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Adaptive learning by extremal dynamics and negative feedback
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We describe a mechanism for biological learning and adaptation based on two simple principles:~i! Neu-
ronal activity propagates only through the network’s strongest synaptic connections~extremal dynamics!, and
~ii ! the strengths of active synapses are reduced if mistakes are made, otherwise no changes occur~negative
feedback!. The balancing of those two tendencies typically shapes a synaptic landscape with configurations
which are barely stable, and therefore highly flexible. This allows for swift adaptation to new situations.
Recollection of past successes is achieved by punishing synapses which have once participated in activity
associated with successful outputs much less than neurons that have never been successful. Despite its sim-
plicity, the model can readily learn to solve complicated nonlinear tasks, even in the presence of noise. In
particular, the learning time for the benchmark parity problem scales algebraically with the problem sizeN,
with an exponentk;1.4.
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I. INTRODUCTION

In his seminal essay,The Science of the Artificial@1# the
economist Herbert Simon suggested that biological syste
including those involving humans, are ‘‘satisficing’’ rath
than optimizing. The process of adaptation stops as soo
the result is deemed good enough, irrespective of the po
bility that a better solution might be achieved by furth
research. In reality, there is no way to find global optima
complex environments, so there is no alternative to accep
less than perfect solutions that happen to be within reach
Ashby sustained in hisDesign for a Brain@2#.

We shall present results on a schematic ‘‘brain’’ model
self-organized learning and adaptation that operates using
principle of satisficing. The individual parts of the syste
called synaptic connections, are modified by a negative fe
back process until the output is deemed satisfactory; then
process stops. There is no further reward to the system o
an adequate result has been achieved: this is learning
stick, not a carrot. The process starts up again as soon a
situation is deemed unsatisfactory, which could happen,
instance, when the external conditions change. The nega
signal may represent hunger, physical pain, itching, s
drive, or some other unsatisfied physiological demand.

Formally, our scheme is a reinforcement-learning alg
rithm ~or rather deinforcement learning since there is
positive feedback! @3#, where the strengths of the elemen
are updated on the bases of the signal from an external c
with the added twist that the elements~neuronal connections!
do not respond to positive signals.

Superficially, one might think that punishing unsuccess
neurons is the mirror equivalent to the usual Hebbian lea
ing where successful connections are strengthened@4#. This
is not the case. The Hebbian process, like any other pos
feedback, continuesad infinitum, in the absence of somead
hoc limitation. This will render the successful synap
strong, and all other synapses relatively weak, whereas
1063-651X/2001/63~3!/031912~12!/$15.00 63 0319
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negative feedback process employed here stops as soo
the correct response is reached. The successful synaptic
nections are only barely stronger than unsuccessful o
This makes it easy for the system to forget, at least tem
rarily, its response and adjust to a new situation when n
be.

The synaptic landscapes are quite different in the t
cases@20#. Positive reinforcement leads to a few strong sy
apses in a background of weak synapses. Negative feed
leads to many connections of similar strength, and thu
very volatile structure. Any positive feedback will limit th
flexibility and hence the adaptability of the system. O
course, there may be instances where positive reinforcem
takes place, in situations where hard-wired connections h
to be constructed once and for all, without concern for la
adaptation to new situations.

The process is self-organized in the sense that no exte
computation is needed. All components in the model can
thought of as representing known biological process
where the updating of the states of synapses takes place
through local interactions, either with other neighboring ne
rons, or with extracellular signals transmitted simultaneou
to all neurons. The process of suppressing synapses ha
tually been observed in the real brain and is known as lo
term depression, or LTD, but its role for actual brain fun
tion has been unclear@5#. We submit that depression of syn
aptic efficacy is the fundamental dynamic mechanism
learning and adaptation, with the long term potentiati
~LTP! of synapses usually associated with Hebbian learn
playing a secondary role.

Although we did have the real brain in mind when setti
up the model, it is certainly not a realistic representation
the overwhelming intricacies of the human brain. Its so
purpose is to demonstrate a general principle that is likely
be at work, and which could perhaps lead to the construc
of better artificial learning systems. The model presen
here is a ‘‘paper airplane,’’ which indeed can fly but is com
©2001 The American Physical Society12-1
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PER BAK AND DANTE R. CHIALVO PHYSICAL REVIEW E63 031912
pletely inadequate to explain the complexity of real a
planes.

Most neural network modeling so far has been concer
with the artificial construction of memories, in the shape
robust input-output connections. The strengths of those c
nections are usually calculated by the use of mathema
algorithms, with no concern for the dynamical biologic
processes that could possibly lead to their formation in
realistic ‘‘in vivo’’ situation. In the Hopfield model, memo
ries are represented by energy minima in a spin-glass
model, where the couplings between Ising spins repre
synaptic strengths. If a new situation arises, the connect
have to be recalculated from scratch. Similarly, the ba
propagation algorithm underlying most commercial neu
networks is a Newtonian optimization process that tunes
synaptic connections to maximize the overlap between
outputs produced by the network and the desired outp
based on examples presented to the network. All of this m
be good enough when dealing with engineering type pr
lems where biological reality is irrelevant, but we belie
that this modeling gives no insight into how real brainli
function might come about.

Intelligent brain function requires not only the ability t
store information, such as correct input-output connectio
It is also mandatory for the system to be able to adapt to n
situations, and yet later to recall past experiences, in an
going dynamical process. The information stored in the br
reflects the entire history that it has experienced, and
brain can take advantage of that experience. Our mode
lustrates explicitly how this might take place.

We shall see that the use of extremal dynamics allows
to define an ‘‘active’’ level, representing the strength of sy
apses connecting currently firing neurons. The negative
sponse assures that synapses that have been associate
good responses in the past have strengths that are barel
than the active ones, and can readily be activated again
suppressing the currently active synapses.

