size keeping the most recent data.

• Equal size adjacent subwindows: Dasu et al. [DKVY06] compares two
adjacent sliding windows of the same size of recent data.

• Total window against subwindow: Gama et al. [GMCR04] compares
the window that contains all the data with a subwindow of data from
the beginning until it detects that the accuracy of the algorithm de-
creases.

The strategy of ADWIN, the method presented in next chapter, will be to
compare all the adjacent subwindows in which is possible to partition the
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window containing all the data. Figure 3.6 shows these window manage-
ment strategies.

Let W = 101010110111111

• Equal & fixed size subwindows: 1010 1011011 1111

• Equal size adjacent subwindows: 1010101 1011 1111

• Total window against subwindow: 10101011011 1111

• ADWIN: All adjacent subwindows:

1 01010110111111

1010 10110111111

1010101 10111111

1010101101 11111

10101011011111 1

Figure 3.6: Different window management strategies

3.4 Optimal Change Detector and Predictor

We have presented in section 3.3 a general framework for time change de-
tectors and predictors. Using this framework we can establish the main
properties of an optimal change detector and predictor system as the fol-
lowing:

• High accuracy

• Fast detection of change

• Low false positives and negatives ratios

• Low computational cost: minimum space and time needed

• Theoretical guarantees

• No parameters needed

• Detector of type IV: Estimator with Memory and Change Detector
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In the next chapter we design and propose ADWIN, a change detector
and predictor with these characteristics, using an adaptive sliding window
model. ADWIN’s window management strategy will be to compare all the
adjacent subwindows in which is possible to partition the window contain-
ing all the data. It seems that this procedure may be the most accurate, since
it looks at all possible subwindows partitions. On the other hand, time cost
is the main disadvantage of this method. Considering this, we will provide
another version working in the strict conditions of the Data Stream model,
namely low memory and low processing per item.

3.5 Experimental Setting

This section proposes a new experimental data stream framework for study-
ing concept drift. A majority of concept drift research in data streams min-
ing is done using traditional data mining frameworks such as WEKA [WF05].
As the data stream setting has constraints that a traditional data mining en-
vironment does not, we believe that a new framework is needed to help to
improve the empirical evaluation of these methods.

In data stream mining, we are interested in three main dimensions:

• accuracy

• amount of space necessary or computer memory

• the time required to learn from training examples and to predict

These properties may be interdependent: adjusting the time and space
used by an algorithm can influence accuracy. By storing more pre-computed
information, such as look up tables, an algorithm can run faster at the ex-
pense of space. An algorithm can also run faster by processing less infor-
mation, either by stopping early or storing less, thus having less data to
process. The more time an algorithm has, the more likely it is that accuracy
can be increased.

In evolving data streams we are concerned about

• evolution of accuracy

• probability of false alarms

• probability of true detections

• average delay time in detection

Sometimes, learning methods do not have change detectors implemented
inside, and then it may be hard to define ratios of false positives and neg-
atives, and average delay time in detection. In these cases, learning curves
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may be a useful alternative for observing the evolution of accuracy in chang-
ing environments.

To summarize, the main properties of an ideal learning method for min-
ing evolving data streams are the following: high accuracy and fast adap-
tion to change, low computational cost in both space and time, theoretical
performance guarantees, and minimal number of parameters.

In traditional batch learning the problem of limited data is overcome by
analyzing and averaging multiple models produced with different random
arrangements of training and test data. In the stream setting the problem
of (effectively) unlimited data poses different challenges. One solution in-
volves taking snapshots at different times during the induction of a model
to see how much the model improves.

The evaluation procedure of a learning algorithm determines which ex-
amples are used for training the algorithm, and which are used to test the
model output by the algorithm. The procedure used historically in batch
learning has partly depended on data size. As data sizes increase, practical
time limitations prevent procedures that repeat training too many times. It
is commonly accepted with considerably larger data sources that it is nec-
essary to reduce the numbers of repetitions or folds to allow experiments to
complete in reasonable time. When considering what procedure to use in
the data stream setting, one of the unique concerns is how to build a picture
of accuracy over time. Two main approaches arise [Kir07]:

• Holdout: When traditional batch learning reaches a scale where cross-
validation is too time consuming, it is often accepted to instead mea-
sure performance on a single holdout set. This is most useful when
the division between train and test sets have been pre-defined, so that
results from different studies can be directly compared.

• Interleaved Test-Then-Train: Each individual example can be used
to test the model before it is used for training, and from this the ac-
curacy can be incrementally updated. When intentionally performed
in this order, the model is always being tested on examples it has not
seen. This scheme has the advantage that no holdout set is needed for
testing, making maximum use of the available data. It also ensures a
smooth plot of accuracy over time, as each individual example will
become increasingly less significant to the overall average.

As data stream classification is a relatively new field, such evaluation prac-
tices are not nearly as well researched and established as they are in the
traditional batch setting. The majority of experimental evaluations use less
than one million training examples. Some papers use more than this, up to
ten million examples, and only very rarely is there any study like Domin-
gos and Hulten [DH00, HSD01] that is in the order of tens of millions of ex-
amples. In the context of data streams this is disappointing, because to be
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truly useful at data stream classification the algorithms need to be capable
of handling very large (potentially infinite) streams of examples. Demon-
strating systems only on small amounts of data does not build a convincing
case for capacity to solve more demanding data stream applications.

A claim of [Kir07] is that in order to adequately evaluate data stream
classification algorithms they need to be tested on large streams, in the
order of tens of millions of examples where possible, and under explicit
memory limits. Any less than this does not actually test algorithms in a
realistically challenging setting.

3.5.1 Concept Drift Framework

We present a new experimental framework for concept drift. Our goal is to
introduce artificial drift to data stream generators in a straightforward way.

The framework approach most similar to the one presented in this Chap-
ter is the one proposed by Narasimhamurthy et al. [NK07]. They proposed
a general framework to generate data simulating changing environments.
Their framework accommodates the STAGGER and Moving Hyperplane
generation strategies. They consider a set of k data sources with known
distributions. As these distributions at the sources are fixed, the data distri-
bution at time t, D(t) is specified through vi(t), where vi(t) ∈ [0, 1] specify
the extent of the influence of data source i at time t:

D(t) = {v1(t), v2(t), . . . , vk(t)},
∑

i

vi(t) = 1

Their framework covers gradual and abrupt changes. Our approach is
more concrete, we begin by dealing with a simple scenario: a data stream
and two different concepts. Later, we will consider the general case with
more than one concept drift events.

Considering data streams as data generated from pure distributions, we
can model a concept drift event as a weighted combination of two pure dis-
tributions that characterizes the target concepts before and after the drift.
In our framework, we need to define the probability that every new in-
stance of the stream belongs to the new concept after the drift. We will use
the sigmoid function, as an elegant and practical solution.

We see from Figure 3.7 that the sigmoid function

f(t) = 1/(1 + e−s(t−t0))

has a derivative at the point t0 equal to f ′(t0) = s/4. The tangent of angle α

is equal to this derivative, tan α = s/4. We observe that tan α = 1/W, and
as s = 4 tan α then s = 4/W. So the parameter s in the sigmoid gives the
length of W and the angle α. In this sigmoid model we only need to specify
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Figure 3.7: A sigmoid function f(t) = 1/(1 + e−s(t−t0)).

two parameters : t0 the point of change, and W the length of change. Note
that

f(t0 + β · W) = 1 − f(t0 − β · W),

and that f(t0+β·W) and f(t0−β·W) are constant values that don’t depend
on t0 and W:

f(t0 + W/2) = 1 − f(t0 − W/2) = 1/(1 + e−2) ≈ 88.08%

f(t0 + W) = 1 − f(t0 − W) = 1/(1 + e−4) ≈ 98.20%

f(t0 + 2W) = 1 − f(t0 − 2W) = 1/(1 + e−8) ≈ 99.97%

Definition 1. Given two data streams a, b, we define c = a ⊕W
t0

b as the data
stream built joining the two data streams a and b, where t0 is the point of change,
W is the length of change and

• Pr[c(t) = a(t)] = e−4(t−t0)/W/(1 + e−4(t−t0)/W)

• Pr[c(t) = b(t)] = 1/(1 + e−4(t−t0)/W).

We observe the following properties, if a 6= b:

• a ⊕W
t0

b 6= b ⊕W
t0

a

• a ⊕W
t0

a = a

• a ⊕0
0 b = b

• a ⊕W
t0

(b ⊕W
t0

c) 6= (a ⊕W
t0

b) ⊕W
t0

c

• a ⊕W
t0

(b ⊕W
t1

c) ≈ (a ⊕W
t0

b) ⊕W
t1

c if t0 < t1 and W ≪ |t1 − t0|
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In order to create a data stream with multiple concept changes, we can
build new data streams joining different concept drifts:

(((a ⊕W0
t0

b) ⊕W1
t1

c) ⊕W2
t2

d) . . .

3.5.2 Datasets for concept drift

Synthetic data has several advantages – it is easier to reproduce and there
is little cost in terms of storage and transmission. For this framework, the
data generators most commonly found in the literature have been collected.

SEA Concepts Generator This dataset contains abrupt concept drift, first
introduced in [SK01]. It is generated using three attributes, where
only the two first attributes are relevant. All three attributes have
values between 0 and 10. The points of the dataset are divided into 4

blocks with different concepts. In each block, the classification is done
using f1 + f2 ≤ θ, where f1 and f2 represent the first two attributes
and θ is a threshold value. The most frequent values are 9, 8, 7 and
9.5 for the data blocks. In our framework, SEA concepts are defined
as follows:

(((SEA9 ⊕W
t0

SEA8) ⊕W
2t0

SEA7) ⊕W
3t0

SEA9.5)

STAGGER Concepts Generator They were introduced by Schlimmer and
Granger in [SG86]. The concept description in STAGGER is a collec-
tion of elements, where each individual element is a Boolean function
of attribute-valued pairs that is represented by a disjunct of conjuncts.
A typical example of a concept description covering either green rect-
angles or red triangles can be represented by (shape rectangle and
colour green) or (shape triangles and colour red).

Rotating Hyperplane This dataset was used as testbed for CVFDT versus
VFDT in [HSD01]. A hyperplane in d-dimensional space is the set of
points x that satisfy

d∑

i=1

wixi = w0 =

d∑

i=1

wi

where xi, is the ith coordinate of x. Examples for which
∑d

i=1 wixi ≥
w0 are labeled positive, and examples for which

∑d
i=1 wixi < w0

are labeled negative. Hyperplanes are useful for simulating time-
changing concepts, because we can change the orientation and po-
sition of the hyperplane in a smooth manner by changing the relative
size of the weights. We introduce change to this dataset adding drift
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to each weight attribute wi = wi + dσ, where σ is the probability
that the direction of change is reversed and d is the change applied to
every example.

Random RBF Generator This generator was devised to offer an alternate
complex concept type that is not straightforward to approximate with
a decision tree model. The RBF (Radial Basis Function) generator
works as follows: A fixed number of random centroids are gener-
ated. Each center has a random position, a single standard deviation,
class label and weight. New examples are generated by selecting a
center at random, taking weights into consideration so that centers
with higher weight are more likely to be chosen. A random direc-
tion is chosen to offset the attribute values from the central point.
The length of the displacement is randomly drawn from a Gaussian
distribution with standard deviation determined by the chosen cen-
troid. The chosen centroid also determines the class label of the ex-
ample. This effectively creates a normally distributed hypersphere
of examples surrounding each central point with varying densities.
Only numeric attributes are generated. Drift is introduced by mov-
ing the centroids with constant speed. This speed is initialized by a
drift parameter.

LED Generator This data source originates from the CART book [B+84].
An implementation in C was donated to the UCI [AN07] machine
learning repository by David Aha. The goal is to predict the digit
displayed on a seven-segment LED display, where each attribute has
a 10% chance of being inverted. It has an optimal Bayes classifica-
tion rate of 74%. The particular configuration of the generator used
for experiments (led) produces 24 binary attributes, 17 of which are
irrelevant.

Waveform Generator It shares its origins with LED, and was also donated
by David Aha to the UCI repository. The goal of the task is to differ-
entiate between three different classes of waveform, each of which
is generated from a combination of two or three base waves. The
optimal Bayes classification rate is known to be 86%. There are two
versions of the problem, wave21 which has 21 numeric attributes, all
of which include noise, and wave40 which introduces an additional
19 irrelevant attributes.

Function Generator It was introduced by Agrawal et al. in [AGI+92], and
was a common source of data for early work on scaling up decision
tree learners [AIS93, MAR96, SAM96, GRG98]. The generator pro-
duces a stream containing nine attributes, six numeric and three cat-
egorical. Although not explicitly stated by the authors, a sensible
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conclusion is that these attributes describe hypothetical loan appli-
cations. There are ten functions defined for generating binary class
labels from the attributes. Presumably these determine whether the
loan should be approved.

Data streams may be considered infinite sequences of (x, y) where x is the
feature vector and y the class label. Zhang et al. [ZZS08] observe that
p(x, y) = p(x|t) · p(y|x) and categorize concept drift in two types:

• Loose Concept Drifting (LCD) when concept drift is caused only by the
change of the class prior probability p(y|x),

• Rigorous Concept Drifting (RCD) when concept drift is caused by the
change of the class prior probability p(y|x) and the conditional prob-
ability p(x|t)

Note that the Random RBF Generator has RCD drift, and the rest of the
dataset generators have LCD drift.

Real-World Data

It is not easy to find large real-world datasets for public benchmarking,
especially with substantial concept change. The UCI machine learning
repository [AN07] contains some real-world benchmark data for evaluat-
ing machine learning techniques. We will consider three : Forest Cover-
type, Poker-Hand, and Electricity.

Forest Covertype dataset It contains the forest cover type for 30 x 30 me-
ter cells obtained from US Forest Service (USFS) Region 2 Resource
Information System (RIS) data. It contains 581, 012 instances and 54

attributes, and it has been used in several papers on data stream clas-
sification [GRM03, OR01b].

Poker-Hand dataset It consists of 1, 000, 000 instances and 11 attributes.
Each record of the Poker-Hand dataset is an example of a hand con-
sisting of five playing cards drawn from a standard deck of 52. Each
card is described using two attributes (suit and rank), for a total of 10

predictive attributes. There is one Class attribute that describes the
“Poker Hand”. The order of cards is important, which is why there
are 480 possible Royal Flush hands instead of 4.

Electricity dataset Another widely used dataset is the Electricity Market
Dataset described by M. Harries [Har99] and used by Gama [GMCR04].
This data was collected from the Australian New South Wales Elec-
tricity Market. In this market, the prices are not fixed and are affected
by demand and supply of the market. The prices in this market are
set every five minutes. The ELEC2 dataset contains 45, 312 instances.
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Each example of the dataset refers to a period of 30 minutes, i.e. there
are 48 instances for each time period of one day. The class label iden-
tifies the change of the price related to a moving average of the last
24 hours. The class level only reflect deviations of the price on a one
day average and removes the impact of longer term price trends.

The size of these datasets is small, compared to tens of millions of train-
ing examples of synthetic datasets: 45, 312 for ELEC2 dataset, 581, 012 for
CoverType, and 1, 000, 000 for Poker-Hand. Another important fact is that
we do not know when drift occurs or if there is any drift. We may simu-
late RCD concept drift, joining the three datasets, merging attributes, and
supposing that each dataset corresponds to a different concept.

CovPokElec = (CoverType ⊕5,000
581,012 Poker) ⊕5,000

1,000,000 ELEC2

3.5.3 MOA Experimental Framework

Massive Online Analysis (MOA) [HKP07] is a framework for online learn-
ing from continuous data streams. The data stream evaluation framework
and most of the classification algorithms evaluated in this thesis were im-
plemented in the Java programming language extending the MOA frame-
work. MOA includes a collection of offline and online methods as well as
tools for evaluation. In particular, it implements boosting, bagging, and
Hoeffding Trees, all with and without Naı̈ve Bayes classifiers at the leaves.

MOA is related to WEKA, the Waikato Environment for Knowledge
Analysis [WF05], which is an award-winning open-source workbench con-
taining implementations of a wide range of batch machine learning meth-
ods. WEKA is also written in Java. The main benefits of Java are portability,
where applications can be run on any platform with an appropriate Java
virtual machine, and the strong and well-developed support libraries. Use
of the language is widespread, and features such as the automatic garbage
collection help to reduce programmer burden and error.

One of the key data structures used in MOA is the description of an
example from a data stream. This structure borrows from WEKA, where
an example is represented by an array of double precision floating point
values. This provides freedom to store all necessary types of value – nu-
meric attribute values can be stored directly, and discrete attribute values
and class labels are represented by integer index values that are stored as
floating point values in the array. Double precision floating point values re-
quire storage space of 64 bits, or 8 bytes. This detail can have implications
for memory usage.
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Adaptive Sliding Windows

Dealing with data whose nature changes over time is one of the core prob-
lems in data mining and machine learning. In this chapter we propose
ADWIN, an adaptive sliding window algorithm, as an estimator with mem-
ory and change detector with the main properties of optimality explained
in section 3.4. We study and develop also the combination of ADWIN with
Kalman filters.

4.1 Introduction

Most strategies in the literature use variations of the sliding window idea:
a window is maintained that keeps the most recently read examples, and
from which older examples are dropped according to some set of rules. The
contents of the window can be used for the three tasks: 1) to detect change
(e.g., by using some statistical test on different subwindows), 2) obviously,
to obtain updated statistics from the recent examples, and 3) to have data
to rebuild or revise the model(s) after data has changed.

The simplest rule is to keep a window of some fixed size, usually deter-
mined a priori by the user. This can work well if information on the time-
scale of change is available, but this is rarely the case. Normally, the user
is caught in a tradeoff without solution: choosing a small size (so that the
window reflects accurately the current distribution) and choosing a large
size (so that many examples are available to work on, increasing accuracy
in periods of stability). A different strategy uses a decay function to weight
the importance of examples according to their age (see e.g. [CS03]): the rel-
ative contribution of each data item is scaled down by a factor that depends
on elapsed time. In this case, the tradeoff shows up in the choice of a decay
constant that should match the unknown rate of change.

Less often, it has been proposed to use windows of variable size. In gen-
eral, one tries to keep examples as long as possible, i.e., while not proven
stale. This delivers the users from having to guess a priori an unknown pa-
rameter such as the time scale of change. However, most works along these
lines that we know of (e.g., [GMCR04, KJ00, Las02, WK96]) are heuristics
and have no rigorous guarantees of performance. Some works in compu-
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tational learning theory (e.g. [BBDK00, HL94, HW95]) describe strategies
with rigorous performance bounds, but to our knowledge they have never
been tried in real learning/mining contexts and often assume a known
bound on the rate of change.

We will present ADWIN, a parameter-free adaptive size sliding window,
with theoretical garantees. We will use Kalman filters at the last part of this
Chapter, in order to provide an adaptive weight for each item.

4.2 Maintaining Updated Windows of Varying Length

In this section we describe our algorithms for dynamically adjusting the
length of a data window, make a formal claim about its performance, and
derive an efficient variation.

We will use Hoeffding’s bound in order to obtain formal guarantees,
and a streaming algorithm. However, other tests computing differences
between window distributions may be used.

4.2.1 Setting

The inputs to the algorithms are a confidence value δ ∈ (0, 1) and a (pos-
sibly infinite) sequence of real values x1, x2, x3, . . . , xt, . . . The value of xt

is available only at time t. Each xt is generated according to some distribu-
tion Dt, independently for every t. We denote with µt and σ2

t the expected
value and the variance of xt when it is drawn according to Dt. We assume
that xt is always in [0, 1]; by an easy rescaling, we can handle any case in
which we know an interval [a, b] such that a ≤ xt ≤ b with probability 1.
Nothing else is known about the sequence of distributions Dt; in particular,
µt and σ2

t are unknown for all t.

4.2.2 First algorithm: ADWIN0

Our algorithm keeps a sliding window W with the most recently read xi.
Let n denote the length of W, µ̂W the (observed) average of the elements
in W, and µW the (unknown) average of µt for t ∈ W. Strictly speaking,
these quantities should be indexed by t, but in general t will be clear from
the context.

Since the values of µt can oscillate wildly, there is no guarantee that µW

or µ̂W will be anywhere close to the instantaneous value µt, even for long W.
However, µW is the expected value of µ̂W, so µW and µ̂W do get close as W

grows.
Algorithm ADWIN0 is presented in Figure 4.1. The idea is simple: when-

ever two “large enough” subwindows of W exhibit “distinct enough” av-
erages, one can conclude that the corresponding expected values are dif-
ferent, and the older portion of the window is dropped. In other words,

56



4.2. MAINTAINING UPDATED WINDOWS OF VARYING LENGTH

ADWIN0: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W

2 for each t > 0

3 do W ←W ∪ {xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W

5 until |µ̂W0
− µ̂W1

| < ǫcut holds
6 for every split of W into W = W0 · W1

7 output µ̂W

Figure 4.1: Algorithm ADWIN0.

W is kept as long as possible while the null hypothesis “µt has remained
constant in W” is sustainable up to confidence δ.1 “Large enough” and
“distinct enough” above are made precise by choosing an appropriate sta-
tistical test for distribution change, which in general involves the value of
δ, the lengths of the subwindows, and their contents. We choose one partic-
ular statistical test for our implementation, but this is not the essence of our
proposal – many other tests could be used. At every step, ADWIN0 simply
outputs the value of µ̂W as an approximation to µW.

The value of ǫcut for a partition W0 · W1 of W is computed as follows:
Let n0 and n1 be the lengths of W0 and W1 and n be the length of W, so
n = n0 + n1. Let µ̂W0

and µ̂W1
be the averages of the values in W0 and

W1, and µW0
and µW1

their expected values. To obtain totally rigorous
performance guarantees we define:

m =
1

1/n0 + 1/n1

(harmonic mean of n0 and n1),

δ ′ =
δ

n
, and ǫcut =

√

1

2m
· ln

4

δ ′ .

Our statistical test for different distributions in W0 and W1 simply checks
whether the observed average in both subwindows differs by more than
the threshold ǫcut. The role of δ ′ is to avoid problems with multiple hy-
pothesis testing (since we will be testing n different possibilities for W0

and W1 and we want global error below δ). Later we will provide a more
sensitive test based on the normal approximation that, although not 100%
rigorous, is perfectly valid in practice.

Now we state our main technical result about the performance of ADWIN0:

Theorem 3. At every time step we have

1It would easy to use instead the null hypothesis “there has been no change greater than
ǫ”, for a user-specified ǫ expressing the smallest change that deserves reaction.
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1. (False positive rate bound). If µt remains constant within W, the proba-
bility that ADWIN0 shrinks the window at this step is at most δ.

2. (False negative rate bound). Suppose that for some partition of W in two
parts W0W1 (where W1 contains the most recent items) we have |µW0

−

µW1
| > 2ǫcut. Then with probability 1 − δ ADWIN0 shrinks W to W1, or

shorter.

Proof. Part 1) Assume µW0
= µW1

= µW as null hypothesis. We show that
for any partition W as W0W1 we have probability at most δ/n that ADWIN0
decides to shrink W to W1, or equivalently,

Pr[ |µ̂W1
− µ̂W0

| ≥ ǫcut ] ≤ δ/n.

Since there are at most n partitions W0W1, the claim follows by the union
bound. Note that, for every real number k ∈ (0, 1), |µ̂W1

− µ̂W0
| ≥ ǫcut can

be decomposed as

Pr[ |µ̂W1
− µ̂W0

| ≥ ǫcut ] ≤ Pr[ |µ̂W1
− µW| ≥ kǫcut ] + Pr[ |µW − µ̂W0

| ≥ (1 − k)ǫcut) ].

Applying the Hoeffding bound, we have then

Pr[ |µ̂W1
− µ̂W0

| ≥ ǫcut ] ≤ 2 exp(−2(k ǫcut)
2 n0) + 2 exp(−2((1 − k) ǫcut)

2 n1)

To approximately minimize the sum, we choose the value of k that makes
both probabilities equal, i.e. such that

(k ǫcut)
2 n0 = ((1 − k) ǫcut)

2 n1.

which is k =
√

n1/n0/(1 +
√

n1/n0). For this k, we have precisely

(k ǫcut)
2 n0 =

n1n0

(
√

n0 +
√

n1)2
ǫ2

cut ≤
n1n0

(n0 + n1)
ǫ2

cut = m ǫ2
cut.

Therefore, in order to have

Pr[ |µ̂W1
− µ̂W0

| ≥ ǫcut ] ≤ δ

n

it suffices to have

4 exp(−2m ǫ2
cut) ≤

δ

n

which is satisfied by

ǫcut =

√

1

2m
ln

4n

δ
.

Part 2) Now assume |µW0
− µW1

| > 2ǫcut. We want to show that Pr[ |µ̂W1
−

µ̂W0
| ≤ ǫcut ] ≤ δ, which means that with probability at least 1 − δ change
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is detected and the algorithm cuts W to W1. As before, for any k ∈ (0, 1),
we can decompose |µ̂W0

− µ̂W1
| ≤ ǫcut as

Pr[ |µ̂W0
− µ̂W1

| ≤ ǫcut ] ≤ Pr[ (|µ̂W0
− µW0

| ≥ kǫcut) ∪ (|µ̂W1
− µW1

| ≥ (1 − k)ǫcut) ]

≤ Pr[ |µ̂W0
− µW0

| ≥ kǫcut ] + Pr[ |µ̂W1
− µW1

| ≥ (1 − k)ǫcut ].

To see the first inequality, observe that if |µ̂W0
− µ̂W1

| ≤ ǫcut, |µ̂W0
−µW0

| ≤
kǫcut, and |µ̂W1

− µW1
| ≤ (1 − k)ǫcut hold, by the triangle inequality we

have

|µW0
−µW1

| ≤ |µ̂W0
+kǫcut−µ̂W1

+(1−k)ǫcut| ≤ |µ̂W0
−µ̂W1

|+ǫcut ≤ 2ǫcut,

contradicting the hypothesis. Using the Hoeffding bound, we have then

Pr[ |µ̂W0
− µ̂W1

| ≥ ǫcut ] ≤ 2 exp(−2(k ǫcut)
2 n0) + 2 exp(−2((1 − k) ǫcut)

2 n1).

Now, choose k as before to make both terms equal. By the calculations in
Part 1 we have

Pr[ |µ̂W0
− µ̂W1

| ≥ ǫcut ] ≤ 4 exp(−2 mǫ2
cut) ≤

δ

n
≤ δ,

as desired.
✷

In practice, the definition of ǫcut as above is too conservative. Indeed,
it is based on the Hoeffding bound, which is valid for all distributions but
greatly overestimates the probability of large deviations for distributions of
small variance; in fact, it is equivalent to assuming always the worst-case
variance σ2 = 1/4. In practice, one can observe that µW0

− µW1
tends to a

normal distribution for large window sizes, and use

ǫcut =

√

2

m
· σ2

W · ln
2

δ ′ +
2

3 m
ln

2

δ ′ , (4.1)

where σ2
W is the observed variance of the elements in window W. Thus,

the term with the square root is essentially equivalent to setting ǫcut to k

times the standard deviation, for k depending on the desired confidence δ,
as is done in [GMCR04]. The extra additive term protects the cases where
the window sizes are too small to apply the normal approximation, as an
alternative to the traditional use of requiring, say, sample size at least 30;
it can be formally derived from the so-called Bernstein bound. Addition-
ally, one (somewhat involved) argument shows that setting δ ′ = δ/(ln n)

is enough in this context to protect from the multiple hypothesis testing
problem; anyway, in the actual algorithm that we will run (ADWIN), only
O(log n) subwindows are checked, which justifies using δ ′ = δ/(ln n). The-
orem 3 holds for this new value of ǫcut, up to the error introduced by the
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Figure 4.2: Output of algorithm ADWIN0 with abrupt change.

normal approximation. We have used these better bounds in all our imple-
mentations.

Let us consider how ADWIN0 behaves in two special cases: sudden (but
infrequent) changes, and slow gradual changes. Suppose that for a long
time µt has remained fixed at a value µ, and that it suddenly jumps to a
value µ ′ = µ+ǫ. By part (2) of Theorem 3 and Equation 4.1, one can derive
that the window will start shrinking after O(µ ln(1/δ)/ǫ2) steps, and in fact
will be shrunk to the point where only O(µ ln(1/δ)/ǫ2) examples prior to
the change are left. From then on, if no further changes occur, no more
examples will be dropped so the window will expand unboundedly.

In case of a gradual change with slope α following a long stationary
period at µ, observe that the average of W1 after n1 steps is µ + αn1/2;
we have ǫ(= αn1/2) ≥ O(

√

µ ln(1/δ)/n1) iff n1 = O(µ ln(1/δ)/α2)1/3. So
n1 steps after the change the window will start shrinking, and will remain
at approximately size n1 from then on. A dependence on α of the form
O(α−2/3) may seem odd at first, but one can show that this window length
is actually optimal in this setting, even if α is known: it minimizes the sum
of variance error (due to short window) and error due to out-of-date data
(due to long windows in the presence of change). Thus, in this setting,
ADWIN0 provably adjusts automatically the window setting to its optimal
value, up to multiplicative constants.

