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ABSTRACT

The paper introduces a new modulo-2π phase denoising al-
gorithm based on local polynomial approximations. The zero
and first order approximations of the phase are calculated in
sliding windows of varying size. The former is used for point-
wise adaptive window size selection, while the latter is used
for filtering the phase in the obtained windows. For unwrap-
ping, we input the PUMA unwrapping algorithm [1] with
the denoised wrapped phase obtained with the proposed ap-
proach. Simulation shows that this technique enables strong
noise attenuation while preserving image details.

Index Terms— Fringe techniques, hologram, local poly-
nomial approximation, phase unwrap, speckle interferometry.

1. INTRODUCTION

A variety of holographic imaging systems deal with phase
measurements using coherent radiation in order to illuminate
objects. The scattered return carries information on the phys-
ical and geometrical properties of objects such as shape, de-
formation, movement and surface’s structure. The phase is a
key element for both wave-front and wave-field reconstruc-
tions in 3D holographic imaging and with important applica-
tions in such areas as 3D TV, interferometric aperture radar
and sonar, magnetic resonance imaging, adaptive optics, dif-
fraction tomography, nondestructive testing of components,
deformation and vibration measurements [2, 3].
Common to these applications is that the observations are

periodic functions, defined on the interval [−π, π), of the true
phase, the so-called absolute phase. If the true phase is out-
side this interval, its observed value is wrapped into it, corre-
sponding to an addition or subtraction of an integer number
of 2π. Many approaches to absolute phase estimation follow
a two-step procedure: in the first step, the wrapped phase is
inferred from noisy wrapped observations; in the second step,
the absolute phase is inferred from the wrapped estimates.
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The latter procedure is known as phase unwrapping. A vari-
ety of techniques have been developed for phase unwrapping
[2, 4, 1]. A classical approach implements path-dependent
local techniques, where a pixel-by-pixel unwrapping is con-
firmed by local phase congruence tests. A more recent direc-
tion formulates the phase unwrapping as an inverse problem
leading to path-independent optimization techniques.
Owing to the periodic observation mechanism, phase un-

wrapping is known to be a hard problem that has since long
fostered active research. In fact, if the magnitude of phase
variation between neighboring pixels is larger than 2π, i.e.,
the so-called Ito condition is violated, then the inference of
the 2π multiples is an ill-posed problem. These violations
may be due to spatial undersampling, discontinuities, or noise.
To deal with these difficulties, some sort of a priori informa-
tion shall be used. One efficient way, for both the local path-
dependent and global path-independent methods, is the use of
external information in the from of masks and quality maps.
The high levels of observation noise, typical of many holo-

graphic imaging modalities, introduce further difficulties in
the phase reconstruction, as the phase unwrapping methods
developed for noiseless data are very sensitive to noise. One
of the first and natural ideas is prefiltering the noisy wrapped
data and then using it for further processing, in particular for
phase unwrapping. However, a phase fringe pattern is a very
delicate object with crucial details easily to be damaged in
prefiltering. If the noise level is small, any reasonable filter-
ing is acceptable, However, in the heavy noisy case, the stan-
dard approaches often damage data in such a way that further
unwrapping becomes impossible.
In this paper, we propose a novel filtering technique based

on local polynomial approximation with varying adaptive neigh-
borhood used in reconstruction [5]. This adaptivity is a cru-
cial element: it assumes that for each point (pixel) there is a
neighborhood where the polynomial approximation fits well
the data. Both elements of this model, the coefficients of the
polynomial approximation and the neighborhood size (some
times and shape), are subjects of estimation. The adaptive-
ness of the algorithm trades bias with variance in such a way
that the window size stretches in areas where the underlying
true phase is smooth and shrinks otherwise, namely in the
presence of discontinuities. Simulation studies show that the
developed filtering is very efficient, namely in the presence of



discontinuities. We found out, namely, that the phase unwrap-
ping equipped with this sort of prefiltering yields very good
accuracy of the phase reconstruction, quite often overcoming
the state-of-the-art algorithms developed for noisy phase un-
wrapping.
The polynomial modeling for the phase unwrap is a pop-

