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Abstract

Lifting schemes (LS) were found to be efficient tools for image coding purposes. Since LS-based decompositions

depend on the choice of the prediction/update operators, many research efforts have been devoted to the design

of adaptive structures. The most commonly used approaches optimize the prediction filters by minimizing the

variance of the detail coefficients. In this article, we investigate techniques for optimizing sparsity criteria by

focusing on the use of an ℓ1 criterion instead of an ℓ2 one. Since the output of a prediction filter may be used as

an input for the other prediction filters, we then propose to optimize such a filter by minimizing a weighted ℓ1

criterion related to the global rate-distortion performance. More specifically, it will be shown that the optimization

of the diagonal prediction filter depends on the optimization of the other prediction filters and vice-versa. Related

to this fact, we propose to jointly optimize the prediction filters by using an algorithm that alternates between the

optimization of the filters and the computation of the weights. Experimental results show the benefits which can

be drawn from the proposed optimization of the lifting operators.

1 Introduction

The discrete wavelet transform has been recognized to

be an efficient tool in many image processing fields,

including denoising [1] and compression [2]. Such a

success of wavelets is due to their intrinsic features:

multiresolution representation, good energy compaction,

and decorrelation properties [3,4]. In this respect, the

second generation of wavelets provides very efficient

transforms, based on the concept of lifting scheme (LS)

developed by Sweldens [5]. It was shown that interesting

properties are offered by such structures. In particular,

LS guarantee a lossy-to-lossless reconstruction required

in some specific applications such as remote sensing

imaging for which any distortion in the decoded image

may lead to an erroneous interpretation of the image

[6]. Besides, they are suitable tools for scalable recon-

struction, which is a key issue for telebrowsing applica-

tions [7,8].

Generally, LS are developed for the 1D case and then

they are extended in a separable way to the 2D case by

cascading vertical and horizontal 1D filtering operators.

It is worth noting that a separable LS may not appear

always very efficient to cope with the two-dimensional

characteristics of edges which are neither horizontal nor

vertical [9]. To this respect, several research studies

have been devoted to the design of non separable lifting

schemes (NSLS) in order to better capture the actual

two-dimensional contents of the image. Indeed, instead

of using samples from the same rows (resp. columns)

while processing the image along the lines (resp. col-

umns), 2D NSLS provide smarter choices in the selec-

tion of the samples by using horizontal, vertical and

oblique directions at the prediction step [9]. For exam-

ple, quincunx lifting schemes were found to be suitable

for coding satellite images acquired on a quincunx sam-

pling grid [10,11]. In [12], a 2D wavelet decomposition

comprising an adaptive update lifting step and three

consecutive fixed prediction lifting steps was proposed.

Another structure, which is composed of three predic-

tion lifting steps followed by an update lifting step, has

also been considered in the nonadaptive case [13,14].

In parallel with these studies, other efforts have been

devoted to the design of adaptive lifting schemes.

Indeed, in a coding framework, the compactness of a

LS-based multiresolution representation depends on the

choice of its prediction and update operators. To the

best of our knowledge, most existing studies have

mainly focused on the optimization of the prediction

stage. In general, the goal of these studies is to
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introduce spatial adaptivity by varying the direction of

the prediction step [15-17], the length of the prediction

filters [18,19] and the coefficient values of the corre-

sponding filters [9,11,15,20,21]. For instance, Gerek and

Çetin [16] proposed a 2D edge-adaptive lifting scheme

by considering three direction angles of prediction (0°,

45°, and 135°) and by selecting the orientation which

leads to the smallest gradient. Recently, Ding et al. [17]

have built an adaptive directional lifting structure with

perfect reconstruction: the prediction is performed in

local windows in the direction of high pixel correlation.

A good directional resolution is achieved by employing

fractional pixel precision level. A similar approach was

also adopted in [22]. In [18], three separable prediction

filters with different numbers of vanishing moments are

employed, and then the best prediction is chosen

according to the local features. In [19], a set of linear

predictors of different lengths are defined based on a

nonlinear function related to an edge detector. Another

alternative strategy to achieve adaptivity aims at design-

ing lifting filters by defining a given criterion. In this

context, the prediction filters are often optimized by

minimizing the detail signal variance through mean

square criteria [15,20]. In [9], the prediction filter coeffi-

cients are optimized with a least mean squares (LMS)

type algorithm based on the prediction error. In addi-

tion to these adaptation techniques, the minimization of

the detail signal entropy has also been investigated in

[11,21]. In [11], the approach is limited to a quincunx

structure and the optimization is performed in an

empirical manner using the Nelder-Mead simplex algo-

rithm due to the fact that the entropy is an implicit

function of the prediction filter. However, such heuristic

algorithms present the drawback that their convergence

may be achieved at a local minimum of entropy. In [21],

a generalized prediction step, viewed as a mapping func-

tion, is optimized by minimizing the detail signal energy

given the pixel value probability conditioned to its

neighbor pixel values. The authors show that the result-

ing mapping function also minimizes the output

entropy. By assuming that the signal probability density

function (pdf) is known, the benefit of this method has

firstly been demonstrated for lossless image coding in

[21]. Then, an extension of this study to sparse image

representation and lossy coding contexts has been pre-

sented in [23]. Consequently, an estimation of the pdf

must be available at the coder and the decoder side.

Note that the main drawback of this method as well as

those based on directional wavelet transforms

[15,17,22,24,25] is that they require to transmit losslessly

a side information to the decoder which may affect the

whole compression performance especially at low

bitrates. Furthermore, such adaptive methods lead to an

increase of the computational load required for the

selection of the best direction of prediction.

It is worth pointing out that, in practical implementa-

tions of compression systems, the sparsity of a signal,

where a portion of the signal samples are set to zero,

has a great impact on the ultimate rate-distortion per-

formance. For example, embedded wavelet-based image

coders can spend the major part of their bit budget to

encode the significance map needed to locate non-zero

coefficients within the wavelet domain. To this end,

sparsity-promoting techniques have already been investi-

gated in the literature. Indeed, geometric wavelet trans-

forms such as curvelets [26] and contourlets [27] have

been proposed to provide sparse representations of the

images. One difficulty of such transforms is their redun-

dancy: they usually produce a number of coefficients

that is larger than the number of pixels in the original

image. This can be a main obstacle for achieving effi-

cient coding schemes. To control this redundancy, a

mixed contourlet and wavelet transform was proposed

in [28] where a contourlet transform was used at fine

scales and the wavelet transform was employed at coarse

scales. Later, bandlet transforms that aim at developing

sparse geometric representations of the images have

been introduced and studied in the context of image

coding and image denoising [29]. Unlike contourlets

and curvelets which are fixed transforms, bandelet trans-

forms require an edge detection stage, followed by an

adaptive decomposition. Furthermore, the directional

selectivity of the 2D complex dual-tree discrete wavelet

transforms [30] has been exploited in the context of

image [31] and video coding [32]. Since such a trans-

form is redundant, Fowler et al. applied a noise-shaping

process [33] to increase the sparsity of the wavelet

coefficients.

With the ultimate goal of promoting sparsity in a

transform domain, we investigate in this article techni-

ques for optimizing sparsity criteria, which can be used

for the design of all the filters defined in a non separ-

able lifting structure. We should note that sparsest

wavelet coefficients could be obtained by minimizing an

ℓ0 criterion. However, such a problem is inherently non-

convex and NP-hard [34]. Thus, unlike previous studies

where prediction has been separately optimized by mini-

mizing an ℓ2 criterion (i.e., the detail signal variance), we

focus on the minimization of an ℓ1 criterion. Since the

output of a prediction filter may be used as an input for

other prediction filters, we then propose to optimize

such a filter by minimizing a weighted ℓ1 criterion

related to the global prediction error. We also propose

to jointly optimize the prediction filters by using an

algorithm that alternates between filter optimization and

weight computation. While the minimization of an ℓ1
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criterion is often considered in the signal processing lit-

erature such as in the compressed sensing field [35], it

is worth pointing out that, to the best of our knowledge,

the use of such a criterion for lifting operator design has

not been previously investigated.