Figures 4.2 and 4.3 illustrate these behaviors. In Figure 4.2, a sudden
change from µt−1 = 0.8 to µt = 0.4 occurs, at t = 1000. One can see that the
window size grows linearly up to t = 1000, that ADWIN0 cuts the window
severely 10 steps later (at t = 1010), and that the window expands again
linearly after time t = 1010. In Figure 4.3, µt gradually descends from 0.8

60



4.2. MAINTAINING UPDATED WINDOWS OF VARYING LENGTH

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1000 2000 3000 4000

0

500

1000

1500

2000

2500

µ axis Width

t axis

ADWIN0

µt

µ̂W
W

Figure 4.3: Output of algorithm ADWIN0 with slow gradual changes.

to 0.2 in the range t ∈ [1000..2000]. In this case, ADWIN0 cuts the window
sharply at t around 1200 (i.e., 200 steps after the slope starts), keeps the
window length bounded (with some random fluctuations) while the slope
lasts, and starts growing it linearly again after that. As predicted by theory,
detecting the change is harder in slopes than in abrupt changes.

4.2.3 ADWIN0 for Poisson processes

A Poisson process is the stochastic process in which events occur continu-
ously and independently of one another. A well-known example is radioac-
tive decay of atoms. Many processes are not exactly Poisson processes, but
similar enough that for certain types of analysis they can be regarded as
such; e.g., telephone calls arriving at a switchboard, webpage requests to a
search engine, or rainfall.

Using the Chernoff bound for Poisson processes [MN02]

Pr{X ≥ cE[X]} ≤ exp(−(c ln(c) + 1 − c)E[X])

we find a similar ǫcut for Poisson processes.
First, we look for a simpler form of this bound. Let c = 1 + ǫ then

c ln(c) − c + 1 = (1 + ǫ) · ln(1 + ǫ) − ǫ

Using the Taylor expansion of ln(x)

ln(1 + x) =
∑

(−1)n+1 · xn

n
= x −

x2

2
+

x3

3
− · · ·

we get the following simpler expression:
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Pr{X ≥ (1 + ǫ)E[X]} ≤ exp(−ǫ2E[X]/2)

Now, let Sn be the sum of n Poisson processes. As Sn is also a Poisson
process

E[Sn] = λSn
= nE[X] = n · λX

and then we obtain

Pr{Sn ≥ (1 + ǫ)E[Sn]} ≤ exp(−ǫ2E[Sn]/2)

In order to obtain a formula for ǫcut, let Y = Sn/n

Pr{Y ≥ (1 + ǫ)E[Y]} ≤ exp(−ǫ2 · n · E[Y]/2)

And finally, with this bound we get the following ǫcut for ADWIN0

ǫcut =

√

2λ

m
ln

2

δ

where 1/m = 1/n0 + 1/n1, and λ is the mean of the window data.

4.2.4 Improving time and memory requirements

Our first version of ADWIN0 is computationally expensive, because it checks
exhaustively all “large enough” subwindows of the current window for
possible cuts. Furthermore, the contents of the window is kept explicitly,
with the corresponding memory cost as the window grows. To reduce
these costs we present a new version ADWIN using ideas developed in data
stream algorithmics [BBD+02, Mut03, BDM02, DGIM02] to find a good cut-
point quickly. Figure 4.4 shows the ADWIN algorithm. We next provide a
sketch of how this algorithm and these data structures work.

Our data structure is a variation of exponential histograms [DGIM02],
a data structure that maintains an approximation of the number of 1’s in
a sliding window of length W with logarithmic memory and update time.
We adapt this data structure in a way that can provide this approximation
simultaneously for about O(log W) subwindows whose lengths follow a
geometric law, with no memory overhead with respect to keeping the count
for a single window. That is, our data structure will be able to give the
number of 1s among the most recently t − 1, t − ⌊c⌋, t − ⌊c2⌋ ,. . . , t −

⌊ci⌋, . . . read bits, with the same amount of memory required to keep an
approximation for the whole W. Note that keeping exact counts for a fixed-
window size is provably impossible in sublinear memory. We go around
this problem by shrinking or enlarging the window strategically so that
what would otherwise be an approximate count happens to be exact.
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ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize W as an empty list of buckets
2 Initialize WIDTH, VARIANCE and TOTAL
3 for each t > 0

4 do SETINPUT(xt, W)

5 output µ̂W as TOTAL/WIDTH and ChangeAlarm

SETINPUT(item e, List W)

1 INSERTELEMENT(e, W)

2 repeat DELETEELEMENT(W)

3 until |µ̂W0
− µ̂W1

| < ǫcut holds
4 for every split of W into W = W0 · W1

INSERTELEMENT(item e, List W)

1 create a new bucket b with content e and capacity 1

2 W ←W ∪ {b} (i.e., add e to the head of W)
3 update WIDTH, VARIANCE and TOTAL
4 COMPRESSBUCKETS(W)

DELETEELEMENT(List W)

1 remove a bucket from tail of List W
2 update WIDTH, VARIANCE and TOTAL
3 ChangeAlarm← true

COMPRESSBUCKETS(List W)

1 Traverse the list of buckets in increasing order
2 do If there are more than M buckets of the same capacity
3 do merge buckets
4 COMPRESSBUCKETS(sublist of W not traversed)

Figure 4.4: Algorithm ADWIN.
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More precisely, to design the algorithm one chooses a parameter M.
This parameter controls both 1) the amount of memory used (it will be
O(M log W/M) words, and 2) the closeness of the cutpoints checked (the
basis c of the geometric series above, which will be about c = 1 + 1/M).
Note that the choice of M does not reflect any assumption about the time-
scale of change: Since points are checked at a geometric rate anyway, this
policy is essentially scale-independent.

More precisely, in the boolean case, the information on the number of
1’s is kept as a series of buckets whose size is always a power of 2. We
keep at most M buckets of each size 2i, where M is a design parameter. For
each bucket we record two (integer) elements: capacity and content (size, or
number of 1s it contains).

Thus, we use about M · log(W/M) buckets to maintain our data stream
sliding window. ADWIN checks as a possible cut every border of a bucket,
i.e., window lengths of the form M(1 + 2 + · · · + 2i−1) + j · 2i, for 0 ≤ j ≤
M. It can be seen that these M · log(W/M) points follow approximately a
geometric law of basis ∼= 1 + 1/M.

Let’s look at an example: a sliding window with 14 elements. We regis-
ter it as:

1010101 101 11 1 1

Content: 4 2 2 1 1

Capacity: 7 3 2 1 1

Each time a new element arrives, if the element is ”1”, we create a new
bucket of content 1 and capacity the number of elements arrived since the
last ”1”. After that we compress the rest of buckets: When there are M + 1

buckets of size 2i, we merge the two oldest ones (adding its capacity) into
a bucket of size 2i+1. So, we use O(M · log W/M) memory words if we as-
sume that a word can contain a number up to W. In [DGIM02], the window
is kept at a fixed size W. The information missing about the last bucket is
responsible for the approximation error. Here, each time we detect change,
we reduce the window’s length deleting the last bucket, instead of (con-
ceptually) dropping a single element as in a typical sliding window frame-
work. This lets us keep an exact counting, since when throwing away a
whole bucket we know that we are dropping exactly 2i ”1”s.

We summarize these results with the following theorem.

Theorem 4. The ADWIN algorithm maintains a data structure with the following
properties:

• It uses O(M · log(W/M)) memory words (assuming a memory word can
contain numbers up to W).

• It can process the arrival of a new element in O(1) amortized time and
O(log W) worst-case time.
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• It can provide the exact counts of 1’s for all the subwindows whose lengths
are of the form ⌊(1 + 1/M)i⌋, in O(1) time per query.

Since ADWIN tries O(log W) cutpoints, the total processing time per ex-
ample is O(log W) (amortized) and O(log W) (worst-case).

In our example, suppose M = 2, if a new element ”1” arrives then

1010101 101 11 1 1 1

Content: 4 2 2 1 1 1

Capacity: 7 3 2 1 1 1

There are 3 buckets of 1, so we compress it:

1010101 101 11 11 1

Content: 4 2 2 2 1

Capacity: 7 3 2 2 1

and now as we have 3 buckets of size 2, we compress it again

1010101 10111 11 1

Content: 4 4 2 1

Capacity: 7 5 2 1

And finally, if we detect change, we reduce the size of our sliding window
deleting the last bucket:

10111 11 1

Content: 4 2 1

Capacity: 5 2 1

In the case of real values, we also maintain buckets of two elements: ca-
pacity and content. We store at content the sum of the real numbers we
want to summarize. We restrict capacity to be a power of two. As in the
boolean case, we use O(log W) buckets, and check O(log W) possible cuts.
The memory requirement for each bucket is log W + R + log log W bits per
bucket, where R is number of bits used to store a real number.

Figure 4.5 shows the output of ADWIN to a sudden change, and Figure
4.6 to a slow gradual change. The main difference with ADWIN output is
that as ADWIN0 reduces one element by one each time it detects changes,
ADWIN deletes an entire bucket, which yields a slightly more jagged graph
in the case of a gradual change. The difference in approximation power
between ADWIN0 and ADWIN is almost negligible, so we use ADWIN ex-
clusively for our experiments.

Finally, we state our main technical result about the performance of
ADWIN, in a similar way to the Theorem 3:

Theorem 5. At every time step we have
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Figure 4.5: Output of algorithm ADWIN with abrupt change

1. (False positive rate bound). If µt remains constant within W, the proba-
bility that ADWIN shrinks the window at this step is at most M/n·log(n/M)·
δ.

2. (False negative rate bound). Suppose that for some partition of W in two
parts W0W1 (where W1 contains the most recent items) we have |µW0

−

µW1
| > 2ǫcut. Then with probability 1 − δ ADWIN shrinks W to W1, or

shorter.

Proof. Part 1) Assume µW0
= µW1

= µW as null hypothesis. We have
shown in the proof of Theorem 3 that for any partition W as W0W1 we
have probability at most δ/n that ADWIN0 decides to shrink W to W1, or
equivalently,

Pr[ |µ̂W1
− µ̂W0

| ≥ ǫcut ] ≤ δ/n.

Since ADWIN checks at most M log(n/M) partitions W0W1, the claim fol-
lows.

Part 2) The proof is similar to the proof of Part 2 of Theorem 3. ✷

4.3 Experimental Validation of ADWIN

In this section, we are going to consider the performance of ADWIN in a
data stream environment. We are interested in:

• evolution of accuracy

• probability of false alarms
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Figure 4.6: Output of algorithm ADWIN with slow gradual changes

• probability of true detections for different rates of drift

• average delay time in detection

We construct the following experiments to test the performance of our
algorithms:

1. Rate of false positives: we show that the ratio of false positives is as
predicted by theory.

2. Accuracy: we compare the estimation accuracy of ADWIN to esti-
mations obtained from fixed-size windows with or without flush-
ing when change is detected. ADWIN often does better than the best
fixed-size window.

3. Small probabilities: we show that when the input samples to estima-
tors are generated from small probabilities, then ADWIN beats almost
all fixed-size window estimators, with or without flushing.

4. Probability of true detections and average delay time for different
rates of drift: we compare the number of true detections and aver-
age delay time with DDM, and we observe that ADWIN detects more
changes than DDM, but its average delay time of detection sometimes
is higher.

5. Accuracy on mining methods as Naı̈ve Bayes and k−means Cluster-
ing.

We use, somewhat arbitrarily, M = 5 for all experiments.
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In the first experiment, we investigate the rate of false positives of ADWIN.
This is a very important measure, specially when there is a cost associated
with a reported change. To do this, we feed ADWIN a data stream of 100,000
bits, generated from a stationary Bernoulli distribution with parameter µ,
and different confidence parameters δ.

Table 4.1 shows the ratio of false positives obtained. In all cases, it is be-
low δ as predicted by the theory, and in fact much smaller for small values
of µ.

µ δ = 0.05 δ = 0.1 δ = 0.3

0.01 0.00000 0.00000 0.00000
0.1 0.00002 0.00004 0.00019
0.3 0.00003 0.00008 0.00036
0.5 0.00004 0.00009 0.00040

Table 4.1: Rate of false positives. All standard deviations in this table are
below 0.0002

In the second set of experiments, we want to compare ADWIN as an es-
timator with estimations obtained from fixed-size window, and with fixed-
size window which are flushed when change is detected. In the last case,
we use a pair of windows (X, Y) of a fixed size W. Window X is used as
a reference window that contains the first W elements of the stream that
occurred after the last detected change. Window Y is a sliding window that
contains the latest W items in the data stream. To detect change we check
whether the difference of the averages of the two windows exceeds thresh-
old ǫcut. If it does, we copy the content of window Y into reference window
X, and empty the sliding window Y. This scheme is as in [KBDG04], and
we refer to it as “fixed-size windows with flushing”.

We build a framework with a stream of synthetic data, and estima-
tors of each class: an estimator that uses ADWIN, an array of estimators of
fixed-size windows for different sizes, and also an array of fixed-size win-
dows with flushing. Our synthetic data streams consist of some triangular
wavelets, of different periods, some square wavelets, also of different pe-
riods, and a staircase wavelet of different values. We test the estimator’s
performance over a sample of 106 points, feeding the same synthetic data
stream to each one of the estimators tested. We compute the error esti-
mation as the average distance (both L1 and L2) from the true probability
generating the data stream to the estimation. Finally, we compare these
measures for the different estimators. Tables 4.2,4.3,4.4 and 4.5 shows these
results using L1 and L2 distances and δ = 0.1, 0.3. For the ADWIN estima-
tor, besides the distance to the true distribution, we list as information the
window length averaged over the whole run.
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4.3. EXPERIMENTAL VALIDATION OF ADWIN

The general pattern for the triangular or square wavelets is as follows.
For any fixed period P, the best fixed-size estimator is that whose window
size is a certain fraction of P. ADWIN usually sometimes does worse than
this best fixed-size window, but only slightly, and often does better than
even the best fixed size that we try. Additionally, it does better than any
window of fixed size W when P is much larger or much smaller than W,
that is, when W is a “wrong” time scale. The explanation is simple: if W

is too large the estimator does not react quickly enough to change, and if
W is too small the variance within the window implies a bad estimation.
One can check that ADWIN adjusts its window length to about P/4 when
P is small, but keeps it much smaller than P for large P, in order again to
minimize the variance / time-sensitivity tradeoff.

In the third type of experiments, we use small probabilities to generate
input to estimators. We feed our estimators with samples from distribu-
tions with small probabilities of getting 1, so we can compare ADWIN to
fixed-size strategies in the situation when getting a 1 is a rare event. To
deal with this case nonadaptively, one should decide a priori on a very
large fixed window size, which is a waste if it turns out that there hap-
pen to be many 1s. We measure the relative error of the estimator, that is
|True Probability - Estimated Probability|/ True Probability. Table 4.6 shows
the results. ADWIN beats almost all fixed-size window estimators, with or
without flushing. This confirms that ADWIN’s capacity of shrinking or en-
larging its window size can be a very useful tool for to accurately track the
probability of infrequent events.

Fixed-sized Window Fixed-sized flushing Window

Prob. ADWIN 32 128 512 2048 8192 32 128 512 2048 8192

1/32 0.06 0.72 0.38 0.20 0.10 0.05 0.72 0.38 0.20 0.10 0.05
1/64 0.04 1.21 0.53 0.27 0.14 0.07 1.21 0.53 0.27 0.14 0.07

1/128 0.02 1.56 0.73 0.39 0.20 0.10 1.56 0.73 0.39 0.20 0.10
1/256 0.02 1.76 1.21 0.53 0.28 0.14 1.76 1.21 0.53 0.28 0.14
1/512 0.03 1.89 1.56 0.74 0.40 0.22 1.89 1.56 0.74 0.40 0.22
1/1024 0.04 1.89 1.72 1.18 0.52 0.28 1.89 1.72 1.18 0.52 0.28
1/2048 0.04 1.97 1.88 1.55 0.70 0.36 1.97 1.88 1.55 0.70 0.36
1/4096 0.10 1.97 1.93 1.76 1.22 0.55 1.97 1.93 1.76 1.22 0.55
1/8192 0.10 1.93 1.91 1.83 1.50 0.66 1.93 1.91 1.83 1.50 0.66
1/16384 0.22 2.08 2.06 2.02 1.83 1.31 2.08 2.06 2.02 1.83 1.31
1/32768 0.37 1.85 1.85 1.83 1.75 1.49 1.85 1.85 1.83 1.75 1.49

Table 4.6: Relative error using small probabilities. All standard deviations
in this table are below 0.17.
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CHAPTER 4. ADAPTIVE SLIDING WINDOWS

In the fourth type of experiments, we test ADWIN as a change detector
rather than as an estimator, and compare it to DDM method [GMCR04]
described in section 2.2.1. The measures of interest here are the rate of
changes detected and the mean time until detection.

To do this, we feed ADWIN and DDM change detector with four data
streams of lengths L = 2, 000, 10, 000, 100, 000 and 1, 000, 000 bits, generated
from a Bernoulli distribution of parameter µ. We keep µ = 0.2 stationary
during the first L − 1, 000 time steps, and then make it increase linearly
during the last 1, 000 steps. We try different slopes: 0 (no change), 10−4,
2 · 10−4, 3 · 10−4, and 4 · 10−4.

To compare the rate of false negatives on an equal foot, we adjust ADWIN
confidence parameter δ to have the same rate of false positives as DDM
method.

Table 4.7 shows the results. Rows are grouped in four parts, corre-
sponding to the four values of L that we tested. For each value of L, we
give the number of changes detected in the last 1, 000 samples (summed
over all runs) and the mean and standard distribution of the time until the
change is detected, in those runs where there is detection.

The first column gives the ratio of false positives. One observation we
made is that DDM method tends to detect many more changes early on
(when the window is small) and less changes as the window grows. This
explains that, on the first column, even if the ratio of false positives is the
same, the average time until the first false positive is produced is much
smaller for DDM method.

The last four columns describe the results when change does occur, with
different slopes. ADWIN detects change more often, with the exception of
the L = 2, 000 experiment. As the number of samples increases, the per-
centage of changes detected decreases in DDM methodology; as discussed
early, this is to be expected since it takes a long time for DDM method to
overcome the weight of past examples. In contrast, ADWIN maintains a
good rate of detected changes, largely independent of the number of the
number of past samples L− 1, 000. One can observe the same phenomenon
as before: even though DDM method detects less changes, the average time
until detection (when detection occurs) is smaller.

4.4 Example 1: Incremental Naı̈ve Bayes Predictor

We test the accuracy performance of ADWIN inside an incremental Naı̈ve
Bayes learning method, in two ways: as a change detector and comparing it
with DDM, and as estimator of the probabilities needed by the Naı̈ve Bayes
learning method. We test our method using synthetic and real datasets.

Let x1,. . . , xk be k discrete attributes, and assume that xi can take ni

different values. Let C be the class attribute, which can take nC differ-
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4.4. EXAMPLE 1: INCREMENTAL NAÏVE BAYES PREDICTOR

Slope

0 10−4 2 · 10−4 3 · 10−4 4 · 10−4

2 · 103 samples, 103 trials

Detection time (DDM) 854 ± 462 532 ± 271 368 ± 248 275 ± 206 232 ± 178

%runs detected (DDM) 10.6 58.6 97.2 100 100

Detection time (ADWIN) 975 ± 607 629 ± 247 444 ± 210 306 ± 171 251 ± 141

%runs detected (ADWIN) 10.6 39.1 94.6 93 95

104 samples, 100 trials

Detection time (DDM) 2, 019 ± 2, 047 498 ± 416 751 ± 267 594 ± 287 607 ± 213

%runs detected (DDM) 14 13 38 71 84
Detection time (ADWIN) 4, 673 ± 3, 142 782 ± 195 595 ± 100 450 ± 96 367 ± 80

%runs detected (ADWIN) 14 40 79 90 87

105 samples, 100 trials

Detection time (DDM) 12, 164 ± 17, 553 127 ± 254 206 ± 353 440 ± 406 658 ± 422

%runs detected (DDM) 12 4 7 11 8
Detection time (ADWIN) 47, 439 ± 32, 609 878 ± 102 640 ± 101 501 ± 72 398 ± 69

%runs detected (ADWIN) 12 28 89 84 89

106 samples, 100 trials

Detection time (DDM) 56, 794 ± 142, 876 1 ± 1 1 ± 0 1 ± 0 180 ± 401

%runs detected (DDM) 22 5 5 3 5
Detection time (ADWIN) 380, 738 ± 289, 242 898 ± 80 697 ± 110 531 ± 89 441 ± 71

%runs detected (ADWIN) 22 15 77 80 83

Table 4.7: Change detection experiments. Each entry contains “x±y” where
x is average and y is standard deviation.
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CHAPTER 4. ADAPTIVE SLIDING WINDOWS

ent values. Recall that upon receiving an unlabelled instance I = (x1 =

v1, . . . , xk = vk), the Naı̈ve Bayes predictor computes a “probability” of I

being in class c as:

Pr[C = c|I] ∼=

k∏

i=1

Pr[xi = vi|C = c]

= Pr[C = c] ·
k∏

i=1

Pr[xi = vi ∧ C = c]

Pr[C = c]

The values Pr[xi = vj ∧ C = c] and Pr[C = c] are estimated from
the training data. Thus, the summary of the training data is simply a 3-
dimensional table that stores for each triple (xi, vj, c) a count Ni,j,c of train-
ing instances with xi = vj, together with a 1-dimensional table for the
counts of C = c. This algorithm is naturally incremental: upon receiving a
new example (or a batch of new examples), simply increment the relevant
counts. Predictions can be made at any time from the current counts.

We compare two time-change management strategies. The first one
uses a static model to make predictions. This model is rebuilt every time
that an external change detector module detects a change. We use DDM
detection method and ADWIN as change detectors. DDM method gener-
ates a warning example some time before actually declaring change; see
section 2.2.1 for the details; the examples received between the warning
and the change signal are used to rebuild the model. In ADWIN, we use the
examples currently stored in the window to rebuild the static model.

The second one is incremental: we simply create an instance Ai,j,c of
ADWIN for each count Ni,j,c, and one for each value c of C. When a labelled
example is processed, add a 1 to Ai,j,c if xi = v ∧ C = c, and a 0 otherwise,
and similarly for Nc. When the value of Pr[xi = vj ∧ C = c] is required to
make a prediction, compute it using the estimate of Ni,j,c provided by Ai,j,c.
This estimate varies automatically as Pr[xi = vj∧C = c] changes in the data.

Note that different Ai,j,c may have windows of different lengths at the
same time. This will happen when the distribution is changing at different
rates for different attributes and values, and there is no reason to sacrifice
accuracy in all of the counts Ni,j,c, only because a few of them are changing
fast. This is the intuition why this approach may give better results than
one monitoring the global error of the predictor: it has more accurate infor-
mation on at least some of the statistics that are used for the prediction.

4.4.1 Experiments on Synthetic Data

For the experiments with synthetic data we use a changing concept based
on a rotating hyperplane explained in [HSD01]. A hyperplane in d-dimen-
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4.4. EXAMPLE 1: INCREMENTAL NAÏVE BAYES PREDICTOR

sional space is the set of points x that satisfy

d∑

i=1

wixi ≥ w0

where xi, is the ith coordinate of x. Examples for which
∑d

i=1 wixi ≥ w0

are labeled positive, and examples for which
∑d

i=1 wixi < w0 are labeled
negative. Hyperplanes are useful for simulating time-changing concepts
because we can change the orientation and position of the hyperplane in a
smooth manner by changing the relative size of the weights.

We use 2 classes, d = 8 attributes, and 2 values (0 and 1) per attribute.
The different weights wi of the hyperplane vary over time, at different mo-
ments and different speeds for different attributes i. All wi start at 0.5 and
we restrict to two wi’s varying at the same time, to a maximum value of
0.75 and a minimum of 0.25.

To test the performance of our two Naı̈ve Bayes methodologies we do
the following: At every time t, we build a static Naı̈ve Bayes model Mt

using a data set of 10,000 points generated from the distribution at time t.
Model Mt is taken as a “baseline” of how well a Naı̈ve Bayes model can
do on this distribution. Then we generate 1000 fresh points from the cur-
rent distribution and use them to compute the error rate of both the static
model Mt and the different models built dynamically from the points seen
so far. The ratio of these error rates is averaged over all the run.

Table 4.8 shows accuracy results. The “%Static” column shows the accu-
racy of the static model Mt – it is the same for all rows, except for small ran-
dom fluctuations. The “%Dynamic” column is the accuracy of the model
built dynamically using the estimator in the row. The last column in the
table shows the quotient of columns 1 and 2, i.e., the relative accuracy of
the dynamically vs. statically built models. In all NB experiments we show
in boldface the result for ADWIN and the best result. It can be seen that
the incremental time-change management model (using one instance of
ADWIN per count) outperforms fixed-size windows and the models based
on detecting change and rebuilding the model. Among these, the one using
ADWIN as a change detector is better than that using DDM’s method.

We test our methods on the SEA Concepts dataset described in Sec-
tion 3.5.2. Figure 4.7 shows the learning curve of this experiment. We ob-
serve that ADWIN outperforms others estimators using fixed-size windows
or flushing fixed-size windows.

4.4.2 Real-world data experiments

We test the performance of our Naı̈ve Bayes predictors using the Electricity
Market Dataset described in Section 3.5.2.
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CHAPTER 4. ADAPTIVE SLIDING WINDOWS

Width %Static %Dyn. Dyn./Stat.

DDM Change Detection 94.74% 58.02% 61.24%
ADWIN Change Detection 94.73% 70.72% 74.66%

ADWIN for counts 94.77% 94.16% 99.36%

Fixed-sized Window 32 94.74% 70.34% 74.24%
Fixed-sized Window 128 94.76% 80.12% 84.55%
Fixed-sized Window 512 94.73% 88.20% 93.10%
Fixed-sized Window 2048 94.75% 92.82% 97.96%

Fixed-sized flushing Window 32 94.74% 70.34% 74.25%
Fixed-sized flushing Window 128 94.75% 80.13% 84.58%
Fixed-sized flushing Window 512 94.73% 88.17% 93.08%
Fixed-sized flushing Window 2048 94.72% 92.86% 98.03%

Table 4.8: Naı̈ve Bayes, synthetic data benchmark
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Figure 4.7: Accuracy on SEA Concepts dataset with three concept drifts.
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Width %Static %Dyn. Dyn./Stat.

DDM Change Detection 91.62% 45.94% 50.14%
ADWIN Change Detection 91.62% 60.29% 65.81%

ADWIN for counts 91.62% 76.61% 83.62%

Fixed-sized Window 32 91.55% 79.13% 86.44%

Fixed-sized Window 128 91.55% 72.29% 78.97%
Fixed-sized Window 512 91.55% 68.34% 74.65%
Fixed-sized Window 2048 91.55% 65.02% 71.02%

Fixed-sized flushing Window 32 91.55% 78.57% 85.83%
Fixed-sized flushing Window 128 91.55% 73.46% 80.24%
Fixed-sized flushing Window 512 91.55% 69.65% 76.08%
Fixed-sized flushing Window 2048 91.55% 66.54% 72.69%

Table 4.9: Naı̈ve Bayes, Electricity data benchmark, testing on last 48 items

At each time step, we train a static model using the last 48 samples
received. We compare this static model with other models, also on the last
48 samples. Table 4.9 shows accuracy results of the different methods on
this dataset. Again, in each column (a test), we show in boldface the result
for ADWIN and for the best result.

The results are similar to those obtained with the hyperplane dataset:
ADWIN applied in the incremental time-change model (to estimate prob-
abilities) does much better than all the others, with the exception of the
shortest fixed-length window, which achieves 86.44% of the static perfor-
mance compared to ADWIN’s 83.62%. The reason for this anomaly is due
to the nature of this particular dataset: by visual inspection, one can see
that it contains a lot of short runs (length 10 to 20) of identical values, and
therefore a myopic strategy (i.e., a short window) gives best results. ADWIN
behaves accordingly and shortens its window as much as it can, but the
formulas involved do not allow windows as short as 10 elements. In fact,
we have tried replicating each instance in the dataset 10 times (so there are
runs of length 100 to 200 of equal values), and then case ADWIN becomes
the winner again.

We also test the prediction accuracy of these methods. We compare, as
before, a static model generated at each time t to the other models, and
evaluate them asking to predict the instance that will arrive at time t + 1.
The static model is computed training on the last 24 samples. The results
are in Table 4.10. In this experiment, ADWIN outperforms clearly other
time-change models. Generally, the incremental time-change management
model does much better than the static model that refreshes its NB model
when change is detected.
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Width %Static %Dyn. Dyn./Stat.

DDM Change Detection 94.40% 45.87% 48.59%
ADWIN Change Detection 94.40% 46.86% 49.64%

ADWIN for counts 94.39% 72.71% 77.02%

Fixed-sized Window 32 94.39% 71.54% 75.79%
Fixed-sized Window 128 94.39% 68.78% 72.87%
Fixed-sized Window 512 94.39% 67.14% 71.13%
Fixed-sized Window 2048 94.39% 64.25% 68.07%

Fixed-sized flushing Window 32 94.39% 71.62% 75.88%
Fixed-sized flushing Window 128 94.39% 70.12% 74.29%
Fixed-sized flushing Window 512 94.39% 68.02% 72.07%
Fixed-sized flushing Window 2048 94.39% 65.60% 69.50%

Table 4.10: Naı̈ve Bayes, Electricity data benchmark, testing on next in-
stance

4.5 Example 2: Incremental k-means Clustering

In contrast to Naı̈ve Bayes, it is not completely obvious how to give an
incremental version of the k-means clustering algorithm.

We adapt in essence the incremental version from [Ord03]. In that ver-
sion, every new example is added to the cluster with nearest centroid, and
every r steps a recomputation phase occurs, which recomputes both the as-
signment of points to clusters and the centroids. To balance accuracy and
computation time, r is chosen in [Ord03] to be the square root of the num-
ber of points seen so far. In our case, this latter rule is extended to react to
changes in the data distribution.

