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Abstract— The ability of linear programming (LP) decoding
to detect failures, and its potential for improvement by the
addition of new constraints, motivates the use of an adaptive
approach in selecting the constraints for the underlying LP
problem. In this paper, we show that the application of such
adaptive methods can significantly reduce the complexity of the
LP decoding algorithm, which, in the standard formulation, is
exponential in the maximum row weight of the parity-check
matrix. We further show that adaptively adding new constraints,
e.g. by combining parity checks, can provide large gains in LP
decoder performance.

I. INTRODUCTION

Linear programming (LP) decoding, as an approximation
to maximum-likelihood (ML) decoding, was proposed by
Feldman et al. [1]. Many observations suggest similarities
between the performance of LP and iterative message-passing
methods, e.g. in [2]. For example, we know that the existence
of low-weight pseudo-codewords degrades the performance of
both methods ([3], [1]). Therefore, it is reasonable to make use
of the simpler geometrical structure of LP decoding to make
predictions on the performance of message-passing algorithms.

On the other hand, there are differences which prevent us
from making an explicit connection between these two ap-
proaches. For instance, given an LDPC code, adding additional
parity checks that are satisfied by all the codewords can only
improve LP decoding, while with message-passing algorithms,
these parity checks may have a negative effect by introducing
short cycles in the Tanner graph. This property of LP decoding
allows improvements by tightening the relaxation. Another
characteristic of LP decoding (the ML certificate property) is
that its failure to find the ML codeword is detectable. More
specifically, the decoder always gives either the ML codeword,
or a nonintegral pseudo-codeword as the solution.

These two properties motivate the use of an adaptive ap-
proach in LP decoding which can be summarized as follows:
Given a set of constraints that describe a code, start the LP
decoding with a few of them, and sequentially and adaptively
add more of the constraints to the problem until either the ML
codeword is found or no further “useful” constraint exists. The
goal of this paper is to explore the potential of this idea for LP
decoding. We show that by putting LP in an adaptive setting,
we can obtain the same performance as if a huge number of
constraints were added to the relaxation from the beginning.
In particular, let n, m, dmax

c , and dmax
v respectively denote
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the length, the number of parity checks, the maximum check
node degree, and the maximum variable node degree of the
code. We have observed that the adaptive method generally
converges with at most O(m) constraints. This is a significant
improvement compared to the standard description of LP
decoding by Feldman et al. with O(n + m2dmax

c ) constraints
and also their alternative high-density code polytope with
O(mn + m(dmax

c )2 + ndmax
c dmax

v ) constraints.
The rest of this paper is organized as follows. In Section

II, we review Feldman’s LP decoding. In Section III, we
introduce and analyze an adaptive algorithm to solve the
original LP problem more efficiently. In Section IV, we study
how adaptively adding additional constraints can improve the
performance. Section V concludes the paper. Some of the
proofs are omitted due to space limitations, and the reader
is referred to a forthcoming paper for more details [4].

II. LP RELAXATION OF ML DECODING

Consider a binary linear code C of length n. If a codeword
y ∈ C is transmitted through a binary-input memoryless
channel, the ML codeword given the received vector r ∈ R

n

is the solution to the optimization problem

minimize γT x

subject to x ∈ C , (1)

where γ is the vector of log-likelihood ratios defined as

γi = log

(
Pr(ri|yi = 0)

Pr(ri|yi = 1)

)
. (2)

As an approximation to ML decoding, Feldman et al. proposed
a relaxed version of this problem by first considering the
convex hull of the local codewords defined by each row of the
parity-check matrix, and then intersecting them to obtain what
is called the fundamental polytope by Koetter et al. [3]. This
polytope has a number of integral and nonintegral vertices,
but the integral vertices exactly correspond to the codewords
of C . Therefore, whenever LP gives an integral solution, it is
guaranteed to be the ML codeword.

In Feldman’s relaxation of the decoding problem, the fol-
lowing is done for each row j = 1, . . . , m of the parity-check
matrix. Suppose that the jth check node has the neighborhood
set N ⊂ {1, 2, . . . , n}, i.e. N contains the indices of the
variable nodes that are directly connected to this check node.
Then, add the following constraints to the problem:∑

i∈V

xi−
∑

i∈N\V

xi ≤ |V |−1, ∀ V ⊂ N such that |V | is odd. (3)
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Throughout the paper, we refer to the constraints of this form
as parity-check constraints. In addition, for any element xi of
the optimization variable, x, the constraint that 0 ≤ xi ≤ 1 is
also added.