The rest of this article is organized as follows. In Sec-

tion 2, we recall our recent study for the design of all

the operators involved in a 2D non separable lifting

structure [36,37]. In Section 3, the motivation for using

an ℓ1 criterion in the design of optimal lifting structures

is firstly discussed. Then, the iterative algorithm for

minimizing this criterion is described. In Section 4, we

present a weighted ℓ1 criterion which aims at minimiz-

ing the global prediction error. In Section 5, we propose

to jointly optimize the prediction filters by using an

algorithm that alternates between optimizing all the fil-

ters and redefining the weights. Finally, in Section 6,

experimental results are given and then some conclu-

sions are drawn in Section 7.

2 2D lifting structure and optimization methods

2.1 Principle of the considered 2D NSLS structure

In this article, we consider a 2D NSLS composed of

three prediction lifting steps followed by an update lift-

ing step. The interest of this structure is two-fold.

First, it allows us to reduce the number of lifting steps

and rounding operations. A theoretical analysis has

been conducted in [13] showing that NSLS improves

the coding performance due to the reduction of round-

ing effects. Furthermore, any separable prediction-

update LS structure has its equivalent in this form

[13,14]. The corresponding analysis structure is

depicted in Figure 1.

Let x denote the digital image to be coded. At each

resolution level j and each pixel location (m, n), its

approximation coefficient is denoted by xj(m, n) and the

associated four polyphase components by x0,j(m, n) = xj
(2m,2n), x1,j(m,n) = xj(2m,2n+1), x2,j(m,n) = xj(2m+1,2n),

and x3,j(m,n) = xj(2m + 1, 2n + 1). Furthermore, we

denote by P
(HH)
j , P

(LH)
j

, P
(HL)
j , and Uj the three predic-

tion and update filters employed to generate the detail

coefficients x
(HH)
j+1 oriented diagonally, x

(LH)
j+1 oriented

vertically, x
(HL)
j+1 oriented horizontally, and the approxi-

mation coefficients xj+1. In accordance with Figure 1, let

us introduce the following notation:

• For the first prediction step, the prediction multi-

ple input, single output (MISO) filter P
(HH)
j can be

seen as a sum of three single input, single output

(SISO) filters P
(HH)
0,j , P

(HH)
1,j , and P

(HH)
2,j whose respec-

tive inputs are the components x0,j, x1,j and x2,j.

• For the second (resp. third) prediction step, the

prediction MISO filter P
(LH)
j

(resp. P
(HL)
j ) can be

seen as a sum of two SISO filters P
(LH)
0,j and P

(LH)
1,j

(resp. P
(HL)
0,j and P

(HL)
1,j ) whose respective inputs are

the components x2,j and x
(HH)
j+1 (resp. x1,j and x

(HH)
j+1 ).

• For the update step, the update MISO filter Uj can

be seen as a sum of three SISO filters U
(HL)
j , U

(LH)
j ,

and U
(HH)
j whose respective inputs are the detail

coefficients x
(HL)
j+1 , x

(LH)
j+1 , and x

(HH)
j+1 .

Now, it is easy to derive the expressions of the result-

ing coefficients in the 2D z-transform domain.a Indeed,

split

−

−

−

+

P
(HL)
j

P
(LH)
j

P
(HH)
j

xj(m,n)

x1,j(m,n)

x2,j(m,n)

x3,j(m,n)

x0,j(m,n)

x
(1)
2,j(m,n)

xj+1(m,n)

x
(HL)
j+1 (m,n)

x
(LH)
j+1 (m,n)

x
(HH)
j+1 (m,n)

x
(1)
0,j(m,n)

x
(1)
1,j(m,n)

x
(1)
3,j(m,n)

Uj

Figure 1 NSLS decomposition structure.
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the z-transforms of the output coefficients can be

expressed as follows:

X
(HH)
j+1 (z1, z2) = X3,j(z1, z2) − ⌊P

(HH)
0,j (z1, z2)X0,j(z1, z2) + P

(HH)
1,j (z1, z2)X1,j(z1, z2)

+ P
(HH)
2,j (z1, z2)X2,j(z1, z2)⌋,

(1)

X
(LH)
j+1 (z1, z2) = X2,j(z1, z2) −

⌊

P
(LH)
0,j (z1, z2)X0,j(z1, z2) + P

(LH)
1,j (z1, z2)X

(HH)
j+1 (z1, z2)

⌋

, (2)

X
(HL)
j+1 (z1, z2) = X1,j(z1, z2) −

⌊

P
(HL)
0,j (z1, z2)X0,j(z1, z2) + P

(HL)
1,j (z1, z2)X

(HH)
j+1 (z1, z2)

⌋

, (3)

Xj+1(z1, z2) = X0,j(z1, z2) + ⌊U
(HL)
j (z1, z2)X

(HL)
j+1 (z1, z2) + U

(LH)
j (z1, z2)X

(LH)
j+1 (z1, z2)

+ U
(HH)
j (z1, z2)X

(HH)
j+1 (z1, z2)⌋

(4)

where, for every polyphase index i Î {0,1, 2} and

orientation o Î {HH, HL, LH},

P
(o)
i,j (z1, z2) =

∑

(k,l)∈P
(o)
i,j

p
(o)
i,j (k, l)z−k

1 z−1
2 , and U

(o)
j (z1, z2) =

∑

(k,l)∈U
(o)
j

u
(o)
j (k, l)z−k

1 z−l
2 .

The set P
(o)
i,j (resp. U

(o)
j ) and the coefficients p

(o)
i,j (k, l)

(resp. u
(o)
j (k, l) ) denote the support and the weights of

the three prediction filters (resp. of the update filter).

Note that in Equations (1)-(4), we have introduced the

rounding operations ⌊.⌋ in order to allow lossy-to-loss-

less encoding of the coefficients [7]. Once the consid-

ered NSLS structure has been defined, we will focus

now on the optimization of its lifting operators.

2.2 Optimization methods

Since the detail coefficients are defined as prediction

errors, the prediction operators are often optimized by

minimizing the variance of the coefficients (i.e., their ℓ2-

norm) at each resolution level. The rounding operators

being omitted, it is readily shown that the minimum

variance predictors must satisfy the well-known Yule-

Walker equations. For example, for the prediction vector

p
(HH)
j , the normal equations read

E[x̃
(HH)
j (m, n)x̃

(HH)
j (m, n)T]p

(HH)
j = E[x3,j(m, n)x̃

(HH)
j (m, n)] (5)

where

• p
(HH)
j = (p

(HH)
0,j , p

(HH)
1,j , p

(HH)
2,j )T is the prediction

vector, and, for every i Î {0, 1, 2},

p
(HH)
i,j =

(

p
(HH)
i,j (k, l)

)

(k,l)∈P
(HH)
i,j

,

• x̃
(HH)
j (m, n) = (x

(HH)
0,j (m, n), x

(HH)
1,j (m, n), x

(HH)
2,j (m, n))T

is the reference vector with

x
(HH)
i,j (m, n) =

(

xi,j(m − k, n − l)
)

(k,l)∈P
(HH)
i,j

.

The other optimal prediction filters p
(HL)
j and p

(LH)
j

are obtained in a similar way.

Concerning the update filter, the conventional

approach consists of optimizing its coefficients by

minimizing the reconstruction error when the detail

signal is canceled [20,38]. Recently, we have proposed

a new optimization technique which aims at reducing

the aliasing effects [36,37]. To this end, the update

operator is optimized by minimizing the quadratic

error between the approximation signal and the deci-

mated version of the output of an ideal low-pass fil-

ter:

J̃ (uj) = E
[

(

xj+1(m, n) − yj+1(m, n)
)2
]

= E

⎡

⎢

⎣

⎛

⎜

⎝
x0,j(m, n) +

∑

o∈{HL,LH,HH}

∑

(k,l)∈U
(o)
j

u
(o)
j (k, l)x

(o)
j+1(m − k, n − l) − yj+1(m, n)

⎞

⎟

⎠

2⎤

⎥

⎦

(6)

where yj+1(m, n) = ỹj(2m, 2n) = (h ∗ xj)(2m, 2n) .