We incorporate adaptive windowing to this algorithm in the follow-
ing way. Let k and d be the number of centroids and attributes. We add
an instance Wij of our algorithm for every attribute centroid i and every
attribute j, hence kd instances. The algorithm still interleaves phases in
which centroids are just incrementally modified with incoming points and
phases where global recomputation of centroids takes place. The second
type of phase can occur each time we detect change. We use two criteria.
First, when any of the Wiℓ windows shrinks, we take this as a signal that
the position of centroid i may have changed. In the case of estimators that
use windows of a fixed size s, when any of the windows is full of new s

elements we take this as as indicator of change in the position of centroids.
And in the estimators that use windows of a fixed size with change detec-
tion, every time it detects change, we use this as a signal that the position
of a centroid may have changed.

The second criterion is to recompute when the average point distance
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to theirs centroids has changed more than an ǫ factor where ǫ is user-
specified. This is taken as an indication that a certain number of points
may change from cluster i to cluster j or vice-versa if recomputation takes
place now.

4.5.1 Experiments

We build a model of k-means clustering, using a window estimator for each
centroid coordinate. We compare the performance of our model with a
static one, measuring the sum of the distances of each data point to each
centroid assigned.

The synthetic data used in our experiments consist of a sample of 106

points generated from a k-gaussian distribution with some fixed variance
σ2, and centered in our k moving centroids. Each centroid moves accord-
ing to a constant velocity. We try different velocities v and values of σ in
different experiments. Table 4.11 and 4.12 shows the results of computing
the distance from 100 random points to their centroids. We observe that
ADWIN outperforms other estimators in essentially all settings.

σ = 0.15 σ = 0.3 σ = 0.6

Width Static Dyn. Static Dyn. Static Dyn.

ADWIN 9.72 16.63 19.42 26.71 38.83 47.32
Fixed-sized Window 32 9.72 18.46 19.42 27.92 38.83 48.79
Fixed-sized Window 128 9.72 26.08 19.42 35.87 38.83 58.65
Fixed-sized Window 512 9.72 28.20 19.42 38.13 38.83 61.22
Fixed-sized Window 2048 9.72 29.84 19.42 39.24 38.83 61.96
Fixed-sized Window 8192 9.72 32.79 19.42 40.58 38.83 63.09
Fixed-sized Window 32768 9.72 35.12 19.42 40.93 38.83 64.40

Fixed-sized flushing Window 32 9.72 29.29 19.42 34.19 38.83 57.54
Fixed-sized flushing Window 128 9.72 31.49 19.42 39.06 38.83 61.18
Fixed-sized flushing Window 512 9.72 30.10 19.42 39.47 38.83 62.44
Fixed-sized flushing Window 2048 9.72 29.68 19.42 39.38 38.83 62.01
Fixed-sized flushing Window 8192 9.72 31.54 19.42 39.86 38.83 62.82
Fixed-sized flushing Window 32768 9.72 36.21 19.42 41.11 38.83 65.54

Table 4.11: k-means sum of distances to centroids, with k = 5, 106 samples
and change’s velocity of 10−5.

4.6 K-ADWIN = ADWIN + Kalman Filtering

ADWIN is basically a linear Estimator with Change Detector that makes an
efficient use of Memory. It seems a natural idea to improve its performance
by replacing the linear estimator by an adaptive Kalman filter, where the
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σ = 0.15 σ = 0.3 σ = 0.6

Width Static Dyn. Static Dyn. Static Dyn.

ADWIN 19.41 28.13 19.41 28.60 19.41 27.63
Fixed-sized Window 32 19.41 30.60 19.41 29.89 19.41 28.62
Fixed-sized Window 128 19.41 39.28 19.41 37.62 19.41 36.41
Fixed-sized Window 512 19.41 41.74 19.41 39.47 19.41 38.32
Fixed-sized Window 2048 19.41 42.36 19.41 39.76 19.41 38.67
Fixed-sized Window 8192 19.41 42.73 19.41 40.24 19.41 38.21
Fixed-sized Window 32768 19.41 44.13 19.41 41.81 19.41 37.12

Fixed-sized flushing Window 32 19.41 38.82 19.41 34.92 19.41 29.44
Fixed-sized flushing Window 128 19.41 41.30 19.41 38.79 19.41 42.72
Fixed-sized flushing Window 512 19.41 42.14 19.41 39.80 19.41 44.04
Fixed-sized flushing Window 2048 19.41 42.43 19.41 40.37 19.41 44.37
Fixed-sized flushing Window 8192 19.41 43.18 19.41 40.92 19.41 44.45
Fixed-sized flushing Window 32768 19.41 44.94 19.41 70.07 19.41 44.47

Table 4.12: k-means sum of distances to centroids, with k = 5, 106 samples
and σ = 0.3.

parameters Q and R of the Kalman filter are computed using the informa-
tion in ADWIN’s memory.

We have set R = W2/50 and Q = 200/W, where W is the length of
the window maintained by ADWIN. While we cannot rigorously prove that
these are the optimal choices, we have informal arguments that these are
about the “right” forms for R and Q, on the basis of the theoretical guaran-
tees of ADWIN.

Let us sketch the argument for Q. Theorem 3, part (2) gives a value
ǫ for the maximum change that may have occurred within the window
maintained by ADWIN. This means that the process variance within that
window is at most ǫ2, so we want to set Q = ǫ2. In the formula for ǫ,
consider the case in which n0 = n1 = W/2, then we have

ǫ ≥ 4 ·
√

3(µW0
+ ǫ)

W/2
· ln

4W

δ

Isolating from this equation and distinguishing the extreme cases in which
µW0

≫ ǫ or µW0
≪ ǫ, it can be shown that Q = ǫ2 has a form that varies

between c/W and d/W2. Here, c and d are constant for constant values
of δ, and c = 200 is a reasonable estimation. This justifies our choice of
Q = 200/W. A similar, slightly more involved argument, can be made
to justify that reasonable values of R are in the range W2/c to W3/d, for
somewhat large constants c and d.

When there is no change, ADWIN window’s length increases, so R in-
creases too and K decreases, reducing the significance of the most recent
data arrived. Otherwise, if there is change, ADWIN window’s length re-
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4.6. K-ADWIN = ADWIN + KALMAN FILTERING

duces, so does R, and K increases, which means giving more importance to
the last data arrived.

4.6.1 Experimental Validation of K-ADWIN

We compare the behaviours of the following types of estimators:

• Type I: Kalman filter with different but fixed values of Q and R. The
values Q = 1, R = 1000 seemed to obtain the best results with fixed
parameters.

• Type I: Exponential filters with α = 0.1, 0.25, 0.5. This filter is similar
to Kalman’s with K = α, R = (1 − α)P/α.

• Type II: Kalman filter with a CUSUM test Change Detector algorithm.
We tried initially the parameters υ = 0.005 and h = 0.5 as in [JMJH04],
but we changed to h = 5 which systematically gave better results.

• Type III: Adaptive Kalman filter with R as the difference of xt − xt−1

and Q as the sum of the last 100 values obtained in the Kalman filter.
We use a fixed window of 100 elements.

• Types III and IV: Linear Estimators over fixed-length windows, with-
out and with flushing when changing w.r.t. a reference window is
detected. Details are explained in Section 4.3.

• Type IV: ADWIN and K-ADWIN. K-ADWIN uses a Kalman filter with
R = W2/50 and Q = 200/W, where W is the length of the ADWIN

window.

We build a framework with a stream of synthetic data consisting of
some triangular wavelets, of different periods, some square wavelets, also
of different periods, and a staircase wavelet of different values. We gener-
ate 106 points and feed all them to all of the estimators tested. We calculate
the mean L1 distances from the prediction of each estimator to the origi-
nal distribution that generates the data stream. Finally, we compare these
measures for the different estimators.

Table 4.13 shows the results for δ = 0.3 and L1. In each column (a test),
we show in boldface the result for K-ADWIN and for the best result.

A summary of the results is as follows: The results for K-ADWIN, ADWIN,
the Adaptive Kalman filter, and the best fixed-parameter Kalman filter are
the best ones in most cases. They are all very close to each other and they
outwin each other in various ways, always by a small margin. They all do
about as well as the best fixed-size window, and in most cases they win by
a large amount. The exception are wavelets of very long periods, in which
a very large fixed-size window wins. This is to be expected: when change
is extremely rare, it is best to use a large window. Adaptivity necessarily
introduces a small penalty, which is a waste in this particular case.
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4.6. K-ADWIN = ADWIN + KALMAN FILTERING

4.6.2 Example 1: Naı̈ve Bayes Predictor

We test our algorithms on a classical Naı̈ve Bayes predictor as explained in
Section 4.4. We use 2 classes, 8 attributes, and 2 values per attribute. The
different weights wi of the hyperplane vary over time, at different moments
and different speeds for different attributes i. All wi start at 0.5 and we
restrict to two wi’s varying at the same time, to a maximum value of 0.75

and a minimum of 0.25.

We prepare the following experiment in order to test our Naı̈ve Bayes
predictor: At every time t we build a static Naı̈ve Bayes model Mt using
a data set of 1000 points generated from the distribution at time t. Model
Mt is taken as a “baseline” of how well a Naı̈ve Bayes model can do on this
distribution. Then we generate 2000 fresh points, and compute the error
rate of both this static model Mt and the different sliding-window models
built from the t points seen so far. The ratio of these error rates is averaged
over all the run.

Table 4.14 shows accuracy results. The “%Static” column shows the ac-
curacy of the statically built model – it is the same for all rows, except for
small variance. The “%Dynamic” column is the accuracy of the dynami-
cally built model, using the estimator in the row. The last column in the
table shows the quotient of columns 1 and 2, i.e., the relative accuracy of
the estimator-based model Naı̈ve Bayes model with respect that of the stat-
ically computed one. Again, in each column (a test), we show in boldface
the result for K-ADWIN and for the best result.

The results can be summarized as follows: K-ADWIN outperforms plain
ADWIN by a small margin, and they both do much better than all the mem-
oryless Kalman filters. Thus, having a memory clearly helps in this case.
Strangely enough, the winner is the longest fixed-length window, which
achieves 98.73% of the static performance compared to K-ADWIN’s 97.77%.
We have no clear explanation of this fact, but believe it is an artifact of our
benchmark: the way in which we vary the attributes’ distributions might
imply that simply taking the average of an attribute’s value over a large
window has best predictive power. More experiments with other change
schedules should confirm or refute this idea.

4.6.3 Example 2: k-means Clustering

The synthetic data used in our experiments consist of a sample of 105 points
generated from a k-gaussian distribution with some fixed variance σ2, and
centered in our k moving centroids. Each centroid moves according to a
constant velocity. We try different velocities v and values of σ in different
experiments.

On this data stream, we run one instance of the incremental k-means
clusterer with each of the estimator types we want to test. Each instance of
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Width %Static %Dyn. Dyn./Stat.

ADWIN 83,36% 80,30% 96,33%
Kalman Q = 1, R = 1000 83,22% 71,13% 85,48%

Kalman Q = 1, R = 1 83,21% 56,91% 68,39%
Kalman Q = .25, R = .25 83,26% 56,91% 68,35%

Exponential Estimator α = .1 83,33% 64,19% 77,03%
Exponential Estimator α = .5 83,32% 57,30% 68,77%
Exponential Estimator α = .25 83,26% 59,68% 71,68%

Adaptive Kalman 83,24% 76,21% 91,56%
CUSUM Kalman 83,30% 50,65% 60,81%

K-ADWIN 83,24% 81,39% 97,77%

Fixed-sized Window 32 83,28% 67,64% 81,22%
Fixed-sized Window 128 83,30% 75,40% 90,52%
Fixed-sized Window 512 83,28% 80,47% 96,62%
Fixed-sized Window 2048 83,24% 82,19% 98,73%

Fixed-sized flushing Window 32 83,28% 67,65% 81,23%
Fixed-sized flushing Window 128 83,29% 75,57% 90,73%
Fixed-sized flushing Window 512 83,26% 80,46% 96,64%
Fixed-sized flushing Window 2048 83,25% 82,04% 98,55%

Table 4.14: Naı̈ve Bayes benchmark

the clusterer uses itself an estimator for each centroid coordinate. At every
time step, we feed the current example to each of the clusterers, we generate
a sample of points from the current distribution (which we know) and use a
traditional k-means clusterer to cluster this sample. Then, we compute the
sum of the distances of each data point to each centroid assigned, for this
statically built clustering and for each of the clustering dynamically built
using different estimators. The statically built clustering is thus a baseline
on how good the clustering could be without distribution drift.

Table 4.15 shows the results of computing the distance from 100 ran-
dom points to their centroids. Again, in each column (a test), we show in
boldface the result for K-ADWIN and for the best result.

The results can be summarized as follows: The winners are the best
fixed-parameter Kalman filter and, for small variance, K-ADWIN. ADWIN
follows closely in all cases. These three do much better than any fixed-size
window strategy, and somewhat better than Kalman filters with subopti-
mal fixed-size parameters.

4.6.4 K-ADWIN Experimental Validation Conclusions

The main conclusions of K-ADWIN experiments are the following:
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4.6. K-ADWIN = ADWIN + KALMAN FILTERING

σ = 0.15 σ = 0.3 σ = 0.6

Width Static Dyn. Static Dyn. Static Dyn.

ADWIN 9,72 21,54 19,41 28,58 38,83 46,48
Kalman Q = 1, R = 1000 9,72 19,72 19,41 27,92 38,83 46,02
Kalman Q = 1, R = 100 9,71 17,60 19,41 27,18 38,77 46,16

Kalman Q = .25, R = .25 9,71 22,63 19,39 30,21 38,79 49,88
Exponential Estimator α = .1 9,71 21,89 19,43 27,28 38,82 46,98
Exponential Estimator α = .5 9,72 20,58 19,41 29,32 38,81 46,47
Exponential Estimator α = .25 9,72 17,69 19,42 27,66 38,82 46,18

Adaptive Kalman 9,72 18,98 19,41 31,16 38,82 51,96
CUSUM Kalman 9,72 18,29 19,41 33,82 38,85 50,38

K-ADWIN 9,72 17,30 19,40 28,34 38,79 47,45
Fixed-sized Window 32 9,72 25,70 19,40 39,84 38,81 57,58
Fixed-sized Window 128 9,72 36,42 19,40 49,70 38,81 68,59
Fixed-sized Window 512 9,72 38,75 19,40 52,35 38,81 71,32
Fixed-sized Window 2048 9,72 39,64 19,40 53,28 38,81 73,10
Fixed-sized Window 8192 9,72 43,39 19,40 55,66 38,81 76,90
Fixed-sized Window 32768 9,72 53,82 19,40 64,34 38,81 88,17

Fixed-sized flushing Window 32 9,72 35,62 19,40 47,34 38,81 65,37
Fixed-sized flushing Window 128 9,72 40,42 19,40 52,03 38,81 70,47
Fixed-sized flushing Window 512 9,72 39,12 19,40 53,05 38,81 72,81
Fixed-sized flushing Window 2048 9,72 40,99 19,40 56,82 38,81 75,35
Fixed-sized flushing Window 8192 9,72 45,48 19,40 60,23 38,81 91,49
Fixed-sized flushing Window 32768 9,72 73,17 19,40 84,55 38,81 110,77

Table 4.15: k-means sum of distances to centroids, with k = 5, 105 samples
and change’s velocity of 10−3.

• In all three types of experiments (tracking, Naı̈ve Bayes, and k-means),
K-ADWIN either gives best results or is very close in performance to
the best of the estimators we try. And each of the other estimators
is clearly outperformed by K-ADWIN in at least some of the exper-
iments. In other words, no estimator ever does much better than
K-ADWIN, and each of the others is outperformed by K-ADWIN in at
least one context.

• More precisely, for the tracking problem, K-ADWIN and ADWIN auto-
matically do about as well as the Kalman filter with the best set of
fixed covariance parameters (parameters which, in general, can only
be determined after a good number of experiments). And these three
do far better than any fixed-size window.

• In the Naı̈ve Bayes experiments, K-ADWIN does somewhat better than
ADWIN and far better than any memoryless Kalman filter. This is,
then, a situation where having a memory clearly helps.

• In the k-means case, again K-ADWIN performs about as well as the

87



CHAPTER 4. ADAPTIVE SLIDING WINDOWS

best (and difficult to find) Kalman filter, and they both do much better
than fixed-size windows.

4.7 Time and Memory Requirements

In the experiments above we have only discussed the performance in terms
of error rate, and not time or memory usage. Certainly, this was not our
main goal and we have in no way tried to optimize our implementations
in either time or memory (as is clearly indicated by the choice of Java as
programming language). Let us, however, mention some rough figures
about time and memory, since they suggest that our approach can be fairly
competitive after some optimization work.

All programs were implemented in Java Standard Edition. The exper-
iments were performed on a 3.0 GHz Pentium PC machine with 1 Giga-
byte main memory, running Microsoft Windows XP. The Sun Java 2 Run-
time Environment, Standard Edition (build 1.5.0 06-b05) was used to run
all benchmarks.

Consider first the experiments on ADWIN alone. A bucket formed by
an integer plus a real number uses 9 bytes. Therefore, about 540 bytes store
a sliding window of 60 buckets. In the boolean case, we could use only
5 bytes per bucket, which reduces our memory requirements to 300 bytes
per window of 60 buckets. Note that 60 buckets, with our choice of M = 5

suffice to represent a window of length about 260/5 = 4096.

In the experiment comparing different estimators (Tables 4.2,4.3,4.4 and
4.5), the average number of buckets used by ADWIN was 45,11, and the av-
erage time spent was 23 seconds to process the 106 samples, which is quite
remarkable. In the Naı̈ve Bayes experiment (Table 4.8), it took an average
of 1060 seconds and 2000 buckets to process 106 samples by 34 estimators.
This means less than 32 seconds and 60 buckets per estimator. The results
for k-means were similar: We executed the k-means experiments with k = 5

and two attributes, with 10 estimators and 106 sample points using about
an average of 60 buckets and 11.3 seconds for each instance of ADWIN.

Finally, we compare the time needed by an ADWIN, a simple counter,
and an EWMA with Cusum change detector and predictor. We do the fol-
lowing experiment: we feed an ADWIN estimator, a simple counter and a
EWMA with Cusum with 1, 000, 000 samples from a distribution that has
an abrupt change every n samples. Table 4.16 shows the results when the
samples are retrieved from memory, and Table 4.17 when the samples are
stored and retrieved from disk. We test also the overhead due to the fact
of using objects, instead of native numbers in Java. Note that the time dif-
ference between ADWIN and the other methods is not constant, and it de-
pends on the scale of change. The time difference between a EWMA and
Cusum estimator and a simple counter estimator is small. We observe that
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Change scale ADWIN Counter EWMA Counter EWMA+Cusum
n +Cusum Object Object

30 72,396 23 40 82 108
50 72,266 21 32 58 71
75 12,079 17 23 54 66
100 12,294 16 23 50 67
1,000 22,070 15 20 52 89
10,000 38,096 16 20 63 64
100,000 54,886 16 27 54 64
1,000,000 71,882 15 20 59 64

Table 4.16: Time in miliseconds on ADWIN experiment reading examples
from memory

Change scale ADWIN Counter EWMA+
n Cusum

30 83,769 10,999 11,021
50 83,934 11,004 10,964
75 23,287 10,939 11,002
100 23,709 11,086 10,989
1,000 33,303 11,007 10,994
10,000 49,248 10,930 10,999
100,000 66,296 10,947 10,923
1,000,000 83,169 10,926 11,037

Table 4.17: Time in miliseconds on ADWIN experiment reading examples
from disk
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the simple counter is the fastest method, and that ADWIN needs more time
to process the samples when there is constant change or when there is no
change at all.
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5
Decision Trees

In this chapter we propose and illustrate a method for developing decision
trees algorithms that can adaptively learn from data streams that change
over time. We take the Hoeffding Tree learner, an incremental decision tree
inducer for data streams, and use as a basis it to build two new methods
that can deal with distribution and concept drift: a sliding window-based
algorithm, Hoeffding Window Tree, and an adaptive method, Hoeffding
Adaptive Tree. Our methods are based on the methodology explained in
Chapter 3. We choose ADWIN as an implementation with theoretical guar-
antees in order to extend such guarantees to the resulting adaptive learning
algorithm. A main advantage of our methods is that they require no guess
about how fast or how often the stream will change; other methods typi-
cally have several user-defined parameters to this effect.

In our experiments, the new methods never do worse, and in some
cases do much better, than CVFDT, a well-known method for tree induc-
tion on data streams with drift.

5.1 Introduction

We apply the framework presented in Chapter 3 to give two decision tree
learning algorithms that can cope with concept and distribution drift on
data streams: Hoeffding Window Trees in Section 5.2 and Hoeffding Adap-
tive Trees in Section 5.3. Decision trees are among the most common and
well-studied classifier models. Classical methods such as C4.5 are not apt
for data streams, as they assume all training data are available simultane-
ously in main memory, allowing for an unbounded number of passes, and
certainly do not deal with data that changes over time. In the data stream
context, a reference work on learning decision trees is the Hoeffding Tree
or Very Fast Decision Tree method (VFDT) for fast, incremental learning
[DH00]. The Hoeffding Tree was described in Section 2.4.2. The methods
we propose are based on VFDT, enriched with the change detection and
estimation building blocks mentioned above.

We try several such building blocks, although the best suited for our
purposes is the ADWIN algorithm, described in Chapter 4. This algorithm is
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parameter-free in that it automatically and continuously detects the rate of
change in the data streams rather than using apriori guesses, thus allowing
the client algorithm to react adaptively to the data stream it is processing.
Additionally, ADWIN has rigorous guarantees of performance (Theorem 3 in
Section 4.2.2). We show that these guarantees can be transferred to decision
tree learners as follows: if a change is followed by a long enough stable
period, the classification error of the learner will tend, and the same rate, to
the error rate of VFDT.

5.2 Decision Trees on Sliding Windows

We propose a general method for building incrementally a decision tree
based on a sliding window keeping the last instances on the stream. To
specify one such method, we specify how to:

• place one or more change detectors at every node that will raise a
hand whenever something worth attention happens at the node

• create, manage, switch and delete alternate trees

• maintain estimators of only relevant statistics at the nodes of the cur-
rent sliding window

We call Hoeffding Window Tree any decision tree that uses Hoeffding
bounds, maintains a sliding window of instances, and that can be included
in this general framework. Figure 5.1 shows the pseudo-code of HOEFFDING

WINDOW TREE. Note that δ ′ should be the Bonferroni correction of δ to ac-
count for the fact that many tests are performed and we want all of them
to be simultaneously correct with probability 1 − δ. It is enough e.g. to di-
vide δ by the number of tests performed so far. The need for this correction
is also acknowledged in [DH00], although in experiments the more con-
venient option of using a lower δ was taken. We have followed the same
option in our experiments for fair comparison.

5.2.1 HWT-ADWIN : Hoeffding Window Tree using ADWIN

We use ADWIN to design HWT-ADWIN, a new Hoeffding Window Tree that
uses ADWIN as a change detector. The main advantage of using a change
detector as ADWIN is that it has theoretical guarantees, and we can extend
this guarantees to the learning algorithms.

Example of performance Guarantee

Let HWT∗ADWIN be a variation of HWT-ADWIN with the following condi-
tion: every time a node decides to create an alternate tree, an alternate tree
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HOEFFDING WINDOW TREE(Stream, δ)

1 Let HT be a tree with a single leaf(root)
2 Init estimators Aijk at root
3 for each example (x, y) in Stream
4 do HWTREEGROW((x, y), HT, δ)

HWTREEGROW((x, y), HT, δ)

1 Sort (x, y) to leaf l using HT

2 Update estimators Aijk

3 at leaf l and nodes traversed in the sort
4 if current node l has an alternate tree Talt

5 HWTREEGROW((x, y), Talt, δ)

6 Compute G for each attribute
✄ Evaluate condition for splitting leaf l

7 if G(Best Attr.)−G(2nd best) > ǫ(δ ′, . . . )
8 then Split leaf on best attribute
9 for each branch of the split

10 do Start new leaf
11 and initialize estimators
12 if one change detector has detected change
13 then Create an alternate subtree Talt at leaf l if there is none
14 if existing alternate tree Talt is more accurate
15 then replace current node l with alternate tree Talt

Figure 5.1: Hoeffding Window Tree algorithm
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is also started at the root. In this section we show an example of perfor-
mance guarantee about the error rate of HWT∗ADWIN. Informally speak-
ing, it states that after a change followed by a stable period, HWT∗ADWIN’s
error rate will decrease at the same rate as that of VFDT, after a transient
period that depends only on the magnitude of the change.

We consider the following scenario: Let C and D be arbitrary concepts,
that can differ both in example distribution and label assignments. Sup-
pose the input data sequence S is generated according to concept C up
to time t0, that it abruptly changes to concept D at time t0 + 1, and re-
mains stable after that. Let HWT∗ADWIN be run on sequence S, and e1

be error(HWT∗ADWIN,S,t0), and e2 be error(HWT∗ADWIN,S,t0 + 1), so that
e2 − e1 measures how much worse the error of HWT∗ADWIN has become
after the concept change.

Here error(HWT∗ADWIN,S,t) denotes the classification error of the tree
kept by HWT∗ADWIN at time t on S. Similarly, error(VFDT,D,t) denotes the
expected error rate of the tree kept by VFDT after being fed with t random
examples coming from concept D.

Theorem 6. Let S, t0, e1, and e2 be as described above, and suppose t0 is suffi-
ciently large w.r.t. e2 − e1. Then for every time t > t0, we have

error(HWT∗ADWIN, S, t) ≤ min{ e2, eVFDT }

with probability at least 1 − δ, where

• eVFDT = error(VFDT,D, t − t0 − g(e2 − e1)) + O( 1√
t−t0

)

• g(e2 − e1) = 8/(e2 − e1)
2 ln(4t0/δ)

The following corollary is a direct consequence, since O(1/
√

t − t0) tends
to 0 as t grows.

Corollary 1. If error(VFDT,D,t) tends to some quantity ǫ ≤ e2 as t tends to
infinity, then error(HWT∗ADWIN ,S,t) tends to ǫ too.

Proof. We know by the ADWIN False negative rate bound that with proba-
bility 1−δ, the ADWIN instance monitoring the error rate at the root shrinks
at time t0 + n if

|e2 − e1| > 2ǫcut =
√

2/m ln(4(t − t0)/δ)

where m is the harmonic mean of the lengths of the subwindows corre-
sponding to data before and after the change. This condition is equivalent
to

m > 4/(e1 − e2)
2 ln(4(t − t0)/δ)

If t0 is sufficiently large w.r.t. the quantity on the right hand side, one can
show that m is, say, less than n/2 by definition of the harmonic mean. Then
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5.2. DECISION TREES ON SLIDING WINDOWS

some calculations show that for n ≥ g(e2−e1) the condition is fulfilled, and
therefore by time t0 + n ADWIN will detect change.

After that, HWT∗ADWIN will start an alternative tree at the root. This
tree will from then on grow as in VFDT, because HWT∗ADWIN behaves as
VFDT when there is no concept change. While it does not switch to the
alternate tree, the error will remain at e2. If at any time t0 + g(e1 − e2) + n

the error of the alternate tree is sufficiently below e2, with probability 1 − δ

the two ADWIN instances at the root will signal this fact, and HWT∗ADWIN
will switch to the alternate tree, and hence the tree will behave as the one
built by VFDT with t examples. It can be shown, again by using the False
Negative Bound on ADWIN , that the switch will occur when the VFDT error
goes below e2 − O(1/

√
n), and the theorem follows after some calculation.

✷

5.2.2 CVFDT

As an extension of VFDT to deal with concept change Hulten, Spencer, and
Domingos presented Concept-adapting Very Fast Decision Trees CVFDT
[HSD01] algorithm. We have presented it on Section 3.2. We review it here
briefly and compare it to our method.

CVFDT works by keeping its model consistent with respect to a sliding
window of data from the data stream, and creating and replacing alternate
decision subtrees when it detects that the distribution of data is changing
at a node. When new data arrives, CVFDT updates the sufficient statis-
tics at its nodes by incrementing the counts nijk corresponding to the new
examples and decrementing the counts nijk corresponding to the oldest ex-
ample in the window, which is effectively forgotten. CVFDT is a Hoeffding
Window Tree as it is included in the general method previously presented.

Two external differences among CVFDT and our method is that CVFDT
has no theoretical guarantees (as far as we know), and that it uses a number
of parameters, with default values that can be changed by the user - but
which are fixed for a given execution. Besides the example window length,
it needs:

1. T0: after each T0 examples, CVFDT traverses all the decision tree, and
checks at each node if the splitting attribute is still the best. If there is
a better splitting attribute, it starts growing an alternate tree rooted at
this node, and it splits on the currently best attribute according to the
statistics in the node.

2. T1: after an alternate tree is created, the following T1 examples are
used to build the alternate tree.

3. T2: after the arrival of T1 examples, the following T2 examples are
used to test the accuracy of the alternate tree. If the alternate tree
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is more accurate than the current one, CVDFT replaces it with this
alternate tree (we say that the alternate tree is promoted).

The default values are T0 = 10, 000, T1 = 9, 000, and T2 = 1, 000. One can
interpret these figures as the preconception that often about the last 50, 000

examples are likely to be relevant, and that change is not likely to occur
faster than every 10, 000 examples. These preconceptions may or may not
be right for a given data source.

