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Abstract

The local Whittle (or Gaussian semiparametric) estimator of long range depen-
dence, proposed by Künsch (1987) and analyzed by Robinson (1995a), has a relatively
slow rate of convergence and a finite sample bias that can be large. In this paper,
we generalize the local Whittle estimator to circumvent these problems. Instead of
approximating the short-run component of the spectrum, ϕ(λ), by a constant in a
shrinking neighborhood of frequency zero, we approximate its logarithm by a poly-
nomial. This leads to a “local polynomial Whittle” (LPW) estimator. We specify
a data-dependent adaptive procedure that adjusts the degree of the polynomial to
the smoothness of ϕ(λ) at zero and selects the bandwidth. The resulting “adaptive
LPW” estimator is shown to achieve the optimal rate of convergence, which depends
on the smoothness of ϕ(λ) at zero, up to a logarithmic factor.

Keywords: Adaptive estimator, asymptotic bias, asymptotic normality, bias reduc-
tion, local polynomial, long memory, minimax rate, optimal bandwidth, Whittle
likelihood.
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1 Introduction

In this paper, we consider estimation of the long-memory parameter d0 for a
stationary process {xt}. The spectral density, f(λ), of {xt} is taken to be of the form

f(λ) = |λ|−2d0ϕ(λ), (1.1)

where d0 ∈ [d1, d2], −1/2 < d1 < d2 < 1/2, and 0 < ϕ(0) <∞.
The parameter d0 determines the long-memory properties of {xt} and ϕ(λ) de-

termines its short-run dynamics. To maintain generality of the short-run dynamics
of {xt}, we do not impose a specific functional form on ϕ(λ). Instead, we take ϕ(λ)
to belong to a family that is characterized by regularity conditions near frequency
zero. This is a narrow-band semiparametric approach to estimating the long-memory
parameter.

Examples in the literature of the narrow-band approach include the widely used
GPH estimator introduced by Geweke and Porter-Hudak (1983) and the local Whit-
tle estimator (also known as the Gaussian semiparametric estimator) suggested by
Künsch (1987) and analyzed by Robinson (1995a). These methods approximate the
logarithm of ϕ(λ) by a constant in a shrinking neighborhood of the origin. In con-
sequence, the typical rate of convergence is just n−2/5, no matter how regular ϕ(λ)
is. In addition, these estimators can be quite biased due to contamination from high
frequencies (e.g., see Agiakloglou, Newbold, and Wohar (1993)).

To alleviate these problems, we approximate the logarithm of ϕ(λ) near zero
by a constant plus an even polynomial of degree 2r, viz., logG −Pr

k=1 θkλ
2k. The

choice of an even polynomial reflects the symmetry of the spectrum about zero.
This approximation is used to specify a local polynomial Whittle (LPW) likelihood
function. We consider estimators of d0 that are determined by the LPW likelihood.

The motivation for estimators based on the LPW likelihood comes from the non-
parametric regression literature. In that literature, one of the most popular estima-
tors, especially among the cognoscente, is a local polynomial estimator. For example,
see Fan (1992) and references in Härdle and Linton (1994).

Let m denote the number of frequencies near zero used in the LPW likelihood.
Results of Andrews and Guggenberger (2003) (AG), which in turn rely on results of
Giraitis, Robinson, and Samarov (1997), show that the optimal choices of r andm (in
terms of the rate of convergence of the estimator of d0) depend on the smoothness of
ϕ(λ) at zero. We provide an adaptive estimator of d0, denoted the ALPW estimator,
based on the method of Lepskii (1990), that uses the data to select r and m. This
estimator is shown to obtain the optimal rate of convergence, up to a logarithmic
factor. If ϕ(λ) is infinitely smooth at zero, then this estimator is n1/2−δ-consistent
for all δ > 0 and, hence, has rate of convergence that is arbitrarily close to the
parametric rate.

In comparison to the adaptive GPH estimator in Giraitis, Robinson, and Samarov
(2000) (GRS), our estimator has the following advantages: (i) its rate of convergence
is faster for spectral densities that are smooth of order s for s > 2, (ii) it does not
delete two-thirds of the frequencies or require tapering, which avoids substantial infla-
tion of its variance, (iii) its asymptotic properties are shown to hold for non-Gaussian
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processes, (iv) it does not impose an upper bound on the amount of smoothness and,
in consequence, achieves rates of convergence that are arbitrarily close to the para-
metric rate in the infinitely smooth case, and (v) it only requires four moments of the
process to be finite rather than infinite moments. Points (iii)-(v) also are in contrast
to the procedure of Lepskii (1990). Part of the reason that we are able to establish
advantages (iii)-(v) is that we consider zero-one loss rather than squared-error loss.
Results for zero-one loss are sufficient to obtain rates of convergence, which is the
item of greatest interest here.