The paper is organized as follows. The next section
fines the general problem in the context of our ideas. T
model to be studied can be defined for many different geo
etries. In Sec. III we review the layered version of the mo
@6#, with a single hidden layer. It will be shown how th
correct connections between inputs are generated, and
new connections are formed when some of the output ass
ments change. In Sec. IV we introduce selective punishm
of neurons, such that synapses that have never been as
ated with correct outputs are punished much more seve
than synapses that have once participated in the generati
a good output. It will be demonstrated how this allows f
speedy recovery, and hierarchical storage, of old, good
terns. In multilayered networks, and in random networ
recovery of old patterns takes place in terms of se
organized switches that direct the signal to the correct o
put. Also, the robustness of the circuit towards noise will
demonstrated.

Section V shows that the network can easily perfo
more complicated operations, such as the exclusive
~XOR! process. It can even solve the much more com
cated parity problem in an efficient way. In the parity pro
03191
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lem, the system has to decide whether the number of bin
1s amongN binary inputs is even or odd. In those problem
the system does not have to adapt to new situations, so
success is due to the volatility of the active responses, all
ing for efficient search of state space without locking-in
spurious, incorrect, solutions. In the same section we sh
how the model can readily learn multistep tasks, adap
new multistep tasks, and store old ones for later use, exa
as for the simple single step problems. Finally Sec. VI co
tains a few succinct remarks about the most relevant po
of this work. The simple programs that we have construc
can be downloaded from our web sites@7#. For an in-depth
discussion of the biological justification, we refer the read
to a recent article@6#.

II. THE PROBLEM

A. What is it that we wish to model?

Schematically, we envision intelligent brain function
follows: The brain is essentially a network of neurons co
nected with synapses. Some of these neurons are conn
to inputs from which they receive information from the ou
side world@8#. The input neurons are connected with oth
neurons. If those neurons receive a sufficiently strong sig
they fire, thereby affecting more neurons, and so on. Ev
tually, an output signal acting on the outside world is gen
ated. All the neurons that fired in the entire process
‘‘tagged’’ with some chemical for later identification@9#.
The action on the outside is deemed either good~satisfac-
tory! or bad~not satisfactory! by the organism. If the outpu
signal is satisfactory, no further action takes place.

If, on the other hand, the signal is deemed unsatisfact
a global feedback signal, a hormone, for instance, is fed
all neurons simultaneously. Although the signal is broadc
democratically to all neurons, only the synapses that w
previously tagged because they connected firing neurons
act to the global signal. They will be suppressed, whethe
not they were actually responsible for the bad result. La
this may lead to a different routing of the signals, so tha
different output signal may be generated. The process is
peated until a satisfactory outcome is achieved, or, alte
tively, until the negative feedback mechanism is turned o
i.e., the system gives up. In any case, after a while the
ging disappears.

The time scale for tagging is not related to the time sc
of transmitting signals in the brain but must be related to
time scale of events in the real outside world, such a
realistic time interval between starting to look for foo
~opening the refrigerator! and actually finding food and eat
ing it. It is measured in minutes and hours rather than
milliseconds.

All of this allows the brain to discover useful responses
inputs, to modify swiftly the synaptic connection when th
external situation changes, since the active synapses are
ally only barely stronger than some of the inactive ones. I
important to invoke a mechanism for low activity in order
selectively punish the synapses that are responsible for
results.
2-2
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However, in order for the system to be able to recall p
successes, which may become relevant again at a later p
it is important to store some memory in the neurons. In
cordance with our general philosophy, we do not envis
any strengthening of successful synapses. In order to ach
this, we invoke the principle of selective punishment: ne
rons which have once been associated with successful
puts are punished much less than neurons that have n
been involved in good decisions. This yields some robu
ness for successful patterns with respect to noise, and
helps in constructing a toolbox of neuronal patterns sto
immediately below the active level, i.e., their inputs a
slightly insufficient to cause firing. This ‘‘forgiveness’’ als
makes the system stable with respect to random nois
good synapse that fires inadvertently because of occas
noise is not severely punished. Also, the extra feature
forgiveness allows for simple and efficient learning of s
quential patterns, i.e., patterns where several specific
secutive steps have to be taken in order for the outpu
become successful, and thus avoid punishment. The co
last steps will not be forgotten when the system is in
process of learning early steps.

In the beginning of the life of the brain, all searches m
necessarily be arbitrary, and the selective, Darwinian, no
structional nature of the process is evident. Later, howe
when the toolbox of useful connections has been built-
and most of the activity is associated with previously s
cessful structures, the process appears to be more and
directional, since fewer and fewer mistakes are committe

Roughly speaking, the sole function of the brain is to g
rid of irritating negative feedback signals by suppressing
ing neurons, in the hope that better results may be achie
that way. A state of inactivity, or nirvana, is the goal.
gloomy view of life, indeed. The process is Darwinian, in t
sense that unsuitable synapses are killed, or at least tem
rarily suppressed, until perhaps in a different situation th
may play a bigger role. There is no direct ‘‘Lamarckian
learning by instruction, but only learning by negative sele
tion.

It is important to distinguish sharply between features t
must be hardwired, i.e., genetically generated by the Darw
ian evolutionary process, and features that have to be
organized, i.e., generated by the intrinsic dynamics of
model when subjected to external signals. Biology has
provide a set of more or less randomly connected neur
and a mechanism by which an output is deemed unsatis
tory, a ‘‘Darwinian good selector,’’ transmitting a signal
all neurons~or at least to all neurons in a sector of the brai!.
It is absurd to speak of meaningful brain processes if
purpose is not defined in advance. The brain cannot lear
define what is good and what is bad. This must be given
the outset. Biology also must provide the chemical or m
lecular mechanisms by which the individual neurons reac
this signal. From there on, the brain is on its own. There
no room for furtherad hoctinkering by ‘‘model builders.’’
We are allowed to play God, not Man.

Of course, this is not necessarily a correct, and certa
not a complete, description of the process of self-organi
intelligent behavior in the brain. However, we are able
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construct a specific model that works exactly as descri
above, so the scenario is at least feasible.

B. So how do we actually model all of this?

Superficially, one would expect that the severe limitatio
imposed by the requirements of self-organization will put
in a straitjacket and make the performance poor. Surp
ingly, it turns out that the resulting process is actually ve
efficient compared with non-self-organized processes suc
back propagation, in addition to the fact that it execute
dynamical adaptation and memory process not performed
those networks at all.