The main internal differences of HWT-ADWIN respect CVFDT are:

• The alternates trees are created as soon as change is detected, with-
out having to wait that a fixed number of examples arrives after the
change. Furthermore, the more abrupt the change is, the faster a new
alternate tree will be created.

• HWT-ADWIN replaces the old trees by the new alternates trees as soon
as there is evidence that they are more accurate, rather than having to
wait for another fixed number of examples.

These two effects can be summarized saying that HWT-ADWIN adapts to
the scale of time change in the data, rather than having to rely on the a
priori guesses by the user.

5.3 Hoeffding Adaptive Trees

In this section we present Hoeffding Adaptive Tree as a new method that
evolving from Hoeffding Window Tree, adaptively learn from data streams
that change over time without needing a fixed size of sliding window. The
optimal size of the sliding window is a very difficult parameter to guess
for users, since it depends on the rate of change of the distribution of the
dataset.

In order to avoid to choose a size parameter, we propose a new method
for managing statistics at the nodes. The general idea is simple: we place
instances of estimators of frequency statistics at every node, that is, replac-
ing each nijk counters in the Hoeffding Window Tree with an instance Aijk

of an estimator.
More precisely, we present three variants of a Hoeffding Adaptive Tree or

HAT, depending on the estimator used:

• HAT-INC: it uses a linear incremental estimator

• HAT-EWMA: it uses an Exponential Weight Moving Average (EWMA)

• HAT-ADWIN : it uses an ADWIN estimator. As the ADWIN instances are
also change detectors, they will give an alarm when a change in the
attribute-class statistics at that node is detected, which indicates also
a possible concept change.
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The main advantages of this new method over a Hoeffding Window
Tree are:

• All relevant statistics from the examples are kept in the nodes. There
is no need of an optimal size of sliding window for all nodes. Each
node can decide which of the last instances are currently relevant for
it. There is no need for an additional window to store current exam-
ples. For medium window sizes, this factor substantially reduces our
memory consumption with respect to a Hoeffding Window Tree.

• A Hoeffding Window Tree, as CVFDT for example, stores in main
memory only a bounded part of the window. The rest (most of it, for
large window sizes) is stored in disk. For example, CVFDT has one
parameter that indicates the amount of main memory used to store
the window (default is 10,000). Hoeffding Adaptive Trees keeps all
its data in main memory.

5.3.1 Example of performance Guarantee

In this subsection we show a performance guarantee on the error rate of
HAT-ADWIN on a simple situation. Roughly speaking, it states that after a
distribution and concept change in the data stream, followed by a stable
period, HAT-ADWIN will start, in reasonable time, growing a tree identical
to the one that VFDT would grow if starting afresh from the new stable
distribution. Statements for more complex scenarios are possible, including
some with slow, gradual, changes.

Theorem 7. Let D0 and D1 be two distributions on labelled examples. Let S be
a data stream that contains examples following D0 for a time T , then suddenly
changes to using D1. Let t be the time that until VFDT running on a (stable)
stream with distribution D1 takes to perform a split at the node. Assume also that
VFDT on D0 and D1 builds trees that differ on the attribute tested at the root.
Then with probability at least 1 − δ:

• By time t ′ = T + c · V2 · t log(tV), HAT-ADWIN will create at the root an
alternate tree labelled with the same attribute as VFDT(D1). Here c ≤ 20 is
an absolute constant, and V the number of values of the attributes.1

• this alternate tree will evolve from then on identically as does that of VFDT(D1),
and will eventually be promoted to be the current tree if and only if its error
on D1 is smaller than that of the tree built by time T .

If the two trees do not differ at the roots, the corresponding statement
can be made for a pair of deeper nodes.

1This value of t ′ is a very large overestimate, as indicated by our experiments. We are
working on an improved analysis, and hope to be able to reduce t ′ to T + c · t, for c < 4.
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Lemma 1. In the situation above, at every time t + T > T , with probability 1 − δ

we have at every node and for every counter (instance of ADWIN) Ai,j,k

|Ai,j,k − Pi,j,k| ≤
√

ln(1/δ ′) T

t(t + T)

where Pi,j,k is the probability that an example arriving at the node has value j in
its ith attribute and class k.

Observe that for fixed δ ′ and T this bound tends to 0 as t grows.
To prove the theorem, use this lemma to prove high-confidence bounds

on the estimation of G(a) for all attributes at the root, and show that the
attribute best chosen by VFDT on D1 will also have maximal G(best) at
some point, so it will be placed at the root of an alternate tree. Since this
new alternate tree will be grown exclusively with fresh examples from D1,
it will evolve as a tree grown by VFDT on D1.

5.3.2 Memory Complexity Analysis

Let us compare the memory complexity Hoeffding Adaptive Trees and Ho-
effding Window Trees. We take CVFDT as an example of Hoeffding Win-
dow Tree. Denote with

• E : size of an example

• A : number of attributes

• V : maximum number of values for an attribute

• C : number of classes

• T : number of nodes

A Hoeffding Window Tree as CVFDT uses memory O(WE + TAVC), be-
cause it uses a window W with E examples, and each node in the tree
uses AVC counters. A Hoeffding Adaptive Tree does not need to store
a window of examples, but uses instead memory O(log W) at each node
as it uses an ADWIN as a change detector, so its memory requirement is
O(TAVC + T log W). For medium-size W, the O(WE) in CVFDT can often
dominate. HAT-ADWIN has a complexity of O(TAVC log W).

5.4 Experimental evaluation

We tested Hoeffding Adaptive Trees using synthetic and real datasets. In
the experiments with synthetic datasets, we use the SEA Concepts [SK01]
and a changing concept dataset based on a rotating hyperplane explained
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in Section 4.4.1. In the experiments with real datasets we use two UCI
datasets [AN07] Adult and Poker-Hand from the UCI repository of ma-
chine learning databases. In all experiments, we use the values δ = 10−4,
T0 = 20, 000, T1 = 9, 000, and T2 = 1, 000, following the original CVFDT
experiments [HSD01].

In all tables, the result for the best classifier for a given experiment
is marked in boldface, and the best choice for CVFDT window length is
shown in italics.

We included two versions of the CVFDT algorithm:

• CVFDT ORIGINAL: version of CVFDT available from the VFML [HD03]
software web page

• CVFDT: we have slightly modified the CVFDT implementation to
follow strictly the CVFDT algorithm explained in the original paper
by Hulten, Spencer and Domingos [HSD01]. The version available of
CVFDT from VFML doesn’t create alternatives tree for the root node,
since it keeps the alternative tree for a node at its parent node data.

We included an improvement over CVFDT (which could be made on
the two versions of CVFDT as well). If the two best attributes at a node
happen to have exactly the same gain, the tie may be never resolved and
split does not occur. CVFDT use a parameter τ to solve ties: it splits on
the current best attribute if the difference between the observed heuristic
values of the two best attributes is lower than τ:

∆G = G(best) − G(second best) < τ

Note that this rule considers the difference between the best and second-
best values, not the difference of the best attribute with respect to ǫ(δ, . . . ).
In our experiments we added an additional split rule: when G(best) ex-
ceeds by three times the current value of ǫ(δ, . . . ), a split is forced anyway.
We have tested the three versions of Hoeffding Adaptive Tree, HAT-INC,
HAT-EWMA(α = .01), HAT-ADWIN, each with and without the addition of
Naı̈ve Bayes (NB) classifiers at the leaves. As a general comment on the
results, the use of NB classifiers does not always improve the results, al-
though it does make a good difference in some cases; this was observed
in [HKP05], where a more detailed analysis can be found.

First, we experiment using the SEA concepts, a dataset with abrupt con-
cept drift, first introduced in [SK01]. This artificial dataset is generated us-
ing three attributes, where only the two first attributes are relevant. All
three attributes have values between 0 and 10. We generate 400,000 ran-
dom samples. We divide all the points in blocks with different concepts.
In each block, we classify using f1 + f2 ≤ θ, where f1 and f2 represent the
first two attributes and θ is a threshold value.We use threshold values 9, 8,

99



CHAPTER 5. DECISION TREES

7 and 9.5 for the data blocks. We inserted about 10% class noise into each
block of data.

Table 5.1: SEA on-line errors using discrete attributes with 10% noise

CHANGE SPEED

1,000 10,000 100,000

HAT-INC 16.99% 16.08% 14.82%
HAT-EWMA 16.98% 15.83% 14.64 %
HAT-ADWIN 16.86% 15.39% 14.73 %

HAT-INC NB 16.88% 15.93% 14.86%
HAT-EWMA NB 16.85% 15.91% 14.73 %
HAT-ADWIN NB 16.90% 15.76% 14.75 %

CVFDT |W| = 1, 000 19.47% 15.71% 15.81%
CVFDT |W| = 10, 000 17.03% 17.12% 14.80%
CVFDT |W| = 100, 000 16.97% 17.15% 17.09%

CVFDT ORIGINAL |W| = 1, 000 25.93% 17.05% 17.01%
CVFDT ORIGINAL |W| = 10, 000 24.42% 17.41% 16.98%
CVFDT ORIGINAL |W| = 100, 000 27.73% 14.90% 17.20%

We test our methods using discrete and continuous attributes. The on-
line errors results for discrete attributes are shown in Table 5.1. On-line er-
rors are the errors measured each time an example arrives with the current
decision tree, before updating the statistics. Each column reflects a different
speed of concept change. We observe that CVFDT best performance is not
always with the same example window size, and that there is no optimal
window size. The different versions of Hoeffding Adaptive Trees have a
very similar performance, essentially identical to that of CVFDT with op-
timal window size for that speed of change. More graphically, Figure 5.2
shows its learning curve using continuous attributes for a speed of change
of 100, 000. CVFDT uses a window of size 100, 000. Note that at the points
where the concept drift appears HWT-ADWIN, decreases its error faster than
CVFDT, due to the fact that it detects change faster.

Another frequent dataset is the rotating hyperplane, used as testbed for
CVFDT versus VFDT in [HSD01] – see Section 4.4.1 for an explanation. We
experiment with abrupt and with gradual drift. In the first set of experi-
ments, we apply abrupt change. We use 2 classes, d = 5 attributes, and 5
discrete values per attribute. We do not insert class noise into the data. Af-
ter every N examples arrived, we abruptly exchange the labels of positive
and negative examples, i.e., move to the complementary concept. So, we

classify the first N examples using
∑d

i=1 wixi ≥ w0, the next N examples

using
∑d

i=1 wixi ≤ w0, and so on. The on-line error rates are shown in Ta-

100



5.4. EXPERIMENTAL EVALUATION

10

12

14

16

18

20

22

24

26

1

2
2

4
3

6
4

8
5

1
0

6

1
2

7

1
4

8

1
6

9

1
9

0

2
1

1

2
3

2

2
5

3

2
7

4

2
9

5

3
1

6

3
3

7

3
5

8

3
7

9

4
0

0

Examples x 1000

E
rr

o
r 

R
a

te
 (

%
)

HWT-ADWIN

CVFDT

Figure 5.2: Learning curve of SEA Concepts using continuous attributes

ble 5.2, where each column reflects a different value of N, the period among
classification changes. We detect that Hoeffding Adaptive Tree methods
substantially outperform CVFDT in all speed changes.

In the second type of experiments, we introduce gradual drift. We vary
the weight of the first attribute over time slowly, from 0 to 1, then back
from 1 to 0, and so on, linearly as a triangular wave. We adjust the rest of
weights in order to have the same number of examples for each class.

The on-line error rates are shown in Table 5.3. Observe that, in con-
trast to previous experiments, HAT-EWMA and HAT-ADWIN do much bet-
ter than HAT-INC, when using NB at the leaves. We believe this will hap-
pen often in the case of gradual changes, because gradual changes will be
detected earlier in individual attributes than in the overall error rate.

We test Hoeffding Adaptive Trees on two real datasets in two differ-
ent ways: with and without concept drift. We tried some of the largest
UCI datasets [AN07], and report results on Adult and Poker-Hand. For the
Covertype and Census-Income datasets, the results we obtained with our
method were essentially the same as for CVFDT (ours did better by frac-
tions of 1% only) – we do not claim that our method is always better than
CVFDT, but this confirms our belief that it is never much worse.

An important problem with most of the real-world benchmark data sets
is that there is little concept drift in them [Tsy04] or the amount of drift is
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Table 5.2: On-line errors of Hyperplane Experiments with abrupt concept
drift

CHANGE SPEED

1,000 10,000 100,000

HAT-INC 46.39% 31.38% 21.17%
HAT-EWMA 42.09% 31.40% 21.43 %
HAT-ADWIN 41.25% 30.42% 21.37 %

HAT-INC NB 46.34% 31.54% 22.08%
HAT-EWMA NB 35.28% 24.02% 15.69 %
HAT-ADWIN NB 35.35% 24.47% 13.87 %

CVFDT |W| = 1, 000 50.01% 39.53% 33.36%
CVFDT |W| = 10, 000 50.09% 49.76% 28.63%
CVFDT |W| = 100, 000 49.89% 49.88% 46.78%

CVFDT ORIGINAL |W| = 1, 000 49.94% 36.55% 33.89%
CVFDT ORIGINAL |W| = 10, 000 49.98% 49.80% 28.73%
CVFDT ORIGINAL |W| = 100, 000 50.11% 49.96% 46.64%

Table 5.3: On-line errors of Hyperplane Experiments with gradual concept
drift

CHANGE SPEED

1,000 10,000 100,000

HAT-INC 9.42% 9.40% 9.39%
HAT-EWMA 9.48% 9.43% 9.36 %
HAT-ADWIN 9.50% 9.46% 9.25 %

HAT-INC NB 9.37% 9.43% 9.42%
HAT-EWMA NB 8.64% 8.56% 8.23 %
HAT-ADWIN NB 8.65% 8.57% 8.17 %

CVFDT |W| = 1, 000 24.95% 22.65% 22.24%
CVFDT |W| = 10, 000 14.85% 15.46% 13.53%
CVFDT |W| = 100, 000 10.50% 10.61% 10.85%

CVFDT ORIGINAL |W| = 1, 000 30.11% 28.19% 28.19%
CVFDT ORIGINAL |W| = 10, 000 18.93% 19.96% 18.60%
CVFDT ORIGINAL |W| = 100, 000 10.92% 11.00% 11.36%
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unknown, so in many research works, concept drift is introduced artifi-
cially. We simulate concept drift by ordering the datasets by one of its at-
tributes, the education attribute for Adult, and the first (unnamed) attribute
for Poker-Hand. Note again that while using CVFDT one faces the ques-
tion of which parameter values to use, our method just needs to be told
“go” and will find the right values online.
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Figure 5.3: On-line error on UCI Adult dataset, ordered by the education
attribute.

The Adult dataset aims to predict whether a person makes over 50k
a year, and it was created based on census data. Adult consists of 48,842
instances, 14 attributes (6 continuous and 8 nominal) and missing attribute
values. In Figure 5.3 we compare HWT-ADWIN error rate to CVFDT using
different window sizes. We observe that CVFDT on-line error decreases
when the example window size increases, and that HWT-ADWIN on-line
error is lower for all window sizes.

The Poker-Hand dataset consists of 1,025,010 instances and 11 attributes.
Each record of the Poker-Hand dataset is an example of a hand consisting of
five playing cards drawn from a standard deck of 52. Each card is described
using two attributes (suit and rank), for a total of 10 predictive attributes.
There is one Class attribute that describes the ”Poker Hand”. The order of
cards is important, which is why there are 480 possible Royal Flush hands
instead of 4.
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Table 5.4: On-line classification errors for CVFDT and Hoeffding Adaptive
Trees on Poker-Hand data set.

NO ARTIFICIAL

DRIFT DRIFT

HAT-INC 38.32% 39.21%
HAT-EWMA 39.48% 40.26%
HAT-ADWIN 38.71% 41.85%

HAT-INC NB 41.77% 42.83%
HAT-EWMA NB 24.49% 27.28%
HAT-ADWIN NB 16.91% 33.53%

CVFDT |W| = 1, 000 49.90% 49.94%
CVFDT |W| = 10, 000 49.88% 49.88 %
CVFDT |W| = 100, 000 49.89% 52.13 %

CVFDT ORIGINAL |W| = 1, 000 49.89% 49.92%
CVFDT ORIGINAL |W| = 10, 000 49.88% 49.88 %
CVFDT ORIGINAL |W| = 100, 000 49.88% 52.09 %

Table 5.4 shows the results on Poker-Hand dataset. It can be seen that
CVFDT remains at 50% error, while the different variants of Hoeffding
Adaptive Trees are mostly below 40% and one reaches 17% error only.

5.5 Time and memory

In this section, we discuss briefly the time and memory performance of
Hoeffding Adaptive Trees. All programs were implemented in C modify-
ing and expanding the version of CVFDT available from the VFML [HD03]
software web page. The experiments were performed on a 2.0 GHz In-
tel Core Duo PC machine with 2 Gigabyte main memory, running Ubuntu
8.04.

Consider the experiments on SEA Concepts, with different speed of
changes: 1, 000, 10, 000 and 100, 000. Figure 5.4 shows the memory used on
these experiments. As expected by memory complexity described in sec-
tion 5.3.2, HAT-INC and HAT-EWMA, are the methods that use less mem-
ory. The reason for this fact is that it doesn’t keep examples in memory
as CVFDT, and that it doesn’t store ADWIN data for all attributes, attribute
values and classes, as HAT-ADWIN. We have used the default 10, 000 for
the amount of window examples kept in memory, so the memory used by
CVFDT is essentially the same for W = 10, 000 and W = 100, 000, and
about 10 times larger than the memory used by HAT-INC memory.

Figure 5.5 shows the number of nodes used in the experiments of SEA
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Figure 5.4: Memory used on SEA Concepts experiments

Concepts. We see that the number of nodes is similar for all methods, con-
firming that the good results on memory of HAT-INC is not due to smaller
size of trees.

Finally, with respect to time we see that CVFDT is still the fastest method,
but HAT-INC and HAT-EWMA have a very similar performance to CVFDT,
a remarkable fact given that they are monitoring all the change that may
occur in any node of the main tree and all the alternate trees. HAT-ADWIN
increases time by a factor of 4, so it is still usable if time or data speed is not
the main concern.

In summary, Hoeffding Adaptive Trees are always as accurate as CVFDT
and, in some cases, they have substantially lower error. Their running time
is similar in HAT-EWMA and HAT-INC and only slightly higher in HAT-
ADWIN, and their memory consumption is remarkably smaller, often by an
order of magnitude.

We can conclude that HAT-ADWIN is the most powerful method, but
HAT-EWMA is a faster method that gives approximate results similar to
HAT-ADWIN.
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6
Ensemble Methods

Ensemble methods are combinations of several models whose individual
predictions are combined in some manner (e.g., averaging or voting) to
form a final prediction. Ensemble learning classifiers often have better
accuracy and they are easier to scale and parallelize than single classifier
methods.

This chapter proposes two new variants of Bagging. Using the new
experimental framework presented in Section 3.5, an evaluation study on
synthetic and real-world datasets comprising up to ten million examples
shows that the new ensemble methods perform very well compared to sev-
eral known methods.

6.1 Bagging and Boosting

Bagging and Boosting are two of the best known ensemble learning algo-
rithms. In [OR01a] Oza and Russell developed online versions of bagging
and boosting for Data Streams. They show how the process of sampling
bootstrap replicates from training data can be simulated in a data stream
context. They observe that the probability that any individual example will
be chosen for a replicate tends to a Poisson(1) distribution.

For the boosting method, Oza and Russell note that the weighting pro-
cedure of AdaBoost actually divides the total example weight into two
halves – half of the weight is assigned to the correctly classified examples,
and the other half goes to the misclassified examples. They use the Poisson
distribution for deciding the random probability that an example is used
for training, only this time the parameter changes according to the boost-
ing weight of the example as it is passed through each model in sequence.

Pelossof et al. presented in [PJVR08] Online Coordinate Boosting, a new
online boosting algorithm for adapting the weights of a boosted classifier,
which yields a closer approximation to Freund and Schapire’s AdaBoost
algorithm. The weight update procedure is derived by minimizing Ad-
aBoost’s loss when viewed in an incremental form. This boosting method
may be reduced to a form similar to Oza and Russell’s algorithm.

107



CHAPTER 6. ENSEMBLE METHODS

T1 T2 T3 T4

Figure 6.1: An ensemble of trees of different size

Chu and Zaniolo proposed in [CZ04] Fast and Light Boosting for adap-
tive mining of data streams. It is based on a dynamic sample-weight assign-
ment scheme that is extended to handle concept drift via change detection.
The change detection approach aims at significant data changes that could
cause serious deterioration of the ensemble performance, and replaces the
obsolete ensemble with one built from scratch.

6.2 New method of Bagging using trees of different

size

In this section, we introduce the Adaptive-Size Hoeffding Tree (ASHT). It is
derived from the Hoeffding Tree algorithm with the following differences:

• it has a maximum number of split nodes, or size

• after one node splits, if the number of split nodes of the ASHT tree is
higher than the maximum value, then it deletes some nodes to reduce
its size

The intuition behind this method is as follows: smaller trees adapt more
quickly to changes, and larger trees do better during periods with no or
little change, simply because they were built on more data. Trees limited to
size s will be reset about twice as often as trees with a size limit of 2s. This
creates a set of different reset-speeds for an ensemble of such trees, and
therefore a subset of trees that are a good approximation for the current
rate of change. It is important to note that resets will happen all the time,
even for stationary datasets, but this behaviour should not have a negative
impact on the ensemble’s predictive performance.

When the tree size exceeds the maximun size value, there are two dif-
ferent delete options:
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Figure 6.2: Kappa-Error diagrams for ASHT bagging (left) and bagging
(right) on dataset RandomRBF with drift, plotting 90 pairs of classifiers.
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• delete the oldest node, the root, and all of its children except the one
where the split has been made. After that, the root of the child not
deleted becomes the new root delete the oldest node, the root, and all
of its children.

• delete all the nodes of the tree, i.e., restart from a new root.

We present a new bagging method that uses these Adaptive-Size Ho-
effding Trees and that sets the size for each tree (Figure 6.1). The maximum
allowed size for the n-th ASHT tree is twice the maximum allowed size for
the (n − 1)-th tree. Moreover, each tree has a weight proportional to the in-
verse of the square of its error, and it monitors its error with an exponential
weighted moving average (EWMA) with α = .01. The size of the first tree
is 2.

With this new method, we attempt to improve bagging performance
by increasing tree diversity. It has been observed that boosting tends to
produce a more diverse set of classifiers than bagging, and this has been
cited as a factor in increased performance [MD97].

We use the Kappa statistic κ to show how using trees of different size,
we increase the diversity of the ensemble. Let’s consider two classifiers ha

and hb, a data set containing m examples, and a contingency table where
cell Cij contains the number of examples for which ha(x) = i and hb(x) = j.
If ha and hb are identical on the data set, then all non-zero counts will ap-
pear along the diagonal. If ha and hb are very different, then there should
be a large number of counts off the diagonal. We define

Θ1 =

∑L
i=1 Cii

m

Θ2 =

L∑

i=1





L∑

j=1

Cij

m
·

L∑

j=1

Cji

m





We could use Θ1 as a measure of agreement, but in problems where one
class is much more common than others, all classifiers will agree by chance,
so all pair of classifiers will obtain high values for Θ1. To correct this, the κ

statistic is defined as follows:

κ =
Θ1 − Θ2

1 − Θ2

κ uses Θ2, the probability that two classifiers agree by chance, given the
observed counts in the table. If two classifiers agree on every example then
κ = 1, and if their predictions coincide purely by chance, then κ = 0.

We use the Kappa-Error diagram to compare the diversity of normal
bagging with bagging using trees of different size. The Kappa-Error dia-
gram is a scatterplot where each point corresponds to a pair of classifiers.
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The x coordinate of the pair is the κ value for the two classifiers. The y

coordinate is the average of the error rates of the two classifiers.
Figure 6.2 shows the Kappa-Error diagram for the Random RBF dataset

with drift parameter or change speed equal to 0.001.We observe that bag-
ging classifiers are very similar to one another and that the decision tree
classifiers of different size are very diferent from one another.

6.3 New method of Bagging using ADWIN

ADWIN Bagging is the online bagging method implemented in MOA with
the addition of the ADWIN algorithm as a change detector and as an estima-
tor for the weights of the boosting method. When a change is detected, the
worst classifier of the ensemble of classifiers is removed and a new classi-
fier is added to the ensemble.

6.4 Adaptive Hoeffding Option Trees

Hoeffding Option Trees [PHK07] are regular Hoeffding trees containing ad-
ditional option nodes that allow several tests to be applied, leading to mul-
tiple Hoeffding trees as separate paths. They consist of a single structure
that efficiently represents multiple trees. A particular example can travel
down multiple paths of the tree, contributing, in different ways, to differ-
ent options.

An Adaptive Hoeffding Option Tree is a Hoeffding Option Tree with the
following improvement: each leaf stores an estimation of the current error.
It uses an EWMA estimator with α = .2. The weight of each node in the
voting process is proportional to the square of the inverse of the error.

6.5 Comparative Experimental Evaluation

Massive Online Analysis (MOA) [HKP07] was introduced in Section 3.5.3.
The data stream evaluation framework introduced there and all algorithms
evaluated in this chapter were implemented in the Java programming lan-
guage extending the MOA framework. We compare the following meth-
ods: Hoeffding Option Trees, bagging and boosting, and DDM and ADWIN

bagging.
We use a variety of datasets for evaluation, as explained in Section 3.5.2.

The experiments were performed on a 2.0 GHz Intel Core Duo PC ma-
chine with 2 Gigabyte main memory, running Ubuntu 8.10. The evaluation
methodology used was Interleaved Test-Then-Train: every example was
used for testing the model before using it to train. This interleaved test
followed by train procedure was carried out on 10 million examples from
the hyperplane and RandomRBF datasets, and one million examples from
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Figure 6.3: Accuracy and size on dataset LED with three concept drifts.
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the LED and SEA datasets. Tables 6.1 and 6.2 reports the final accuracy,
and speed of the classification models induced on synthetic data. Table 6.3
shows the results for real datasets: Forest CoverType, Poker Hand, Electric-
ity and CovPokElec. Additionally, the learning curves and model growth
curves for LED dataset are plotted (Figure 6.3). For some datasets the dif-
ferences in accuracy, as seen in Tables 6.1, 6.2 and 6.3, are marginal.

The first, and baseline, algorithm (HT) is a single Hoeffding tree, en-
hanced with adaptive Naive Bayes leaf predictions. Parameter settings are
nmin = 1000, δ = 10−8 and τ = 0.05. The HT DDM and HT EDDM are
Hoeffding Trees with drift detection methods as explained in Section 2.2.1.
HOT, is the Hoeffding option tree algorithm, restricted to a maximum of
five option paths (HOT5) or fifty option paths (HOT50). AdaHOT is the
Adaptive Hoeffding Tree explained in Section 6.4.

Bag10 is Oza and Russell online bagging using ten classifiers and Bag5
only five. BagADWIN is the online bagging version using ADWIN explained
in Section 6.3. We implemented the following variants of bagging with Ho-
effding trees of different size (ASHT): Bag ASHT is the base method, which
deletes its root node and all its children except the one where the last split
occurred, Bag ASHT W uses weighted classifiers, Bag ASHT R replaces
oversized trees with new ones, and Bag ASHT W+R uses both weighted
classifiers and replaces oversized trees with new ones. And finally, we
tested three methods of boosting: Oza Boosting, Online Coordinate Boost-
ing, and Fast and Light Boosting.

Bagging is clearly the best method in terms of accuracy. This supe-
rior position is, however, achieved at high cost in terms of memory and
time. ADWIN Bagging and ASHT Bagging are the most accurate methods
for most datasets, but they are slow. ADWIN Bagging is slower than ASHT
Bagging and for some datasets it needs more memory. ASHT Bagging us-
ing weighted classifiers and replacing oversized trees with new ones seems
to be the most accurate ASHT bagging method. We observe that bagging
using 5 trees of different size may be sufficient, as its error is not much
higher than for 10 trees, but it is nearly twice as fast. Also Hoeffding trees
using drift detection methods are faster but less accurate methods.

In [PHK07], a range of option limits were tested and averaged across all
datasets without concept drift to determine the optimal number of paths.
This optimal number of options was five. Dealing with concept drift, we
observe that increasing the number of options to 50, we obtain a significant
improvement in accuracy for some datasets.
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Part III

Closed Frequent Tree Mining
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7
Mining Frequent Closed Rooted Trees

This chapter considers the extension to trees of the process of closure-based
data mining, well-studied in the itemset framework. We focus mostly on
the case where labels on the nodes are nonexistent or unreliable, and dis-
cuss algorithms for closure-based mining that only rely on the root of the
tree and the link structure. We provide a notion of intersection that leads
to a deeper understanding of the notion of support-based closure, in terms
of an actual closure operator. We describe combinatorial characterizations
and some properties, discuss its applicability to unordered trees, and rely
on it to design efficient algorithms for mining frequent closed subtrees both
in the ordered and the unordered settings.

7.1 Introduction

Trees, in a number of variants, are basically connected acyclic undirected
graphs, with some additional structural notions like a distinguished vertex
(root) or labelings on the vertices. They are frequently a great compromise
between graphs, which offer richer expressivity, and strings, which offer
very efficient algorithmics. From AI to Compilers, through XML dialects,
trees are now ubiquitous in Informatics.