ular idea. In particular, the efficiency of the local phase fit-
ting is demonstrated in [6] for two-dimensional magnetic res-
onance imaging data. In the paper [7] the linear local polyno-
mial approximation of height profiles is used for the surface
reconstruction from the multifrequency InSAR data. Using
the local polynomial fit in the phase tracking for the phase
unwrap is proposed in the paper [8], where it is further ex-
ploited for initialization of the global optimization giving the
final estimate.
The algorithm proposed in this paper is based on accurate

least square fitting of the linear polynomial models. In our
previous works [9], [10], this fitting is approximate using the
local minimum of the local least square criterion and used for
the phase unwrap in a phase tracking procedure. In this paper
we are focused mainly on filtering of the wrapped phase as
the prefiltering procedure for the forthcoming unwrapping.

2. LPA PHASE-APPROXIMATION

The standard formulation of the phase unwrapping starts from
the observation model in the form φ = W (ϕ + nϕ), where
ϕ is the true phase and nϕ is a random noise. Here W is a
wrapping operator transforming the noisy phase to the inter-
val [−π, π). For nϕ = 0, there is an obvious link between the
wrapped φ and non-wrapped absolute phase ϕ, ϕ = φ+2πk,
φ ∈ [−π, π), where k is an integer. The basic unwrapping
problem is to reconstruct ϕ(x, y), x, y ∈ X ⊂ Z2, from the
observations φ(x, y). There is no one-to-one relation between
the wrapped and absolute phase. The approach developed in
this paper is based on two independent ideas: local approxi-
mation for design of nonlinear filters (estimators) and adap-
tation of these filters to unknown smoothness of the varying
phase. As flexible universal tools, we use local polynomial
approximation (LPA) for approximation and intersection of
confidence intervals (ICI) for adaptation [5]. The LPA is
applied for filter design using a polynomial fit in a sliding
window. The window size as well as the order of the polyno-
mial define a desirable filter. The window size is considered
as a varying adaptation parameter of the filter. The ICI is
an adaptation scheme that searches for a largest local window
size where the variance and the bias of the estimates are bal-
anced. It is shown that the ICI adaptive LPA yields nearly
optimal minimum mean squared error estimates.
The observation model assumed in this paper is of the

form
z = A exp(jϕ) + n, (1)

where n = nI + jnQ is complex-valued zero-mean circular
white noise of variance 2σ2 (i.e., nI and nQ are zero-mean
independent Gaussian random variables with variance σ2).

Assume that in some neighborhood of the point (x, y) the
phase ϕ(x, y) can be represented in the form

ϕ̃(xs, ys|c) = pT (xs, ys)c, (2)

where p = (p1, p2, p3) is a vector of the first order polynomi-
als p1 = 1, p2 = x, p2 = y, and c = (c1, c2, c3)T is a vector
of unknown parameters. To infer this vector, we compute

ĉ = argmin
c

Lh(c),

where Lh(c) is a measure of the data misfit defined as

Lh(c) =

1

2

X
s

wh,s|zφ(x+ xs, y + ys)− exp(jϕ̃(xs, ys|c)|2 =X
s

wh,s {1− cos[φ(x+ xs, y + ys)− ϕ̃(xs, ys|c)]} ,

where zφ ≡ z/|z| = ejφ. It can be verified by routine calcu-
lations that for the considered linear phase model the optimal
solution ĉ is of the form

(ĉ2, ĉ3) = argmax
c2,c3

|Fh(c2, c3)| (3)

ĉ1 = angleFh(ĉ2, ĉ3), (4)

where Fh(c2, c3) is the windowed Fourier transform of the
normalized data zφ = ejφ with the arguments c2, c3, thus
meaning the frequency components of the exponential signal
ejφ at spatial frequency (c2, c3); i.e.,

Fh(c2, c3) =
X
s

wh,szφ(x+ xs, y + ys)e
−j(c2xs+c3ys).