The amount of activity has to be sparse in order to so
the ‘‘credit ~or rather blame! assignment’’ problem of iden-
tifying the neurons that were responsible for the poor res
If the activity is high, say 50% of all neurons are firing, the
a significant fraction of synapses are punished at each
step, precluding any meaningful amount of organization a
memory. One could accomplish this by having a varia
threshold, as in the work by Alstro”m and Stassinopoulos@10#
and Stassinopoulos and Bak@11#. Here, we use instead ‘‘ex
tremal dynamics,’’ as was introduced by Bak and Snepp
~BS! @12# in a simple model of evolution, where it resulted
a highly adaptive self-organized critical state. At each po
in time, only a single neuron, namely the neuron with t
largest input, fires.

The basic idea is that at a critical state the susceptibilit
maximized, which translates into high adaptability. In o
model, the specific state of the brain depends on the tas
be learned, so perhaps it does not generally evolve to a s
critical state with power law avalanches, etc. as in the
model. Nevertheless, it always operate at a very sens
state which adapts rapidly to changes in the demands
posed by the environment.

This ‘‘winner take all’’ dynamics has support in well
documented facts in neurophysiology. The mechanism of
eral inhibition could be the biological mechanism impl
menting extremal dynamics. The neuron with the high
input firing rate will first reach its threshold firing potentia
sending an inhibitory signal to the surrounding, compet
neurons, for instance in the same layer, preventing th
from firing. At the same time it sends an excitatory signal
other neurons downstream. In any case, there is no nee
invoke a global search procedure, not allowed by the gro
rules of self-organization, in order to implement the extrem
dynamics. The extremal dynamics, in conjunction with t
negative feedback, allows for efficient credit assignment.

One way of visualizing the process is as follows. Imagi
a pile of sand~or a river network, if you wish!. Sand is added
at designated input sites, for instance at the top row. Tilt
pile until one grain of sand~extremal dynamics! is toppling,
thereby affecting one or more neighbors in a chain react
Then tilt the pile again until another site topples, and so
Eventually, a grain is falling off the bottom row. If this is th
site that was deemed the correct site for the given input, th
are no modifications to the pile. However, if the output
incorrect, then a lot of sand is added along the path of fall
grains, thereby tending to prevent a repeat of the disast
2-3
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PER BAK AND DANTE R. CHIALVO PHYSICAL REVIEW E63 031912
result. Eventually the correct output might be reached. If
external conditions change, so that another output is cor
the sand, of course, will trickle down as before, but the
output is now deemed inappropriate. Since the path had
been successful, only a tiny amount of sand is added a
the trail, preserving the path for possible later use. As
process continues, a complex landscape representing the
experiences, and thus representing the memory of the
tem, will be carved out.

III. MODEL

A. The simplest layered model

In the simplest layered version, treated in detail in R
@6#, the setup is as follows~Fig. 1!. There is a number o
input cells, an intermediate layer of ‘‘hidden’’ neurons, and
layer of output neurons. Each of the input neuronsi is con-
nected with each neuron in the middle layer,j, with synaptic
strengthw( j i ). Each hidden neuron, in turn, is connect
with each output neuronk with synaptic strengthw(k j). Ini-
tially, all the connection strengths are chosen to be rand
say with uniform distribution between 0 and 1. Each inp
signal consists~for the time being! of a single input neuron
firing. For each input signal, a single output neuron rep
sents the preassigned correct output signal, representin
state of the external world. The network must learn to c
nect each input with the proper output for any arbitrary se
assignments, called a map. The map could for instance
sign each input neuroni to the output neuron with the sam
label.~In a realistic situation, the brain could receive a sign
that there is some itching at some part of the body, and
output causing the fingers to scratch at the proper place m
be generated for the signal to stop!. At each time step, we
invoke ‘‘extremal dynamics’’ equivalent with a ‘‘winne
take all’’ strategy: only the neuron connected with the larg
synaptic strength to the currently firing neuroni will fire at
the next time step.

FIG. 1. Topology and notation for the three geometries of
model. ~A! The simplest layered model with input layeri, con-
nected via synapsesw( j i ) to all nodesj in the middle layer, which,
in turn, are connected to all output neuronsk by synapsesw(k j).
~B! The lattice version is similar to the layered case except that e
node connects forward only with a few~three in this case! of the
neurons in the adjacent layer.~C! The random network hasN neu-
rons, i, each connected withnc other neuronsj, with synaptic
strengthsw( j i ) ~only a couple are shown!. Some of them, (ni), are
preselected as input and some (no) as output neurons. A maximum
number (t f) of firing is allowed in order to reach the output.
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The entire dynamical process goes as follows:
~i! A random input neuroni is chosen to be active.
~ii ! The neuronj m in the middle layer which is connecte

with the input neuron with the largestw( j i ) is firing.
~iii ! Next, the output neuronkm with the maximum

w(k jm) is firing.
~iv! If the outputk happens to be the desired one, nothi

is done,
~v! Otherwise, that is if the output is not correct,w(kmj m)

andw( j mi ) are both depressed by an amountd, which could
either be a fixed amount, say 1, or a random value betwe
and 1.

~vi! Go to ~i!. Another random input neuron is chosen a
the process is repeated.

That is all. The constantd is the only parameter of the
model, but since only relative values of synaptic streng
are important, its absolute value plays no role. In the sim
lations, we generally choose the depression to be a ran
value between 0 and 1. Learning times were slightly long
about 10%, if a constant value was chosen. If one find
unaesthetic that the values of the connections are always
creasing and never increasing, one could raise the value
all connections such that the value of the largest output s
aptic strength for each neuron is 1. This, of course, has
effect on the dynamics.