In comparison to the adaptive FEXP estimators of Iouditsky, Moulines, and
Soulier (2002) (IMS) and Hurvich, Moulines and Soulier (2002) (HMS), our esti-
mator has the following advantages: (i) its asymptotic properties hold without any
restrictions on the spectral density of the process outside a neighborhood of the ori-
gin, which allows for a much wider class of processes, (ii) it does not require tapering
or the deletion of some fraction of the frequencies, which circumvents inflation of
its variance, and (iii) its asymptotic properties are shown to hold for non-Gaussian
processes.

Our method suffers the same drawback as those of Lepskii (1990), GRS, IMS, and
HMS in that there are constants in the adaptive procedure that are arbitrary. In the
simulation section, we specify values of these constants that work fairly well in the
contexts considered.

If desired, one can adjust the choice of m used by the ALPW estimator to be
slightly smaller than the choice that is optimal (in terms of rate of convergence). The
adjustment can be done so that the adaptive estimator with data-dependent r and m
is asymptotically normal with zero asymptotic mean, but has a slightly slower rate
of convergence than the optimal rate. This result holds for all finite values of the
smoothness index of ϕ(λ) at zero except for values in a set with Lebesgue measure
zero.

Although the results of this paper are for stationary processes, they also can be
utilized when the underlying process is nonstationary. Suppose the long-memory
parameter d0 lies in the interval (−0.5, 1.5), which is plausible for most economic
data (and which corresponds to a nonstationary process when d0 ≥ 0.5). Suppose
one has a preliminary consistent estimator of d0 for d0 in this range, such as the
estimator of Velasco (1999), Velasco and Robinson (2000), or Shimotsu and Phillips
(2002). Consider the following procedure: One differences the data if this estimator
exceeds 0.5 and one leaves the data as is otherwise. Then, one applies the adaptive
LPW estimator to the data. If the data are differenced the estimator of d0 equals the
adaptive LPW estimator plus one. Otherwise the estimator of d0 is just the adaptive
LPW estimator.

With probability that goes to one as n → ∞, the data are properly differenced
or left in levels, provided d0 6= 0.5, and the results of this paper are applicable
to the differenced or levels data. The advantage of applying the adaptive LPW
estimator considered in this paper over other estimators, such as one that is consistent
for d0 ∈ (−0.5, 1.5), is that it achieves the optimal rate of convergence (up to a
logarithmic factor).
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The asymptotic properties of the adaptive LPW estimator are obtained by first
establishing results for an LPW estimator with a fixed value of r and values of m
that depend on the sample size n, but not on the data. Because these results are
somewhat unusual, we briefly describe them here.

First, we concentrate out the constant G from the LPW log-likelihood. Then,
for fixed non-negative integer r, we let (bd(r),bθ(r)) denote the LPW estimator that
minimizes the (negative) concentrated LPW log-likelihood with respect to (d, θ) over
the parameter space [d1, d2] × Θ, where θ = (θ1, ..., θr)

0 and Θ is a compact and
convex subset of Rr. One can show that the LPW estimator, bd(r), is consistent for
d0 by extending the argument of Robinson (1995a) (see Andrews and Sun (2001)).
To establish asymptotic normality of bd(r), a typical argument would first establish
consistency of (bd(r),bθ(r)). But, showing that (bd(r),bθ(r)) is consistent is problematic,
because the concentrated LPW log-likelihood becomes flat as a function of θ as n→
∞ and the rate at which it flattens differs for each element of θ.

To circumvent this problem, we establish consistency and asymptotic normality of
the LPW estimator simultaneously using the following steps. First, we show: (i) there
exists a solution (ed(r),eθ(r)) to the first-order conditions (FOCs) with probability
that goes to one as n→∞ and this solution is consistent and asymptotically normal.
The FOC approach is effective because one can use different normalizations of the
FOCs for the different parameters d, θ1, ..., θr. By doing so, one can ensure that the
gradient and Hessian matrix of the normalized log-likelihood are asymptotically non-
degenerate.

Next, we show: (ii) the (negative) concentrated LPW log-likelihood is a strictly
convex function of (d, θ). This implies that it has a unique minimum. Furthermore,
it implies that if there exists a solution to the FOCs, then it is unique and equals the
minimizing value. In consequence, (bd(r),bθ(r)) equals (ed(r),eθ(r)) with probability
that goes to one as n → ∞ and, hence, is consistent and asymptotically normal.
These results hold when ϕ(λ) is smooth of order s at zero (defined precisely below),
where s > 2r and s ≥ 1.

Our method of proof has some advantages even in the context of establishing
consistency and asymptotic normality of the local Whittle estimator analyzed in
Robinson (1995a). It is comparable to a proof of asymptotic normality with con-
sistency given and, hence, circumvents the need for a separate proof of consistency,
which occupies about six pages in Robinson (1995a).