Recall that the impulse response of the 2D ideal low-

pass filter is defined in the spatial domain by:

∀(m, n) ∈ Z
2, h(m, n) =

1

4
sin c

(mπ

2

)

sin c
(nπ

2

)

. (7)

Thus, the optimal update coefficients uj minimizing

the criterion J̃ are solutions of the following linear sys-

tem of equations:

E[xj+1(m, n)xj+1(m, n)T]uj = E[yj+1(m, n)xj+1(m, n)] − E[x0,j(m, n)xj+1(m, n)]

Where

• uj =
(

u
(o)
j (k, l)

)T

(k,l)∈U
(o)
j ,o∈{HL,LH,HH}

is the update

weight vector,

• xj+1(m, n) =
(

x
(o)
j+1(m − k, n − l)

)T

(k,l)∈P
(o)
i,j ,o∈{HL,LH,HH}

is the reference vector containing the detail signals

previously computed at the jth resolution level.

Now, we will introduce a novel twist in the optimiza-

tion of the different filters: the use of an ℓ1-based criter-

ion in place of the usual ℓ2-based measure.

3 From ℓ2 to ℓ1 minimization

3.1 Motivation

Wavelet coefficient statistics are often exploited in order

to increase image compression efficiency [39]. More pre-

cisely, detail wavelet coefficients are often viewed as rea-

lizations of a zero-mean continuous random variable

whose probability density function f is given by a gener-

alized Gaussian distribution (GGD) [40,41]:
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∀x ∈ R, f (x; α, β) =
β

2αŴ

(

1

β

)e
−

(

|x|

α

)β

(8)

where Ŵ(z) =
∫ +∞

0 tz−1e−tdt is the Gamma function, a

> 0 is the scale parameter, and b > 0 is the shape para-

meter. We should note that in the particular case when

b = 2 (resp. b = 1), the GGD corresponds to the Gaus-

sian distribution (resp. the Laplace one). The parameters

a and b can be easily estimated by using the maximum

likelihood technique [42].

Let us now adopt this probabilistic GGD model for

the detail coefficients generated by a lifting structure.

More precisely, at each resolution level j and orientation

o (o Î {HL,LH,HH}), the wavelet coefficients x
(o)
j+1(m, n)

are viewed as realizations of random variable X
(o)
j+1 with

probability distribution given by a GGD with parameters

α
(o)
j+1 and β

(o)
j+1 . Thus, this class of distributions leads us

to the following sample estimate of the differential

entropy h of the variable X
(o)
j+1[11,43]:

h(X
(o)
j+1) ≈

⎛

⎜

⎝

1

MjNj(α
(o)
j+1)

β
(o)
j+1

ln(2)

⎞

⎟

⎠

Mj
∑

m=1

Nj
∑

n=1

∣

∣

∣
x

(o)
j+1(m, n)

∣

∣

∣

β
(o)
j+1

− log2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

β
(o)
j+1

2α
(o)
j+1Ŵ

⎛

⎝

1

β
(o)
j+1

⎞

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(9)

where (Mj,Nj) corresponds to the dimensions of the

subband x
(o)
j+1 .

Let

(

x̄
(o)
j+1(m, n)

)

1≤m≤Mj
1≤n≤Nj

be the outputs of a uniform

quantizer with quantization step q driven with the real-

valued coefficients

(

x
(o)
j+1(m, n)

)

1≤m≤Mj
1≤n≤Nj

. The coefficients

X
(o)
j+1

can be viewed as realizations of a random variable

X
(o)
j+1

taking its values in {..., -2q, -q, 0, q, 2q, ...}. At high

resolution, it was proved in [43] that the following rela-

tion holds between the discrete entropy X
(o)
j+1

and the

differential entropy h of X
(o)
j+1 :

H(X
(o)

j+1) ≈ h(X
(o)
j+1) − log2(q). (10)

Thus, from Equation (9), we see [44] that the entropy

H(X
(o)
j+1

) of X
(o)
j+1

is (up to a dividing factor and an addi-

tive constant) approximatively equal to:

Mj
∑

m=1

Nj
∑

n=1

∣

∣

∣
x

(o)
j+1(m, n)

∣

∣

∣

β
(o)
j+1

.

This shows that there exists a close link between the

minimization of the entropy of the detail wavelet coeffi-

cients and the minimization of their ℓ
β

(o)
j+1
-norm. This

suggests in particular that most of the existing studies

minimizing the ℓ2-norm of the detail signals aim at

minimizing their entropy by assuming a Gaussian

model.

Based on these results, we have analyzed the detail

wavelet coefficients generated by the decomposition

based on the lifting structure NSLS(2,2)-OPT-L2

described in Section 6. Figure 2 shows the distribution

of each detail subband for the “einst” image when the

prediction filters are optimized by minimizing the ℓ2-

norm of the detail coefficients. The maximum likelihood

technique is used to estimate the b parameter.

It is important to note that the shape parameters of

the resulting detail subbands are closer to b = 1 than to

b = 2. Further experiments performed on a large dataset

of imagesb have shown that the average of b values are
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Figure 2 The GGD of the. (a) horizontal detail subband x
(HL)
1 (β

(HL)
1 = 1.07) , (b): vertical detail subband x

(LH)
1 (β

(LH)
1 = 1.14) , (c):

diagonal detail subband x
(HH)
1 (β

(HH)
1 = 1.15) . The detail coefficients of the “einst” image are optimized by minimizing their ℓ2-norm.
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closer to 1 (typical values range from 0.5 to 1.5). These

observations suggest that minimizing the ℓ1-norm may

be more appropriate than ℓ2 minimization. In addition,

the former approach has the advantage of producing

sparse representations.

3.2 ℓ1 minimization technique

Instead of minimizing the ℓ2-norm of the detail coeffi-

cients x
(o)
j+1 as done in [37], we propose in this section to

optimize each of the prediction filters by minimizing the

following ℓ1 criterion:

∀o ∈ {HL, LH, HH}, ∀i ∈ {1, 2, 3}, Jℓ1
(p

(o)
j ) =

Mj
∑

m=1

Nj
∑

n=1

∣

∣

∣

∣

xi,j(m, n) − (p
(o)
j )

T
x̃

(o)
j (m, n)

∣

∣

∣

∣

(11)

where xi,j(m,n) is the (i + 1)th polyphase component to

be predicted, x̃
(o)
j (m, n) is the reference vector contain-

ing the samples used in the prediction step, p
(o)
j is the

prediction operator vector to be optimized (L will subse-

quently designate its length). Although the criterion in

(11) is convex, a major difficulty that arises in solving

this problem stems from the fact that the function to be

minimized is not differentiable. Recently, several optimi-

zation algorithms have been proposed to solve non-

smooth minimization problems like (11). These

problems have been traditionally addressed with linear

programming [45]. Alternatively, a flexible class of prox-

imal optimization algorithms has been developed and

successfully employed in a number of applications. A

survey on these proximal methods can be found in [46].

These methods are also closely related to augmented

Lagrangian methods [47]. In our context, we have

employed the Douglas-Rachford algorithm which is an

efficient optimization tool for this problem [48].

3.2.1 The Douglas-Rachford algorithm

For minimizing the ℓ1 criterion, we will resort to the

concept of proximity operators [49], which has been

recognized as a fundamental tool in the recent convex

optimization literature [50,51]. The necessary back-

ground on convex analysis and proximity operators

[52,53] is given in Appendix A.

Now, we recall that our minimization problem (11)

aims at optimizing the prediction filters by minimizing

the ℓ1-norm of the difference between the current pixel

xi,j and its predicted value. We note here that

xi,j =
(

xi,j(m, n)
)

1≤m≤Mj
1≤n≤Nj

can be viewed as an element of

the Euclidean space R
Kj , where Kj = Mj × Nj. Thus, the

minimization problem (11) can be rewritten as:

∀o ∈ {HL, LH, HH}, ∀i ∈ {1, 2, 3}, min
z

(o)
j ∈V

Mj
∑

m=1

Nj
∑

n=1

∣

∣

∣
xi,j(m, n) − z

(o)
j (m, n)

∣

∣

∣ (12)

where V is the vector space defined as

V =
{

z
(o)
j =

(

z
(o)
j (m, n)

)

1≤m≤Mj
1≤n≤Nj

∈ R
Kj |∃p

(o)
j ∈ R

L,

∀(m, n) ∈ {1, . . . , Mj} × {1, . . . , Nj}, z
(o)
j (m, n) = (p

(o)
j )Tx̃

(o)
j (m, n)}.