We imagine that the synapsesw(kmj m) andw( j mi ) con-
necting all firing neurons are ‘‘tagged’’ by the activity, iden
tifying them for possible subsequent punishment. In real l
the tagging must last long enough to ensure that the resu
the process is available, the time scale must match typ
processes of the environment rather than firing rates in
brain. If a negative feedback is received all the synap
which were involved and therefore tagged are punish
whether or not they were responsible for the bad result. T
is democratic but, of course, not fair. We cannot imagin
biologically reasonable mechanism that permits perfect id
tification of synapses for selective punishment~which could
of course be more efficient! as is assumed in most neur
network models. The use of extremal dynamics is crucial
solving the crucial credit assignment problem, which h
been a stumbling block in previous attempts to model s
organized learning, by keeping the activity low and there
reducing the number of synapses eligible for punishmen

Eventually, the system learns to wire each input to
correct output counterpart. The time that it takes is roug
equal to the time that a random search for each input wo
take. Of course, no general search process could in princ
be faster@13# in the absence of any preknowledge of t
assignment of output neurons. It is important to have a la
number of neurons in the middle layer in order to prevent
different paths from interfering, and thus destroying conn
tions that have already been correctly learned.

Figure 2 shows the results from a simulation of a laye
system with seven input and seven output nodes, and a
able number of intermediate nodes. The task was simpl
connect each input with one output node~it does not matter
which one!. In each step we check if all seven preestablish
input–output pairs were learned. If so, the learning proc
stops, and the learning time is recorded. By repeating this

e

ch
2-4
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many realizations of the network, the average time to le
all input–output connections is computed. The figure sho
how the average learning time decreases with the numbe
hidden neurons. More is better. Biologically, creating a la
number of more or less identical neurons does not req
more genetic information than creating a few, so it is che
On the other hand, the setup will definitely loose in
storage-capacity beauty contest with orthodox neural
works, that is the price to pay for self-organization. We a
not allowed to engineer noninterfering paths, the system
to find them by itself.

At this point all that we have created is a biologica
motivated robot that can perform a random search proce
that stops as soon as the correct result has been found. W
this may not sound like much, we believe that it is a so
starting point for more advanced modeling.

We now go one step further by subjecting the model t
new input–output map once the original map has b
learned. This reflects that the external realities of the org
ism have changed, so that what was good yesterday is
good any more. Food is to be found elsewhere today, and
system has to adapt. Some input–output connections
still be good, and the synapses connecting them are basi
left alone. However, some outputs which were deemed
rect yesterday are deemed wrong today, so the synapse
connected those will immediately be punished. A search p
cess takes place as before in order to find the new cor
connections.

Figure 3 shows the time sequence of the number
‘‘wrong’’ input–output connections produced by the mod
before learning each map, which is a measure of the rele
ing time, when the system is subjected to a sequence
different input–output assignments. For each remapp
each input neuron has a new random output neuron assi
to it. In general, the relearning time is roughly proportion
to the number of new input–output assignments that h
changed, in the limit of a very large number of intermedia
neurons. If the number of intermediate neurons is small,

FIG. 2. The time to learn a given task decreases when the n
ber of neurons in the middle layer is increased. Data points
averages from 1024 realizations.
03191
n
s
of
e
re
.

t-
e
as

re
ile

a
n
n-
ot

he
ay
lly
r-
that
o-
ct

f
l
n-
of
g,
ed
l
e

e
e

relearning time will be longer because of ‘‘path interfe
ence’’ between the connections. In a real world, one co
imagine that the relative amount of changes that would oc
from day to day is small and decreasing, so that the rele
ing time becomes progressively lower.

Suppose now that after a few new maps, we return to
original input–output assignment. Since the original succe
ful synapses have been weakened, a new pathway has
found from scratch. There is no memory of connections t
were good in the past. The network can learn and adapt,
it cannot remember responses that were good in the pas
Secs. IV and VI we shall introduce a simple remedy for th
fundamental problem, which does not violate our basic p
losophy of having no positive feedback.

B. Lattice geometry

The setup discussed above can trivially be generalize
include more intermediate layers. The case of multilayers
neurons that are not fully connected with the neurons in
next layer is depicted in Fig. 1~B!. Each neuron in the laye
connects forward to three others in the next layer. The n
work operates in a very similar way: a firing neuron in o
layer causes firing of the neuron with the largest connec
to that neuron in the subsequent layer and so on, star
with the input neuron at the bottom. Only when the sign
reaches the top output layer will all synapses in the fir
chain be punished, by decreasing their strength by an am
d as before, if need be. Interestingly, the learning time d
not increase as the number of layers increases. This is du
the ‘‘extremal dynamics’’ causing the speedy formation
robust ‘‘wires.’’ In contrast, the learning time for back
propagation networks grows exponentially with the numb
of layers; this is one reason that one rarely sees backp
networks with more than one hidden layer.

-
re

FIG. 3. Adaptation times for a sequence of 700 input–out
maps. The number of unsuccessful attempts to generate the co
input–output connections is shown~A random network geometry
was chosen, but the result is similar for the other geometries c
sidered.!
2-5
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C. Random geometry

In addition to layered networks, one can study the proc
in a random network, which may represent an actual biolo
cal system better. Imagine that the virgin brain simply co
sists of a number of neurons, which are connected rando
to a number of other neurons via their synapses, som
which are randomly assigned as input and output neur
requiring no specific blueprint whatsoever.

Consider an architecture where eachn neuron is arbi-
trarily connected to a numbernc of other neurons with syn
aptic strengthsw( j i ). A number of neurons (ni andno) are
arbitrarily selected as input and output neurons, respectiv
Again, output neurons are arbitrarily assigned to each in
neuron. Initially, a single input neuron is firing. Using e
tremal dynamics, the neuron that is connected with the in
neuron with the largest strength is then firing, and so on
after a maximum number of firing eventst f the correct out-
put neuron has not been reached, all the synapses in
string of firing neurons are punished as before. Summariz
the entire dynamical process is as follows:

~i! A single input neuron is chosen.
~ii ! This neuron is connected randomly with several o

ers, and the one which is connected with the largest syna
strength fires. The procedure is repeated a prescribed m
mum number of timest f , thereby creating and labeling
chain of firing neurons.

~iii ! If, during that process, the correct output has not b
reached, each synapse in the entire chain of firings is
pressed a random amount 0,d,1.