Supposem is chosen to diverge to infinity at what is found to be the asymptotically
MSE-optimal rate, viz., limn→∞mφ+1/2/nφ = A ∈ (0,∞), where φ = min{s, 2+2r}.
Also, suppose that s ≥ 2 + 2r. Then, the asymptotic normal result is

m1/2(bd(r)− d0)→d N(Ab2+2rτ r, cr/4) as n→∞, (1.2)

where τ r and cr are known constants (specified below) for which cr increases in r
and c0 = 1 and b2+2r is the (2 + 2r)—th derivative of logϕ(λ) at λ = 0. This yields
the consistency, asymptotic normality, “asymptotic bias,” and “asymptotic mean-
squared error” of bd(r). In this case, nφ/(2φ+1)(bd(r)− d0) = Op(1). If m is chosen to
diverge at a slower rate, then the mean in the asymptotic normal distribution is zero.
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Our results show that the effect of including the polynomial
Pr

k=1 θkλ
2k in the

local Whittle likelihood is to increase the asymptotic variance of bd(r) by the mul-
tiplicative constant cr, but to reduce its asymptotic bias by an order of magnitude
provided ϕ(λ) is smooth of order s > 2. The asymptotic bias goes from O(m2/n2)
when r = 0 to O(mφ/nφ) with φ > 2 when r > 0 and s > 2. In consequence, the rate
of convergence of bd(r) is faster when r > 0 than when r = 0 provided s > 2 (and m is
chosen appropriately). For example, for r > 0, s ≥ 2 + 2r, and m chosen as in (1.2),
the rate of convergence of bd(r) is n−(2+2r)/(5+4r), whereas the rate of convergence forbd(0) is n−2/5.

When the values of r and m are selected adaptively, using the data, the rate
of convergence of the (adaptive) estimator depends on the smoothness of ϕ(λ). For
example, if ϕ(λ) is smooth of order s, then the rate of convergence is shown to be
n−s/(2s+1)ζ(n), where ζ(n) is less than log2 n. This is the optimal rate up to the factor
ζ(n).

We note that the results of the paper provide some new results for the local
Whittle estimator bd(0) considered by Robinson (1995a). The results show that this
estimator has an asymptotic bias (defined as m−1/2 times the mean of its asymptotic
normal distribution) that is the same as that of the GPH estimator. Robinson’s
(1995a, b) results show that the asymptotic variance of the local Whittle estimator is
smaller than that of the GPH estimator. Combining these results establishes that the
asymptotic mean-squared error of the local Whittle estimator is smaller than that
of the GPH estimator (provided m is chosen appropriately). In addition, the results
of this paper establish the validity of an adaptive procedure for selecting m for the
local Whittle estimator. This procedure is analogous to that of GRS for the GPH
estimator.

Strict convexity of the LPW log-likelihood yields obvious computational advan-
tages for the LPW estimator over typical nonlinear estimators. Local minima and
multiple solutions to the FOCs do not exist. Note that strict convexity of the local
Whittle concentrated log-likelihood in the parameter d does not appear to have been
pointed out in the literature.

The results of this paper are similar to those of AG, who consider adding the
regressors λ2j , ..., λ

2r
j to a log-periodogram regression that is used to estimate d0.

But, AG does not consider adaptive selection of r and m. In addition, for fixed r, the
estimator considered by AG has the same asymptotic bias as the LPW estimator bd(r),
but larger variance. For any r, its variance is larger by the factor (π2/24)÷ (1/4) =
1.645. The properties of the estimator of AG are determined under the assumption
of Gaussianity of {xt}, whereas the properties of the LPW estimator considered here
are determined without requiring {xt} to be Gaussian.

The LPW estimators considered in this paper also are related to estimators in-
troduced by Robinson and Henry (2000). They consider a general class of semipara-
metric M-estimators of d0 that utilize higher-order kernels to obtain bias-reduction
like that of the LPW estimator. As they state, their results are heuristic in nature,
whereas the results of this paper are established rigorously under specific regularity
conditions.
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An alternative to the narrow-band approach considered here is a broad-band ap-
proach. In this approach, one imposes regularity conditions on ϕ(λ) for λ in the
whole interval [0, π] and one utilizes a nonparametric estimator of ϕ(λ) for λ ∈ [0, π].
For example, Moulines and Soulier (1999, 2000), Hurvich and Brodsky (2001), Hur-
vich (2001), IMS, and HMS approximate logϕ(λ) by a truncated Fourier series, while
Bhansali and Kokoszka (1997) approximate ϕ(λ) by the spectrum of an autoregres-
sive model. These papers establish that the broad-band estimators exhibit a faster
rate of convergence than the GPH and local Whittle estimators under the given reg-
ularity conditions. These estimators exhibit an asymptotic mean-squared error of
order log(n)/n if the number of parameters in the model goes to infinity at a suitable
rate.