One form of data analysis contemplates the search of frequent, or the
so-called “closed” substructures in a dataset of structures. In the case of
trees, there are two broad kinds of subtrees considered in the literature:
subtrees which are just induced subgraphs, called induced subtrees, and sub-
trees where contraction of edges is allowed, called embedded subtrees. In
these contexts, the process of “mining” usually refers, nowadays, to a pro-
cess of identifying which common substructures appear particularly often,
or particularly correlated with other substructures, with the purpose of in-
ferring new information implicit in a (large) dataset.

Closure-based mining refers to mining closed substructures, in a sense
akin to the closure systems of Formal Concept Analysis; although the for-
mal connections are not always explicit. For trees, a closed subtree is one
that, if extended in any manner, leads to reducing the set of data trees where
it appears as a subtree; and similarly for graphs. Frequent closed trees (or
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CHAPTER 7. MINING FREQUENT CLOSED ROOTED TREES

sets, or graphs) give the same information about the dataset as the set of all
frequent trees (or sets, or graphs) in less space.

These mining processes can be used for a variety of tasks. Consider web
search engines. Already the high polysemy of many terms makes some-
times difficult to find information through them; for instance, a researcher
of soil science may have a very literal interpretation in mind when run-
ning a web search for “rolling stones”, but it is unlikely that the results are
very satisfactory; or a computer scientist interested in parallel models of
computation has a different expectation from that of parents-to-be when a
search for “prams” is launched. A way for distributed, adaptive search en-
gines to proceed may be to distinguish navigation on unsuccessful search
results, where the user follows a highly branching, shallow exploration,
from successful results, which give rise to deeper, little-branching naviga-
tion subtrees.

7.2 Basic Algorithmics and Mathematical Properties

This section discusses, mainly, to what extent the intuitions about trees can
be formalized in mathematical and algorithmic terms. As such, it is aimed
just at building up intuition and background understanding, and making
sure that our later sections on tree mining algorithms rest on solid foun-
dations: they connect with these properties but make little explicit use of
them.

Given two trees, a common subtree is a tree that is subtree of both; it
is a maximal common subtree if it is not a subtree of any other common
subtree; it is a maximum common subtree if there is no common subtree
of larger size. Observe the different usage of the adjectives maximum and
maximal.

Two trees have always some maximal common subtree but, as is shown
in Figure 7.1, this common subtree does not need to be unique. This fig-
ure also serves the purpose of further illustrating the notion of unordered
subtree.

A: B: X: Y:X: Y:

Figure 7.1: Trees X and Y are maximal common subtrees of A and B.

In fact, both trees X and Y in Figure 7.1 have the maximum number
of nodes among the common subtrees of A and B. As is shown in Fig-
ure 7.2, just a slight modification of A and B gives two maximal common
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7.2. BASIC ALGORITHMICS AND MATHEMATICAL PROPERTIES

subtrees of different sizes, showing that the concepts of maximal and max-
imum common subtree do not coincide in general.

A’: B’: X’: Y:

Figure 7.2: Both X ′ and Y are maximal common subtrees of A ′ and B ′, but
only X ′ is maximum.

From here on, the intersection of a set of trees is the set of all maximal
common subtrees of the trees in the set. Sometimes, the one-node tree will
be represented with the symbol , and the two-node tree by .

7.2.1 Number of subtrees

We can easily observe, using the trees A, B, X, and Y above, that two trees
can have an exponential number of maximal common subtrees.

Recall that the aforementioned trees have the property that X and Y are
two maximal common subtrees of A and B. Now, consider the pair of trees
constructed in the following way using copies of A and B. First, take a path
of length n−1 (thus having n nodes which include the root and the unique
leaf) and “attach” to each node a whole copy of A. Call this tree TA. Then,
do the same with a fresh path of the same length, with copies of B hanging
from their nodes, and call this tree TB. Graphically:

A

n

A

A

A n

B

B

B

B

TA TB

All the trees constructed similarly with copies of X or Y attached to each
node of the main path (instead of A or B) are maximal common subtrees of
TA and TB. As the maximal common subtrees are trees made from all the
possible combinations of X an Y attached to the main path, there are 2n

possibilities corresponding to different subtrees. Therefore, the number of
different maximal common subtrees of TA and TB is at least 2n (which is
exponential in the input since the sum of the sizes of TA and TB is 15n).
Any algorithm for computing maximal common subtrees has, therefore, a
worst case exponential cost due to the size of the output. We must note,

121



CHAPTER 7. MINING FREQUENT CLOSED ROOTED TREES

though, that experiments suggest that intersection sets of cardinality be-
yond 1 hardly ever arise unless looked for (see Section 7.8.2).

7.2.2 Finding the intersection of trees recursively

Computing a potentially large intersection of a set of trees is not a trivial
task, given that there is no ordering among the components: a maximal el-
ement of the intersection may arise through mapping smaller components
of one of the trees into larger ones of the other. Therefore, the degree of
branching along the exploration is high. We propose a natural recursive
algorithm to compute intersections, shown in Figure 7.3.

The basic idea is to exploit the recursive structure of the problem by
considering all the ways to match the components of the two input trees.
Suppose we are given the trees t and r, whose components are t1, . . . , tk

and r1, . . . , rn, respectively. If k ≤ n, then clearly (t1, r1), . . . , (tk, rk) is one
of those matchings. Then, we recursively compute the maximal common
subtrees of each pair (ti, ri) and “cross” them with the subtrees of the pre-
viously computed pairs, thus giving a set of maximal common subtrees of
t and r for this particular identity matching. The algorithm explores all
the (exponentially many) matchings and, finally, eliminates repetitions and
trees which are not maximal (by using recursion again).

RECURSIVE INTERSECTION(r, t)

1 if (r = ) or (t = )
2 then S← { }

3 elseif (r = ) or (t = )
4 then S← { }

5 else S← {}

6 nr ← #COMPONENTS(r)

7 nt ← #COMPONENTS(t)

8 for each m in MATCHINGS(nr, nt)

9 do mTrees← { }

10 for each (i, j) in m

11 do cr← COMPONENT(r, i)

12 ct← COMPONENT(t, j)

13 cTrees← RECURSIVE INTERSECTION(cr, ct)

14 mTrees← CROSS(mTrees, cTrees)
15 S← MAX SUBTREES(S, mTrees)
16 return S

Figure 7.3: Algorithm RECURSIVE INTERSECTION

We do not specify the data structure used to encode the trees. The only
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7.2. BASIC ALGORITHMICS AND MATHEMATICAL PROPERTIES

MAX SUBTREES(S1, S2)

1 for each r in S1

2 do for each t in S2

3 if r is a subtree of t

4 then mark r

5 elseif t is a subtree of r

6 then mark t

7 return sublist of nonmarked trees in S1 ∪ S2

Figure 7.4: Algorithm MAX SUBTREES

condition needed is that every component t ′ of a tree t can be accessed
with an index which indicates the lexicographical position of its encoding
〈t ′〉 with respect to the encodings of the other components; this will be
COMPONENT(t, i). The other procedures are as follows:

• #COMPONENTS(t) computes the number of components of t, this is,
the arity of the root of t.

• MATCHINGS(n1, n2) computes the set of perfect matchings of the graph
Kn1,n2

, that is, of the complete bipartite graph with partition classes
{1, . . . , n1} and {1, . . . , n2} (each class represents the components of
one of the trees). For example,

MATCHINGS(2, 3) = {{(1, 1), (2, 2)}, {(1, 1), (2, 3)}, {(1, 2), (2, 1)}, {(1, 2),
(2, 3)}, {(1, 3), (2, 1)}, {(1, 3), (2, 2)}.

• CROSS(l1, l2) returns a list of trees constructed in the following way:
for each tree t1 in l1 and for each tree t2 in l2 make a copy of t1 and
add t2 to it as a new component.

• MAX SUBTREES(S1, S2) returns the list of trees containing every tree
in S1 that is not a subtree of another tree in S2 and every tree in S2 that
is not a subtree of another tree in S1, thus leaving only the maximal
subtrees. This procedure is shown in Figure 7.4. There is a further
analysis of it in the next subsection.

The fact that, as has been shown, two trees may have an exponential
number of maximal common subtrees necessarily makes any algorithm for
computing all maximal subtrees inefficient. However, there is still space
for some improvement.
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CHAPTER 7. MINING FREQUENT CLOSED ROOTED TREES

7.2.3 Finding the intersection by dynamic programming

In the above algorithm, recursion can be replaced by a table of precom-
puted answers for the components of the input trees. This way we avoid
repeated recursive calls for the same trees, and speed up the computa-
tion. Suppose we are given two trees r and t. In the first place, we com-
pute all the trees that can appear in the recursive queries of RECURSIVE

INTERSECTION(r, t). This is done in the following procedure:

• SUBCOMPONENTS(t) returns a list containing t if t = ; otherwise, if
t has the components t1, . . . , tk, then, it returns a list containing t and
the trees in SUBCOMPONENTS(ti) for every ti, ordered increasingly
by number of nodes.

The new algorithm shown in Figure 7.5 constructs a dictionary D ac-
cessed by pairs of trees (t1, t2) when the input trees are nontrivial (differ-
ent from and , which are treated separately). Inside the main loops, the
trees which are used as keys for accessing the dictionary are taken from the
lists SUBCOMPONENTS(r) and SUBCOMPONENTS(t), where r and t are the
input trees.

DYNAMIC PROGRAMMING INTERSECTION(r, t)

1 for each sr in SUBCOMPONENTS(r)

2 do for each st in SUBCOMPONENTS(t)

3 do if (sr = ) or (st = )
4 then D[sr, st]← { }

5 elseif (sr = ) or (st = )

6 then D[sr, st]← { }

7 else D[sr, st]← {}

8 nsr ← #COMPONENTS(sr)

9 nst ← #COMPONENTS(st)

10 for each m in MATCHINGS(nsr, nst)

11 do mTrees← { }

12 for each (i, j) in m

13 do csr ← COMPONENT(sr, i)

14 cst ← COMPONENT(st, j)

15 cTrees← D[csr, cst]

16 mTrees← CROSS(mTrees, cTrees)
17 D[sr, st]← MAX SUBTREES(D[sr, st], mTrees)
18 return D[r, t]

Figure 7.5: Algorithm DYNAMIC PROGRAMMING INTERSECTION
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7.3. CLOSURE OPERATOR ON TREES

Note that the fact that the number of trees in SUBCOMPONENTS(t) is
linear in the number of nodes of t assures a quadratic size for D. The entries
of the dictionary are computed by increasing order of the number of nodes;
this way, the information needed to compute an entry has already been
computed in previous steps.

The procedure MAX SUBTREES, which appears in the penultimate step
of the two intersection algorithms presented, was presented in Section 7.2.2.
The key point in the procedure MAX SUBTREES is the identification of sub-
trees made in steps 3 and 5 of Figure 7.4. This is discussed in depth below,
but let us advance that, in the unordered case, it can be decided whether
t1 � t2 in time O(n1n

1.5
2 ) ([Val02]), where n1 and n2 are the number of

nodes of t1 and t2, respectively.

Finally, Table 7.1 shows an example of the intersections stored in the dic-
tionary by the algorithm DYNAMIC PROGRAMMING INTERSECTION with
trees A and B of Figure 7.1 as input.

Table 7.1: Table with all partial results computed

7.3 Closure Operator on Trees

Now we attempt at formalizing a closure operator for substantiating the
work on closed trees, with no resort to the labelings: we focus on the case
where the given dataset consists of unlabeled, rooted trees; thus, our only
relevant information is the identity of the root and the link structure. In
order to have the same advantages as with frequent closed itemset min-
ing, we want to be able to obtain all frequent subtrees, with their support,
from the set of closed frequent subtrees with their supports. We propose
a notion of Galois connection with the associated closure operator, in such
a way that we can characterize support-based notions of closure with a
mathematical operator.

For a notion of closed (sets of) trees to make sense, we expect to be given
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as data a finite set (actually, a list) of transactions, each of which consisting
of its transaction identifier (tid) and a tree. Transaction identifiers are as-
sumed to run sequentially from 1 to N, the size of the dataset. We denote
D ⊂ T the dataset, where T acts as our universe of discourse. General
usage would lead to the following notion of closed tree:

Definition 2. A tree t is closed for D if no tree t ′ 6= t exists with the same support
such that t � t ′.

We aim at clarifying the properties of closed trees, providing a more de-
tailed justification of the term “closed” through a closure operator obtained
from a Galois connection, along the lines of [GW99], [BG07b], [Gar06], or
[BB03] for unstructured or otherwise structured datasets. However, given
that the intersection of a set of trees is not a single tree but yet another set
of trees, we will find that the notion of “closed” is to be applied to subsets
of the transaction list, and that the notion of a “closed tree” t is not exactly
coincident with the singleton {t} being closed.

To see that the task is not fully trivial, note first that t � t ′ implies
that t is a subtree of all the transactions where t ′ is a subtree, so that the
support of t is, at least, that of t ′. Existence of a larger t ′ with the same
support would mean that t does not gather all the possible information
about the transactions in which it appears, since t ′ also appears in the same
transactions and gives more information (is more specific). A closed tree is
maximally specific for the transactions in which it appears. However, note
that the example of the trees A and B given above provides two trees X

and Y with the same support, and yet mutually incomparable. This is, in
a sense, a problem. Indeed, for itemsets, and several other structures, the
closure operator “maximizes the available information” by a process that
would correspond to the following: given tree t, find the largest supertree
of t which appears in all the transactions where t appears. But doing it
that way, in the case of trees, does not maximize the information: there can
be different, incomparable trees supported by the same set of transactions.
Maximizing the information requires us to find them all.

There is a way forward, that can be casted into two alternative forms,
equally simple and essentially equivalent. We can consider each subtree of
some tree in the input dataset as an atomic item, and translate each trans-
action into an itemset on these items (all subtrees of the transaction tree).
Then we can apply the standard Galois connection for itemsets, where
closed sets would be sets of items, that is, sets of trees. The alternative
we describe can be seen also as an implementation of this idea, where the
difference is almost cosmetic, and we mention below yet another simple
variant that we have chosen for our implementations, and that is easier to
describe starting from the tree-based form we give now.
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7.3. CLOSURE OPERATOR ON TREES

7.3.1 Galois Connection

A Galois connection is provided by two functions, relating two partial or-
ders in a certain way. Here our partial orders are plain power sets of the
transactions, on the one hand, and of the corresponding subtrees, in the
other. On the basis of the binary relation t � t ′, the following definition
and proposition are rather standard.

Definition 3. The Galois connection pair:

• For finite A ⊆ D, σ(A) = {t ∈ T
∣

∣ ∀ t ′ ∈ A (t � t ′)}

• For finite B ⊂ T , not necessarily in D, τD(B) = {t ′ ∈ D
∣

∣ ∀ t ∈ B (t � t ′)}

Note, that σ(A) finds all the subtrees common to all trees of A, and that
τD(B) finds all the trees of the dataset D, that have trees of B as common
subtrees.

The use of finite parts of the infinite set T should not obscure the fact
that the image of the second function is empty except for finitely many sets
B; in fact, we could use, instead of T , the set of all trees that are subtrees of
some tree in D, with exactly the same effect overall. There are many ways
to argue that such a pair is a Galois connection. One of the most useful ones
is as follows.

Proposition 1. For all finite A ⊆ D and B ⊂ T , the following holds:

A ⊆ τD(B) ⇐⇒ B ⊆ σ(A)

This fact follows immediately since, by definition, each of the two sides
is equivalent to ∀ t ∈ B ∀ t ′ ∈ A (t � t ′).

It is well-known that the compositions (in either order) of the two func-
tions that define a Galois connection constitute closure operators, that is,
are monotonic, extensive, and idempotent (with respect, in our case, to set
inclusion).

Corollary 2. The composition τD ◦ σ is a closure operator on the subsets of D.
The converse composition ΓD = σ ◦ τD is also a closure operator.

ΓD operates on subsets of T ; more precisely, again, on subsets of the
set of all trees that appear as subtrees somewhere in D. Thus, we have
now both a concept of “closed set of transactions” of D, and a concept of
“closed sets of trees”, and they are in bijective correspondence through both
sides of the Galois connection. However, the notion of closure based on
support, as previously defined, corresponds to single trees, and it is worth
clarifying the connection between them, naturally considering the closure
of the singleton set containing a given tree, ΓD({t}), assumed nonempty, that
is, assuming that t indeed appears as subtree somewhere along the dataset.
We point out the following easy-to-check properties:
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1. t ∈ ΓD({t})

2. t ′ ∈ ΓD({t}) if and only if ∀s ∈ D(t � s→ t ′ � s)

3. t may be, or may not be, maximal in ΓD({t}) (maximality is formalized
as: ∀t ′ ∈ ΓD({t})[t � t ′ → t = t ′])). In fact, t is maximal in ΓD({t}) if
and only if ∀t ′(∀s ∈ D[t � s→ t ′ � s] ∧ t � t ′ → t = t ′)

The definition of closed tree can be phrased in a similar manner as fol-
lows: t is closed for D if and only if: ∀t ′(t � t ′ ∧ supp(t) = supp(t ′)→ t =

t ′).

Theorem 8. A tree t is closed for D if and only if it is maximal in ΓD({t}).

Proof. Suppose t is maximal in ΓD({t}), and let t � t ′ with supp(t) =

supp(t ′). The data trees s that count for the support of t ′ must count
as well for the support of t, because t ′ � s implies t � t ′ � s. The
equality of the supports then implies that they are the same set, that is,
∀s ∈ D(t � s ⇐⇒ t ′ � s), and then, by the third property above, maxi-
mality implies t = t ′. Thus t is closed.

Conversely, suppose t is closed and let t ′ ∈ ΓD({t}) with t � t ′. Again,
then supp(t ′) ≤ supp(t); but, from t ′ ∈ ΓD({t}) we have, as in the second
property above, (t � s → t ′ � s) for all s ∈ D, that is, supp(t) ≤ supp(t ′).
Hence, equality holds, and from the fact that t is closed, with t � t ′ and
supp(t) = supp(t ′), we infer t = t ′. Thus, t is maximal in ΓD({t}). ✷

Now we can continue the argument as follows. Suppose t is maximal in
some closed set B of trees. From t ∈ B, by monotonicity and idempotency,
together with aforementioned properties, we obtain t ∈ ΓD({t}) ⊆ ΓD(B) =

B; being maximal in the larger set implies being maximal in the smaller
one, so that t is maximal in ΓD({t}) as well. Hence, we have argued the
following alternative, somewhat simpler, characterization:

Corollary 3. A tree is closed for D if and only if it is maximal in some closed set
of ΓD.

A simple observation here is that each closed set is uniquely defined
through its maximal elements. In fact, our implementations chose to avoid
duplicate calculations and redundant information by just storing the max-
imal trees of each closed set. We could have defined the Galois connection
so that it would provide us “irredundant” sets of trees by keeping only
maximal ones; the property of maximality would be then simplified into
t ∈ ΓD({t}), which would not be guaranteed anymore (cf. the notion of sta-
ble sequences in [BG07b]). The formal details of the validation of the Ga-
lois connection property would differ slightly (in particular, the ordering
would not be simply a mere subset relationship) but the essentials would
be identical, so that we refrain from developing that approach here. We
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would obtain a development somewhat closer to [BG07b] than our current
development is, but there would be no indisputable advantages.

Now, given any set t, its support is the same as that of ΓD({t}); know-
ing the closed sets of trees and their supports gives us all the supports of
all the subtrees. As indicated, this includes all the closed trees, but has
more information regarding their joint membership in closed sets of trees.
We can compute the support of arbitrary frequent trees in the following
manner, that has been suggested to us by an anonymous reviewer of this
paper: assume that we have the supports of all closed frequent trees, and
that we are given a tree t; if it is frequent and closed, we know its support,
otherwise we find the smallest closed frequent supertrees of t. Here we
depart from the itemset case, because there is no unicity: there may be sev-
eral noncomparable minimal frequent closed supertrees, but the support
of t is the largest support appearing among these supertrees, due to the
antimonotonicity of support.

For further illustration, we exhibit here, additionally, a toy example of
the closure lattice for a simple dataset consisting of six trees, thus providing
additional hints on our notion of intersection; these trees were not made
up for the example, but were instead obtained through six different (rather
arbitrary) random seeds of the synthetic tree generator of Zaki [Zak02].

The figure depicts the closed sets obtained. It is interesting to note that
all the intersections came up to a single tree, a fact that suggests that the
exponential blow-up of the intersection sets, which is possible as explained
in Section 7.2.1, appears infrequently enough, see Section 7.8.2 for empirical
validation.

Of course, the common intersection of the whole dataset is (at least) a
“pole” whose length is the minimal height of the data trees.

7.4 Level Representations

The development so far is independent of the way in which the trees are
represented. The reduction of a tree representation to a (frequently aug-
mented) sequential representation has always been a source of ideas, al-
ready discussed in depth in Knuth [Knu97, Knu05]. We use here a spe-
cific data structure [NU03, BH80, AAUN03, NK03] to implement trees that
leads to a particularly streamlined implementation of the closure-based
mining algorithms.

We will represent each tree as a sequence over a countably infinite al-
phabet, namely, the set of natural numbers; we will concentrate on a spe-
cific language, whose strings exhibit a very constrained growth pattern.
Some simple operations on strings of natural numbers are:

Definition 4. Given two sequences of natural numbers x, y, we represent by
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Figure 7.6: Lattice of closed trees for the six input trees in the top row

• |x| the length of x.

• x · y the sequence obtained as concatenation of x and y

• x+ i the sequence obtained adding i to each component of x; we represent by
x+ the sequence x + 1

We will apply to our sequences the common terminology for strings:
the term subsequence will be used in the same sense as substring; in the same
way, we will also refer to prefixes and suffixes. Also, we can apply lexico-
graphical comparisons to our sequences.

The language we are interested in is formed by sequences which never
“jump up”: each value either decreases with respect to the previous one, or
stays equal, or increases by only one unit. This kind of sequences will be
used to describe trees.

Definition 5. A level sequence or depth sequence is a sequence (x1, . . . , xn)

of natural numbers such that x1 = 0 and each subsequent number xi+1 belongs to
the range 1 ≤ xi+1 ≤ xi + 1.
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For example, x = (0, 1, 2, 3, 1, 2) is a level sequence that satisfies |x| = 6

or x = (0) · (0, 1, 2)+ · (0, 1)+. Now, we are ready to represent trees by means
of level sequences.

Definition 6. We define a function 〈·〉 from the set of ordered trees to the set of
level sequences as follows. Let t be an ordered tree. If t is a single node, then
〈t〉 = (0). Otherwise, if t is composed of the trees t1, . . . , tk joined to a common
root r (where the ordering t1, . . . , tk is the same of the children of r), then

〈t〉 = (0) · 〈t1〉+ · 〈t2〉+ · · · · · 〈tk〉+

Here we will say that 〈t〉 is the level representation of t.

Note the role of the previous definition:

Proposition 2. Level sequences are exactly the sequences of the form 〈t〉 for or-
dered, unranked trees t.

That is, our encoding is a bijection between the ordered trees and the
level sequences. This encoding 〈t〉 basically corresponds to a preorder
traversal of t, where each number of the sequence represents the level of
the current node in the traversal. As an example, the level representation
of the tree

is the level sequence (0, 1, 2, 2, 3, 1). Note that, for example, the subse-
quence (1, 2, 2, 3) corresponds to the bottom-up subtree rooted at the left
son of the root (recall that our subsequences are adjacent). We can state this
fact in general.

Proposition 3. Let x = 〈t〉, where t is an ordered tree. Then, t has a bottom-up
subtree r at level d > 0 if and only if 〈r〉 + d is a subsequence of x.

Proof. We prove it by induction on d. If d = 1, then 〈r〉 + d = 〈r〉+ and the
property holds by the recursive definition of level representation.

For the induction step, let d > 1. To show one direction, suppose that
r is a bottom-up subtree of t at level d. Then, r must be a bottom-up sub-
tree of one of the bottom-up subtrees corresponding to the children of the
root of t. Let t ′ be the bottom-up subtree at level 1 that contains r. Since
r is at level d − 1 in t ′, the induction hypothesis states that 〈r〉 + d − 1 is
a subsequence of 〈t ′〉. But 〈t ′〉+ is also, by definition, a subsequence of x.
Combining both facts, we get that 〈r〉 + d is a subsequence of x, as desired.
The argument also works in the contrary direction, and we get the equiva-
lence. ✷
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7.4.1 Subtree Testing in Ordered Trees

Top-down subtree testing of two ordered trees can be obtained by perform-
ing a simultaneous preorder traversal of the two trees [Val02]. This algo-
rithm is shown in Figure 7.7. There, post traverses sequentially the level
representation of tree t and posst similarly traverses the purported subtree
st. The natural number found in the level representation of t at position
post is exactly level (t, post).

Suppose we are given the trees st and t, and we would like to know if
st is a subtree of t. Our method begins visiting the first node in tree t and
the first node in tree st. While we are not visiting the end of any tree,

• If the level of tree t node is greater than the level of tree st node then
we visit the next node in tree t

• If the level of tree st node is greater than the level of tree t node then
we backtrack to the last node in tree st that has the same level as tree

node

• If the level of the two nodes are equal then we visit the next node in
tree t and the next node in tree st

If we reach the end of tree st, then st is a subtree of tree t.

ORDERED SUBTREE(st, t)

Input: A tree st, a tree t.
Output: true if st is a subtree of t.

1 posst = 1

2 post = 1

3 while posst ≤ SIZE(st) and post ≤ SIZE(t)

4 do if level (st, posst) > level (t, post)

5 then while level (st, posst) 6= level (t, post)

6 do posst = posst − 1

7 if level (st, posst) = level (t, post)

8 then posst = posst + 1

9 post = post + 1

10 return posst > SIZE(st)

Figure 7.7: The Ordered Subtree test algorithm

The running time of the algorithm is clearly quadratic since for each
node of tree t, it may visit all nodes in tree st. An incremental version of
this algorithm follows easily, as it is explained in next section.
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7.5 Mining Frequent Ordered Trees

In the rest of the paper, our goal will be to obtain a frequent closed tree
mining algorithm for ordered and unordered trees. First, we present in this
section a basic method for mining frequent ordered trees. We will extend it
to unordered trees and frequent closed trees in the next section.

We begin showing a method for mining frequent ordered trees. Our
approach here is similar to gSpan [YH02]: we represent the potential fre-
quent subtrees to be checked on the dataset in such a way that extending
them by one single node, in all possible ways, corresponds to a clear and
simple operation on the representation. The completeness of the procedure
is assured, that is, we argue that all trees can be obtained in this way. This
allows us to avoid extending trees that are found to be already nonfrequent.

We show now that our representation allows us to traverse the whole
subtree space by an operation of extension by a single node, in a simple
way.

Definition 7. Let x and y be two level sequences. We say that y is a one-step
extension of x (in symbols, x ⊢1 y) if x is a prefix of y and |y| = |x| + 1. We say
that y is an extension of x (in symbols, x ⊢ y) if x is a prefix of y.

Note that x ⊢1 y holds if and only if y = x · (i), where 1 ≤ i ≤ j + 1, and
j is the last element of x. Note also that a series of one-step extensions from
(0) to a level sequence x

(0) ⊢1 x1 ⊢1 · · · ⊢1 xk−1 ⊢1 x

always exists and must be unique, since the xi’s can only be the prefixes of
x. Therefore, we have:

Proposition 4. For every level sequence x, there is a unique way to extend (0)

into x.

For this section we could directly use gSpan, since our structures can
be handled by that algorithm. However, our goal is the improved algo-
rithm described in the next section, to be applied when the ordering in the
subtrees is irrelevant for the application, that is, mining closed unordered
trees.

Indeed, level representations allow us to check only canonical repre-
sentatives for the unordered case, thus saving the computation of support
for all (except one) of the ordered variations of the same unordered tree.
Figures 7.8 and 7.9 show the gSpan-based algorithm, which is as follows:
beginning with a tree of single node, it calls recursively the FREQUENT

ORDERED SUBTREE MINING algorithm doing one-step extensions and check-
ing that they are still frequent. Correctness and completeness follow from
Propositions 2 and 4 by standard arguments.
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FREQUENT ORDERED MINING(D, min sup)

Input: A tree dataset D, and min sup.
Output: The frequent tree set T .

1 t←
2 T ← ∅
3 T ← FREQUENT ORDERED SUBTREE MINING(t, D,min sup, T)

4 return T

Figure 7.8: The Frequent Ordered Mining algorithm

FREQUENT ORDERED SUBTREE MINING(t, D,min sup, T)

Input: A tree t, a tree dataset D, min sup, and the frequent tree set T so far.
Output: The frequent tree set T , updated from t.

1 insert t into T

2 for every t ′ that can be extended from t in one step
3 do if support(t ′) ≥ min sup

4 then T ← FREQUENT ORDERED SUBTREE MINING(t ′, D,min sup, T)

5 return T

Figure 7.9: The Frequent Ordered Subtree Mining algorithm

Since we represent trees by level representations, we can speed up these
algorithms, using an incremental version of the subtree ordered test algo-
rithm explained in Section 7.4.1, reusing the node positions we reach at
the end of the algorithm. If st1 is a tree extended from st in one step
adding a node, we can start ORDERED SUBTREE(st1, t) proceeding from
where ORDERED SUBTREE(st, t) ended. So, we only need to store and
reuse the positions post and posst at the end of the algorithm. This in-
cremental method is shown in Figure 7.10. Note that ORDERED SUBTREE

can be seen as a call to INCREMENTAL ORDERED SUBTREE with posst and
post initialized to zero.

7.6 Unordered Subtrees

In unordered trees, the children of a given node form sets of siblings instead
of sequences of siblings. Therefore, ordered trees that only differ in permu-
tations of the ordering of siblings are to be considered the same unordered
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INCREMENTAL ORDERED SUBTREE(st, t, posst, post)

Input: A tree st, a tree t, and positions posst,post

such that the st prefix of length posst − 1 is a
subtree of the t prefix of length post.