III. ADAPTIVE LP DECODING

As any odd-sized subset V of the neighborhood N of each
check node introduces a unique parity-check constraint, there
are 2dc−1 constraints corresponding to each check node of
degree dc. Therefore, the total number of constraints and,
hence, the complexity of the problem, is exponential in terms
of the maximum check node degree, dmax

c . This becomes more
significant in a high density code where dmax

c increases with
the code length, n. In this section, we show that LP relaxation
of linear codes has some properties that allow us to solve the
optimization by using a much smaller number of constraints.

A. Properties of the Relaxation Constraints

Definition 1: Given a constraint of the form

aT
i x ≤ bi, (4)

and a vector x
0
∈ R

n, we call (4) an active constraint at x
0

if
aT

i x
0

= bi, (5)

and a violated constraint or, equivalently, a cut at x
0

if

aT
i x

0
> bi. (6)

Considering a constraint that generates a cut∑
i∈V

xi −
∑

i∈N\V

xi > |V | − 1, (7)

at point x, we immediately make the following observations:

|V | − 1 <
∑
i∈V

xi ≤ |V |, (8)

0 ≤
∑

i∈N\V

xi < xj ∀j ∈ V. (9)

The following theorem reveals a special property of the
constraints of the LP decoding problem.

Theorem 1: At any given point x ∈ [0, 1]n, at most one of
the constraints introduced by each check node can be a cut.
(Proof omitted.)

Having a linear (n, k) code with m = n−k parity checks, a
natural question is how we can find all the cuts defined by the
LP relaxation at any given point x ∈ R

n. For any check node
and an odd subset V of its neighborhood that introduces a
cut, we know from (9) that the members of V are the variable
nodes with the largest values among the neighbors of the check
node. Therefore, sorting the elements of x before searching for
a cut can simplify the procedure.

Consider a check node j. Without loss of generality, assume
that variable nodes 1, 2, . . . , |N |, are the neighbors of this
check node, and they are sorted with respect to their values
such that x1 ≥ x2 ≥ · · · ≥ x|N |. The following algorithm is
an efficient way to find the cut generated by this check node
at x, if it exists.

Algorithm 1:
Step 1: Set v = 1, V = {1} and V c � N\V =

{2, 3, . . . , |N |}.
Step 2: Check the constraint (3). If it is violated, we have

found the cut. Exit.
Step 3: Set v = v + 2. If v ≤ |N |, move xv−1 and xv (the

two largest members of V c) from V c to V

Step 4: If v ≤ |N | and (8) is satisfied, go to Step 2;
otherwise, the check node does not provide a cut at x.

If redundant calculations are avoided, this algorithm can find
the cut generated by the check node, if it exists, in O(dc) time,
where dc = |N | is the degree of the check node. Repeating
the procedure for each check node, and considering O(n log n)
complexity for sorting x, the time required to find all the cuts
at point x becomes O(mdmax

c + n log n) 1 .

B. The Adaptive Procedure

The Simplex LP algorithm starts from a vertex of the
problem polytope and visits different vertices of the polytope
by traveling through the edges until it finds the optimum
vertex. The time required to find the solution is approximately
proportional to the number of vertices that have been visited,
and this, in turn, is determined by the number and properties of
the constraints in the problem. Hence, if we eliminate some
of the intermediate vertices and only keep those which are
close to the optimum point, we can reduce the complexity
of the algorithm. To implement this idea in the adaptive
LP decoding scheme, we run the LP solver with a minimal
number of constraints to ensure boundedness of the solution,
and depending on the LP solution, we add only “the useful
constraints” that cut the current solution from the feasible
region. This procedure is repeated until no further cut exists.