We note that the LPW estimator can be viewed as a semiparametric local (to
frequency zero) version of an approximate maximum likelihood estimator of a par-
ticular parametric FEXP model considered by Diggle (1990) and Beran (1993) that
utilizes polynomials, rather than trigonometric polynomials.

Other papers in the literature that are related to this paper include Henry and
Robinson (1996) and Hurvich and Deo (1999). These papers approximate logϕ(λ)
by a more flexible function than a constant in order to obtain a data-driven choice
of m. In contrast, the present paper uses a more flexible approximation of logϕ(λ)
than a constant for the purposes of bias reduction and increased rate of convergence
in the estimation of d0.

The idea of using a local polynomial approximation can be applied to other esti-
mators of d0, such as the average-periodogram estimator of Robinson (1994) and the
exact local Whittle estimator of Shimotsu and Phillips (2002).

In the paper, we compare the root mean-squared error performance of the ALPW
estimator with the adaptive estimators of GRS and IMS, the FEXP estimator coupled
with a local CL criterion, as in Hurvich (2001), and the Gaussian ARFIMA(1, d, 0)
Whittle quasi-maximum likelihood (QML) estimator analyzed by Fox and Taqqu
(1986). We consider two or three variants of each estimator–one that is theoretically
justified by results in the literature (or is close to it) and one or more that is not.
We consider three models: ARFIMA(1, d, 0); DARFIMA(1, d, 0), which is a model
whose spectral density is discontinuous and equals that of the ARFIMA(1, d, 0) model
for frequencies on an interval [0, λ0] and zero elsewhere, where λ0 = π/2 in the
present case; and long-memory component (LMC) models, which are designed to
have smoothness of the short-run component of the spectral density to be finite–
equal to 1.5 in the present case. We consider three different distributions for the
innovations: normal, t5, and χ22. Sample sizes n = 512 and n = 4, 096 are considered.

The Monte Carlo results can be summarized as follows. (i) The simulation results
are not sensitive to the value of d0 (within the stationary region) or the innova-
tion distribution. (ii) The RMSE of the ALPW estimator is lower than those of
the theoretically-justified GRS and IMS adaptive estimators and the Hurvich (2001)
FEXP estimator, often by a substantial margin, in all but a few of the fifty cases re-
ported in the tables. Hence, of the theoretically-justified adaptive estimators or the
Hurvich (2001) FEXP estimator, the ALPW estimator is clearly the best. (iii) Both
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trimming and tapering of the GRS estimator, as required for the theoretical results in
GRS, hurt the performance of the adaptive GRS estimator. Similarly, tapering of the
IMS estimator, as required for the theoretical results of IMS, hurts the performance
of the adaptive IMS estimator. (iv) The best estimators in an overall sense are the
ALPW estimator, the GRS estimator without trimming or tapering, and the IMS
estimator without tapering but with some pooling. (v) As expected, the parametric
Whittle QML estimator performs very well when the parametric model is correctly
specified; moderately well when the degree of misspecification is moderate; and very
poorly when the degree of misspecification is large.

The remainder of the paper is organized as follows. Section 2 defines the LPW
log-likelihood function. Section 3 states the assumptions used. Section 4 shows that
there exists a sequence of solutions to the FOCs that is consistent and asymptotically
normal. Section 5 shows that this sequence is the LPW estimator and, hence, the
LPW estimator is consistent and asymptotically normal. Section 6 establishes that
the LPW estimator attains the optimal rate of convergence for estimation of d0.
Section 7 introduces the adaptive method for choosing the order, r, of the polynomial
and the bandwidth, m. Section 8 provides the Monte Carlo simulation results. An
Appendix contains proofs.

Throughout the paper, wp→ 1 abbreviates “with probability that goes to one as
n→∞” and || · || signifies the Euclidean norm.

2 Definition of the LPW Log-Likelihood

The j-th fundamental frequency λj, the discrete Fourier transform wj of {xt},
and the periodogram Ij of {xt} are defined by

λj = 2πj/n, wj =
1√
2πn

nX
t=1

xt exp(itλj), and Ij = |wj |2. (2.1)

The local polynomial Whittle log-likelihood is −m/2 times

Qr(d,G, θ) = m−1
mX
j=1

(
log
h
Gλ−2dj exp(−pr(λj, θ))

i
+

Ij

Gλ−2dj exp(−pr(λj, θ))

)
,

where

pr(λj , θ) =
rX

k=1

θkλ
2k
j and θ = (θ1, ..., θr)

0. (2.2)