Then, the phase estimate ĉ1 is the argument (angle) of the
complex-valued Fourier transform Fh calculated at the point
where the maximum value of the Fourier spectrum is achieved.
The formulas (4) show that the standard Fourier transform can
be used for implementation of the proposed algorithm.
According to the model (2), the local polynomial model

for the neighborhood of the pixel (x, y) is ϕ̂(x+xs, y+ys) ≡
pT (xs, ys)ĉ(x, y). In particular, we have

ϕ̂(x, y) = ĉ1(x, y). (5)

In general, the estimate ĉ(x, y) depends of the coordinates
(x, y) and the window size h. We wish to emphasize the
nonparametric nature of the introduced estimator. Indeed, we
start from the parametric linear on x and y model in (2) and
could expect that the approximation (estimate) is also linear
on x and y. However, the fit is used in the polynomial approx-
imation (2) only for one “central" point xs = ys = 0. The
result of this point-wise approximation is that the parametric
estimate (2) becomes nonparametric, with ϕ̂(x, y)depending
in a nonlinear way on x and y [5]. All ideas of the standard
LPA concerning the windoww (shape, anisotropy, direction-
ality, etc.), the scaling h (scalar, multivariate), estimation of



the signal and derivatives are naturally valid in this nonpara-
metric pointwise estimation.
As final remark on the LPA approach, we note that a zero-

order approximation of the phase would lead to the estimate

ϕ̃(x, y) = c̃1(x, y) = angle (Fh(0, 0)). (6)

3. ESTIMATE ACCURACY AND ADAPTATION

Given a two-dimensional window function w and a window
size (scale) parameter h > 0, we define the scaled window
wh,s ≡ w(xs/h, ys/h), centered at (x, y). In particular, if we
take the square uniform window w = 1 for |x| ≤ 1, |y| ≤ 1
and w = 0 otherwise, we have wh = 1 for |x| ≤ h, |y| ≤ h
and wh = 0 otherwise. A smaller or larger h narrows or
widens the window wh, respectively.
It is shown in Proposition 2 of [9] that, asymptotically for

small noise level and symmetrical windows, the phase esti-
mate ϕ̂(x, y) = ĉ1(x, y) (5) is unbiased with the variance

σ2h =
σ2

A2

P
s w

2
h,s

(
P

s wh,s)2
. (7)

This result is used for the adaptive selection of the win-
dow size h. Let H be a set of the ordered window sizes
H = {h1 < h2 < ... < hJ} and ϕ̂h(x, y), for h ∈ H , the
respective phase estimates. A statistic known as the intersec-
tion of confidence interval (ICI) rule is exploited in order to
select the best window size. Given the estimates ϕ̂h(x, y) and
the respective variance, for h ∈ H , the confidence intervals
of these estimates are defined as

Qh = {ϕ̂h−Γ · σh, ϕ̂h + Γ · σh}. (8)

where Γ > 0 is a parameter of the algorithm and σh is calcu-
lated according to (7).
The ICI rule defines the adaptive window size, denoted

by h+, as the largest h ∈ H for which the estimate ϕ̂h does
not differ “significantly" from the estimates corresponding to
the smaller window sizes. In order to identify this adaptive
h+, the successive intersection of the confidence intervalsQh

is considered starting from Qh1 and Qh2 . Specifically, the
pairwise intersection of the intervals Qhj , 1 ≤ hj ≤ hi, is
considered with increasing hi. Let h+ be the largest of those
hi for which the intervals Qhj , 1 ≤ hj ≤ hi, have a point in
common. This h+ defines the adaptive window size and the
adaptive estimate as ϕ̂h+ .
For the varying pointwise adaptive estimation, these cal-

culations are produced for all points (pixels). In implemen-
tation, the ICI algorithm is used when the estimates for all
points (x, y) are already calculated for all h. Then the algo-
rithm works as a selector of the proper window size estimate
for each point from a given set of the estimates for all window
sizes ([5], Chapter 6).
Parameter Γ in (8) controls the bias-variance balance in

the estimate. Decreasing Γ means a shift of this balance in
favor of the bias, as smaller Γ results in smaller bias of the

Fig. 1. From left to right: PUMA reconstruction from the
noisy data and from prefiltered PEARLS data, first line σ =
0.5 and second line σ = 0.75.

estimate. On the contrary, increasing Γ means a shift in favor
of the variance, as larger Γ results in smaller variance of the
estimate but possible larger bias.