Output: true if st is a subtree of t.

1 while posst ≤ SIZE(st) and post ≤ SIZE(t)

2 do if level (st, posst) > level (t, post)

3 then while level (st, posst) 6= level (t, post)

4 do posst = posst − 1

5 if level (st, posst) = level (t, post)

6 then posst = posst + 1

7 post = post + 1

8 return posst > SIZE(st)

Figure 7.10: The Incremental Ordered Subtree test algorithm

tree.

7.6.1 Subtree Testing in Unordered Trees

We can test if an unordered tree r is a subtree of an unordered tree t by
reducing the problem to maximum bipartite matching. Figure 7.11 shows
this algorithm.

Suppose we are given the trees r and t, whose components are r1, . . . , rn

and t1, . . . , tk, respectively. If n > k or r has more nodes than t, then r

cannot be a subtree of t. We recursively build a bipartite graph where the
vertices represent the child trees of the trees and the edges the relationship
“is subtree” between vertices. The function BIPARTITEMATCHING returns
true if it exists a solution for this maximum bipartite matching problem. It
takes time O(nrn

1.5
t )([Val02]), where nr and nt are the number of nodes of r

and t, respectively. If BIPARTITEMATCHING returns true then we conclude
that r is a subtree of t.

To speed up this algorithm, we store the computation results of the al-
gorithm in a dictionary D, and we try to reuse these computations at the
beginning of the algorithm.

7.6.2 Mining frequent closed subtrees in the unordered case

The main result of this subsection is a precise mathematical characteriza-
tion of the level representations that correspond to canonical variants of
unordered trees. Luccio et al. [LERP04, LERP01] showed that a canonical
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UNORDERED SUBTREE(r, t)

Input: A tree r, a tree t.
Output: true if r is a subtree of t.

1 if D(r, t) exists
2 then Return D(r, t)

3 if (SIZE(r) > SIZE(t) or #COMPONENTS(r) > #COMPONENTS(t))

4 then Return false

5 if (r = )
6 then Return true

7 graph← {}

8 for each sr in SUBCOMPONENTS(r)

9 do for each st in SUBCOMPONENTS(t)

10 do if (UNORDERED SUBTREE(sr, st))
11 then insert(graph, edge(sr, st))
12 if BIPARTITEMATCHING(graph)
13 then D(r, t)← true

14 else D(r, t)← false

15 return D(r, t)

Figure 7.11: The Unordered Subtree test algorithm

representation based on the preorder traversal can be obtained in linear
time. Nijssen et al. [NK03], Chi et al. [CYM05] and Asai et al. [AAUN03]
defined similar canonical representations.

We select one of the ordered trees corresponding to a given unordered
tree to act as a canonical representative: by convention, this canonical rep-
resentative has larger trees always to the left of smaller ones. More pre-
cisely,

Definition 8. Let t be an unordered tree, and let t1, . . . , tn be all the ordered trees
obtained from t by ordering in all possible ways all the sets of siblings of t. The
canonical representative of t is the ordered tree t0 whose level representation is
maximal (according to lexicographic ordering) among the level representations of
the trees ti, that is, such that

〈t0〉 = max{〈ti〉 | 1 ≤ i ≤ n}.

We can use, actually, the same algorithm as in the previous section
to mine unordered trees; however, much work is unnecessarily spent in
checking repeatedly ordered trees that correspond to the same unordered
tree as one already checked. A naive solution is to compare each tree to
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be checked with the ones already checked, but in fact this is an inefficient
process, since all ways of mapping siblings among them must be tested.

A far superior solution would be obtained if we could count frequency
only for canonical representatives. We prove next how this can be done:
the use of level representations allows us to decide whether a given (level
representation of a) tree is canonical, by using an intrinsic characterization,
stated in terms of the level representation itself.

Theorem 9. A level sequence x corresponds to a canonical representative if and
only if for any level sequences y, z and any d ≥ 0 such that (y + d) · (z + d) is a
subsequence of x, it holds that y ≥ z in lexicographical order.

Proof. Suppose that x corresponds to a canonical representative and that
(y+d)·(z+d) is a subsequence of x for some level sequences y, z and d ≥ 0.
In this case, both y+d and z+d are subsequences of x and, by Proposition 3,
〈y〉 and 〈z〉 are two subtrees of 〈x〉. Since their respective level representa-
tions, y and z, appear consecutively in x, the two subtrees must be siblings.
Now, if y < z, the reordering of siblings y and z would lead to a bigger level
representation of the same unordered tree, and x would not correspond to
a canonical representative. Therefore, y ≥ z in lexicographical order.

For the other direction, suppose that x does not correspond to a canon-
ical representative. Then, the ordered tree t represented by x would have
two sibling subtrees r and s (appearing consecutively in t, say r before s)
that, if exchanged, would lead to a lexicographically bigger representation.
Let y = 〈r〉 and z = 〈s〉. If r and s are at level d in t, then (y + d) · (z + d)

would be a subsequence of x = 〈t〉 (again by Proposition 3). Then, it must
hold that y < z in lexicographical order. ✷

Corollary 4. Let a level sequence x correspond to a canonical representative. Then
its extension x · (i) corresponds to a canonical representative if and only if, for any
level sequences y, z and any d ≥ 0 such that (y + d) · (z + d) is a suffix of x · (i),
it holds that y ≥ z in lexicographical order.

Proof. Suppose that x corresponds to a canonical representative, and let i be
such that x · (i) is a level sequence. At this point, we can apply Theorem 9
to x · (i): it is a canonical representative if and only if all subsequences of
the form (y + d) · (z + d) (for appropriate y, z, and d) satisfy that y ≥ z. But
such subsequences (y + d) · (z + d) can now be divided into two kinds: the
ones that are subsequences of x and the ones that are suffixes of x · (i).

A new application of Theorem 9 to x assures that the required property
must hold for subsequences of the first kind. So, we can characterize the
property that x · (i) corresponds to a canonical representative just using the
subsequences of the second kind (that is, suffixes) as said in the statement.
✷
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We build an incremental canonical checking algorithm, using the result
of Corollary 4. The algorithm is as follows: each time we add a node of
level d to a tree t, we check for all levels less than d that the last two child
subtrees are correctly ordered. As it is an incremental algorithm, and the
tree that we are extending is canonical, we can assume that child subtrees
are ordered, so we only have to check the last two ones.

7.6.3 Closure-based mining

In this section, we propose TREENAT, a new algorithm to mine frequent
closed trees. Figure 7.12 illustrates the framework.

Figure 7.13 shows the pseudocode of CLOSED UNORDERED SUBTREE

MINING. It is similar to UNORDERED SUBTREE MINING, adding a check-
ing of closure in lines 10-13. Correctness and completeness follow from
Propositions 2 and 4, and Corollary 4.

The main difference of TREENAT, with CMTreeMiner is that CMTreeM-
iner needs to store all occurrences of subtrees in the tree dataset to use its
pruning methods, whereas our method does not. That means that with
a small number of labels, CMTreeMiner will need to store a huge num-
ber of occurrences, and it will take much more time and memory than our
method, that doesn’t need to store all that information. Also, with unla-
beled trees, if the tree size is big, CMTreeMiner needs more time and mem-
ory to store all possible occurrences. For example, an unlabeled tree of size
2 in a tree of size n has n − 1 occurrences. But when the number of labels
is big, or the size of the unlabeled trees is small, CMTreeMiner will be fast
because the number of occurrences is small and it can use the power of its
pruning methods. Dealing with unordered trees, CMTreeMiner doesn’t use
bipartite matching as we do for subtree testing. However, it uses canonical
forms and the storing of all occurrences.

CLOSED UNORDERED MINING(D, min sup)

Input: A tree dataset D, and min sup.
Output: The closed tree set T .

1 t←
2 T ← ∅
3 T ← CLOSED UNORDERED SUBTREE MINING(t, D,min sup, T)

4 return T

Figure 7.12: The Closed Unordered Mining algorithm

138



7.7. INDUCED SUBTREES AND LABELED TREES

CLOSED UNORDERED SUBTREE MINING(t, D,min sup, T)

Input: A tree t, a tree dataset D, min sup, and the closed frequent tree set T so far.
Output: The closed frequent tree set T , updated from t.

1 if t 6= CANONICAL REPRESENTATIVE(t)

2 then return T

3 t is closed← TRUE

4 for every t ′ that can be extended from t in one step
5 do if support(t ′) ≥ min sup

6 then T ← CLOSED UNORDERED SUBTREE MINING(t ′, D,min sup, T)

7 do if support(t ′) = support(t)
8 then t is closed← FALSE

9 if t is closed = TRUE

10 then insert t into T

11 if (∃t ′′ ∈ T | t ′′ is subtree of t, support(t) =support(t ′′))
12 then delete t ′′ from T

13 return T

Figure 7.13: The Closed Unordered Subtree Mining algorithm

7.7 Induced subtrees and Labeled trees

Our method can be extended easily to deal with induced subtrees and la-
beled trees in order to compare it with CMTreeMiner in Section 7.8, work-
ing with the same kind of trees and subtrees.

7.7.1 Induced subtrees

In order to adapt our algorithms to all induced subtrees, not only rooted,
we need to change the subtree testing procedure with a slight variation.
We build a new procedure for checking if a tree r is an induced subtree
of t using the previous procedure SUBTREE(r, t) (ORDERED SUBTREE(r, t)

for ordered trees or UNORDERED SUBTREE(r, t) for unordered trees) that
checks wether a tree r is a top-down subtree of tree t. It is as follows: for
every node n in tree t we consider the top-down subtree t ′ of tree t rooted
at node n. If there is at least one node that SUBTREE(r, t ′) returns true, then
r is an induced subtree of t, otherwise not. Applying this slight variation
to both ordered and unordered trees, we are able to mine induced subtrees
as CMTreeMiner.
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7.7.2 Labeled trees

We need to use a new tree representation to deal with labels in the nodes of
the trees. We represent each labeled tree using labeled level sequences [AAUN03,
NK03], a labeled extension of the level representations explained earlier.

Definition 9. A labeled level sequence is a sequence ((x1, l1) . . . , (xn, ln)) of
pairs of natural numbers and labels such that x1 = 0 and each subsequent number
xi+1 belongs to the range 1 ≤ xi+1 ≤ xi + 1.

For example, x = ((0, A), (1, B), (2, A), (3, B), (1, C)) is a level sequence
that satisfies |x| = 6 or x = ((0, A)) · ((0, B), (1, A), (2, B))+ · ((0, C))+. Now,
we are ready to represent trees by means of level sequences (see also [CYM04]).

Definition 10. We define a function 〈·〉 from the set of ordered trees to the set of
labeled level sequences as follows. Let t be an ordered tree. If t is a single node,
then 〈t〉 = ((0, l0)). Otherwise, if t is composed of the trees t1, . . . , tk joined to a
common root r (where the ordering t1, . . . , tk is the same of the children of r), then

〈t〉 = ((0, l0)) · 〈t1〉+ · 〈t2〉+ · · · · · 〈tk〉+

Here we will say that 〈t〉 is the labeled level representation of t.

This encoding is a bijection between the ordered trees and the labeled
level sequences. This encoding 〈t〉 basically corresponds to a preorder
traversal of t, where each natural number of the node sequence represents
the level of the current node in the traversal.

Figure 7.14 shows a finite dataset example using labeled level sequences.
The closed trees for the dataset of Figure 7.14 are shown in the Galois

lattice of Figure 7.15.

7.8 Applications

We tested our algorithms on synthetic and real data, and compared the
results with CMTreeMiner [CXYM01].

All experiments were performed on a 2.0 GHz Intel Core Duo PC ma-
chine with 2 Gigabyte main memory, running Ubuntu 7.10. As far as we
know, CMTreeMiner is the state-of-art algorithm for mining induced closed
frequent trees in databases of rooted trees.

7.8.1 Datasets for mining closed frequent trees

We present the datasets used in this section for empirical avaluation of our
closed frequent tree mining methods. GAZELLE is a new unlabeled tree
dataset. The other datasets are the most used ones in frequent tree mining
literature.
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Figure 7.14: A dataset example

• ZAKI Synthetic Datasets. Datasets generated by the tree generator of
Zaki [Zak02]. This program generates a mother tree that simulates
a master website browsing tree. Then it assigns probabilities of fol-
lowing its children nodes, including the option of backtracking to its
parent, such that the sum of all the probabilities is 1. Using the mas-
ter tree, the dataset is generated selecting subtrees according to these
probabilities. It was used in CMTreeMiner [CXYM01] empirical aval-
uation.

• CSLOGS Dataset ([Zak02]). It is available from Zaki’s web page. It
consists of web logs files collected over one month at the Depart-
ment of Computer Science of Rensselaer Polytechnic Institute. The
logs touched 13, 361 unique web pages and CSLOGS dataset contains
59, 691 trees. The average tree size is 12.

• NASA multicast data [CA01]. The data was measured during the
NASA shuttle launch between 14th and 21st of February, 1999. It
has 333 vertices where each vertex takes an IP address as its label.
Chi et al. [CXYM01] sampled the data from this NASA data set in 10
minute sampling intervals and got a data set with 1,000 transactions.
Therefore, the transactions are the multicast trees for the same NASA
event at different times.

• GAZELLE Dataset. It is obtained from KDD Cup 2000 data [KBF+00].
This dataset is a web log file of a real internet shopping mall (gazelle.
com). This dataset of size 1.2GB contains 216 attributes. We use the
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Figure 7.15: Example of Galois Lattice of Closed trees

attribute ’Session ID’ to associate to each user session a unique tree.
The trees record the sequence of web pages that have been visited
in a user session. Each node tree represents a content, assortment
and product path. Trees are not built using the structure of the web
site, instead they are built following the user streaming. Each time
a user visit a page, if he has not visited it before, we take this page
as a new deeper node, otherwise, we backtrack to the node this page
corresponds to, if it is the last node visited on a concrete level . The
resulting dataset consists of 225, 558 trees.

7.8.2 Intersection set cardinality

In order to find how often two trees have intersection sets of cardinality
beyond 1, we set up an empirical validation using the tree generation pro-
gram of Zaki [Zak02] to generate a random set of trees.
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Using Zaki’s tree generator program we generate sets of 100 random
trees of sizes from 5 to 50 and then we run our frequent tree mining algo-
rithm with minimum support 2. Our program doesn’t find any two trees
with the same transactions list in any run of the algorithm. This fact sug-
gests that, as all the intersections came up to a single tree, the exponential
blow-up of the intersection sets is extremely infrequent.

7.8.3 Unlabeled trees

We compare two methods of TREENAT, our algorithm for obtaining closed
frequent trees, with CMTreeMiner. The first one is TREENAT TOP-DOWN
that obtains top-down subtrees and the second one is TREENAT INDUCED
that works with induced subtrees.

On synthetic data, we use the ZAKI Synthetic Datasets for rooted or-
dered trees restricting the number of distinct node labels to one. We call
this dataset T1MN1.

In the T1MN1 dataset, the parameters are the following: the number
of distinct node labels is N = 1, the total number of nodes in the tree is
M = 10, 000, the maximal level of the tree is D = 10, the maximum fanout
is F = 10 and the number of trees in the dataset is T = 1, 000, 0000.

The results of our experiments on synthetic data are shown in Figures 7.16
and 7.17. We see there that our algorithm TREENAT compares well to
CMTreeMiner for top-down subtrees, using less memory in both ordered
and unordered cases. Our induced subtree algorithm has similar perfor-
mance to CMTreeMiner in the ordered case, but it’s a bit worse for the
unordered case, due to the fact that we take care of avoiding repetitions
of structures that are isomorphic under the criterion of unordered trees
(which CMTreeMiner would not prune). In these experiments the memory
that our method uses depends mainly on the support, not as CMTreeMiner.

In order to understand the behavior of TREENAT and CMTreeMiner
respect to the tree structure of input data, we compare the mining perfor-
mances of TREENAT and CMTreeMiner for two sets of 10, 000 identical un-
labelled trees, one where all the trees are linear with 10 nodes and another
one where all the trees are of level 1 with 10 nodes (1 root and 9 leaves). We
notice that

• CMTreeMiner cannot mine the dataset with unordered trees of level
1 and 10 nodes. The maximum number of nodes of unordered trees
that CMTreeMiner is capable of mining is 7.

• TREENAT INDUCED has worst performance than CMTreeMiner for
linear trees. However, TREENAT TOP-DOWN has similar results to
CMTreeMiner.

Figure 7.18 shows the results of these experiments varying the num-
ber of nodes. CMTreeMiner outperforms TREENAT with linear trees, and
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Figure 7.16: Synthetic data experimental results on Ordered Trees: Support
versus Running Time and Memory
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Figure 7.17: Synthetic data experimental results on Unordered Trees: Sup-
port versus Running Time and Memory
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Figure 7.18: Synthetic data experimental results on Unordered Trees vary-
ing the number of nodes: Support versus Running Time on level 1 trees
and on linear trees
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TREENAT outperforms CMTreeMiner with trees of level 1. CMTreeMiner
needs to store all subtree occurrences, but it can use it pruning methods.
When the number of leaf nodes is large, the number of occurrences is large
and CMTreeMiner has to keep a huge quantity of occurrences. When the
trees are linear, CMTreeMiner uses its pruning techniques to outperform
TREENAT INDUCED.

We tested our algorithms on two real datasets. The first one is the
CSLOGS Dataset. As it is a labeled dataset, we changed it to remove the la-
bels for our experiments with unlabeled trees. Figures 7.19 and 7.20 show
the results. We see that CMTreeminer needs more than 1GB of memory
to execute for supports lower than 31890 in the ordered case and 50642 for
the unordered case. The combinatorial complexity of this dataset seems too
hard for CMTreeMiner, since it stores all occurrences of all possible subtrees
of one label.

The second real dataset is GAZELLE. Figures 7.21 and 7.22 show the
results of our experiments on this real-life data: we see that our method is
better than CMTreeMiner at all values of support, both for ordered and un-
ordered approaches. Again CMTreeMiner needs more memory than avail-
able to run for small supports.

Finally, we tested our algorithms using the NASA multicast data. The
trees of this dataset are very deep trees in average. Neither CMTreeMiner
or our method could mine the data considering it unlabeled. The combi-
natorics are too hard to try to solve it using less than 2 GB of memory. An
incremental method could be useful.

7.8.4 Labeled trees

On synthetic data, we use the same dataset as for the unlabeled case. In
brief, a mother tree is generated first with the following parameters: the
number of distinct node labels from N = 1 to N = 100, the total number
of nodes in the tree M = 10, 000, the maximal level of the tree D = 10 and
the maximum fanout F = 10. The dataset is then generated by creating
subtrees of the mother tree. In our experiments, we set the total number of
trees in the dataset to be from T = 0 to T = 8, 000, 000.

Figures 7.23 and 7.24 show the results of our experiments on these artifi-
cial data: we see that our method outperforms CMTreeMiner if the number
of labels is small, but CMTreeMiner wins for large number of labels, both
for ordered and unordered approaches. On the size of datasets, we observe
that the time and memory needed for our method and CMTreeMiner are
linear respect the size of the dataset. Therefore, in order to work with big-
ger datasets, an incremental method is needed.

The main difference of TREENAT, with CMTreeMiner is that CMTreeM-
iner needs to store all occurrences of subtrees in the tree dataset to use its
pruning methods, whereas our method does not. CMTreeMiner uses oc-
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Figure 7.19: CSLOGS real data experimental results on Ordered Trees: Sup-
port versus Running Time and Memory

148



7.8. APPLICATIONS

CSLOGS Unordered Unlabeled

0

5

10

15

20

25

30

35

40

45

50

33% 43% 53% 63% 73% 83% 93%

Support

T
im

e
 (

S
e
c
.)

TreeNat Induced TreeNat Top-Down CMTreeMiner

CSLOGS Unordered Unlabeled

1

10

100

1000

33% 43% 53% 63% 73% 83% 93%

Support

M
e
m

o
ry

 (
M

b
)

TreeNat Induced TreeNat Top-Down CMTreeMiner

Figure 7.20: CSLOGS real data experimental results on Unordered Trees:
Support versus Running Time and Memory
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Figure 7.21: Gazelle real data experimental results on Ordered Trees: Sup-
port versus Running Time and Memory
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Figure 7.22: Gazelle real data experimental results on Unordered Trees:
Support versus Running Time and Memory
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Figure 7.23: Synthetic data experimental results on Labeled Trees: Number
of Labels versus Running Time and Memory
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Figure 7.24: Synthetic data experimental results on Labeled Trees: Dataset
Size versus Running Time and Memory
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currences and pruning techniques based on them. TREENAT doesn’t store
occurrences. For labeled trees with a small number of labels, CMTreeM-
iner will need to store a huge number of occurrences, and it will take much
more time and memory than TREENAT, that doesn’t need to store all that
information. Also, with unlabeled trees, if the tree size is big, CMTreeM-
iner needs more time and memory to store all possible occurrences. But if
the number of labels is big, CMTreeMiner will be fast because the number
of occurrences is small and it can use the power of its pruning methods.
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Figure 7.25: CSLOGS real data experimental results on labeled ordered
trees: Support versus Running Time

On real dataset CSLOGS, CMTreeMiner outperforms our method as the
number of labels is not low as shown in Figure 7.25.
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8
Mining Implications from Lattices of

Closed Trees

In this chapter we propose a way of extracting high-confidence association
rules from datasets consisting of unlabeled trees. The antecedents are ob-
tained through a computation akin to a hypergraph transversal, whereas
the consequents follow from an application of the closure operators on un-
labeled trees developed in previous chapters. We discuss in more detail
the case of rules that always hold, independently of the dataset, since these
are more complex than in itemsets due to the fact that we are no longer
working on a lattice.

8.1 Introduction

In the field of data mining, one of the major notions contributing to the suc-
cess of the area has been that of association rules. Many studies of various
types have provided a great advance of the human knowledge about these
concepts. One particular family of studies is rooted on the previous notions
of formal concepts, Galois lattices, and implications, which correspond to
association rules of maximum confidence.

These notions have allowed for more efficient works and algorithmics
by reducing the computation of frequent sets, a major usual step towards
association rules, to the computation of so-called closed frequent sets, a
faster computation of much more manageable output size, yet losing no
information at all with respect to frequent sets.

It was realized some time ago that the plain single-relational model for
the data, as employed by the computation of either closed sets or asso-
ciation rules, whereas useful to a certain extent, was a bit limited in its
applicability by the fact that, often, real-life data have some sort of inter-
nal structure that is lost in the transactional framework. Thus, studies of
data mining in combinatorial structures were undertaken, and consider-
able progress has been made in recent years. Our work here is framed in
that endeavor.

In a previous chapter, we have proposed a mathematical clarification
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of the closure operator underlying the notion of closed trees in datasets of
trees; the closure operator no longer works on single trees but on sets of
them. In a sense, made precise there, closed trees do not constitute a lattice.
A mathematically precise replacement lattice can be defined, though, as
demonstrated in Section 7.3.1, consisting not anymore of trees but of sets of
trees, and with the peculiar property that, in all experiments with real-life
data we have undertaken, they turn out to be actually lattices of trees, in the
sense that every closed set of trees was, in all practical cases, a singleton.

Algorithmics to construct these closed sets have been studied in several
references as [CXYM01, TRS04, TRS+08], see the references in the survey
[CMNK01]. We continue here this line of research by tackling the most nat-
ural next step: the identification of implications out of the lattice of closed
sets of trees. We describe a method, along the line of similar works on
sequences and partial orders ([BG07b], [BG07a]) to construct implications
from the closed sets of trees, and we mathematically characterize, in terms
of propositional Horn theories, the implications that we find.

Then, we explain a major difference of our case with previous works:
rules that would not be trivial in other cases become redundant, and thus
unnecessary, in the case of trees, due to the fact that they are implicit in the
combinatorics of the structures. An example will show best our point here.
Consider a rule intuitively depicted as follows:

It naturally means that whenever a tree in the dataset under exploration has
as (top-down) subtrees the two trees in the antecedent, it also has the one
in the consequent. Any tree having a bifurcation at the root, as required by
the first antecedent, and a branch of length at least two, as required by the
second one, has to have the consequent as a (top-down) subtree. Therefore,
the rule says, in fact, nothing at all about the dataset, and is not worthy to
appear in the output of a rule mining algorithm on trees.

Our second major contribution is, therefore, a study of some cases where
we can detect such implicit rules and remove them from the output, with
low computational overhead. Whereas further theoretical work might be
useful, our contributions so far already detect most of the implicit rules
in real-life datasets, up to quite low support levels, and with a reasonable
efficiency. We report some facts on the empirical behavior of our imple-
mentations of both the algorithm to find rules and the heuristics to remove
implicit rules.

We will construct association rules in a standard form from it, and show
that they correspond to a certain Horn theory; also, we will prove the cor-
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rectness of a construction akin to the iteration-free basis of [Wil94] and [PT02].

D

Tid Trees

1 (0, 1, 2, 3, 2)

2 (0, 1, 2, 2, 1)

3 (0, 1, 2, 3, 1)

Figure 8.1: Example of dataset

1 2 3

12 13 23

123

Figure 8.2: Galois lattice of closed trees from the dataset example

8.2 Itemsets association rules

Let I = {i1, . . . , in} be a fixed set of items. A subset I ⊆ I is called an
itemset. Formally, we deal with a collection of ordered transactions D =

{d1, d2, . . . dn}, where each di is an itemset. Figure 8.3 shows an example of
a dataset of itemsets transactions.
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a b c d

d1 1 1 0 1

d2 0 1 1 1

d3 0 1 0 1

Figure 8.3: Example of a dataset of itemsets transactions

An association rule is a pair (G, Z), denoted G→ Z, where G, Z ⊆ I and
G ⊆ Z. When (G) = Z for an itemset G 6= Z and G is minimal among all the
candidates with closure equal to Z, we say that G is a generator of Z.

We are interested in implications of the form G → Z, where G is a gen-
erator of Z. These turn out to be the particular case of association rules
where no support condition is imposed but confidence is 1 (or 100%) Such
rules in this context are sometimes called deterministic association rules.

For example, from the itemsets dataset in Figure 8.3 we could generate
a deterministic association rule c→ bcd, since c is a generator of the closed
set bcd as mentioned above.

8.2.1 Classical Propositional Horn Logic

We will review briefly some important notions of classical propositional
Horn Logic, following [Gar06]. First, assume a standard propositional logic
language with propositional variables. The number of variables is finite
and we denote by V the set of all variables; we could alternatively use an
infinite set of variables provided that, the propositional issues correspond-
ing to a fixed dataset, only involve finitely many of them. A literal is either a
propositional variable, called a positive literal, or its negation, called a neg-
ative literal. A clause is a disjunction of literals and it can be seen simply as
the set of the literals it contains. A clause is Horn if and only if it contains
at most one positive literal. Horn clauses with a positive literal are called
definite, and can be written as H→ v where H is a conjunction of positive lit-
erals that were negative in the clause, whereas v is the single positive literal
in the clause. Horn clauses without positive literals are called nondefinite,
and can be written similarly as H → ✷, where ✷ expresses unsatisfiability.
A Horn formula is a conjunction of Horn clauses. In Figure 8.4 the set of all
variables is V = {a, b, c, d} and ā ∨ b̄ ∨ d or a, b→ d is a Horn clause.

A model is a complete truth assignment, i.e. a mapping from the vari-
ables to {0, 1}. We denote by m(v) the value that the model m assigns to
the variable v. The intersection of two models is the bitwise conjunction
returning another model. A model satisfies a formula if the formula evalu-
ates to true in the model. The universe of all models is denoted by M. For
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M a b c d

m1 1 1 0 1

m2 0 1 1 1

m3 0 1 0 1

a→ b, d (ā ∨ b) ∧ (ā ∨ d)

d→ b d̄ ∨ b

a, b→ d ā ∨ b̄ ∨ d

Figure 8.4: Example of Horn formulas

example, in Figure 8.4

m(a) = 0, m(b) = 1, m(c) = 1, . . .

is a model.

A theory is a set of models. A theory is Horn if there is a Horn formula
which axiomatizes it, in the sense that it is satisfied exactly by the models
in the theory. When a theory contains another we say that the first is an
upper bound for the second; for instance, by removing clauses from a Horn
formula we get a larger or equal Horn theory. The following is known,
see [DP92], or works such as [KKS95]:

Theorem 10. Given a propositional theory of models M , there is exactly one min-
imal Horn theory containing it. Semantically, it contains all the models that are
intersections of models of M . Syntactically, it can be described by the conjunction
of all Horn clauses satisfied by all models from the theory.

The theory obtained in this way is called sometimes the empirical Horn
approximation of the original theory. Clearly, then, a theory is Horn if and
only if it is actually closed under intersection, so that it coincides with its
empirical Horn approximation.

The propositional Horn logic framework allows us to cast our reason-
ing in terms of closure operators. It turns out that it is possible to exactly
characterize the set of deterministic association rules in terms of proposi-
tional logic: we can associate a propositional variable to each item, and
each association rule becomes a conjunction of Horn clauses. Then:

Theorem 11. [BB03] Given a set of transactions, the conjunction of all the deter-
ministic association rules defines exactly the empirical Horn approximation of the
theory formed by the given tuples.
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So, the theorem determines that the empirical Horn approximation of a
set of models can be computed with the method of constructing determin-
istic association rules, that is, constructing the closed sets of attributes and
identifying minimal generators for each closed set.