The log-likelihood is local to frequency zero, because m is taken such that 1/m +
m/n→ 0 as n→∞. The log-likelihood is based on approximating logϕ(λ) by logG−
pr(λ, θ) for λ near zero. The local Whittle log-likelihood considered in Robinson
(1995a) is obtained by setting θ = 0.
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Concentrating Qr(d,G, θ) with respect to G ∈ (−∞,∞) yields the (negative)
concentrated LPW log-likelihood Rr(d, θ) :

Rr(d, θ) = log bG(d, θ)−m−1
mX
j=1

pr(λj , θ)− 2dm−1
mX
j=1

logλj + 1, where

bG(d, θ) = m−1
mX
j=1

Ij exp(pr(λj , θ))λ
2d
j . (2.3)

The LPW estimator (bd(r),bθ(r)) of (d, θ) solves the following minimization prob-
lem:

(bd(r),bθ(r)) = argmin
d∈[d1,d2],θ∈Θ

Rr(d, θ), (2.4)

where Θ is a compact and convex set in Rr. Existence and uniqueness of (bd(r),bθ(r))
is a consequence of strict convexity of Rr(d, θ) (shown below) and convexity and
compactness of the parameter space.

By definition, the estimator of G isbG(r) = bG(bd(r),bθ(r)). (2.5)

3 Assumptions

We now introduce the assumptions that are employed to establish the consistency
and asymptotic normality of (bd(r),bθ(r)). These assumptions utilize the following
definition. Let [s] denote the integer part of s. We say that a real function h defined
on a neighborhood of zero is smooth of order s > 0 at zero if h is [s] times continuously
differentiable in some neighborhood of zero and its derivative of order [s], denoted
h
([s])

, satisfies a Hölder condition of order s − [s] at zero, i.e., |h([s])(λ) − h
([s])
(0)|

≤ C|λ|s−[s] for some constant C <∞ and all λ in a neighborhood of zero.

Assumption 1. f(λ) = |λ|−2d0ϕ(λ), where ϕ(λ) is continuous at 0, 0 < ϕ(0) <∞,
and d0 ∈ [d1, d2] with −1/2 < d1 < d2 < 1/2.

Assumption 2. ϕ(λ) is smooth of order s at λ = 0, where s > 2r and s ≥ 1.
Assumption 2 imposes the regularity on the function ϕ(λ) that characterizes the

semiparametric nature of the model. Under Assumption 2, logϕ(λ) has a Taylor
expansion of the form:

logϕ(λ) = logϕ(0) +

[s/2]X
k=1

b2k
(2k)!

λ2k +O(λs) as λ→ 0+, where

bk =
dk

dλk
logϕ(λ)

¯̄̄̄
λ=0

. (3.1)

The true values for G and θ are G0 = ϕ(0) and θ0 = (θ0,1, ..., θ0,r)0, where

θ0,k = − b2k
(2k)!

for k = 1, ..., r. (3.2)
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Assumption 3. (a) The time series {xt : t = 1, ..., n} satisfies

xt −Ex0 =
∞X
j=0

αjεt−j,

where

∞X
j=0

α2j < ∞, E(εt|Ft−1) = 0 a.s., E(ε2t |Ft−1) = 1 a.s.,

E(ε3t |Ft−1) = σ3 a.s., E(ε4t |Ft−1) = σ4 a.s. for t = ...,−1, 0, 1, ...,

and Ft−1 is the σ-field generated by {εs : s < t}.
(b) There exists a random variable ε with Eε2 <∞ such that for all ν > 0 and some
K > 0, P (|εt| > ν) < KP (|ε| > ν).
(c) In some neighborhood of the origin, (d/dλ)α(λ) = O(|α(λ)|/λ) as λ→ 0+, where
α(λ) =

P∞
j=1 αje

−ijλ.

Assumption 3 states that the time series {xt} is a linear process with martingale
difference innovations. Unlike most results for log-periodogram regression estima-
tors, Assumption 3 allows for non-Gaussian processes. Assumption 3(a) and (b) is
the same as Assumption A30 of Robinson (1995a). Assumption 3(c) is the same as
Assumption A20 of Robinson (1995a). It should be possible to weaken the assumption
that E(ε4t |Ft−1) = σ4 a.s. along the lines of Robinson and Henry (1999).

Assumption 4. m2r+1/2/n2r → ∞ and mφ+1/2/nφ = O(1) as n → ∞, where
φ = min{s, 2 + 2r}.

The two conditions in Assumption 4 are always compatible because s > 2r by
Assumption 2. The first condition of Assumption 4 is used to ensure that the ma-
trix Bn that is used to normalize the gradient and Hessian of mRr(d, θ) satisfies
λmin(Bn) → ∞, which is required for consistency of (bd(r),bθ(r)). The second condi-
tion of Assumption 4 is used to guarantee that the normalized gradient ofmRr(d0, θ0)
is Op(1), which is required for asymptotic normality of (bd(r),bθ(r)).