To start the procedure, we need at least n constraints so that
the problem has a vertex that can become the solution of the
first round. Using the condition that 0 ≤ xi ≤ 1, we add one
side of these inequalities for each i, depending on whether
increasing xi increases or decreases the objective function. In
other words, for each i ∈ {1, 2, . . . , n}, we initially have the
constraint

0 ≤ xi if γi > 0,

xi ≤ 1 if γi < 0. (10)

The optimum (and only) vertex of this initial problem corre-
sponds to the result of (uncoded) hard decision based on the
received vector. Now we proceed with the following algorithm:

Algorithm 2:
Step 1: Setup the initial problem according to (10).
Step 2: Run the LP solver.
Step 3: Search for all the cuts for the current solution.
Step 4: If one or more cuts are found, add them to the

problem constraints and go to Step 2.
Claim 1: If at any iteration of Algorithm 2 no cut is found,

the current solution is the solution of the LP decoder with all
the relaxation constraints given in Section II.

1For low density codes, it is better to sort the neighbors of each check node
separately, so the total complexity becomes O(mdmax

c
+mdmax

c
log dmax

c
).
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Proof: The claim follows from the fact that if at any
stage no cut is found, the current solution is in the fundamental
polytope.

C. A Bound on the Complexity

Theorem 2: The adaptive algorithm (Algorithm 2) con-
verges with at most n iterations.

Proof: The final solution is a vertex xf of the problem
space determined by the initial constraints along with those
added by the adaptive algorithm. Therefore, we can find n

such constraints, κi : αT
i x ≤ βi, i = 1, 2, . . . n, whose

corresponding hyperplanes uniquely determine this vertex.
This means that if we set up an LP problem with only those n

constraints, the optimal point will be xf . Now, consider the kth
intermediate solution, xk, that is cut off at the end of the kth
iteration. At least one of the constraints, κ1, . . . , κn, should
be violated by xk, otherwise since xk has a lower cost than
xf , xk would be the solution of LP with these n constraints.
But we know that the cuts added at the kth iteration are all the
possible constraints that are violated at xk. Consequently, at
least one of the cuts added at each iteration should be among
{κi} ; hence, the number of iterations is at most n.

Remark 1: This theorem applies to any general LP problem
where there is a fixed set of constraints, and at each iteration
we add all the cuts generated by this set of constraints.

Corollary 1: The adaptive algorithm has at most n(m + 1)
constraints at the final iteration.

Proof: Follows from Theorem 1 and Theorem 2.
For high-density codes of fixed rate, this bound guarantees

convergence with O(n2) constraints, whereas the standard
LP and the polytope given in [1] for high-density codes
respectively require exponential and O(n3) constraints.

D. Numerical Results

To observe the complexity reduction due to the adaptive
approach for LP decoding, we have performed simulations
over random regular LDPC codes of various lengths, degrees,
and rates on the AWGN channel. All the experiments were
performed with the low SNR value of −1.0 dB, since in the
high SNR regime the received vector is likely to be close to a
codeword, in which case the algorithm converges fast, rather
than demonstrating its worst-case behavior.

In the first scenario, we studied the effect of changing the
check node degree dc from 4 to 40 while keeping the code
length at n = 360 and the rate at R = 1

2
. The simulation

was performed over 400 blocks for each value of dc. The
maximum (average) number of iterations required to converge
started from around 30 (14.5) for dc = 4, and decreased
monotonically down to 9 (5.9) for dc = 40. The average
and maximum numbers of parity-check constraints in the final
iteration of the algorithm are plotted in Fig. 1. It is observed
that both the average and the maximum values are almost
constant, and remain below 270 for all the values of dc. For
comparison, the total number of constraints required for the
standard (non-adaptive) LP decoding problem, which is equal
to 2dc−1 is also included in this figure. The decrease in the
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Fig. 1. The average and maximum number of parity-check constraints used
versus check node degree, dc, for fixed length n = 360 and rate R = 1
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Fig. 2. The average and maximum number of parity-check constraints used
versus block length, n, for fixed rate R = 1

2
and check node degree dc = 6.

number of required constraints translates to a large gain for
the adaptive algorithm in terms of the running time. This gain
increases exponentially with dc, so that with the LP solver that
we have used in our work (GLPK [5]), the adaptive algorithm
always converges several thousand times faster that standard
LP for dc = 8.

In the second case, we studied random (3,6) codes of lengths
n = 30 to n = 1920. For all values of n, the maximum
(average) number of required iterations remained between 10
and 16 (5 and 11). The average and maximum numbers of
parity-check constraints in the final iteration are plotted versus
n in Fig. 2. We observe that the number of constraints is
generally between 0.6n and 0.7n.