8.3 Association Rules

The input to our data mining process, now is a given finite dataset D of
transactions, where each transaction s ∈ D consists of a transaction iden-
tifier, tid, and an unlabeled rooted tree. Tids are supposed to run sequen-
tially from 1 to the size of D. From that dataset, our universe of discourse
U is the set of all trees that appear as subtree of some tree in D. Figure 8.1
shows a finite dataset example and Figure 8.2 shows the Galois lattice.

Following standard usage on Galois lattices, we consider now implica-
tions (sometimes called deterministic association rules, see e.g. [PT02]) of
the form A → B for sets of trees A and B from U . Specifically, we con-
sider the following set of rules: A → ΓD(A). Alternatively, we can split the
consequents into {A→ t

∣

∣ t ∈ ΓD(A)}.

It is easy to see that D obeys all these rules: for each A, any tree of D
that has as subtrees all the trees of A has also as subtrees all the trees of
ΓD(A).

We want to provide a characterization of this set of implications. We
operate in a form similar to [BG07a] and [BG07b], translating this set of
rules into a specific propositional theory which we can characterize, and
for which we can find a “basis”: a set of rules that are sufficient to infer all
the rules that hold in the dataset D. The technical details depart somewhat
from [BG07b] in that we skip a certain maximality condition imposed there,
and are even more different from those in [BG07a].

Thus, we start by associating a propositional variable vt to each tree t ∈
U . In this way, each implication between sets of trees can be seen also as a
propositional conjunction of Horn implications, as follows: the conjunction
of all the variables corresponding to the set at the left hand side implies
each of the variables corresponding to the closure at the right hand side.
We call this propositional Horn implication the propositional translation of
the rule.

Also, now a set of trees A corresponds in a natural way to a proposi-
tional model mA: specifically, mA(vt) = 1 if and only if t is a subtree of
some tree in A. We abbreviate m{t} as mt. Note that the models obtained
in this way obey the following condition: if t ′ � t and vt = 1, then vt′ = 1

too. In fact, this condition identifies the models mA: if a model m fulfills it,
then m = mA for the set A of trees t for which vt = 1 in m. Alternatively,
A can be taken to be the set of maximal trees for which vt = 1.

Note that we can express this condition by a set of Horn clauses: R0 =
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{vt→ vt′

∣

∣ t ′ � t, t ∈ U , t ′ ∈ U }. It is easy to see that the following holds:

Lemma 2. Let t ∈ D. Then mt satisfies R0 and also all the propositional trans-
lations of the implications of the form A→ ΓD(A).

Since ΓD({t}) = {t ′ ∈ T
∣

∣ t ′ � t} by definition, if mt |= A, then A � t,
hence ΓD(A) � ΓD({t}), and mt |= ΓD(A). For R0, the very definition of mt

ensures the claim.
We collect all closure-based implications into the following set:

R ′
D =

⋃

∆

{A→ t
∣

∣ ΓD(A) = ∆, t ∈ ∆}

For use in our algorithms below, we also specify a concrete set of rules
among those that come from the closure operator. For each closed set of
trees ∆, consider the set of “immediate predecessors”, that is, subsets of ∆

that are closed, but where no other intervening closed set exists between
them and ∆; and, for each of them, say ∆i, define:

Fi = {t
∣

∣ t � ∆, t 6� ∆i}

Then, we define H∆ as a family of sets of trees that fulfill two properties:
each H ∈ H∆ intersects each Fi, and all the H ∈ H∆ are minimal (with
respect to �) under that condition.

We pick now the following set of rules RD,

RD =
⋃

∆

{H→ t
∣

∣ H ∈ H∆, t ∈ ∆}

as a subset of the much larger set of rules R ′
D defined above, and state our

main result:

Theorem 12. Given the dataset D of trees, the following propositional formulas
are logically equivalent:

i/ the conjunction of all the Horn formulas satisfied by all the models mt for
t ∈ D;

ii/ the conjunction of R0 and all the propositional translations of the formulas
in R ′

D;

iii/ the conjunction of R0 and all the propositional translations of the formulas
in RD.

Proof. Note first that i/ is easily seen to imply ii/, because Lemma 2 means
that all the conjuncts in ii/ also belong to i/. Similarly, ii/ trivially implies
iii/ because all the conjuncts in iii/ also belong to ii/. It remains to argue
that the formula in iii/ implies that of i/. Pick any Horn formula H → v
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that is satisfied by all the models mt for t ∈ D: that is, whenever mt |= H,
then mt |= v. Let v = vt′ : this means that, for all t ∈ D, if H � t then t ′ � t,
or, equivalently, t ′ ∈ ΓD(H). We prove that there is H ′ � H that minimally
intersects all the sets of the form

Fi = {t
∣

∣ t � ∆, t 6� ∆i}

for closed ∆ = ΓD, and for its set of immediate predecessors ∆i. Once we
have such an H ′, since t ∈ ∆, the rule H ′ → t is in RD. Together with
R0, their joint propositional translations entail H → t: an arbitrary model
making true H and fulfilling R0 must make H ′ true because of H ′ � H and,
if H ′ → t holds for it, t is also true in it. Since R0 and H ′ → t are available,
H→ t holds.

Therefore, we just need to prove that such H ′ � H exists. Note that H

already intersects all the Fi: H � ΓD(H) = ∆; suppose that for some proper
predecessor ∆i, H does not intersect Fi. This means that t � ∆i for all t ∈ H,
and thus, the smallest closed set above H, that is, ΓD(H) = ∆, must be below
the closed set ∆i or coincide with it, and neither is possible.

Hence, it suffices to consider all the sets of trees H ′′, where H ′′ � H, that
still intersect all the Fi. This is not an empty family since H itself is in it,
and it is a finite family; therefore, it has at least one minimal element (with
respect to �), and any of them can be picked for our H ′. This completes the
proof. ✷

The closed trees for the dataset of Figure 8.1 are shown in the Galois lat-
tice of Figure 8.2 and the association rules obtained are shown in Figure 8.5.

∧ →

∧ →

→

∧ →

Figure 8.5: Association rules obtained from the Galois lattice of the dataset
example

8.4 On Finding Implicit Rules for Subtrees

We formally define inplicit rules as follows:

Definition 11. Given three trees t1, t2, t3, we say that t1∧t2→ t3 is an implicit
Horn rule (abbreviately, an implicit rule) if for every tree t it holds

t1 � t ∧ t2 � t ↔ t3 � t.
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We say that two trees t1, t2, have implicit rules if there is some tree t3 for which
t1 ∧ t2→ t3 is an implicit Horn rule.

A natural generalization having more than two antecedents could be
considered; we circunscribe our study to implicit rules of two antecedents.

The aim of the next definitions is to provide formal tools to classify a
rule as implicit.

Definition 12. A tree c is a minimal common supertree of two trees a and b if
a � c, b � c, and for every d ≺ c, either a 6� d or b 6� d.

In the example of implicit rule given in the introduction, the tree on the
right of the implication sign is a minimal common supertree of the trees on
the left.

Definition 13. Given two trees a, b, we define a ⊕ b as the minimal common
supertree of a and b.

As there may be more than one minimal common supertree of two
trees, we choose the one with smallest level representation, as given in Sec-
tion 7.6.2 to avoid the ambiguity of the definition.

Definition 14. A component c1 of a is maximum if any component c2 of a

satisfies c2 � c1, and it is maximal if there is no component c2 in a such that
c1 ≺ c2.

Note that a tree may not have maximum components but, in case it has
more than one, all of them must be equal. The following facts on compo-
nents will be useful later on.

Lemma 3. If a tree has no maximum component, it must have at least two maxi-
mal incomparable components.

Proof. Suppose that a is a tree whose maximal components c1, . . . , cn are
not maximum. For contradiction, suppose that all ci’s are pairwise compa-
rable. Then, we can proceed inductively as follows. To start, we consider
c1 and c2 and take the one which contains the other. For the i-th step, sup-
pose we have a component cj (1 ≤ j ≤ i) which contains the components
c1, . . . , ci; we now consider ci+1 and compare it with cj: the one which con-
tains the other must be a component containing the first i + 1 components.
Finally, we get a maximum component, contradicting the initial assump-
tion. Therefore, there must be two maximal incomparable components. ✷

Lemma 4. Two trees have implicit rules if and only if they have a unique minimal
common supertree.
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Proof. Let us consider two trees a and b, and suppose first that they have
an implicit rule like a ∧ b → c. We want to show that they have a unique
minimal common supertree. Suppose by contradiction that d and e are
two different minimal common supertrees of a and b. Then, applying the
previous implicit rule, we conclude that c � d and c � e. But d and e are
minimal common supertrees of a and b, and c is also a supertree of a and
b by the definition of implicit rule. Therefore, c = d = e, contradicting the
assumption.

Suppose, for the other direction, that c is the only minimal common
supertree of two trees a and b. Then, to show that a ∧ b→ c is an implicit
rule, suppose that, for some tree d, we have a � d and b � d. For the
sake of contradiction, assume that c 6� d. But then, the minimal d ′ � d

which still contains a and b as subtrees, would also satisfy that c 6� d ′.
Then, d ′ would be a minimal common supertree of a and b different from
c, contradicting the uniqueness we assumed for c. Then, it must hold that
c � d and, therefore, a ∧ b→ c is an implicit rule. ✷

Using Lemma 4 we can compute implicit rules in an algorithmically ex-
pensive way, obtaining minimal common supertrees, which has quadratic
cost. To avoid that, we propose several heuristics to speed up the process.

A simple consequence of these lemmas is:

Corollary 5. All trees a, b such that a � b have implicit rules.

Proof. If a � b, then a ∧ b→ b is obviously an implicit rule. ✷

One particularly useful case where we can formally prove implicit rules,
and which helps detecting a large amount of them in real-life dataset min-
ing, occurs when one of the trees has a single component.

Theorem 13. Suppose that a and b are two incomparable trees, and b has only
one component. Then they have implicit rules if and only if a has a maximum
component which is a subtree of the component of b.

Proof. Suppose that a and b are two incomparable trees as described in the
statement: a has components a1, . . . , an, and b has only the component b1.
We represent their structures graphically as

n1 aa ...

b:

1b

a:

Suppose that a has a maximum component which is a subtree of b1.
Without loss of generality, we can assume that an is such a component.
Then, we claim that a ∧ b → c is an implicit rule, where c is a tree with
components a1, . . . , an−1, and b1. That is,
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c:b:a:

1 n 1 n−1a b1aa1a ......a

To show that this is actually an implicit rule, suppose that, for some tree
x, a � x and b � x. From the fact that a � x, we gain some insight into the
structure of x: it must contain components where a’s and b’s components
can map, and so, there must be at least n components in x. So, let x1, . . . , xm

be the components of x, with m ≥ n, and let us suppose that ai � xi for
every i such that 1 ≤ i ≤ n.

Since b is also a subtree of x, b1 must be a subtree of some xi with
1 ≤ i ≤ m. We now show that, for every possible value of i, c must be a
subtree of x and then, a ∧ b→ c is an implicit rule:

• If i ≥ n, then ak � xk for all k ≤ n − 1, and b1 � xi.

• If i < n, then

– ak � xk for k 6= i and 1 ≤ k ≤ n − 1

– ai � an � xn

– b1 � xi

In both cases, c � x, and we are done.

To show the other direction, let us suppose that a does not have a max-
imum component which is a subtree of b1. We will show that, in this case,
there are two different minimal common supertrees of a and b. Then, by
Lemma 4, we will get the desired conclusion. The previous condition on
maximal components can be split into two possibilities:

1. Tree a does not have a maximum component. By Lemma 3, there must be
two maximal components of a which are incomparable, let us say ai and
aj. Now we claim that the two trees c and d in the following figure are two
different minimal common supertrees of a and b:

... ......
a a a1 nj

... ......
a a an1 i+ +

d:

ia b1 ja 1b

c:

In the first place, we show that c and d are different. Suppose they are
equal. Then, since b1 cannot be a subtree of any ak, 1 ≤ k ≤ n (because
a and b are assumed to be incomparable), the components containing b1

must match. But then, the following multisets (the rest of the components
in c and d) must be equal:

{al | 1 ≤ l ≤ n ∧ l 6= i} = {al | 1 ≤ l ≤ n ∧ l 6= j}.

165



CHAPTER 8. MINING IMPLICATIONS FROM LATTICES OF CLOSED

TREES

But the equality holds if and only if ai = aj, which is false. Then c 6= d.

Second, we show that c contains a and b minimally. Call c1, . . . , cn to
the components of c in the same order they are displayed: ck = ak for all
k ≤ n except for k = i, for which ck = ai⊕b1. Suppose now that we delete
a leaf from c, getting c ′ ≺ c, whose components are c ′

1, . . . , c
′
n (which are

like the corresponding ck’s except for the one containing the deleted leaf).
We will see that c ′ does not contain a or b by analyzing two possibilities
for the location of the deleted leaf, either (a) in the component ci = ai ⊕ b1

or (b) in any other component:

(a) Suppose that the deleted leaf is from ci = ai ⊕ b1 (that is, c ′
i ≺ ci).

Then, either ai 6� c ′
i or b1 6� c ′

i. In the case that b1 6� c ′
i, we have that

b 6� c ′ since b1 is not included in any other component. So, suppose
that ai 6� c ′

i. In this case, consider the number s of occurrences of
ai in a. Since ai is a maximal component, the occurrences of ai in a

are the only components that contain ai as a subtree. Therefore, the
number of components of c that contain ai is exactly s, but it is s − 1

in c ′ due to the deleted leaf in ai ⊕ b1. Then, a 6� c ′.

(b) Suppose now that the deleted leaf is from ck for k 6= i. In this case,
it is clear that ak 6� c ′

k, but we must make sure that a 6� c ′ by means
of some mapping that matches ak with a component of c ′ different
from c ′

k. For contradiction, suppose there exists such a mapping, that
is, for some permutation π from the symmetric group of n elements,
we have am � c ′

π(m)
for every m ≤ n. Let l be the length of the cycle

containing k in the cycle representation of π (so, we have πl(k) = k,
and has a value different from k for exponents 1 to l − 1). We have
that

ak � aπ(k) � aπ2(k) � · · · � aπl−1(k)

since for every am in the previous chain except the last one, if π(m) 6=
i, then am � c ′

π(m)
= aπ(m); while if π(m) = i, then am � aπ(m)

because ai is a maximum component.

From the previous chain of containments, we conclude that ak �
aπl−1(k). But aπl−1(k) � c ′

πl(k)
= c ′

k. Putting it together, we get

ak � c ′
k, which is a contradiction. Therefore, a 6� c ′.

Now, from (a) and (b), we can conclude that c is a minimal common
supertree of a and b. Obviously, the same property can be argued for d in
a symmetric way, and since c and d are different, Lemma 4 implies that a

and b cannot have implicit rules.

2. Tree a has maximum components but they are not subtrees of b1. We consider
now the following trees:
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1a a an−1 bana1 1bn1

...
+

e:

...

f:

We will show (a) that tree e is a minimal common supertree of a and b,
and (b) that tree f is a common supertree of a and b and does not contain
e. From (a) and (b), we can conclude that a and b must have two different
minimal common subtrees. Take e as one of them. For the other one, let
f ′ be a tree obtained from f by deleting leaves until it is minimal (that is,
deleting one more leave would not contain a or b). Since e 6� f (from
point (b)), it holds that e 6� f ′. On the other hand, if we had f ′ � e, since
e is minimal, we would have e = f ′, and then e � f, which contradicts
point (b). Therefore, e and f ′ must be two incomparable minimal common
supertrees of a and b, and the theorem follows. To complete the proof, it is
only left to show:

(a) Tree e is a minimal common supertree of a and b. Note that the proof
in previous case 1, showing that c is a minimal common supertree of
a and b, applies to e as well. The argument for c was based on the
maximality of ai, but an is maximum in e, and then it is also maximal,
so the proof applies.

(b) Tree f is a common supertree of a and b, and does not contain e. Clearly by
definition, f is a common supertree of a and b. Now, we will argue
that e 6� f. For this inclusion to be true, an ⊕ b1 should be a subtree
of some component of f. It cannot be a subtree of one of the ak’s
components (k ≤ n) since then b1 � ak and b � a, which is false.
On the other hand, an⊕ b1 cannot be a subtree of b1 neither, because
that would mean that an � b1, which is false in this case. Therefore,
f does not contain e.

Since we have proved the existence of two minimal common supertrees
also for this case, a new application of Lemma 4 completes the proof.

✷

Corollary 6. Two trees with one component each have implicit rules if and only if
they are comparable.

Proof. Suppose two 1-trees a and b are incomparable. Since they are 1-trees,
their components are maximum, but they are not included in each other.
Applying Theorem 13, we conclude that a and b do not have implicit rules.

For the other direction, Proposition 5 shows that if a and b are compa-
rable, they have implicit rules. ✷
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In fact, one fragment of the argumentation of this theorem can be also
applied directly as well to some cases that do appear in practice:

Definition 15. Given two trees a, b, we denote by a+b the tree built joining the
roots of all components of a and b to a single root node.

Definition 16. Given two trees a and b, tree a with components a1, · · · , an and
tree b with components b1, · · · , bk, and n ≥ k, we denote by a ⊎ b the tree built
recursively by joining the trees ai ⊎ bi for 1 ≤ i ≤ k, and ai for k < i ≤ n, to a
single root node. If b has only a node then a ⊎ b = a. In case that n < k, a ⊎ b is
defined as b ⊎ a.

Proposition 5. The rule a ∧ b → c is not an implicit rule if c 6� a + b or
c 6� a ⊎ b.

Proof. If c 6� a + b or c 6� a ⊎ b, then a + b or a ⊎ b are supertrees of a and
b that are not supertrees of c and by the definition of implicit rule, the rule
a ∧ b→ c is not implicit. ✷

Using Proposition 5, we have implemented an additional recursive heuris-
tic that can be explained as follows: for every rule a∧b→ c we build a+b

and a⊎ b and if we realize that one of them is not a supertree of c, then the
rule is not implicit.

8.5 Experimental Validation

We tested our algorithms on two real datasets. The first one is CSLOGS
Dataset and the second dataset is GAZELLE. These datasets were presented
in Section 7.8.1.

On these datasets, we have computed association rules following our
method. We have then analyzed a number of issues. First, we have checked
how many redundant rules could be avoided by some more sophisticated
rule production system along the lines of a Duquenne-Guigues basis; how-
ever, the structure of these datasets leads to little or no redundancy for this
reason, and we omit further discussion of this consideration.

Then, we have implemented an implicit rule detection step based on
all the criteria described in the previous section. Timing considerations are
rather irrelevant, in that the time overhead imposed by this implicit rule
detection step is reasonably low. We compare the number of rules obtained,
the number of implicit and not implicit detected rules, and the number of
non implicit rules. Figure 8.6 shows the results for the CSLOGS dataset,
and the Gazelle dataset. We observe that when the minimum support of the
closed frequent subtrees decreases, the number of rules increases and the
number of detected rules decreases. The number of detected rules depends
on the dataset and on the minimum support. As an example, our method
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detects whether a rule is implicit or not in 91% of the rules obtained from
CSLOGS dataset with a support of 7, 500, and 32% of the rules obtained
from Gazelle Dataset with a support of 500. The number of non implicit
rules are more than 75% in the two datasets.
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Figure 8.6: Real data experimental results on CSLOGS and Gazelle datasets
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9
Mining Adaptively Frequent Closed

Rooted Trees

In this chapter we propose a new approach for mining closed unlabeled
rooted trees adaptively from data streams that change over time. We ex-
tend the non-incremental methods presented in Chapter 7 to the challeng-
ing incremental streaming setting, presented in the first part of this the-
sis. We first present a general methodology to identify closed patterns in
a data stream, using Galois Lattice Theory. Using this methodology, we
then develop three closed tree mining algorithms: an incremental one INC-
TREENAT, a sliding-window based one, WINTREENAT, and finally one
that mines closed trees adaptively from data streams, ADATREENAT. Our
approach is based on an efficient representation of trees and a low com-
plexity notion of relaxed closed trees. To the best of our knowledge this is
the first work on mining frequent closed trees in streaming data varying
with time.

9.1 Relaxed support

Song et al. [SYC+07] introduced the concept of relaxed frequent itemset and
we adapt it to pattern mining. The support space of all subpatterns can
be divided into n = ⌈1/ǫr⌉ intervals, where ǫr is a user-specified relaxed
factor, and each interval can be denoted by Ii = [li, ui), where li = (n− i)∗
ǫr ≥ 0, ui = (n − i + 1) ∗ ǫr ≤ 1 and i ≤ n. Then a subpattern t is called a
relaxed closed subpattern if and only if there exists no proper superpattern t ′

of t such that their suports belong to the same interval Ii.
Relaxed closed mining is a powerful notion that reduces the number of

closed subpatterns in data streams where approximation is acceptable.
We can define Relaxed support as a mapping from all possible dataset

supports to the set of relaxed intervals. We can apply it to our mining
algorithms, replacing the calls to support values, to relaxed support values.

We introduce the concept of logarithmic relaxed frequent pattern, by
defining li = ⌈ci⌉, ui = ⌈ci+1 − 1⌉ for the value of c generating n inter-
vals. Depending on the closed pattern distribution on the dataset, and the
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scale of supports of interest, the notion of logarithmic support may be more
appropiate than the linear one.

CLOSED SUBPATTERN MINING ADD(T1, T2, min sup, T)

Input: Frequent closed pattern sets T1 and T2, and min sup.
Output: The frequent closed pattern set T .

1 T ← T1

2 for every t in T2 in size-ascending order
3 do if t is closed in T1

4 do supportT(t)+ = supportT2
(t)

5 for every t ′ that is a subpattern of t

6 do if t ′ is in T1

7 then if t ′ is not updated
8 then insert t ′ into T

9 supportT(t ′)+ = supportT2
(t ′)

10 else

11 skip processing t ′ and all its subpatterns
12 do if t is not closed in T1

13 do insert t into T

14 for every t ′ that is a subpattern of t

15 do if t ′ is not updated
16 then if t ′ is in T1

17 then supportT(t ′)+ = supportT2
(t ′)

18 if {s ∩ t
∣

∣ s ∈ ∆T1({t
′})} = {t ′}

19 then insert t ′ into T

20 supportT(t ′)+ = supportT2
(t ′)

21 else

22 skip processing t ′ and all its subpatterns
23 return T

Figure 9.1: The Closed Subpattern Mining adding algorithm

9.2 Closure Operator on Patterns

In this section we develop our approach for closed pattern mining based
on the use of closure operators. We extend the closure operator presented
in section 7.3 to general patterns. In this section, we define a Galois connec-
tion keeping only the maximal patterns. We could have defined the pattern
Galois connection using closed sets of patterns as in Section 7.3. As our im-
plementations avoid duplicate calculations and redundant information by
storing the maximal patterns, we prefer to use the maximal ones, obtaining

174



9.2. CLOSURE OPERATOR ON PATTERNS

a development somewhat closer to [BG07b].

Definition 17. The Galois connection pair:

• For finite A ⊆ D, σ(A) = {t ∈ T
∣

∣ t maximally contained in t ′ for all
t ′ ∈ A}

• For finite B ⊂ T , not necessarily in D, τD(B) = {t ′ ∈ D
∣

∣ ∀ t ∈ B (t � t ′)}

Proposition 6. The composition ∆D = σ ◦ τD is a closure operator on the subsets
of D.

We point out the following easy-to-check properties:

1. t ∈ ∆D({t})

2. ∆D1∪D2
({t}) = {t1 ∩ t2

∣

∣ t1 ∈ ∆D1({t}), t2 ∈ ∆D2({t})}

We can relate the closure operator to the notion of closure based on
support as follows: t is closed for D if and only if: ∆D({t}) = {t}.

Proposition 7. Adding a pattern transaction to a dataset of patterns D does not
decrease the number of closed patterns for D.

Proof. All previously closed patterns remain closed. A closed pattern will
become unclosed if one of its superpatterns reach the same support, but
that is not possible because every time the support of a pattern increases,
the support of all its subpatterns also increases. ✷

Proposition 8. Adding a transaction with a closed pattern to a dataset of patterns
D does not modify the number of closed patterns for D.

Proof. Suppose s is a subpattern of a closed pattern t. If s is closed then
∆D({s}) = {s}. If s is not closed, then ∆D({s}) ⊂ ∆D({t}) = {t}. Increasing the
support of the closed pattern t will increase the support of all its subpat-
terns. The subpatterns that are closed will remain closed, and the ones that
are non-closed, will remain non-closed because the support of its closure
will increase also. ✷

Proposition 9. Deleting a pattern transaction from a dataset of patterns D does
not increase the number of closed patterns for D.

Proof. All the previous unclosed patterns remain unclosed. A condition
for an unclosed pattern to become closed is that its superpatterns with the
same support modifies their support, but this is not possible because ev-
ery time we decrease the support of a superpattern we decrease also the
support of this pattern. ✷
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Proposition 10. Deleting a pattern transaction that is repeated in a dataset of
patterns D does not modify the number of closed patterns for D.

Proof. Adding a transaction with a previously closed pattern to a dataset
of patterns D does not modify the number of closed patterns for D. So
deleting it does not change the number of closed patterns. ✷

Proposition 11. Let D1 and D2 be two datasets of patterns. A pattern t is
closed for D1 ∪ D2 if and only if ∆D1∪D2

({t}) = {t1 ∩ t2

∣

∣ t1 ∈ ∆D1({t}), t2 ∈
∆D2({t})} = {t}.

Proposition 11 follows from the definition of closed pattern. We use it as
a closure checking condition when adding a set of transactions to a dataset
of patterns.

Corollary 7. Let D1 and D2 be two datasets of patterns. A pattern t is closed for
D1 ∪ D2 if and only if

• t is a closed pattern for D1, or

• t is a closed pattern for D2, or

• t is a subpattern of a closed pattern in D1 and a closed pattern in D2 and
∆D1∪D2

({t}) = {t}

Proposition 12. Let D be a dataset of patterns. A pattern t is closed for D if and
only if the intersection of all its closed superpatterns is t.

Proof. Suppose that the intersection of all its closed superpatterns is t ′ and
that t ′ 6= t, then t is not closed because it exists a superpattern t ′ with the
same support. Also, suppose the intersection of all its closed superpatterns
is t and that t is not closed. Then t ′ ∈ ∆({t}) has the same support as t, and
it must be in the intersection of all the closed superpatterns of t. ✷

We use Proposition 12 as a closure checking condition when deleting a
set of transactions from a pattern set.

9.3 Closed Pattern Mining

In this section we design an incremental mining method for extracting
closed frequent patterns and a sliding window mining algorithm for ex-
traxcting closed frequent patterns.
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CLOSED SUBPATTERN MINING DELETE(T1, T2, min sup, T)

Input: Frequent Closed pattern sets T1 and T2, and min sup.
Output: The frequent closed pattern set T .

1 T ← T1

2 for every t in T2 in size-ascending order
3 do for every t ′ that can be reduced from t

4 do if t ′ is not updated
5 then if t ′ is in T1

6 then if t ′ is not closed
7 then delete t ′ from T

8 else supportT(t ′)− = supportT2
(t ′)

9 else

10 skip processing t ′ and all its subpatterns
11 return T

Figure 9.2: The Closed Subpattern Mining delete algorithm

9.3.1 Incremental Closed Pattern Mining

We propose a new method to do incremental closed pattern mining. Every
time a new batch of patterns DT2 arrives we compute the closed pattern
set of the batch DT2, and then we update the closed pattern set T using
CLOSED SUBPATTERN MINING ADD as is shown in Figure 9.1.

In words, let T be the existing set of closed patterns, and T2 those coming
from the new batch. For each closed pattern in DT2, we check whether the
pattern is closed in T . If it is closed, we update its support and the support
of all its subpatterns, as justified by Proposition 8. If it is not closed, as it is
closed for T2, we add it to the closed pattern set, as justified by Corollary 7,
and we check for each of its subpatterns whether it is closed or not. In
line 18, we use Proposition 11 to do the closure-check ∆T1∪T2({t

′}) = {t1∩t2

∣

∣

t1 ∈ ∆T1({t
′}), t2 ∈ ∆T2({t

′})} = {t ′} using the fact that ∆T2({t
′}) = {t}. Here

∆T2({t
′}) is a closed pattern in T2. As we check all the subpatterns of T2 in

size-ascending order, we know that all closed subpatterns of t have been
checked before, and therefore we can suppose that ∆T2({t

′}) = {t}.

The best (most efficient) data structure to do this task will depend on
the pattern. In general, a lattice is the default option, where each lattice
node is a pattern with its support, and a list of its closed superpatterns and
a list of its closed subpatterns: We can use the lattice structure to speed up
the closure check ∆T1∪T2({t

′}) = {t ′}.
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9.3.2 Closed pattern mining over a sliding window

Adding a method to delete a set of transactions, we can adapt our method
to use a sliding window of pattern transactions.

Figure 9.2 shows the CLOSED SUBPATTERN MINING DELETE pseudo-
code. We check for every t pattern in T2 in ascending order if its subpat-
terns are still closed or not after deleting some transactions. We can look
for a closed superpattern with the same support or use the closure checking
condition given by Proposition 12: a pattern t is closed if the intersection of
all its closed superpatterns is t. The lattice structure supports this operation
well. We can delete a transaction one by one, or delete a batch of transac-
tions of the sliding window. We delete transactions one by one to avoid
recomputing the frequent closed patterns of each batch of transactions.

9.4 Adding Concept Drift

In this section we present a new method for dealing with concept drift in
pattern mining, using ADWIN, the algorithm for detecting change and dy-
namically adjusting the length of a data window, presented in Chapter 4.