Based on the definition of the indicator function ıV

(see Appendix A), Problem (12) is equivalent to the fol-

lowing minimization problem:

∀o ∈ {HL, LH, HH}, ∀i ∈ {1, 2, 3}, min
z

(o)
j ∈R

Kj

Mj
∑

m=1

Nj
∑

n=1

∣

∣

∣
xi,j(m, n) − z

(o)
j (m, n)

∣

∣

∣
+ ıV(z

(o)
j ). (13)

Therefore, Problem (13) can be viewed as a minimiza-

tion of a sum of two functions f 1 and f2 defined by:

f1(z
(o)
j ) = ||xi,j − z

(o)
j ||ℓ1

=

Mj
∑

m=1

Nj
∑

n=1

∣

∣

∣
xi,j(m, n) − z

(o)
j (m, n)

∣

∣

∣
(14)

f2(z
(o)
j ) = ıV(z

(o)
j ). (15)

In this case, the Douglas-Rachford algorithm can be

applied to provide an appealing numerical solution to

Problem (13) (see Appendix B).

Although it is an iterative algorithm, we have observed

experimentally that the convergence of the Douglas-

Rachford algorithm is generally ensured after a small

number of iterations (often between 30 et 60 iterations).

As an example, we plot in Figure 3a (resp. 3b) the evo-

lution of the criterion Jℓ1
(p

(HH)
0 ) (resp. Jℓ1

(p
(LH)
0 ) ) w.r.

t the iteration number for this algorithm.

Once the different terms involved in the iterative algo-

rithm (33) are defined, this one can be applied and

further extended to optimize all the prediction filters.

4 Global prediction error minimization technique

4.1 Motivation

Up to now, each prediction filter

p
(o)
j (o ∈ {HL, LH, HH}) has been separately optimized

by minimizing the ℓ1-norm of the corresponding detail

signal x
(o)
j+1 which seems appropriate to determine p

(LH)
j

and p
(HL)
j . However, it can be noticed from Figure 1

that the diagonal detail signal x
(HH)
j+1 is also used through

the second and the third prediction steps to compute

the vertical and the horizontal detail signals respectively.

Therefore, the solution p
(HH)
j resulting from the pre-

vious optimization method may be suboptimal. As a

result, we propose to optimize the prediction filter

p
(HH)
j by minimizing the global prediction error, as

described in detail in the next section.
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4.2 Optimization of the prediction filter p
(HH)
j

More precisely, instead of minimizing the ℓ1-norm of

x
(HH)
j+1 , the filter p

(HH)
j will be optimized by minimizing

the sum of the ℓ1-norm of the three detail subbands

x
(o)
j+1 . To this respect, we will consider the minimization

of the following weighted ℓ1 criterion:

Jwℓ1
(p

(HH)
j ) =

∑

o∈{HL,LH,HH}

∑

m,n

κ
(o)
j+1

∣

∣

∣
x

(o)
j+1(m, n)

∣

∣

∣ (16)

where κ
(o)
j+1 , o Î {HL, LH, HH}, are strictly positive

weighting terms.

Before focusing on the method employed to minimize

the proposed criterion, we should first express Jwℓ1 as a

function of the filter p
(HH)
j to be optimized.

Let
(

x
(1)
i,j (m, n)

)

i∈{0,1,2,3}
be the four outputs obtained

from
(

xi,j(m, n)
)

i∈{0,1,2,3} following the first prediction

step (see Figure 1). Although x
(1)
i,j (m, n) = xi,j(m, n) for

all i Î {0, 1, 2}, the use of the superscript will make the

presentation below easier. Thus x
(o)
j+1 can be expressed

as:

x
(o)
j+1(m, n) =

∑

i∈{0,1,2,3}

∑

k,l

h
(o,1)
i,j (k, l)x

(1)
i,j (m − k, n − l)

=
∑

i∈{0,1,2}

∑

k,l

h
(o,1)
i,j (k, l)x

(1)
i,j (m − k, n − l) +

∑

k,l

h
(o,1)
3,j (k, l)x

(1)
3,j (m − k, n − l)

(17)

where h
(o,1)
i,j is a filter which depends on the predic-

tion coefficients of p
(LH)
j and p

(HL)
j .

Knowing that

x
(1)
3,j (m, n) = x3,j(m, n) − (p

(HH)
j )Tx̃

(HH)
j (m, n) (18)

where x̃
(HH)
j (m, n) =

(

xi,j(m − r, n − s)
)

(r,s)∈P
(HH)
j

i∈{0,1,2}

(P
(HH)
j

is the support of the predictor p
(HH)
j ), we thus obtain,

after some simple calculations,

∀o ∈ {HH, LH, HL}, x
(o)
j+1(m, n) = y

(o,1)
j (m, n) − (p

(HH)
j )Tx

(0,1)
j (m, n) (19)

Where

y
(o,1)
j (m, n) =

∑

i∈{0,1,2}

∑

k,l

h
(o,1)
i,j (k, l)x

(1)
i,j (m − k, n − l) +

∑

k,l

h
(o,1)
3,j (k, l)x3,j(m − k, n − l), (20)

x
(o,1)
j (m, n) =

⎛

⎝

∑

k,l

h
(o,1)
3,j (k, l)xi,j(m − k − r, n − l − s)

⎞

⎠

(r,s)∈P
(HH)
j

i∈{0,1,2}

. (21)

Consequently, the proposed weighted ℓ1 criterion

(Equation (16)) can be expressed as:

Jwℓ1
(p

(HH)
j ) =

∑

o∈{HL,LH,HH}

∑

m,n

κ
(o)
j+1

∣

∣

∣

∣

y
(o,1)
j (m, n) − (p

(HH)
j )

T
x

(o,1)
j (m, n)

∣

∣

∣

∣

. (22)

It is worth noting that in practice, the determination

of y
(o,1)
j (m, n) and x

(o,1)
j (m, n) does not require to find

the explicit expressions of h
(o,1)
i,j and these signals can be

determined numerically as follows:

• The first term (resp. the second one) in the expres-

sion of y
(o,1)
j (m, n) in Equation (20) can be found by

computing x
(o)
j+1(m, n) from the components

0 10 20 30 40 50 60
4.2

4.25

4.3

4.35

4.4

4.45

4.5

4.55

iteration number

Jℓ1 (p
(HH)
0 )

0 10 20 30 40 50 60

4.7

4.75

4.8

4.85

4.9

4.95

iteration number

Jℓ1 (p
(LH)
0 )

(a) (b)

Figure 3 Convergence of the Douglas Rachford algorithm w.r.t the iteration number: (a) evolution of Jℓ1
(p

(HH)
0 ) , (b) evolution of

Jℓ1
(p

(LH)
0 ) .
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Jℓ1
(p

(LH)
0 ) while setting x

(1)
3,j (m, n) = 0 (resp. while set-

ting x
(1)
i,j (m, n) = 0 for i Î {0,1,2} and

x
(1)
3,j (m, n) = x3,j(m, n) ).

• The vector x
(o,1)
j (m, n) in Equation (21) can be

found as follows. For each i Î {0,1,2}, the computation

of its component
∑

k,l h
(o,1)
3,j (k, l)xi,j(m − k, n − l)

requires to compute x
(o)
j+1(m, n) by setting

x
(1)
3,j (m, n) = xi,j(m, n) and x

(1)
i′ ,j (m, n) = 0 for i’ Î {0,1,2}.

The result of this operation has to be considered for dif-

ferent shift values (r, s) (as can be seen in Equation

(21)).

Once the different terms involved in the proposed

weighted criterion in Equation (22) are defined (the con-

stant values κ
(o)
j+1 are supposed to be known), we will

focus now on its minimization. Indeed, unlike the pre-

vious criterion (Equation 11), which consists only of an

ℓ1 term, the proposed criterion is a sum of three ℓ1

terms. To minimize such a criterion (22), one can still

use the Douglas-Rachford algorithm through a formula-

tion in a product space [46,54].

4.2.1 Douglas-Rachford algorithm in a product space

Consider the ℓ1 minimization problem:

min
P

(HH)
j

∑

o∈{H,L,LH,HH}

∑

m,n

k
(o)
j+1

∣

∣

∣

∣

y
(o,1)
j (m, n) − (p

(HH)
j )

T
x

(o,1)
j (m, n)

∣

∣

∣

∣
(23)

where κ
(o)
j+1 , o Î {HL,LH,HH}, are positive weights.