In the third experiment, we investigated the effect of the
rate of the code on the performance of the algorithm. Fig. 3
shows the average and maximum numbers of parity-check
constraints in the final iteration where the block length is
n = 120 and the number of parity checks, m, increases from
15 to 90. The variable node degree is fixed at dv = 3. We
see that the average and maximum numbers of constraints are
respectively in the ranges 1.1m to 1.2m and 1.4m to 1.6m

for most values of m. The relatively large drop of the average
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Fig. 3. The average and maximum number of parity-check constraints used
versus the number of parity checks, m, for n = 120 and dv = 3.

number for m = 90 with respect to the linear curve can be
explained by the fact that at this value of m the rate of failure
of LP decoding was less than 0.5 at −1.0 dB, whereas for
all the other values of m, this rate was close to 1. Since the
success of LP decoding generally indicates proximity of the
received vector to a codeword, we expect the number of parity
checks required to converge to be small in such a case, which
decreases the average number of constraints.

As a demonstration of the gain in the running time of the
adaptive algorithm, we observed that with a regular code of
check degree 4 the adaptive method was about 12 times faster
that the standard LP in the worst case, and this gain increased
to about 120 with the check degree equal to 6. Based on the
simulation results, we observe that in practice the algorithm
performs much faster than is guaranteed by Theorem 2. These
observations suggest the following conjecture.

Conjecture 1: For a random parity-check code of length
n with m parity checks and arbitrary degree distributions,
as n and m increase arbitrarily, the adaptive LP decoding
algorithm converges to the optimal point of the fundamental
polytope with high probability in at most α iterations and with
at most βm final parity-check constraints, where α and β are
constants independent of the SNR and the length, rate, and
degree distribution of the code.

IV. GENERATING CUTS TO IMPROVE THE PERFORMANCE

The complexity reduction obtained by adaptive LP decoding
inspires the use of cutting-plane techniques to improve the
error rate performance of the algorithm. Specifically, when LP
with all the original constraints gives a nonintegral solution,
we try to cut the current solution, while keeping all the
possible integral solutions (codewords) feasible.

In the decoding problem, the new cuts can be chosen from
a pool of constraints describing a relaxation of the maximum-
likelihood problem which is tighter than the fundamental poly-
tope. In this sense, the cutting-plane technique is equivalent
to the adaptive LP decoding of the previous section, with
the difference that there are more constraints to choose from.
The effectiveness of this method depends on how closely

the new relaxation approximates the ML decoding problem,
and how efficiently we can search for those constraints that
introduce cuts. Feldman et al. [1] have mentioned some
ways to tighten the relaxation of the ML decoding, including
adding redundant parity checks (RPC), and using lift-and-
project methods. (For more on lift-and-project, see [6] and
references therein.) Gomory’s algorithm [7] is also one of the
most well-known techniques for general integer optimization
problems, although it suffers from slow convergence. Each
of these methods can be applied adaptively in the context of
cutting-plane techniques.

The simple structure of RPCs makes them an interesting
choice for generating cuts. There are examples where even the
relaxation obtained by adding all the possible RPC constraints
does not guarantee convergence to a codeword. In other words,
it is possible that we obtain a nonintegral solution for which
there is no RPC cut, although the general case is still not well-
studied. Also, finding efficient methods to search for RPC cuts
for a given nonintegral solution is an open issue. On the other
hand, as observed in simulation results, RPC cuts are generally
strong, and a reasonable number of them makes the resulting
LP relaxation tight enough to converge to an integer-valued
solution. In this work, we focus on cutting-plane algorithms
that use RPC cuts.

A. Finding Redundant Parity-Check Cuts

A redundant parity check is obtained by modulo-2 addition
of some of the rows of the parity-check matrix, and this new
check introduces a number of constraints that may include
a cut. There is an exponential number of RPCs that can be
made this way, and in general, most of them do not introduce
cuts. Hence, we need to find the cuts efficiently by exploiting
the particular structure of the decoding problem. In particular,
we observe that cycles in the graph have an important role in
determining whether an RPC generates a cut. This property is
explained by Theorem 3.

Definition 2: Given a current solution, x, the subset T ⊂
{1, 2, . . . , m} of check node indices is called a cut-generating
collection if the RPC made by modulo-2 addition of the parity
checks corresponding to T introduces a cut.