9.4.1 Concept drift closed pattern mining

We propose two strategies to deal with concept drift:

1. Using a sliding window, with an ADWIN estimator deciding the size
of the window

2. Maintaining an ADWIN estimator for each closed set in the lattice struc-
ture.

In both strategies we use CLOSED SUBPATTERN MINING ADD to add trans-
actions. In the first strategy we use CLOSED SUBPATTERN MINING DELETE

to delete transactions as we maintain a sliding window of transactions.
In the second strategy, we do not delete transactions. Instead, each

ADWIN monitors its support and when a change is detected, then the sup-
port may

• increase: the number of closed patterns is increasing and it is main-
tained by CLOSED SUBPATTERN MINING ADD

• decrease: the number of closed patterns may decrease and we have
to delete the non-closed patterns from the lattice. We do this in the
following way:

– If the support is lower than min supp, we delete the closed pat-
tern from the lattice.
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– If the support is higher than min supp, we check whether it and
all its subpatterns are still closed finding a superpattern with the
same support, or, alternatively, we can use the closure checking
of Proposition 12: a pattern t is closed if the intersection of all its
closed superpatterns is t.

9.5 Closed Tree Mining Application

In this section we apply the general framework above specifically by con-
sidering the tree pattern. The input to our data mining process is a given
finite dataset D of transactions, where each transaction s ∈ D consists of a
transaction identifier, tid, and an unlabeled rooted tree. Figure 8.1 shows a
finite dataset example.

The closure operator defined for trees uses the following Galois connec-
tion pair:

• For finite A ⊆ D, σ(A) = {t ∈ T
∣

∣ t maximally contained in t ′ for all
t ′ ∈ A}

• For finite B ⊂ T , not necessarily in D, τD(B) = {t ′ ∈ D
∣

∣ ∀ t ∈ B (t �
t ′)}.

The main results of Section 9.2 may be established for unlabeled trees
as:

Corollary 8. Let D1 and D2 be two datasets of trees. A tree t is closed for D1∪D2

if and only if

• t is a closed tree for D1, or

• t is a closed tree for D2, or

• t is a subtree of a closed tree in D1 and a closed tree in D2 and ∆D1∪D2
({t}) =

{t}.

Proposition 13. Let D be a dataset of trees. A tree t is closed for D if and only if
the intersection of all its closed supertrees is t.

The closed trees for the dataset of Figure 8.1 are shown in the Galois
lattice of Figure 8.2.

9.5.1 Incremental Closed Tree Mining

We propose three tree mining algorithms adapting the general framework
for patterns presented in Section 9.3:

• INCTREENAT, an incremental closed tree mining algorithm,
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• WINTREENAT, a sliding window closed tree mining algorithm

• ADATREENAT an adaptive closed tree mining algorithm

The batches are processed using the non-incremental algorithm explained
in Subsection 7.6.3. We use the relaxed closed tree notion to speed up the
mining process.

9.6 Experimental Evaluation

We tested our algorithms on the synthetic and real datasets presented in
Section 7.8.1, comparing the results with CMTreeMiner [CXYM01].

All experiments were performed on a 2.0 GHz Intel Core Duo PC ma-
chine with 2 Gigabyte main memory, running Ubuntu 7.10. CMTreeMiner
and our algorithms are implemented in C++. The main difference with our
approach is that CMTreeMiner is not incremental and works with labeled
nodes, and we deal with unlabeled trees.

INCTREENAT

CMTreeMiner

Time
(sec.)

Size (Milions)

2 4 6 8

100

200

300

Figure 9.3: Data experimental time results on ordered trees on TN1 dataset

On synthetic data, we use the ZAKI Synthetic Datasets for rooted or-
dered trees restricting the number of distinct node labels to one. We call
this dataset TN1. In the TN1 dataset, the parameters are the following: the
number of distinct node labels is N = 1, the total number of nodes in the
tree is M = 10, 000, the maximal depth of the tree is D = 10, the maximum
fanout is F = 10. The average number of nodes is 3.

The results of our experiments on synthetic data are shown in Figures 9.3,
9.4, 9.5 and 9.6. We changed the dataset size from 100, 000 to 8 milion, and
we observe that as the dataset size increases, INCTREENAT time increases
linearly, and CMTreeMiner does much worse than INCTREENAT. After
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CMTreeMinerTime
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Figure 9.4: Time used on unordered trees, TN1 dataset

6 milion samples, in the unordered case, CMTreeMiner runs out of main
memory and it ends before outputing the closed trees.

Figure 9.7 shows the result of the second following experiment: we
take a TN1 dataset of 2 milion trees, and we introduce artifical concept
drift changing the dataset trees from sample 500,000 to 1,000,000 and from
1,500,000 to 2,000,000, in order to have a small number of closed trees. We
compare INCTREENAT , WINTREENAT with a sliding window of 500, 000

and 1, 000, 000, and with ADATREENAT. We observe that ADATREENAT

detects change faster, and it quickly revises the number of closed trees in
its output. On the other hand, the other methods have to retain all the data
stored in its window, and they need more samples to change its output
number of closed trees.

To compare the two adaptive methods, we perform a third experiment.
We use a data stream of 200, 000 trees, with a static distribution of 20 closed
trees on the first 100, 000 trees and 20 different closed trees on the last
100, 000 trees. The number of closed trees remains the same. Figure 9.8
shows the difference between the two methods. The first one, which moni-
tors the number of closed trees, detects change at sample 111,480 and then
it reduces the window size immediately. In the second method there are
ADWINs monitoring each tree support; they notice the appearance of new
closed trees quicker, but overall the number of closed trees decreases more
slowly than in the first method.

Finally, we tested our algorithms on the CSLOGS Dataset. Figure 9.9
shows the number of closed trees detected on the CSLOGS dataset, vary-
ing the number of relaxed intervals. We see that on this dataset support
values are distributed in such a way that the number of closed trees using
logarithmic relaxed support is greater than using linear relaxed support.
When the number of intervals is greater than 1,000 the number of closed
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Figure 9.5: Data experimental memory results on ordered trees on TN1
dataset

intervals is 249, the number obtained using the classical notion of support.
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Figure 9.6: Memory used on unordered trees, TN1 dataset
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10
Adaptive XML Tree Classification

In this chapter, we propose a new method to classify patterns, using closed
and maximal frequent patterns. Closed patterns maintain the same infor-
mation as frequent patterns using less space and maximal patterns main-
tain approximate information. We use them to reduce the number of classi-
fication features. We present a new framework for data stream pattern clas-
sification. For the first component of our classification framework, using a
methodology based in Galois Lattice Theory, we present three closed tree
mining algorithms: an incremental one INCTREEMINER, a sliding-window
based one, WINTREEMINER, and finally one that mines closed trees adap-
tively from data streams, ADATREEMINER. To the best of our knowledge
this is the first work on tree classification in streaming data varying with
time.

10.1 Introduction

XML patterns are tree patterns and they are becoming a standard for infor-
mation representation and exchange over the Internet. XML data is grow-
ing and it will soon constitute one of the largest collection of human knowl-
edge. XML tree classification has been done traditionally using information
retrieval techniques considering the labels of nodes as bags of words. With
the development of frequent tree miners, classification methods using fre-
quent trees appeared [ZA03, KM04, CD01, KK02]. Recently, closed frequent
miners were proposed [CXYM01, TRS+08, AU05], and using them for clas-
sification tasks is the next natural step.

Pattern classification and the frequent pattern discovery task have been
important tasks over the last years. Nowadays, they are becoming harder,
as the size of the patterns datasets is increasing and we cannot assume that
data has been generated from a static distribution.

In this chapter we are going to show how closure-based mining can be
used to reduce drastically the number of attributes on tree classification.
Moreover, we show how to use maximal frequent trees, to reduce even
more the number of attributes needed in tree classification, without loosing
accuracy.
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XRules is an XML classifier algorithm that Zaki and Aggarwal pre-
sented in [ZA03]. Their classification method mines frequent trees in order
to create classification rules. They do not use closed frequent trees, only
frequent trees. XRules is cost-sensitive and uses Bayesian rule based class
decision making. They also proposed methods for effective rule prioritiza-
tion and testing.

Kudo and Matsumoto presented a boosting method for tree classifica-
tion in [KM04]. Their proposal consists of decision stumps that uses signifi-
cant frequent subtrees as features and a Boosting algorithm which employs
the subtree-based decision stumps as weak learners. They extended this
classification method to graphs in [KMM04], in joint work with Maeda.

Other works use SVMs defining tree Kernels [CD01, KK02]. Tree kernel
is one of the convolutions kernels, and maps the example represented in a
labeled ordered tree into all subtree spaces. The feature space uses frequent
trees and not closed trees.

Garriga et al. [GKL08] showed that when considering labeled itemsets,
closed sets can be adapted for classification and discrimination purposes
by conveniently contrasting covering properties on positive and negative
examples. They formally proved that these sets characterize the space of
relevant combinations of features for discriminating the target class.
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Figure 10.1: A dataset example
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Figure 10.2: Example of Galois Lattice of Closed trees

10.2 Classification using Compressed Frequent Pat-

terns

The pattern classification problem is defined as follows. A finite or infinite
dataset D of transactions is given, where each transaction s ∈ D consists of
a transaction identifier, tid, a pattern, t, and a discrete class label, y. The
goal is to produce from these transactions a model ŷ = f(t) that will predict
the classes y of future pattern transactions t with high accuracy. Tids are
supposed to run sequentially from 1 to the size of D. From that dataset, our
universe of discourse U is the set of all patterns that appear as subpattern
of some pattern in D. Figure 10.1 shows a finite dataset example of trees.

We use the following approach: we convert the pattern classification
problem into a vector classification learning task, transforming patterns
into vectors of attributes. Attributes will be frequent subpatterns, or a sub-
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Tree Trans.
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Figure 10.3: Frequent trees from dataset example (min sup = 30%), and
their corresponding attribute vectors.

set of these frequent subpatterns.

Suppose D has d frequent subpatterns denoted by t1, t2, . . . , td. For
each t pattern, we obtain a x vector of d attributes, where x = (x1, x2, . . . , xd)

and for each attribute i, xi = 1 if ti � t or xi = 0 otherwise.

As the number of frequent subpatterns is very huge, we perform a
feature selection process, selecting a subset of these frequent subpatterns,
maintaining the same information, or approximate. Figures 10.3 and 10.4
show frequent trees and its conversion to vectors of attributes. Note that
closed trees have the same information as frequent trees, and maximal trees
only approximate.
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Frequent Trees

c1 c2 c3 c4

Id c1 f1
1 c2 f1

2 f2
2 f3

2 c3 f1
3 c4 f1

4 f2
4 f3

4 f4
4 f5

4

1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
2 0 0 0 0 0 0 1 1 1 1 1 1 1 1
3 1 1 0 0 0 0 1 1 1 1 1 1 1 1
4 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Closed Maximal

Trees Trees

Id Tree c1 c2 c3 c4 c1 c2 c3 Class

1 1 1 0 1 1 1 0 CLASS1
2 0 0 1 1 0 0 1 CLASS2
3 1 0 1 1 1 0 1 CLASS1
4 0 1 1 1 0 1 1 CLASS2

Figure 10.4: Closed and maximal frequent trees from dataset example
(min sup = 30%), and their corresponding attribute vectors.

10.2.1 Closed Frequent Patterns

We consider now implications of the form A→ B for sets of patterns A and
B from U . Specifically, we consider the following set of rules: A → ΓD(A).
Alternatively, we can split the consequents into {A→ t

∣

∣ t ∈ ΓD(A)}.
It is easy to see that D obeys all these rules: for each A, any pattern of D

that has as subpatterns all the patterns of A has also as subpatterns all the
patterns of ΓD(A).

Proposition 14. Let ti be a frequent pattern for D. A transaction pattern t satis-
fies ti � t, if and only if it satisfies ∆D(ti) � t.

We use Proposition 14 to reduce the number of attributes on our clas-
sification task, using only closed frequent patterns, as they keep the same
information. The attribute vector of a frequent pattern will be the same as
its closed pattern attribute vector. Figure 10.4 shows the attribute vectors
for the dataset of Figure 10.1.

10.2.2 Maximal Frequent Patterns

Maximal patterns are patterns that do not have any frequent superpattern.
All maximal patterns are closed patterns. If min sup is zero, then maximal
patterns are the transaction patterns. We denote by M1(t), M2(t), . . . ,Mm(t)
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the maximal patterns of a pattern t. We are interested in the inplications of
the form tc→ (M1(t) ∨ M2(t) ∨ . . . ∨ Mm(t)) where tc is a closed pattern.

Proposition 15. Let tc be a closed non-maximal frequent pattern for D. Let
M1(tc), M2(tc), . . ., Mm(tc) be the maximal patterns of pattern tc. A trans-
action pattern t satisfies tc � t, if and only if at least one of the maximals Mi(tc)

of pattern tc satisfies Mi(tc) � t.

Proof. Suppose that pattern tc satisfies tc � t but no maximal pattern Mi(tc)

satisfies Mi(tc) � t. Then, pattern tc has no frequent superpattern. There-
fore, it is maximal, contradicting the assumption.

Suppose, for the other direction, that a maximal pattern Mi(tc) of tc

satisfies Mi(tc) � t. Then, as tc is a Mi(tc) subpattern, tc � Mi(tc), and it
holds that tc � Mi(tc) � t. ✷

For non-maximal closed patterns, the following set of rules holds:

tc→
∨

Mi(tc)

We do not need to use all closed patterns as attributes, since non-maximal
closed patterns may be derived from maximal patterns.

Using Proposition 15, we reduce the number of attributes on our classi-
fication task, using only maximal frequent patterns, as they keep the same
information as closed frequent patterns.

10.3 XML Tree Classification framework on data streams

Our XML Tree Classification Framework has two components:

• An XML closed frequent tree miner, for which we could use any in-
cremental algorithm that maintains a set of closed frequent trees.

• A Data stream classifier algorithm, which we will feed with tuples
to be classified online. Attributes in these tuples represent the occur-
rence of the current closed trees in the originating tree, although the
classifier algorithm need not be aware of this.

In this section, we describe the first component of the framework, the
XML closed frequent tree miner. The second component of the framework
is based on MOA. Massive Online Analysis (MOA) [HKP07] was intro-
duced in Section 3.5.3.
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10.3.1 Adaptive Tree Mining on evolving data
streams

Using a methodology based in Galois Lattice Theory, we present three closed
tree mining algorithms: an incremental one INCTREEMINER, a sliding-
window based one, WINTREEMINER, and finally one that mines closed
trees adaptively from data streams, It is basically an adaptation of the theo-
retical framework developed in Chapter 9, which deals with quite general
notion of pattern and subpattern, to the case of labeled rooted trees. The
main properties are:

• adding a tree transaction to a dataset of trees D, does not decrease the
number of closed trees for D.

• adding a transaction with a closed tree to a dataset of trees D, does
not modify the number of closed trees for D.

• deleting a tree transaction from a dataset of trees D, does not increase
the number of closed trees for D.

• deleting a tree transaction that is repeated in a dataset of trees D from
it, does not modify the number of closed trees for D.

For maximal frequent trees, the following properties hold:

• adding a tree transaction to a dataset of trees D, may increase or de-
crease the number of maximal trees for D.

• adding a transaction with a closed tree to a dataset of trees D, may
modify the number of maximal trees for D.

• deleting a tree transaction from a dataset of trees D, may increase or
decrease the number of maximal trees for D.

• deleting a tree transaction that is repeated in a dataset of trees D from
it, may modify the number of maximal trees for D.

• a non maximal closed tree may become maximal if

– it was not frequent and now its support increases to a value
higher or equal to min sup

– all of its maximal supertrees become non-frequent

• a maximal tree may become a non maximal tree if

– its support decreases below min sup

– a non-frequent closed supertree becomes frequent

We could check if a closed tree becomes maximal when
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• removing closed trees because they do not have enough support

• adding a new closed tree to the dataset

• deleting a closed tree from the dataset

We propose three tree mining algorithms adapting the general frame-
work for patterns presented in Chapter 9:

• INCTREEMINER, an incremental closed tree mining algorithm,

• WINTREEMINER, a sliding window closed tree mining algorithm

• ADATREEMINER, an adaptive closed tree mining algorithm

The batches are processed using the non-incremental algorithm explained
in Subsection 7.6.3.

We propose two strategies to deal with concept drift:

• ADATREEMINER1: Using a sliding window, with an ADWIN estimator
deciding the size of the window

• ADATREEMINER2: Maintaining an ADWIN estimator for each closed
set in the lattice structure.

In the second strategy, we do not delete transactions. Instead, each
ADWIN monitors its support and when a change is detected, then the sup-
port may

• increase: the number of closed trees is increasing

• decrease: the number of closed trees may decrease and we have to
delete the non-closed trees from the lattice.

– If the support is lower than min supp, we delete the closed tree
from the lattice

– If the support is higher than min supp, we check if it and all its
subtrees are still closed finding a supertree with the same sup-
port or

– Using a closure checking property: a tree t is closed if the inter-
section of all its closed supertrees is t.

10.4 Experimental evaluation

We tested our algorithms on synthetic and real data. All experiments were
performed on a 2.0 GHz Intel Core Duo PC machine with 2 Gigabyte main
memory, running Ubuntu 8.10.
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10.4.1 Closed Frequent Tree Labeled Mining

As far as we know, CMTreeMiner is the state-of-art algorithm for mining
induced closed frequent trees in databases of rooted trees. The main differ-
ence with our approach is that CMTreeMiner is not incremental and only
works with bottom-up subtrees, and our method works with both bottom-
up and top-down subtrees.

INCTREEMINER
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TREENATTime
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Figure 10.5: Time used on ordered trees, T8M dataset
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Figure 10.6: Time used on unordered trees, TN1 dataset

On synthetic data, we use the same dataset as in [CXYM01] and [Zak02]
for rooted ordered trees. The synthetic dataset T8M are generated by the
tree generation program of Zaki [Zak02], available from his web page. In
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Figure 10.7: Memory used on ordered trees, T8M dataset
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Figure 10.8: Memory used on unordered trees on T8M dataset

brief, a mother tree is generated first with the following parameters: the
number of distinct node labels N = 100, the total number of nodes in the
tree M = 10, 000, the maximal depth of the tree D = 10 and the maximum
fanout F = 10. The dataset is then generated by creating subtrees of the
mother tree. In our experiments, we set the total number of trees in the
dataset to be from T = 0 to T = 8, 000, 000.

The results of our experiments on synthetic data are shown in Figures 10.5,
10.6, 10.7 and 10.8. We observe that as the dataset size increases, INC-
TREEMINER and CMTreeMiner times are similar and that INCTREEMINER

uses much less memory than CMTreeMiner. CMTreeMiner can not mine
datasets bigger than 8 milion trees because it needs more memory to run,
since it is not an incremental method.

In Figure 10.9 we compare WINTREEMINER with different window sizes
to ADATREEMINER on T8M dataset. We observe that the two versions of
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Figure 10.9: Time used on ordered trees on T8M dataset varying window
size

ADATREEMINER outperform WINTREEMINER for all window sizes.

10.4.2 Tree Classification

We evaluate our approach to tree classification on both real and synthetic
classification data sets.

For synthetic classification, we use the tree generator from Zaki [Zak02]
used for the evaluation on mining closed frequent trees. We generate two
mother trees, one for each class. The first mother tree is generated with
the following parameters: the number of distinct node labels N = 200, the
total number of nodes in the tree M = 1, 000, the maximal depth of the tree
D = 10 and the maximum fanout F = 10. The second one has the following
parameters: the number of distinct node labels N = 5, the total number of
nodes in the tree M = 100, the maximal depth of the tree D = 10 and the
maximum fanout F = 10.

A stream is generated by mixing the subtrees created from these mother
trees. In our experiments, we set the total number of trees in the dataset to
be from T = 1, 000, 000. We added artificial drift changing labels of the trees
every 250, 000 samples, so closed and maximal frequent trees evolve over
time. We use bagging of 10 Hoeffding Trees enhanced with adaptive Naive
Bayes leaf predictions, as classification method.

Table 10.1 shows classification results. We observe that ADATREEM-
INER1 is the most accurate method, and that the accuracy of WINTREEM-
INER depends on the size of the window.

For real datasets, we use the Log Markup Language (LOGML) dataset
from Zaki et al. [PKZ01, ZA03], that describes log reports at their CS depart-
ment website. LOGML provides a XML vocabulary to structurally express
the contents of the log file information in a compact manner. Each user ses-
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Bagging Time Acc. Mem.

ADATREEMINER1 161.61 80.06 4.93
ADATREEMINER2 212.57 65.78 4.42
WINTREEMINER W=100,000 192.01 72.61 6.53
WINTREEMINER W= 50,000 212.09 66.23 11.68
INCTREEMINER 212.75 65.73 4.4

Boosting Time Acc. Mem.

ADATREEMINER1 236.31 79.83 4.8
ADATREEMINER2 326.8 65.43 4.25
WINTREEMINER W=100,000 286.02 70.15 5.8
WINTREEMINER W= 50,000 318.19 63.94 9.87
INCTREEMINER 317.95 65.55 4.25

Table 10.1: Comparison of classification algorithms. Memory is measured
in MB. The best individual accuracy is indicated in boldface.

sion is expressed in LOGML as a graph, and includes both structure and
content.

The real CSLOG data set spans 3 weeks worth of such XML user-sessions.
To convert this into a classification data set they chose to categorize each
user-session into one of two class labels: edu corresponds to users from an
”edu“ domain, while other class corresponds to all users visiting the CS
department from any other domain. They separate each week’s logs into
a different data set (CSLOGx, where x stands for the week; CSLOG12 is
the combined data for weeks 1 and 2). Notice that the edu class has much
lower frequency rate than other.

Table 10.2 shows the results on bagging and boosting using 10 Hoeffd-
ing Trees enhanced with adaptive Naive Bayes leaf predictions. The results
are very similar for the two ensemble learning methods. Using maximals
and closed frequent trees, we obtain results similar to [Zak02]. Comparing
maximal trees with closed trees, we see that maximal trees use 1/4 to 1/3rd
of attributes, 1/3 of memory, and they perform better.
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11
Conclusions and Future Work

This thesis sets out a general framework for the mining of data streams
with concept drift and it presents new high perfomance methods for min-
ing closed frequent trees. We expect that the contributions presented can
provide a better insight into the understanding of these challenging data
mining topics. This final chapter gives an overview of the obtained results.
We will discuss also future work that follows from our research.

11.1 Summary of Results

Evolving Data Stream Mining. We have proposed and illustrated a method
for developing algorithms that can adaptively learn from data streams that
change over time. Our methods are based on using change detectors and
estimator modules at the right places; we choose implementations with
theoretical guarantees in order to extend such guarantees to the resulting
adaptive learning algorithm. We have proposed an adaptive sliding win-
dow algorithm (ADWIN) for detecting change and keeping updated statis-
tics from a data stream, and use it as a black-box in place or counters or
accumulators in algorithms initially not designed for drifting data. Since
ADWIN has rigorous performance guarantees, this opens the possibility of
extending such guarantees to the resulting learning algorithm.

A main advantage of our methods is that they require no guess about
how fast or how often the stream will change; other methods typically have
several user-defined parameters to this effect. The main contributions on
evolving data streams are the following:

1 give a unified framework for data mining with time change detection
that includes most of previous works in the literature.

2 design more efficient, accurate and parameter-free methods to detect
change, maintain sets of examples and compute statistics.

3 prove that the framework and the methods are useful, efficient and
easy to use, using them to build versions of classical algorithms that
work on the data stream settings:
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• Classification :

– Naı̈ve Bayes

– Decision Trees

– Ensemble Methods

4 build an experimental framework for data streams similar to the
WEKA framework, so that it will be easy for researchers to run
experimental data stream benchmarks.

Closed Frequent Tree Mining. We have described a rather formal study
of trees from the point of view of closure-based mining. Progressing be-
yond the plain standard support-based definition of a closed tree, we have
developed a rationale (in the form of the study of the operation of intersec-
tion on trees, both in combinatorial and algorithmic terms) for defining a
closure operator, not on trees but on sets of trees, and we have indicated
the most natural definition for such an operator; we have provided a math-
ematical study that characterizes closed trees, defined through the plain
support-based notion, in terms of our closure operator, plus the guarantee
that this structuring of closed trees gives us the ability to find the support
of any frequent tree. Our study has provided us, therefore, with a bet-
ter understanding of the closure operator that stands behind the standard
support-based notion of closure, as well as basic algorithmics on the data
type.

Then, we have presented efficient algorithms for subtree testing and for
mining ordered and unordered frequent closed trees. A number of vari-
ants have suggested themselves for further study: we have evaluated the
behavior of our algorithms if we take into account labels, a case where our
algorithm does not fare as well as in the unlabeled case. The sequential
form of the representation we use, where the number-encoded depth fur-
nishes the two-dimensional information, is key in the fast processing of the
data.

And finally, we include an analysis of the extraction of association rules
of full confidence out of the closed sets of trees, along the same lines as
the corresponding process on itemsets, and we have found there an inter-
esting phenomenon that does not appear if other combinatorial structures
are analyzed: rules whose propositional counterpart is nontrivial are, how-
ever, always implicitly true in trees due to the peculiar combinatorics of the
structures. That study is not yet finished since we have powerful heuristics
to treat those implicit rules but wish to obtain a full mathematical charac-
terization.

Evolving Tree Data Streams Mining. Using the previous work done
in evolving data streams mining and closed frequent tree mining, we have
presented efficient algorithms for mining ordered and unordered frequent
unlabeled closed trees on evolving data streams.
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If the distribution of the tree dataset is stationary, the best method to
use is INCTREENAT, as we do not need to delete any past transaction. If
the distribution may evolve, then a sliding window method is more ap-
propiate. If we know which is the right size of the sliding window, then we
can use WINTREENAT, otherwise ADATREENAT would be a better choice,
since it does not need the window size parameter.

And finally, we have presented a scheme for XML classification based
on our methods, that efficiently selects a reduced number of attributes, and
achieves higher accuracy (even more in the more selective case in which we
keep only attributes corresponding to maximal trees).

11.2 Future Work

As future work, we will continue the work of this thesis in the following
ways: extending the work of Chapter 8 to a streaming setting, and giving a
general characterization of implicit rules described in Chapter 8.

11.2.1 Mining Implications of Closed Trees Adaptively

A new way of extracting high-confidence association rules from datasets
consisting of unlabeled trees is presented in Chapter 8. The antecedents are
obtained through a computation akin to a hypergraph transversal, whereas
the consequents follow from an application of the closure operators on un-
labeled trees.

In Chapter 9 a new approach is proposed for mining closed unlabelled
rooted trees adaptively from data streams that change over time. This ap-
proach has as advantages an efficient representation of trees and a low com-
plexity notion of relaxed closed trees, and leads to an on-line strategy and
an adaptive sliding window technique for dealing with changes over time.
ADATREENAT is the closed tree mining algorithm that mines closed trees
adaptively from data streams.

We propose as future work to develop ADATREENAT+, an improved
version of ADATREENAT in order to deal with deterministic association
rules in an incremental way. ADATREENAT+ maintains with every closed
tree, the set of its related association rules that are obtained from the method
developed in Chapter 8.

Mining Implications Adaptively with Time Drift

We would like to develop ADATREENAT+ a new method in order to main-
tain on-line deterministic association rules obtained from datastreams of
trees evolving over time.

Every node of the ADATREENAT+ lattice corresponds to a closed tree t,
and it maintains set of all the association rules where t is the consequent.
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One can verify that when a non-closed tree is added/deleted, it is never
necessary to change the lattice. When a closed tree is added or deleted,
however, the set of association rules of all its inmediate predecessors have
to be re-checked. Indeed,

• when a closed tree t is added, all immediate succesors of tree t have
t as a new immediate predecessor t, so their sets of association rules
may have changed.

• when a closed tree t is deleted, all immediate succesors of tree t do
not have t as an immediate predecessor any more, so their sets of
association rules may have changed too.

ADATREENAT+ is an on-line incremental algorithm, that maintains only
recent deterministic association rules. It updates incrementally the set of
associations every time a tree becomes closed or non-closed.

11.2.2 General Characterization of Implicit Rules

In Chapter 8 we have discussed why the particular combinatorics of our
application of the basis still lead to redundant information in the output:
implicit rules that are constructed by our method but, actually, due to the
combinatorics of the trees, will hold in all datasets and speak nothing about
the dataset under analysis.

We have been able to provide an exact characterization for one particu-
lar case, where one of the two trees involved in the antecedents has a single
component. We have demonstrated, through an implementation and an
empiric analysis on real-life datasets, that our development offers a good
balance between mathematical sophistication and efficiency in the detec-
tion of implicit rules, since with just our characterization and two heuris-
tics we catch a large ratio of implicit rules. Future work will be to find a a
complete characterization of such redundancies.
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[BBL07c] José L. Balcázar, Albert Bifet, and Antoni Lozano. Subtree
testing and closed tree mining through natural representa-
tions. In DEXA Workshops, pages 499–503, 2007.
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Albert Bifet, Ricard Gavaldá, and Rafael Morales-Bueno.
Early drift detection method. In Fourth International Workshop
on Knowledge Discovery from Data Streams, 2006.

[BH80] Terry Beyer and Sandra Mitchell Hedetniemi. Constant time
generation of rooted trees. SIAM J. Comput., 9(4):706–712,
1980.

[BHP+09] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Richard
Kirkby, and Ricard Gavaldà. New ensemble methods for
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