Since the Douglas-Rachford algorithm described here-

above is designed for the sum of two functions, we can

reformulate (23) under this form in the 3-fold product

space Hj

Hj = R
Kj × R

Kj × R
Kj . (24)

If we define the vector subspace U as

U =
{

Zj =

⎛

⎜

⎝

z
(HH,1)
j

z
(LH,1)
j

z
(HL,1)
j

⎞

⎟

⎠
∈ Hj|∃ p

(HH)
j ∈ R

L, ∀o ∈ {HH, LH, HL},

∀(m, n) ∈ {1, 2, . . . , Mj} × {1, 2, . . . , Nj}, z
(o,1)
j (m, n) = (p

(HH)
j )

T
x

(o,1)
j (m, n)

}

=
{

Zj =

⎛

⎜

⎝

z
(HH,1)
j

z
(LH,1)
j

z
(HL,1)
j

⎞

⎟

⎠
∈ Hj|∃ p

(HH)
j ∈ R

L, ∀(m, n) ∈ {1, 2, . . . , Mj} × {1, 2, . . . , Nj},

Zj(m, n) = Xj(m, n)T
p

(HH)
j with Xj(m, n) =

(

x
(HH,1)
j (m, n), x

(LH,1)
j (m, n), x

(HL,1)
j (m, n)

)}

,

(25)

the minimization problem (Equation 23) is equivalent

to

min
zj∈Hj

f3(zj) + f4(zj) (26)

where

f3(zj) =
∑

o∈{HL,LH,HH}

∑

m,n

κ
(o)
j+1

∣

∣

∣
y

(o,1)
j (m, n) − z

(o,1)
j (m, n)

∣

∣

∣

f4(zj) = ıU(zj).

(27)

We are thus back to a problem involving two func-

tions in a larger space, which is the product space Hj .

So, the Douglas-Rachford algorithm can be applied to

solve our minimization problem (see Appendix C).

Finally, once the prediction filter p
(HH)
j is optimized and

fixed, it can be noticed that the other prediction filters

p
(HL)
j and p

(LH)
j can be separately optimized by mini-

mizing Jℓ1
(p

(HL)
j ) and Jℓ1

(p
(LH)
j ) as explained in Sec-

tion 3. This is justified by the fact that the inputs of the

filter p
(HL)
j (resp. p

(LH)
j ) are independent of the output

of the filter p
(LH)
j (resp. p

(HL)
j ).

5 Joint optimization method
5.1 Motivation

From Equations (20) and (21), it can be observed that

y
(o,1)
j and x

(o,1)
j , which are used to optimize p

(HH)
j ,

depend on the coefficients of the prediction filters p
(HL)
j

and p
(LH)
j . On the other hand, since p

(HL)
j and p

(LH)
j

use x
(HH)
j+1 as reference signal in the second and the

third prediction steps, their optimal values will depend

on the optimal prediction filter p
(HH)
j . Thus, we con-

clude that the optimization of the filters (p
(HL)
j , p

(LH)
j )

depends on the optimization of the filter p
(HH)
j and

vice-versa.

A joint optimization method can therefore be pro-

posed which iteratively optimizes the prediction filters

p
(HL)
j , p

(HL)
j , and p

(LH)
j .

5.2 Proposed algorithms

While the optimization of the prediction filters p
(HL)
j

and p
(LH)
j is simple, the optimization of the prediction

filter p
(HH)
j is less obvious. Indeed, if we examine the

criterion Jwℓ1 , the immediate question that arises is:

which values of the weighting parameters will produce

the sparsest decomposition?

A simple solution consists of setting all the weights

κ
(o)
j+1 to one. Then, we are considering the particular case
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of the unweighted ℓ1 criterion, which simply represents

the sum of the ℓ1-norm of the three details subbands

x
(o)
j+1 . In this case, the joint optimization problem is

solved by applying the following simple iterative algo-

rithm at each resolution level j.

5.2.1 First proposed algorithm

➀ Initialize the iteration number it to 0.

• Optimize separately the three prediction filters

as explained in Section 3. The resulting filters

will be denoted respectively by p
(HH,0)
j , p

(LH,0)
j ,

and p
(HL,0)
j .

• Compute the resulting global unweighted pre-

diction error (i.e., the sum of the ℓ1-norm of the

three resulting details subbands).

➁ for it = 1,2,3,

• Set p
(LH)
j = p

(LH,it−1)
j , p

(HL)
j = p

(HL,it−1)
j , and

optimize P
(HH)
j by minimizing Jwℓ1

(p
(HH)
j )

(while setting κ
(o)
j+1 = 1 ). Let p

(HH,it)
j be the new

optimal filter at iteration it.

• Set p
(HH)
j = p

(HH,it)
j , and optimize P

(LH)
j by

minimizing Jℓ1
(p

(LH)
0 ) . Let p

(LH,it)
j be the new

optimal filter.

• Set p
(HH)
j = p

(HH,it)
j , and optimize P

(HL)
j by

minimizing Jℓ1
(p

(HL)
j ). Let p

(HL,it)
j be the new

optimal filter.

Once the prediction filters are optimized, the update

filter is finally optimized as explained in Section 2. How-

ever, in practice, once all the filters are optimized and

the decomposition is performed, the different generated

wavelet subbands x
(o)
j+1 are weighted before the entropy

encoding (using JPEG2000 encoder) in order to obtain a

distortion in the spatial domain which is very close to

the distortion in the wavelet domain.

More precisely, as we can see in Figure 4, each wave-

let subband is multiplied by
√

w
(o)
j+1

, where w
(o)
j+1 repre-

sents the weight corresponding to x
(o)
j+1 . Generally, these

weights are computed based on the wavelet filters used

for the reconstruction process as indicated in [55,56]. A

simple weight computation procedure based on the fol-

lowing assumption can be used. As shown in [55], if the

error signal in a subband (i.e., the quantization noise) is

white and uncorrelated to the other subband errors, the

reconstruction distortion in the spatial domain is a

weighted sum of the distortion in each wavelet subband.

Therefore, for each subband x
(o)
j+1 , a white Gaussian

noise of variance (σ
(o)
j+1)2 is firstly added while keeping

the remaining subbands noiseless. Then, the resulting

distortion in the spatial domain D̂s is evaluated by tak-

ing the inverse transform. Finally, the corresponding

subband weight can be estimated as follows:

w
(o)
j+1 =

D̂s × 4j+1

(σ
(o)
j+1)

2
. (28)

This weighting step is very important since standard

bit allocation algorithms assume that the quadratic dis-

tortion in the wavelet domain is equal to that in the

spatial domain, which is not true in the case of biortho-

gonal wavelets [55]. Therefore, the filters resulting from

the first choice of κ
(o)
j+1 are suboptimal in the sense that

they do not take into account the weighting procedure.

 Coding

Wavelet

Transform

Transform

Inverse
Decoding

BitstreamEntropy{x
(o)
j+1}

{x̃
(o)
j+1}

√

w
(o)
j+1

1
√

w
(o)
j+1

x

x̃

Figure 4 Wavelet-based compression procedure involving a weighting prior the encoding stage.
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For this reason, it has been noticed on some experi-

ments (as it can be seen in Section 6) that the basic

optimization technique does not achieve the best coding

performances.

Thus, a more judicious choice of κ
(o)
j+1 should take into

account the weighting procedure applied to the wavelet

coefficients before the entropy encoding process.

Furthermore, if in the general formula in Equation (9),

we consider the case of β
(o)
j+1 = 1 , the differential entropy

of X
(o)
j+1 multiplied by

√

w
(o)
j+1

becomes:

1

MjNjα
(o)
j+1 ln(2)

Mj
∑

m=1

Nj
∑

n=1

∣

∣

∣
x

(o)
j+1(m, n)

∣

∣

∣
+ log2

(

2α
(o)
j+1

√

w
(o)
j+1

)

(29)

where α
(o)
j+1 can be estimated by using a classical maxi-

mum likelihood estimate. Thus, it can be observed from

Equation (29) that the first term of the resulting

entropy, which corresponds to a weighted ℓ1-norm of

x
(o)
j+1 , is inversely proportional to α

(o)
j+1 . Consequently, in

order to obtain a criterion (Equation 16) that results in

a good approximation of the entropy (29), a more rea-

sonable choice of κ
(o)
j+1 will be as follows:

κ
(o)
j+1 =

1

α
(o)
j+1

. (30)

Since the resulting entropy of each subband uses

weights which also depend on the prediction filters (as

mentioned above), we propose an iterative algorithm

that alternates between optimizing all the filters and

redefining the weights. This algorithm, which is per-

formed for each resolution level j, is as follows.