~iv! If the correct output is achieved, there is no plas
modification of the neurons that fired. Go to~i!.

A system withn5200, ni5no55, nc510 behaves like
the layered structure presented above~and is actually the one
shown in the figure!. This illustrates the striking develop
ment of an organized network structure even in the c
where all initial connections are absolutely uncorrelated. T
model creates wires connecting the correct outputs with
inputs, using the intermediate neurons as stepping stone

IV. SELECTIVE PUNISHMENT AND REMEMBERING
OLD SUCCESSES

We observed that there was not much memory left
second time around, when an old assignment map was re
ployed, and the task had to be relearned from scratch.
turns out to be much more than a nuisance, in particu
when the task was complicated, like in the case of a rand
network with many intermediate neurons, where the sea
became slow.

We would like for there to be some memory left fro
previous successful experiences, so that the earlier ef
would not be completely wasted.

There is an analogous situation in the immune syst
where the lymphocytes can recognize an invader faster
second time around. The location and activation of mem
in biological systems is an important, but largely unresolv
problem. Speaking about the immune system, it has in
been suggested in a series of remarkable papers by M
inger that the immune system is only activated in the pr
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ence of ‘‘danger’’@14#. This is the equivalent of our learnin
by mistakes. In fact, Matzinger realizes that the identificat
of danger has to be preprogrammed in the innate imm
system, and must have evolved on a biological time sc
this is the equivalent of our ‘‘Darwinian good’’~or rather
‘‘bad’’ or ‘‘danger’’ ! selector’’ indicating if the organism is
in a satisfactory state.

It turns out @6# that one single modification to the rule
described above allows for some fundamental improveme
of the system’s ability to recognize old patterns:

~iii-a! When the output is wrong, a firing synapse that h
at least once been successful is punished much less th
synapse that has never been successful.

For instance, the punishment of the ‘‘good’’ synap
could be of the order of 1022, compared with a random
depression of order unity for a ‘‘bad’’ synapse. The neur
has earned some forgiveness due to its past good pe
mance. Biologically, we envision that a neuron that does
receive a global feedback signal after firing relaxes its s
ceptibility to a subsequent negative feedback signal by so
chemical mechanism. It is important to realize that the s
apse ‘‘knows’’ that it has been successful by the fact tha
was not punished, so no nonlocal information is invoke
Note that we have not, and will not, include any positi
Hebbian enforcement in order to implement memory in
system, only reduced punishment.

We have applied this update scheme to both the laye
and the random version of the model. For the random mo
we choose 200 intermediate neurons, plus five design
input neurons and five output neurons. Each neuron was
nected randomly with ten other neurons. First, we arbitra
assigned a correct output to each input and ran the algor
above until the map had been learned. After unsucces
firings, punishment was applied; an amount of 0.001 to p
viously successful neurons, and a random number betwe
and 1 for those that had never been successful. Then
arbitrarily changed one input-output assignment and repe
the learning scheme. Yet another new random reassignm
of a single input-output pair was introduced, and so on.

In the beginning, the learning time is large, correspond
roughly to the time for a random search for each connect
New connections have to be discovered at each input-ou
assignment. However, after several switches, the time
adaptation becomes much shorter, of the order of a few t
steps. Figure 4 shows the time for adaptation for hundred
consecutive input-output reassignments. The process
comes extremely fast compared with the initial learning tim
Typically, the learning time is only 0–10 steps, compar
with hundreds or thousands of steps in the initial learn
phase. This is because any ‘‘new’’ input-output assignm
is not really new, but has been imposed on the system be
The entire process, in one particular run with 1000 adap
tions, involved a total of only 38 neurons out of 200 inte
mediate neurons to create all possible input-output conn
tions, and thus all possible maps.

In order to understand this, it is useful to introduce t
concept of the ‘‘active level,’’ which is simply the strengt
of the strongest synaptic output connection from the neu
2-6
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ADAPTIVE LEARNING BY EXTREMAL DYNAMICS AND . . . PHYSICAL REVIEW E 63 031912
which has just been selected by the extreme dynamics.
simplicity, and without changing the firing pattern whats
ever, we can normalize this strength to unity. The streng
of the other output synapses are thus below the active le
Whenever a previously successful input–output connec
is deemed unsuccessful, the synapses are punished slig
according to rule~iii-a!, only until the point where a single
synapse in the firing chain is suppressed slightly below
active level defined by the extremal dynamics, thus bar
breaking the input–output connection. Thus connections
have been good in the past are located very close to
active level, and can readily be brought back to life again,
suppression of firing neurons at the active level if need
The dynamics allows for automatic storing of old patter
thereby creating a toolbox of potentially useful patterns t
can swiftly be brought back to life at a later stage. This mig
be our most striking result.

Figure 5 shows the synaptic landscape after severa
learning events for a small system with three inputs, th
outputs, and 20 neurons, each connected with five neur
The arrow indicates a synapse at the active level, i.e., a
apse that would lead to firing if its input neuron were firin
Altogether, there are seven active synapses for that partic
simulation, representing the correct learning of the curr
map. Note that there are many synaptic strengths just be
the active level. The memory of past successes is locate
those synapses.

The single synapse that broke the input–output conn
tion serves as a self-organized switch, redirecting the fir
pattern from one neuron chain to another, and conseque
from one output to another. The adaptation process ta
place by employing these self-organized switches, play
the roles of ‘‘hub neurons,’’ assuring that the correct outp
is reached.

Thus when an input–output connection turns unsucc
ful, all the neurons in the firing chain are suppressed sligh

FIG. 4. Learning time for 700 adaptations for the random n
work with reduced punishment for successful synapses. Both p
show the same data, but in the inset the scale is magnified to b
illustrate the fast relearning. The network has five inputs, five o
puts, and 200 intermediate neurons, each connected with ten
neurons.
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and it is likely that an old successful connection reappea
the active level. Perhaps that connection is also unsucce
and will be suppressed, and another previously succes
connection may appear at the active level. The system
through old successful connections in order to look for n
ones.