Theorem 3: Let T ⊂ {1, 2, . . . , m} be a collection of check
node indices in the Tanner graph of the code, and let G be the
subgraph made up of these check nodes, the variable nodes
directly connected to them, and all the edges that connect
them. Then, T can be a cut-generating collection only if G

contains a cycle that only passes through variable nodes whose
corresponding current values are fractional. (Proof omitted.)

This result motivates the following algorithm to search for
cuts.

Algorithm 3:
Step 1: Having a solution x, prune the Tanner graph by

removing all the variable nodes with integer values.
Step 2: Starting from an arbitrary check node, randomly

walk through the pruned graph until a cycle is found.
Step 3: Create an RPC by combining the rows of the parity-

check matrix corresponding to the check nodes in the cycle.
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Fig. 4. WER of cutting-plane LP versus SNR for different values of Cmax .

Step 4: If this RPC does not introduce a cut, go to Step 2.
Our experiments indicate that by exploiting some of the

properties of the problem as described above, the search for
each cut becomes faster by orders of magnitude than the naive
search, in which RPCs are selected in a completely random
way. However, this procedure is still the complexity bottle-
neck of the decoding, and it becomes prohibitively complex
for codes of length on the order of several hundred bits and
above. On the other hand, experiments demonstrate that the
number of cuts required to converge to the ML codeword (if
the convergence is possible) does not grow very rapidly with
length. This motivates more study of the properties of RPC
cuts and efficient schemes to find them.

B. Numerical Results

To demonstrate the performance improvement achieved by
using the RPC cutting-plane technique, we present simulation
results for a random regular (3, 4) LDPC code of length 32.
The adaptive nature of the algorithm allows us to smoothly
trade complexity for performance by changing the number
of trials in the search for each RPC cut, i.e. the number of
iterations in Algorithm 3, as well as the total number of calls
of the LP solver. In this experiment, we fix the total number
of iterations of Algorithm 3 to Cmax, and declare decoding
failure if no cut is found after Cmax trials.

The word error rate (WER) of the algorithm is plotted versus
SNR in Fig. 4 for different values of Cmax. For comparison,
the WER of pure LP decoding, i.e. with no RPC cut, and
a lower bound on the WER of the ML decoder have been
included, as well. In order to obtain this lower bound, we
count the number of times that the cutting-plane LP algorithm
with a large value of Cmax converges to a codeword other
than the transmitted codeword, and divide that by the number
of blocks. Due to the ML certificate property of LP decoding,
we know that ML decoding would fail in those cases, as well.
On the other hand, ML decoding may also fail in some of
the cases where LP decoding does not converge to an integral
solution. Therefore, this estimate gives a lower bound on the
WER of ML decoding.

The numerical results suggest that the cutting-plane LP
decoding with RPC cuts can significantly outperform the pure
LP decoding, at the cost of increased complexity.

V. CONCLUSION

In this work, we studied the potential for improving LP
decoding, both in complexity and error correction capability,
by using an adaptive approach. The key idea was to use the fact
that we can always recognize the failure of LP decoding to find
the ML codeword, a property that message-passing algorithms
only have in specific cases such as the erasure channel. This
feature allows us to add only constraints that are “useful”,
depending on the current status of the algorithm.

In the algorithm proposed in Section III, the complexity
is significantly reduced and becomes independent of the de-
gree distributions, making it possible to apply LP decoding
to parity-check codes of arbitrary densities. However, since
general purpose LP solvers are used at each iteration, the
complexity in terms of the block length is still super-linear,
as opposed to linear as in the message-passing algorithms.
An interesting question is whether we can design special LP
solvers for decoding of LDPC codes that can take advantage
of the sparsity of the constraints and other properties of the
problem to converge in linear time.

Section IV serves as a first step to explore the application of
cutting-plane techniques in LP decoding. A desirable feature
of this approach is that by changing the parameters of the
algorithm we can smoothly trade complexity for performance.
In contrast, if we want to get the same performance gains by
tightening the relaxation in a non-adaptive setting, the required
complexity increases much faster. We showed that redundant
parity checks provide strong cuts, even though they may not
guarantee ML performance. A major open problem is to find
efficient ways to search for these cuts by exploiting their
properties, and to determine specific classes of codes for which
RPC cuts are more effective. Furthermore, the effectiveness
of cuts generated by other techniques, such as lift-and-project
cuts and Gomory cuts, as well as specially designed cuts, needs
further study.
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