5.2.2 Second proposed algorithm

➀ Initialize the iteration number it to 0.

• Optimize separately the three prediction filters

as explained in Section 3. The resulting filters

will be denoted respectively by p
(HH,0)
j , p

(LH,0)
j ,

and p
(HL,0)
j .

• Optimize the update filter (as explained in Sec-

tion 2).

• Compute the weights w
(o,0)
j+1 of each detail sub-

band as well as the constant values κ
(o,0)
j+1 .

➁ for it = 1,2,3,...

• Set p
(LH)
j = p

(LH,it−1)
j , p

(HL)
j = p

(HL,it−1)
j , and

optimize P
(HH)
j by minimizing Jwℓ1

(p
(HH)
j ) . Let

p
(HH,it)
j be the new optimal filter.

• Set p
(HH)
j = p

(HH,it)
j , and optimize P

(LH)
j by

minimizing Jℓ1
(p

(LH)
j ) . Let p

(LH,it)
j be the new

optimal filter.

• Set p
(HH)
j = p

(HH,it)
j , and optimize P

(HL)
j by

minimizing Jℓ1
(p

(HL)
j ). Let p

(HL,it)
j be the new

optimal filter.

• Optimize the update filter (as explained in Sec-

tion 2).

• Compute the new weights w
(o,it)
j+1 as well as

κ
(o,it)
j+1 .

Let us now make some observations concerning the

convergence of the proposed algorithm. Since the goal

of the second weighting procedure is to better approxi-

mate the entropy, we have computed at the end of each

iteration number it the differential entropy of the three

resulting details subbands. More precisely, the evaluated

criterion, obtained from Equation (29) by setting

α
(o)
j+1 =

1

κ
(o)
j+1

and performing the sum over the three

details subbands, is given by:

∑

o∈{HL,LH,HH}

⎛

⎜

⎝

κ
(o,it)
j+1

MjNj ln(2)

Mj
∑

m=1

Nj
∑

n=1

|x
(o)
j+1(m, n)| + log2

⎛

⎜

⎝

2
√

w
(o,it)
j+1

κ
(o,it)
j+1

⎞

⎟

⎠

⎞

⎟

⎠
. (31)

Figure 5 illustrates the evolution of this criterion w.r.t

the iteration number of the algorithm. It can be noticed

that the decrease of the criterion is mainly achieved dur-

ing the early iterations (about after 7 iterations).

6 Experimental results

Simulations were carried out on two kinds of still

images originally quantized over 8 bpp which are either

single views or stereoscopic ones. A large dataset com-

posed of 50 still imagesb and 50 stereo imagesc has been

considered. The gain related to the optimization of the

NSLS operators, using different minimization criteria,

was evaluated in these contexts. In order to show the

benefits of the proposed ℓ1 optimization criterion, we

provide the results for the following decompositions car-

ried out over three resolution levels:

• The first one is the LS corresponding to the 5/3

transform, also known as the (2,2) wavelet transform

[7]. In the following, this method will be designated

by NSLS(2,2).

• The second method consists of optimizing the pre-

diction and update filters as proposed in [20,38].

More precisely, the prediction filters are optimized
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by minimizing the ℓ2-norm of the detail coefficients

whereas the update filter is optimized by minimizing

the reconstruction error. This optimization method

will be designated by NSLS(2,2)-OPT-GM.

• The third approach corresponds to our previous

method presented recently in [37]. While the predic-

tion filters are optimized in the same way as the sec-

ond method, the update filter is optimized by

minimizing the difference between the approxima-

tion signal and the decimated version of the output

of an ideal low-pass filter. We emphasize here that

the prediction filters are optimized separately. This

method will be denoted by NSLS(2,2)-OPT-L2.

• The fourth method modifies the optimization stage

of the prediction filters by using the ℓ1-norm instead

of the ℓ2-norm. The optimization of the update filter

is similar to the technique used in the third method.

In what follows, this method will be designated by

NSLS(2,2)-OPT-L1.

• The fifth method consists of jointly optimizing the

prediction filters by using the proposed weighted ℓ2

minimization technique where the weights κ
(o)
j+1 are

set to
1

α
(o)
j+1

. The optimization of the update filter is

similar to the technique used in the third and fourth

methods. This optimization method will be desig-

nated by NSLS(2,2)-OPT-WL1. We have also tested

this optimization method when the weights κ
(o)
j+1 are

set to 1. In this case, the method will be denoted by

NSLS(2,2)-OPT-WL1 (κ
(o)
j+1 = 1 ).

Figures 6 and 7 show the scalability in quality of the

reconstruction procedure by providing the variations of

the PSNR versus the bitrate for the images “castle” and

“straw” using JPEG2000 as entropy codec. A more

exhaustive evaluation was also performed by applying

the different methods to 50 still imagesb. The average

PSNR per-image is illustrated in Figure 8.

These plots show that NSLS(2,2)-OPT-L2 outperforms

NSLS(2,2) by 0.1-0.5 dB. It can also be noticed that

NSLS(2,2)-OPT-L2 and NSLS(2,2)-OPT-GM perform

similarly in terms of quality of reconstruction. An

improvement of 0.1-0.3 dB is obtained by using the ℓ1

minimization technique instead of the ℓ2 one. Finally,

the joint optimization technique (NSLS(2,2)-OPT-WL1)

outperforms the separate optimization technique (NSLS

(2,2)-OPT-L1) and improves the PSNR by 0.1-0.2 dB.

The gain becomes more important (up to 0.55 dB)

when compared with NSLS(2,2)-OPT-L2. It is important

to note here that setting the weights κ
(o)
j+1 to 1 (NSLS

(2,2)-OPT-WL1 (κ
(o)
j+1 = 1 )) can yield to a degradation of

about 0.1-0.25 dB compared with NSLS(2,2)-OPT-WL1

on some images.

Figures 9 and 10 display the reconstructed images of

“lena” and “einst”. In addition to PSNR and SSIM

metrics, the quality ofthe reconstructed images are also

compared in terms of VSNR (Visual Signal-to-Noise

ratio) which was found to be an efficient metric for

quantifying the visual fidelity of natural images [57]: it is

based on physical luminances and visual angle (rather

than on digital pixel values and pixel-based dimensions)

to accommodate different viewing conditions. It can be

observed that the weighted ℓ1 minimization technique

significantly improves the visual quality of reconstruc-

tion. The difference in VSNR (resp. PSNR) between

NSLS(2,2)-OPT-L2 and NSLS(2,2)-OPT-WL1 ranges

from 0.35 dB to 0.6 dB (resp. 0.25 dB to 0.3 dB). Com-

paring Figure 9c (resp. Figure 10c) with Figure 9d (resp.

Figure 10d), the visual improvement achieved by our
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Figure 5 Convergence of the optimization algorithm w.r.t the iteration number it when it is performed at: (a) j = 1, (b) j = 2.
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method can be mainly seen in the hat and face of Lena

(resp. in Einstein’s face).

The second part of the experiments is concerned with

stereo images. Most of the existing studies in this field

rely on disparity compensation techniques [58,59]. The

basic principles involved in this technique first consists

of estimating the disparity map. Then, one image is con-

sidered as a reference image and the other is predicted

in order to generate a prediction error referred to as a

residual image. Finally, the disparity field, the reference

image and the residual one are encoded [58,60]. In this

context, Moellenhoff and Maier [61] analyzed the
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Figure 6 PSNR (in dB) versus the bitrate (bpp) after JPEG2000 progressive encoding for the “castle” image.
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Figure 7 PSNR (in dB) versus the bitrate (bpp) after JPEG2000 progressive encoding for the “straw” image.
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characteristics of the residual image and proved that

such images have properties different from natural

images. This suggests that transforms that work well for

natural images may not be as well-suited for residual

images. For this reason, we also proposed to apply these

optimization methods for encoding the reference image

and the residual one. The resulting rate-distortion

curves for the “white house” and “pentagon” stereo

images are illustrated in Figures 11 and 12. A more

exhaustive evaluation was also performed by applying

the different methods to 50 stereo imagesc. The average

PSNR per-image is illustrated in Figure 13. Figure 14

displays the reconstructed target image of the “penta-

gon” stereo pair. It can be observed that the proposed

joint optimization method leads to an improvement of

0.35 dB (resp. 0.016) in VSNR (resp. SSIM) compared

with the decomposition in which the prediction filters

are optimized separately. For instance, it can be noticed

that the edges of the pentagon’s building as well as the

roads are better reconstructed in Figure 14d.