Every now and then, there is some path interference,
relearning takes more time, indicated by the rare glitches
long adaptation times in Fig. 4. Also, now and then pre
ously unused synapses interfere, since the strength of
successful synapses slowly becomes lower and lower. T
even when successful patterns between all possible inp
output pairs have been established, the process of adapt
now and then changes the paths of the connections.

Perhaps this mimics the process of thinking: ‘‘Thinking
is the process where unsuccessful neuronal patterns are
pressed by some ‘‘hormonal’’ feedback mechanism, allo
ing old successful patterns to emerge. The brain sifts thro
old solutions until, perhaps, a good pattern emerges, and
process stops. If no successful pattern emerges, the b
panics: it has to search more or less randomly in orde
establish a new, correct input–output connection.

The input patterns do not change during the thinking p
cess: one can think with closed eyes.

Figure 6~a! shows the entire part of the network which
involved with a single input neuron, allowing it to conne
with all possible outputs. The full line indicates synapses
the active level, connecting the input with the correct outp
The broken lines indicate synapses that connect the in
with other outputs. They are located just below the act
level. The neurons marked by an asterisk are switches,
are responsible for redirecting the flow.

Similarly, Fig. 6~b! shows all the synapses connecting
single output with all possible inputs. The neurons with t
asterisks are ‘‘hub neurons,’’ directing several inputs to

-
ts
ter
t-
her

FIG. 5. Strengths of the synapses for a small system with r
dom connections, with three inputs, three outputs, and 20 inter
diate neurons, each connected with five neurons. There are s
active synapses with strength 1, and several synapses with stre
just below the active level. Those synapses represent memorie
past successes~such as the broken lines in Fig. 6!.
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PER BAK AND DANTE R. CHIALVO PHYSICAL REVIEW E63 031912
common output. Once such a neuron is firing, the outpu
recognized, correctly or incorrectly. A total of only five in
termediate neurons are involved in connecting the ou
with all possible inputs.

Note that short-term and long-term memories are not
cated at, or ever relocated to, different locations. They
represented by synapses that are more or less suppr
relative to the currently active level selected by the proc
of extremal dynamics, and can be reactivated through s
organized switches as described above.

The system exhibits aging at a large time scale: eventu
all or most of the neurons will have been successful at
point or another, and the ability to selectively memorize
good pattern disappears. The process is not stationary. If
does not like that, one can let the neurons die, and rep
them at a small rate by fresh neurons with random conn
tions. The death of neurons causes longer adaptation t
now and then since new synaptic connections may have t
formed.

Perfect learning with noise

It is also interesting to consider the effect of noise. Su
pose that a small noisen, randomly distributed in the interva
0,n,e, is added to the signal sent to the neurons. This m
cause an occasional wrong output signal, triggered by s
apses with strengthsw(kmj ) that were close to that of th
correct one, i.e., the one that would be at the active leve
the absence of noise. However, those synapses will now
suppressed, since they lead to an incorrect result. Afte
while, there will be no incorrect synapsesw(kmj ) left such
that the addition of the noise can cause it to exceed
strength of the correct synapsew(kmj m), so no further modi-
fications will take place, and the input–output connectio
will be perfect from then on.

Thus the system deals automatically with noise. Figur
shows all the input–output connections for one input neu
in a simulation with three input neurons, three output n
rons, and a total of 50 neurons each connected with
neurons. The noise level is 0.02, and the punishment of
viously successful neurons is 0.002. The numbers are
strengths of the synapses. Note that the incorrect syna
connected with the switches are suppressed by a gap

FIG. 6. ~a! Part of the network connecting a single output w
the five possible inputs. The full line represents the active cor
connection, and the broken lines represent synapses conne
with the other inputs. The strengths of those synapses are b
below the active level.~b! Network connecting a single input with
all possible outputs. The synapses marked with an asterisk act
switches, connecting the input with the correct output.
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least 0.02, the level of the noise, below the correct on
Note also that some of the incorrect synapses not conne
with switches are much less suppressed. They are cutof
switches elsewhere and need not be suppressed in ord
have the signal directed to the correct output.

The price to be paid in order to have perfect learning w
noise is that adaptation to new patterns takes longer, bec
the active synapses have to be suppressed further to give
for new synapses. Figure 8 shows the learning time for 7
successive remappings, as in Fig. 4, but with noise add
Note that indeed adaptation is slower.

V. BEYOND SIMPLE WIRING: XOR AND SEQUENCES

So far we have considered only simple input–output m
pings where only a single input neuron was activated. Ho
ever, it is quite straightforward to consider more complica
patterns where several input neurons are firing at the s
time. In the case of the layered network, we simply mod
the rule~ii ! above for the selection of the firing neuron in th
second layer as follows:

~ii-b! The neuronj m in the middle layer for which the sum
of the synaptic connectionsw( j i ) with the active input neu-
rons i is maximum is firing.

ct
ing
ely

ke

FIG. 7. Learning with noise. The diagram shows all the synap
connections allowing a single input neuron to connect with all p
sible output neurons. The full lines show the currently active pa
and the numbers are the synaptic strengths as explained in tex

FIG. 8. Learning times. As in Fig. 4, but with uniform rando
noise of amplitude 0.02 added to the synaptic strengths. Note
increase in the adaptation times.
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ADAPTIVE LEARNING BY EXTREMAL DYNAMICS AND . . . PHYSICAL REVIEW E 63 031912
For the random network one would modify the rule f
the firing of the first intermediate neuron similarly.

A. XOR operation

Since the heydays of Minsky and Papert@15# who dem-
onstrated that only linearly separable functions can be re
sented by simple, one layer, perceptrons, the ability to p
form the exclusive-or~XOR! operation has been considere
a litmus test for the performance of any neural network. H
does our network measure up to the test? Following Klem
et al. @16# we choose to include three input neurons, two
them representing the input bits for which we wish to p
form the XOR operation, and a third input neuron which
always active. This bias assures that there is a nonzero i
even when the response to the 00 bits is considered. The
possible outputs for the XOR operation determine that
network has two output neurons.