4. PEARLS ALGORITHM

We name the proposed algorithmPEARLS for PhaseEstimation
using Adaptive Regularization based on Local Smoothing.
The pseudo-code of this algorithm is as follows:

1: For every pixel (x, y) and h ∈ H:

a: calculate the zero-order phase estimate according to
the formula (6) , i.e.,

ϕ̃h(x, y) = angle

ÃX
s

wh,szφ(x+ xs, y + ys)

!
;

b: apply the ICI rule to the estimates ϕ̃h(x, y) for the
selection of the best window size h+(x, y);

c: using the formulas (4) with h = h+(x, y), calculate
ϕ̂h+ , the first-order phase estimates with adaptive
window size ;

End for ;
2: unwrap phase ϕ̂h+ using one of the procedures devel-
oped for noise-less data, for example, the PUMA algo-
rithm [1].

We have used zero-order estimates in the ICI rule. There
are at least two reasons for this: First, it makes calculations
much faster. Second, the ICI rule works better with zero-
order estimates than with first order ones as, the former are
essentially less noisy.



5. SIMULATION EXPERIMENTS

In this section, we present two experiments illustrating the
PEARLS competitiveness. For the phase unwrap of the fil-
tered wrapped phase we use the PUMA algorithm [1], which
is able to work with discontinuities. In what follows, theLPA
is exploited with the uniform square windows wh defined on
the integer symmetric grid {(x, y) : |x|, |y| ≤ h}. The ICI
parameter was set to Γ = 2.0 and the window sizes H =
{1, 2, 3, 4}. The noisy observations were generated accord-
ing to (1), with A = 1, on the square grid with integer argu-
ments x, y, −49 ≤ x, y ≤ 50. The absolute phase is defined
by the formula ϕ(x, y) = Aϕ exp(−x2/(2σ2x) − y2/(2σ2y))
with σx = 10, σy = 15, and Aϕ = 14π. The the maximum
value of ϕ is 14π and the maximum values of the first differ-
ences about 2.5 radians. Which such high phase differences,
even a noise of small variance leads to a difficult unwrapping
problem, due to many phase differences larger the π.
Table 1 shows theRMSE values obtained with thePEARLS

algorithm, as a function of the observation noise standard de-
viation σ. For comparison purposes, we have also computed
the RMSE obtained with the PhaseLa [10] and ZπM [4]
algorithms, which implement filtering plus unwrapping.

Table 1. RMSE for PEARLS, PhaseLa and ZπM algo-
rithms.

Algorithm \ σ 0.75 0.5 0.25 0.05 0.01
PEARLS 0.34 0.15 0.09 0.05 0.03
PhaseLa − 0.18 0.11 0.04 0.03
ZπM 1.39 0.21 0.12 0.19 0.08

The unwrapping based on the PEARLS prefiltering yields
consistently comparable or better performance than PhaseLa
and ZπM algorithms. The advantage increases for large val-
ues of σ, corresponding to the more challenging scenarios.
The 3D imaging in Figure 1 illustrates performance of the

algorithm for a discontinuous phase. In the first line we can
see the reconstructions obtained by the PUMA algorithm with
no prefiltering and with prefiltering. The prefiltering obvi-
ously improves the reconstruction for the smooth areas where
the larger values of the window sizes are used in PEARLS al-
gorithm. A distribution of the adaptive window sizes for this
case can be seen in Figure 2. These results are shown for
σ = 0.5. For a larger noise level of σ = 0.75, the unwrap-
ping result without prefiltering is catastrophic, whereas with
prefiltering the reconstruction is quite acceptable, despite the
high noise level present in the observed data. PhaseLa and
ZπM were not compared in this experiment because they are
conceived to blindly deal with discontinuities.
These results confirm conclusions obtained from multi-

ple test experiments. The novel algorithm demonstrates very
strong filtering properties enabling the posterior application
of unwrapping.

Fig. 2. Noise data and adaptive ICI window sizes, σ = 0.5.
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