For completeness, the performance of the proposed

method (NSLS(2,2)-OPT-WL1) has also been compared

with the 9/7 transform retained for the lossy mode of

JPEG2000 standard. Table 1 shows the performance of

the latter methods in terms of PSNR, SSIM, and VSNR.

Since the human eye cannot always distinguish the sub-

jective image quality at middle and high bitrate, the

results were restricted to the lower bitrate values.

While the proposed method is less performant in

terms of PSNR than the 9/7 transform for some images,

it can be noticed from Table 1 that better results are

obtained in terms of perceptual quality. For instance,

Figures 15 and 16 illustrate some reconstructed images.

It can be observed that the proposed method (NSLS

(2,2)-OPT-WL1) achieves a gain of about 0.2-0.4 dB

(resp. 0.01-0.013) in terms of VSNR (resp. SSIM).

Furthermore, Figures 17 and 18 display the recon-

structed target image for the stereo image pairs “shrub”

and “spot5”. While NSLS(2,2)-OPT-WL1 and 9/7 trans-

form show similar visual quality for the “spot5” pair, the

proposed method leads to better quality of reconstruc-

tion than the 9/7 transform for the “shrub” stereo

images.

Before concluding the article, let us now study the

complexity of the proposed sparsity criteria for the opti-

mization of the prediction filters. Table 2 gives the itera-

tion number and the execution time for the ℓ1 and

weighted ℓ1 minimization techniques when considering

different image sizes. These results have been obtained

with a Matlab implementation on an Intel Core 2 (2.93

GHz) architecture. It is clear that the execution time

increases with the image size. Furthermore, we note that

the ℓ1 minimization technique is very fast whereas the

weighted ℓ1 technique needs an additional time of about

0.3-2.6 seconds. This increase is due to the fact that the

algorithm is reformulated in a three-fold product space
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Figure 8 Average PSNR (in dB) computed over 50 still images versus the bitrate (in bpp) after JPEG2000 progressive encoding.
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as explained in Section 4.2. However, since the Douglas-

Rachford algorithm in a product space has some blocks

which can be implemented in a parallel way, the com-

plexity can be reduced significantly (up to three times)

when performing an appropriate implementation on a

multicore architecture. These results as well as the good

compression performance in terms of reconstruction

quality confirm the effectiveness of the proposed spar-

sity criteria.

7 Conclusion

In this article, we have studied different optimization

techniques for the design of filters in a NSLS structure.

A new criterion has been presented for the optimization

of the prediction filters in this context. The idea consists

of jointly optimizing these filters by minimizing itera-

tively a weighted ℓ1 criterion. Experimental results car-

ried out on still images and stereo images pair have

illustrated the benefits which can be drawn from the

(a): Original image (b): PSNR=30.44 dB, SSIM=0.844, VSNR=22.96 dB

(c): PSNR=30.93 dB, SSIM=0.845, VSNR=23.46 dB (d): PSNR=31.25 dB, SSIM=0.851, VSNR=24.06 dB

Figure 9 Reconstructed image at 0.15 bpp using: (a) Original “lena” image. (b) NSLS(2,2), (c) NSLS(2,2)-OPT-L2, (d) NSLS(2,2)-OPT2-WL1.
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proposed optimization technique. In future study, we

plan to extend this optimization method to LS with

more than two stages like the P-U-P and P-U-P-U

structures.

Appendix

A Some background on convex optimization

The main definitions which will be useful to understand

our optimization algorithms are briefly summarized

below:

• ℝ
K is the usual K-dimensional Euclidean space

with norm ||.||.

• The distance function to a nonempty set C ⊂ ℝ
K is

defined by

∀x ∈ R
K , dC(x) = inf

y∈C
||x − y||.

(a): Original image (b): PSNR=28.55 dB, SSIM=0.648, VSNR=17.82 dB

(c): PSNR=28.94 dB, SSIM=0.649, VSNR=18.24 dB (d): PSNR=29.12 dB, SSIM=0.654, VSNR=18.62 dB

Figure 10 Reconstructed image at 0.1 bpp using: (a) Original “einst” image, (b) NSLS(2,2), (c) NSLS(2,2)-OPT-L2, (d) NSLS(2,2)-OPT2-WL1.
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• The projection of x Î ℝ
K onto a nonempty closed

convex set C ⊂ ℝ
K is the unique point PC(x) Î C

such that dC(x) = ||x - PC(x)||.

• The indicator function of C is given by

∀x ∈ R
K, ıC(x) =

{

0 if x ∈ C,

+∞ otherwise.
(32)

• Γ0(ℝ
K) is the class of functions from ℝ

K to ] - ∞, +

∞] which are lower semi-continuous, convex, and

not identically equal to + ∞.

• The proximity operator of f Î Γ0(ℝ
K) is

proxf : R
K → R

K : x → arg miny∈RK f (y) +
1

2
||x − y||2 . It is

important to note that the proximity operator
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Figure 11 PSNR (in dB) versus the bitrate (bpp) after JPEG2000 progressive encoding for the “white house” stereo images.
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Figure 12 PSNR (in dB) versus the bitrate (bpp) after JPEG2000 progressive encoding for the “pentagon” stereo images.
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Figure 13 Average PSNR (in dB) computed over 50 stereo images versus the bitrate (in bpp) after JPEG2000 progressive encoding.

(a): Original image (b): PSNR=26.44 dB, SSIM=0.693, VSNR=12.17 dB

(c): PSNR=26.56 dB, SSIM=0.691, VSNR=12.49 dB (d): PSNR=26.90 dB, SSIM=0.697, VSNR=13.06 dB

Figure 14 Reconstructed target image at 0.15 bpp using: (a) Original target image for the “pentagon” stereo images. (b) NSLS(2,2) (c)

NSLS(2,2)-OPT-L2 (d) NSLS(2,2)-OPT2-WL1.
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generalizes the notion of a projection operator onto

a closed convex set C in the sense that proxıC = PC ,

and it moreover possesses most of its attractive

properties [49] that make it particularly well-suited

for designing iterative minimization algorithms.

B The Douglas Rachford algorithm

The solution of the Problem (13) (which is the sum of

the two functions f 1 and f2) is obtained by the following

iterative algorithm:

Set t
(o)
j,0 ∈ R

Kj , γ > 0, λ ∈]0, 2[, and,

for k = 0, 1, 2, . . .

z
(o)
j,k = proxγ f2 t

(o)
j,k

t
(o)
j,k+1 = t

(o)
j,k + λ(proxγ f1 (2z

(o)
j,k − t

(o)
j,k ) − z

(o)
j,k ).