The inputs are represented by a string ofI binary units
x1 , . . . ,xI , xiP$0,1%. As explained in Sec. III, neurons ar
connected by weightsw from each input~j! to each hidden
~i! unit and from each hidden unit to each output~k! unit.

The dynamics of the network is defined by the followin
steps. One stimulus is randomly selected out of the four p
sible ~i.e., 001,101,011,and 111! and applied tox1 ,x2 ,x3.
Each hidden nodej then receives a weighted inputhj

5( i 51
I wji xi . The state is chosen according to the winn

take-all rule, i.e., thej m neuron with the largesthj fires ~i.e.,
xj m

51). Since there is only one active intermediate neur
the output neuron is chosen as before to be the one conne
with that neuron by the largest strengthwk j .

Adaptation to changing tasks is not of interest here, so
choose first to simulate the simplest algorithm in Sec.
without any selective punishment, using a random valu
,d,1. As shown in Fig. 9, networks with the minimum

FIG. 9. Learning the XOR problem. The top panel shows
distributions of learning times for networks with a middle lay
having 3,10, or 20 nodes. The bottom panel shows the mean le
ing time ~averages from 106 realizations! for various sizes of the
middle layer.
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number of intermediate neurons~three for this problem! are
able to solve the task. Systems with such a small numbe
intermediate neurons are poor. Networks with larger mid
layers learn significantly faster, up to an asymptotic lim
which for this problem is reached for about 20 nodes. Aga
more is better. We also performed simulations with the
lective punishment algorithm where successful neurons w
punished less, reducing the learning times by a factor of 2
so for the small systems.

Even in the presence of noise, the tolerant version of
model presented above, and in our previous paper@6#, allows
for perfect, but slightly slower learning. Klemmet al. @16#
introduced forgiveness in a slightly different, but much mo
elaborate way, by allowing the synapses a small numbe
mistakes before punishment. We do not see the advantag
this scheme over our simpler original version with select
punishment, which also appears to be more feasible fro
biological point of view.

Indeed, much harder problems of the same class as
XOR can be learned by our network without any modific
tion. XOR belongs to the ‘‘parity’’ class of problem, wher
for a string of arbitrary lengthN there are 2N realizations
composed of all different combinations of 0’s and 1’s.
order to learn to solve the parity problem the system mus
able to selectively respond to all the strings with an odd~or
even! number of 1’s~or zeros!. The XOR function is the
simplest case withN52.

We used the same network as for the XOR problem,
now with increasingN up to string lengths of 6. For all case
we chose a relatively large intermediate layer with 3000 n
rons, using a random value 0,d,1. Figure 10 shows the
results of these simulations. In panel A the mean error~cal-
culated as in Klemmet al. @16# for consistency! is the ratio
between those realizations which have learned the comp
task and those that have not, as a function of time. For e

e

rn-

FIG. 10. Learning nonlinear problems beyond XOR. Curves
panel A show the time dependence of average errors for incr
ingly harder parity functions, from order 2~i.e., the XOR case! to
order 6. For each curve, the numbers indicate the size (I 52N) of
the problem. In panel B the curves shown in A are replotted w
the time axis rescaled with the size of the problem,t85t/I k. Good
data collapse is achieved withk;1.4.
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PER BAK AND DANTE R. CHIALVO PHYSICAL REVIEW E63 031912
N, a total of 1024 realizations was simulated, each one in
ated from a different random configuration of weights. N
tice that the time axis~for presentation purposes! is in loga-
rithmic scale. At least for the sizes explored here,
network solves larger problems following the not very exp
sive power law scaling relationship. Panel B of Fig.
shows that learning time scales with problem size with
exponentk;1.4. In conclusion, the nonlinearity does n
appear to introduce additional fundamental problems into
scheme.

B. Generalization and feature detection

The general focus of most neural network studies
been on the ability of the network to generalize, i.e., to d
tinguish between classes of inputs requiring the same ou
In general, the task of assigning an output to an input wh
has not been seen before is mathematically ill-defined, s
in principle any arbitrary collection of inputs might be a
signed to the same output. Practically, one would like to m
‘‘similar’’ inputs to the same output; again ‘‘similar’’ is ill-
defined. We believe that similarity is best defined in the c
text of ~biological! utility: similar inputs are by definition
inputs requiring the same reaction~output! in order to be
successful~this is circular, of course!. For a frog, things that
fly requires it to stick its tongue out in the direction of th
flying object, so all things that fly might be considered sim
lar; there is not much need for the frog to bother with thin
that do not fly. Actually, a frog can only react to things th
move as demonstrated in the classical paper by Lettvin,et al.
@17# almost half a century ago. Roughly, the generalizat
problem can be reduced to the problem of identifying use
~or dangerous! features in the input that have consequen
for the action that should be taken.

So how does our network learn to identify useful featu
in the input? Suppose~Fig. 11! that we present two differen
inputs to, for instance, the random network, one where in
neurons 1 and 2 are firing, and another one where inpu
and 3 are firing. Consider the two cases~A! where the output
neuron for the two inputs should be the same, and~B! where
the assigned outputs are different.

In the case where the outputs should be different, say
and 2, respectively, the algorithm solves the problem by c

FIG. 11. Two inputs, each representing two firing input ce
are considered. The two inputs have the input cell in the cente
common.~A! If the outputs should be the same, the common n
ron is connected with the correct output neuron.~B! If the outputs
should be different, the input neurons that are different are c
nected with the two different outputs.
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necting input 1 to 1 and input 3 to neuron 2 through diffe
ent intermediate neurons, while ignoring input 2. The br
identifies features in the input that are different. The irr
evant feature 2 is not even ‘‘seen’’ by our brain, since it h
no internal representation in the form of firing intermedia
neurons. In the case where the assigned outputs for the
inputs are the same, say 1, the problem is solved by conn
ing the common input neuron 1 with the output neuron w
a single string of synaptic connections. The network iden
fies a feature that is the same for the two inputs, while
noring the irrelevant outputs 1 and 3, that are simply n
registering in the brain. In a simulation, it was imposed th
when inputs 1 or 3 were active without 2 being active, su
cess was achieved only if the output was not 1: the f
should not try to eat nonflying objects. This mechanism c
supposedly be generalized to more complicated situatio
depending on the task at hand, the brain identifies us
features that allows it to distinguish, or not to distingui
~generalize! between inputs.