If r = 0 and Assumption 2 holds with s = 2, then Assumption A10 of Robinson
(1995a) holds with β = 2. His Assumption A40 on m is weakest when β = 2 and
in this case it requires that 1/m + m5(log2m)/n4 → 0. In contrast, if r = 0 and
our Assumption 2 holds with s = 2, then our Assumption 4 requires 1/m → 0 and
m5/n4 = O(1), which is slightly weaker than Robinson’s Assumption A40. (It seems
that the log2m term in Robinson’s Assumption A40 is superfluous. It is used on
p. 1644 of Robinson’s proof of Theorem 2 to bound (4.11), but does not appear
to be necessary because νj − νj+1 = O(j−1) and νm = O(1), where νj := log j −
m−1

Pm
k=1 log k.)

Assumption 5. Θ is compact and convex and θ0 lies in the interior of Θ.
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4 Existence of Solutions to the First-order Conditions

We start this section by stating a general Lemma that provides sufficient condi-
tions for the existence of a consistent sequence of solutions to the FOCs of a sequence
of stochastic optimization problems. The Lemma also provides an asymptotic rep-
resentation of the (normalized) solutions. Next, we apply the Lemma to the LPW
log-likelihood. The Lemma has numerous antecedents in the literature, e.g., see Weiss
(1971, 1973), Crowder (1976), Heijmans and Magnus (1986), and Wooldridge (1994).
The Lemma given here is closest to that of Wooldridge (1994, Theorem 8.1).

Let {Ln(γ) : n ≥ 1} be a sequence of minimands for estimation of the parameter
γ0 ∈ Γ ⊂ Rk, where Γ is the parameter space. Denote the gradient and Hessian of
Ln(γ) by ∇Ln(γ) and ∇2Ln(γ) respectively.

Lemma 1 Suppose γ0 is in the interior of Γ, Ln(γ) is twice continuously differ-
entiable on a neighborhood of γ0, and there exists a sequence of k × k non-random
nonsingular matrices Bn such that

(i) ||B−1n ||→ 0 as n→∞,

(ii) (B−1n )0∇Ln(γ0) = Op(1) as n→∞,

(iii) for some η > 0, λmin
¡
(B−1n )0∇2Ln(γ0)B

−1
n

¢ ≥ η wp→ 1, and

(iv) sup
γ∈Γ:||Bn(γ−γ0)||≤Kn

||(B−1n )0(∇2Ln(γ)−∇2Ln(γ0))B
−1
n || = op(1) as n→∞

for some sequence of scalar constants {Kn : n ≥ 1} for which Kn → ∞ as
n → ∞. Then, there exists a sequence of estimators {eγn : n ≥ 1} that satisfy the
first-order conditions ∇Ln(eγn) = 0 wp→ 1 and

Bn(eγn − γ0) = −Yn + op(1) = Op(1), where

Yn = ((B
−1
n )0∇2Ln(γ0)B

−1
n )−1(B−1n )0∇Ln(γ0).

The proofs of Lemma 1 and other results below are given in the Appendix of
Proofs.

We apply Lemma 1 with γ = (d, θ0)0, Ln(γ) = mRr(d, θ), and Bn equal to the
(r + 1)× (r + 1) diagonal matrix with j-th diagonal element [Bn]jj defined by

[Bn]11 = m1/2 and [Bn]jj =

µ
2πm

n

¶2j−2
m1/2 for j = 2, ..., r + 1. (4.1)

The first condition of Assumption 4 guarantees that ||B−1n || → 0, as required by
condition (i) of Lemma 1.

To verify conditions (ii)—(iv) of Lemma 1, we need to establish some properties
of the normalized score (i.e., gradient) and Hessian of mRr(d, θ). The score vector
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and Hessian matrix of mRr(d, θ) are denoted Sn(d, θ) = m∇Rr(d, θ) and Hn(d, θ)
= m∇2Rr(d, θ) respectively. Some algebra gives

Sn(d, θ) = bG−1(d, θ) mX
j=1

Ã
yj(d, θ)−m−1

mX
k=1

yk(d, θ)

!
Xj and

Hn(d, θ) = bG−2(d, θ)
 bG(d, θ) mX

j=1

yj(d, θ)XjX
0
j

−m
m−1 mX

j=1

yj(d, θ)Xj

m−1
mX
j=1

yj(d, θ)Xj

0 (4.2)

where

yj(d, θ) = Ij exp(pr(λj , θ))λ
2d
j and

Xj = (2 log j, λ2j , ..., λ
2r
j )

0. (4.3)

We show below that the normalized Hessian, B−1n Hn(d0, θ0)B
−1
n , converges in

probability to the (r + 1)× (r + 1) matrix Ωr defined by

Ωr =

µ
4 2µ0r
2µr Γr

¶
, (4.4)

where µr is a column r-vector with k-th element µr,k, Γr is an r × r matrix with
(i, k)-th element [Γr]i,k,