(33)

An important feature of this algorithm is that it pro-

ceeds by splitting, in the sense that the functions f 1 and

f 2 are dealt with in separate steps: in the first step, only

function f2 is required to obtain z
(o)
j,k

and, in the second

Table 1 Performance of the proposed method vs the 9/7 transform

0.05 bpp 0.1 bpp 0.15 bpp 0.2 bpp

NSLS(2,2)-OPT-WL1 9/7 NSLS (2,2)-OPT-WL1 9/7 NSLS (2,2)-OPT-WL1 9/7 NSLS (2,2)-OPT-WL1 9/7

PSNR 27.85 27.75 30.25 30.31 31.23 31.35 31.76 31.92

elaine SSIM 0.669 0.659 0.716 0.715 0.739 0.739 0.754 0.756

VSNR 18.44 18.09 23.10 23.05 25.60 25.50 27.28 27.42

PSNR 25.10 25.09 27.08 27.18 28.36 28.51 29.51 29.58

castle SSIM 0.725 0.712 0.790 0.780 0.825 0.821 0.855 0.851

VSNR 17.54 17.22 21.55 21.10 23.74 23.40 25.80 25.32

PSNR 27.51 27.58 29.12 29.24 29.92 30.12 30.50 30.70

einst SSIM 0.603 0.601 0.654 0.655 0.687 0.689 0.710 0.715

VSNR 15.33 15.25 18.62 18.71 20.37 20.47 21.59 21.94

PSNR 26.70 26.68 29.59 29.56 31.25 31.47 32.70 32.90

lena SSIM 0.747 0.734 0.818 0.808 0.851 0.850 0.871 0.873

VSNR 15.94 15.73 20.56 20.18 24.06 23.95 26.12 26.15

PSNR 26.51 26.43 29.81 30.33 31.84 32.63 33.61 34.44

cameraman SSIM 0.783 0.774 0.847 0.842 0.887 0.892 0.914 0.915

VSNR 16.74 16.34 21.73 21.66 24.94 25.70 27.75 28.34

PSNR 24.65 24.55 26.82 26.86 28.43 28.54 29.52 29.74

boat SSIM 0.675 0.661 0.753 0.746 0.806 0.802 0.837 0.836

VSNR 13.41 13.03 17.14 16.89 20.24 19.76 22.19 21.89

PSNR 25.75 25.50 29.24 29.17 30.88 31.16 31.12 32.38

peppers SSIM 0.720 0.705 0.789 0.778 0.818 0.815 0.834 0.832

VSNR 16.00 15.51 21.87 21.19 25.18 25.00 27.22 27.09

PSNR 24.19 23.84 30.66 29.88 33.99 33.10 36.13 35.82

plane SSIM 0.809 0.754 0.890 0.871 0.917 0.903 0.931 0.921

VSNR 9.48 7.72 17.73 15.51 21.28 20.30 24.68 24.12

PSNR 24.88 24.72 27.67 27.73 29.24 29.46 30.45 30.65

average SSIM 0.647 0.633 0.727 0.720 0.773 0.771 0.803 0.802

VSNR 14.50 13.98 18.90 18.62 21.77 21.71 23.90 23.85

The average evaluation was computed over 50 still images.

The values in bold have been used to identify the method achieving the best coding performance.

Table 2 Computation time (s) of the sparse optimization methods for the design of each prediction filter

Plane Girl Boat Cameraman

256 × 256 256 × 256 512 × 512 512 × 512

it Time (s) it time(s) it time(s) it time(s)

ℓ1 criterion: p
(HL)
0

22 0.09 27 0.09 30 0.38 60 0.81

ℓ1 criterion: p
(LH)
0

55 0.15 28 0.09 31 0.39 100 1.13

weighted ℓ1 criterion: p
(HH)
0

30 0.42 35 0.49 49 3.08 30 2.01
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step, only function f 1 is involved to obtain t
(o)
j,k+1

.

Furthermore, it can be seen that the algorithm requires

to compute two proximity operators proxγ f1 , and
proxγ f2 at each iteration. One can find in [46] closed-

form expression of the proximity operator of various

functions in Γ0(ℝ). In our case, the proximity operator

of gf 1 is given by the soft-thresholding rule:

∀ t
(o)
j,k ∈ R

Kj , proxγ f1 (t
(o)
j,k ) =

(

π
(o)
j,k (m, n)

)

1≤m≤Mj
1≤n≤Nj

(34)

(a): PSNR=26.68 dB, SSIM=0.734, VSNR=15.73 dB (b): PSNR=26.70 dB, SSIM=0.747, VSNR=15.94 dB

Figure 15 Zoom applied on the reconstructed “lena” image at 0.05 bpp using: (a) 9/7 transform (b) NSLS(2,2)-OPT-WL1.

(a): PSNR=29.56 dB, SSIM=0.808, VSNR=20.18 dB (b): PSNR=29.59 dB, SSIM=0.818, VSNR=20.56 dB

Figure 16 Zoom applied on the reconstructed “lena” image at 0.1 bpp using: (a) 9/7 transform (b) NSLS(2,2)-OPT-WL1.
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where

π
(o)
j,k (m, n) = soft[−γ ,γ ]

(

t
(o)
j,k (m, n) − xi,j(m, n)

)

+ xi,j(m, n)

and

∀α ∈ R, soft[−γ ,γ ](α) =

{

sign(α)(|α| − γ ) if|α| > γ

0 otherwise.
(35)

Concerning gf2, it is easy to check that its proximity

operator is expressed as:

∀t
(o)
j,k ∈ R

Kj , proxγ f2 (t
(o)
j,k ) = PV(t

(o)
j,k )

=
(

ẑ
(o)
j,k (m, n)

)

1≤m≤Mj
1≤n≤Nj

=

(

(p
(o)
j,k )

T
x̃

(o)
j (m, n)

)

1≤m≤Mj
1≤n≤Nj

(36)

where

p
(o)
j,k =

(

∑

m,n
x̃

(o)
j (m, n)(x̃

(o)
j (m, n))

T
)−1

∑

m,n
x̃

(o)
j (m, n)t

(o)
j,j (m, n). .

Finally it is important to note that it has been shown

(see [62] and references therein) that every sequence

(z
(o)
j,k )k∈N generated by the Douglas-Rachford algorithm

(33) converges to a solution to problem (13) provided

that the parameters g and l are fixed as indicated.

C The Douglas-Rachford algorithm in a product space

The solution of the problem (26) (which is the sum of

the two functions f3 and f4) is obtained by the following

iterative algorithm:

Set tj,0 ∈ Hj, γ > 0, λ ∈]0, 2[, and,

for k = 0, 1, 2, . . .

zj,k = proxγ f4 tj,k

tj,k+1 = tj,k + λ(proxγ f3 (2zj,k − tj,k) − zj,k).

(37)

Note that the above algorithm requires to compute

the proximity operators of 2 new functions gf3 and gf4.

Concerning the proximity operator of gf3, we have

∀tj =

⎛

⎜

⎝

t
(HH,1)
j

t
(LH,1)
j

t
(HL,1)
j

⎞

⎟

⎠
∈ Hj, proxγ f3 (tj,k) =

⎛

⎜

⎜

⎜

⎜

⎝

soft[
−γ κ

(HH)
j+1 ,γ κ

(HH)
j+1

](t
(HH,1)
j,k )

soft[
−γ κ

(LH)
j+1 ,γ κ

(LH)
j+1

](t
(LH,1)
j,k )

soft[
−γ κ

(HL)
j+1 ,γ κ

(HL)
j+1

](t
(HL,1)
j,k )

⎞

⎟

⎟

⎟

⎟

⎠

(38)

Where

∀o ∈ {HH, LH, HL},

soft[
−γ κ

(o)
j+1 ,γ κ

(o)
j+1

](t
(o,1)
j,k ) =

(

soft[
−γ κ

(o)
j+1,γ κ

(o)
j+1

](t
(o,1)
j,k (m, n))

)

1≤m≤Mj
1≤n≤Nj

.

Concerning gf4, its proximity operator is given by:

proxγ f4 (tj,k) = PU(tj,k)

= (Ẑj,k(m, n))1≤m≤Mj
1≤n≤Nj

= (Xj(m, n)Tp
(HH)
j,k )1≤m≤Mj

1≤n≤Nj

(39)

where

p
(HH)
j,k =

(

∑

m

∑

n

Xj(m, n)Xj(m, n)T

)−1
∑

m,n

Xj(m, n)tj,k(m, n).

(a): PSNR=28.68 dB, SSIM=0.682, VSNR=19.27 dB (b): PSNR=28.76 dB, SSIM=0.698, VSNR=19.63 dB

Figure 17 Zoom applied on the reconstructed target image for the “shrub” stereo images at 0.1 bpp using: (a) 9/7 transform (b) NSLS

(2,2)-OPT-WL1.
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Endnotes
aThe z-transform of a signal x will be denoted in capital

letters by X. bhttp://sipi.usc.edu/database. chttp://vasc.ri.

cmu.edu/idb/html/stereo/index.html, http://vasc.ri.cmu.

edu/idb/html/jisct/index.html and http://cat.middlebury.

edu/stereo/data.html.
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