Suppose the system is subsequently presented to a pa
that in addition to the input neurons above includes m
firing neurons. In case the additional neurons are irrelev
for the outcome, the system will take advantage of the c
nections that have already been created and ignore the a
tional inputs. If some of the new inputs are relevant, in t
sense that a different output is required, further learning
volving the new inputs will take place in order to allow th
system to discriminate between outputs. We envision t
this process of finer and finer discrimination between in
classes allows for better and better generalization of inp
requiring identical outputs.

The important observation to keep in mind is that t
concept of generalization is intimately connected with t
desired function, and cannot be predesigned. We feel t
for instance, with respect to theories of vision, there is
undue emphasis on constructing general pattern detection
vices that are not based on the nature of the specific prob
at hand. Whether edges, angles, contrasts, or whateve
the important features must be learned, not hardwired.

C. Learning multistep sequences

In general, the brain has to perform several succes
tasks in order to achieve a successful result. For instanc
a game of chess or backgammon, the reward~or punishment!
only takes place after the completion of several steps.
system cannot ‘‘benefit’’ from immediate punishment fo
lowing trivial intermediate steps, no matter how much t
bad decisions contributed to the final poor result.

Consider for simplicity a setup where the system has
learn to present four successive outputs, 1, 2, 3, and 4,
lowing a single firing input neuron, 1. In general, the outp
decision at any intermediate step will affect the input at
next step. Suppose, for instance, that in order to get from
place to another in a city starting at point 1, one first has
choose road 1 to get to point 2, and then road 2 to go to p
3, and so on. Thus the output represents the point reache
the action, which is then seen by the system and repres
the following input. We represent this by feeding the outp

,
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-
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ADAPTIVE LEARNING BY EXTREMAL DYNAMICS AND . . . PHYSICAL REVIEW E 63 031912
signal to the input at the next step. If output number 5 fire
an intermediate step, input neuron 51156 will fire at the
next step: this is the outer worlds reaction to our action.

We will facilitate the learning process by presenting t
system not only with the final problem, but also with simp
intermediate problems: we randomly select an input neu
from 1 to 4. If neuron 4 is selected, output neuron 4 m
respond. Otherwise the firing neurons are punished. If in
neuron 3 is selected, output neuron 3 must first fire. T
creates an input signal at input neuron 4. Then the ou
neuron 4 must fire. For any other combination, all the s
apses participating in the two step operation are punished
case input 2 is presented, output neuron 2 must first fire,
output neuron 3, and finally output neuron 4 must fire, o
erwise all synapses connecting firing neurons in the th
step process are punished. When input 1 is presented
four output neurons must fire in the correct sequence.
course, we never evaluate or punish intermediate succe

For this to work properly, it is essential to employ th
selective punishment scheme where neurons that have
participated in correct sequences are punished less than
rons that have never been successful, in order for the sys
to remember partially correct end games learned in the p

In one typical run, we choose a layered geometry with
inputs, ten outputs, and 20 intermediate neurons. Afte
time steps, the last step input 4→ output 4 was learned fo
the first time. After 35 time steps, the sequence input 3→
output 3~5input 4! →4 was also learned, after 57 steps t
sequence input 2→ input 3→ input 4→ output 4 was
learned, and finally, after 67 steps the entire sequence
been learned. These results are typical. The brain learne
steps backwards, which, after all, is the only logical way
doing it. In chess, one has to learn that capturing the kin
essential before the intermediate steps acquire any mea

In order to imitate a changing environment, we may re
sign one or more of the outputs to fire in the sequence. A
the previous problems, the system will keep the parts
were correct, and learn the new segments. Older seque
can be swiftly recalled. Finally we added uniform rando
noise of order 1022 to the outputs; this extended the learni
time in the run above to 193 time steps.

VI. CONCLUSION AND OUTLOOK

The employment of the simple principles produces a s
organized, robust and simple, biologically plausible mode
learning. It is, however, important to keep in mind in whic
-

ns

c

03191
t

r
n
t

ut
is
ut
-
In
en
-
e

the
f

es.

ce
eu-
m

st.
n
4

ad
the
f
is
ng.
-

in
at
ces

f-
f

contexts these ideas do apply and in which they do not.
model discussed is supposed to represent a mechanism
biological learning, that a hypothetical organism could use
order to solve some of the tasks that must be carried ou
order to secure its survival. On the other hand the mode
not supposed to solve optimally any problem, real brains
not very good at that either. It seems illogical to seek
model brain function by constructing contraptions that c
perform tasks that real brains, such as ours, are quite poo
such as solving the Travelling Salesman Problem. T
mechanism that we described is not intended to be optim
just sufficient for survival.

Extremal dynamics in the activity followed eventually b
depression of only the active synapses results in preser
good synapses for a given job. In contrast to other learn
schemes, the efficiency also scales as one should expect
biology: bigger networks solve a given problem more e
ciently than smaller networks. And all of this is obtaine
without having to specify the network’s structure, the sa
principle works well in randomly connected, lattices or la
ered networks.

In summary, the simple action of choosing the strong
and depressing the inadequate synapses leads to a perm
counterbalancing which can be analogous to a critical stat
the sense that all states in the system are barely stabl
‘‘minimally’’ stable using the jargon of Ref.@18#. This pe-
culiar metastability prevents the system from stagnating
locking into a single~addictive! configuration from which it
can be difficult to escape when novel conditions arise. T
feature provides for flexible learning and unlearning, witho
having to specifically include anad-hoc forgetting mecha-
nism, it is already embedded as an integrated dynam
property of the system. When combined with selective p
ishment, the system can build up a history-dependent tool
of responses that can be employed again in the future.

Unlearning and flexible learning are ubiquitous featu
of animal learning as discussed recently by Wise and Mur
@19#. We are not aware of any other simple learning sche
mastering this crucial ability.
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