µr,k =
2k

(2k + 1)2
for k = 1, ..., r, and

[Γr]i,k =
4ik

(2i+ 2k + 1)(2i+ 1)(2k + 1)
for i, k = 1, ..., r. (4.5)

For r = 0, define Ωr = 4.
We show below that the asymptotic bias of the normalized score, B−1n Sn(d0, θ0),

is −νn(r, s), where
νn(r, s) = mφ+1/2n−φ

¡
1(s ≥ 2 + 2r)b2+2rκrξ+r + 1(2r < s < 2 + 2r)O(1)

¢
= 1 (s ≥ 2 + 2r)m5/2+2rn−(2+2r)b2+2rκrξ+r

+1
³
2r < s < 2 + 2r)O(ms+1/2n−s

´
, (4.6)

and

ξ+r =

µ
2
ξr

¶
,

ξr = (ξr,1, ..., ξr,r)
0,

ξr,k =
2k(3 + 2r)

(2r + 2k + 3)(2k + 1)
for k = 1, ..., r, and

κr = − (2π)
2+2r(2 + 2r)

(3 + 2r)!(3 + 2r)
. (4.7)
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The following Lemma establishes the asymptotic properties of the normalized
score and Hessian, which are needed to verify conditions (ii)—(iv) of Lemma 1. The
following quantities arise in the Lemma:

Dm(η) = {d ∈ [d1, d2] : (log5m)|d− d0| < η} for η > 0 and

Jn =
mX
j=1

Ã
Xj −m−1

mX
k=1

Xk

!Ã
Xj −m−1

mX
k=1

Xk

!0
. (4.8)

Lemma 2 Under Assumptions 1—5, as n→∞, we have

(a) B−1n JnB
−1
n → Ωr,

(b) ||B−1n (Hn(d0, θ0)− Jn)B
−1
n || = op(1),

(c) sup
θ∈Θ

||B−1n (Hn(d0, θ)−Hn(d0, θ0))B
−1
n || = op(1),

(d) sup
d∈Dm(ηn),θ∈Θ

||B−1n (Hn(d, θ)−Hn(d0, θ))B
−1
n || = op(1) for all sequences of

constants {ηn : n ≥ 1} for which ηn = o(1),

(e) B−1n Sn(d0, θ0) + νn(r, s)→d N(0,Ωr).

Comments: 1. Part (c) of the Lemma is unusual. It states that the normalized
Hessian matrix Hn(d0, θ) does not depend on θ up to op(1) uniformly over θ ∈ Θ. In
most nonlinear estimation problems, this would not hold.

2. The proof of Lemma 2 relies heavily on the proof of Thm. 2 of Robinson
(1995a), as well as Thm. 2 of Robinson (1995b) and Thm. 5.2.4 of Brillinger (1975).

We now use the results of Lemma 2 to verify the conditions (ii)—(iv) of Lemma
1. Condition (ii) holds by Lemma 2(e) and the second condition of Assumption 4.
Condition (iii) holds by Lemma 2(a) and (b) and the positive definiteness of Ωr.
Condition (iv) holds with Kn = m1/2ηn log

−5m for some sequence ηn that goes to
zero sufficiently slowly that Kn →∞, e.g., ηn = log

−1m, by Lemma 2(c) and (d).
In consequence, the application of Lemma 1 with Ln(γ) = mRr(d, θ) combined

with the convergence results of Lemma 2 gives the following Theorem:

Theorem 1 Under Assumptions 1—5, there exist solutions (ed(r),eθ(r)) to the first-
order conditions (∂/∂(d, θ0)0)Rr(d, θ) = 0 wp→ 1 and

Bn

Ã ed(r)− d0eθ(r)− θ0

!
−Ω−1r νn(r, s)→d N(0,Ω

−1
r ).
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5 Consistency and Asymptotic Normality

We start by showing that the Hessian Hn(d, θ) is positive definite (pd) for all
(d, θ). By (4.2), for any c ∈ R1+r with c 6= 0,

c0Hn(d, θ)c · bG2(d, θ)/m
= bG(d, θ)m−1 mX

j=1

yj(d, θ)(c
0Xj)

2 −
m−1

mX
j=1

yj(d, θ)c
0Xj

2 (5.1)

The rhs can be written as a0a ·b0b−(a0b)2 > 0, where a and b are m-vectors with aj =
(m−1yj(d, θ))1/2 and bj = (m−1yj(d, θ)c0Xj)

1/2 for j = 1, ...,m and the inequality
holds by the Cauchy-Schwarz inequality. This establishes the following Lemma.

Lemma 3 The (negative) concentrated LPW log-likelihood, Rr(d, θ) is strictly con-
vex on [d1, d2]×Θ.

The LPW log-likelihood Rr(d, θ) is a continuous function defined on a compact
set. Hence, the LPW estimator exists. Strict convexity of Rr(d, θ) implies that
the LPW estimator is unique. Furthermore, strict convexity and twice continuous
differentiability of Rr(d, θ) imply that if a solution (ed(r),eθ(r)) to the FOCs exists,
then it minimizes Rr(d, θ) over the parameter space and, hence, equals (bd(r),bθ(r)).
This can be shown by a two term Taylor expansion. Let eγ(r) = (ed(r),eθ(r)0)0. Then,
for all γ = (d, θ0)0 6= eγ(r) in the parameter space,

mRr(γ)−mRr(eγ(r))
= Sn(eγ(r))0(γ − eγ(r)) + 1

2
(γ − eγ(r))0Hn(γ(r))(γ − eγ(r))

=
1

2
(γ − eγ(r))0Hn(γ(r))(γ − eγ(r)) > 0, (5.2)

where γ(r) lies between γ and eγ(r), the second equality holds by the FOCs, and the
inequality holds because the Hessian is pd for all γ = (d, θ0)0 by strict convexity.

In consequence, Theorem 1 and Lemma 3 imply the following consistency and
asymptotic normality result for the LPW estimator.

Theorem 2 Under Assumptions 1—5, the LPW estimator (bd(r),bθ(r)) satisfiesÃ
m1/2(bd(r)− d0)

m1/2Diag
¡
(2πm/n)2, ..., (2πm/n)2r

¢ ³bθ(r)− θ0
´ !−Ω−1r νn(r, s)→d N(0,Ω

−1
r )

as n→∞.

Comments: 1. By the formula for a partitioned inverse,

Ω−1r =

µ
cr
4 −cr

2 µ
0
rΓ
−1
r

− cr
2 Γ

−1
r µr Γ−1r + crΓ

−1
r µrµ

0
rΓ
−1
r

¶
, where

cr = (1− µ0rΓ
−1
r µr)

−1 for r > 0 and c0 = 1. (5.3)

Hence, the asymptotic variance of m1/2(bd(r)− d0)) is cr/4, which is free of nuisance
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parameters. The use of the polynomial pr(λj , θ) in the specification of the local
Whittle likelihood increases the asymptotic variance of bd(r) by the multiplicative
constant cr. For example, c1 = 9/4, c2 = 3.52, c3 = 4.79, and c4 = 6.06.

2. The “asymptotic bias” of bd(r) equals the first element of m−1/2Ω−1r νn(r, s).
Using (5.3) and the definition of νn(r, s) in (4.6), the asymptotic bias of bd(r) equals

1(s ≥ 2 + 2r)τ rb2+2rm2+2rn−(2+2r) + 1(2r < s < 2 + 2r)O(ms/ns), where

τ r =
κrcr
2
(1− µ0rΓ

−1
r ξr). (5.4)

For example, τ0 = −2.19, τ1 = 2.23, τ2 = −.793, τ3 = .146, and τ4 = −.0164.
3. By (5.4), the asymptotic bias of bd(r) is of order mφ/nφ, where φ = min{s,

2 + 2r}. In contrast, the asymptotic bias of bd(0) is of order m2/n2. The asymptotic
bias of bd(r) is smaller than that of bd(0) by an order of magnitude provided ϕ(·) is
smooth of order s > 2, because in this case φ > 2.

4. If s ≥ 2 + 2r and limn→∞m5/2+2r/n2+2r = A ∈ (0,∞), thenÃ
m1/2(bd(r)− d0)

m1/2
¡
(2πm/n)2, ..., (2πm/n)2r

¢³bθ(r)− θ0

´ !→d N
¡
Ab2+2rκrΩ

−1
r ξ+r ,Ω

−1
r

¢
.

(5.5)
The only unknown quantity in the asymptotic distribution is b2+2r. The asymptotic
bias and variance of m1/2(bd(r)− d0) are Aτ rb2+2r and cr/4 respectively.

5. If s ≥ 2+ 2r, then using Comments 1 and 2, the “asymptotic MSE” of bd(r) is
AMSE(bd(r)) = τ2rb

2
2+2r(

m

n
)4+4r +

cr
4m

. (5.6)

Minimization over m of AMSE(bd(r)) gives the AMSE—optimal choice of m :

mopt =

"µ
cr

16(1 + r)τ2rb
2
2+2r

¶1/(5+4r)
n(4+4r)/(5+4r)

#
, (5.7)

where [a] denotes the integer part of a. When r = 0 and s = 2, this gives the same
formula for mopt as in Henry and Robinson (1996) (where their Eβ(H) equals our
b2/2). The formula for mopt contains only one unknown, b2+2r.

6. Assumption 4 allows one to take m much larger for bd(r) than for bd(0). In
consequence, by appropriate choice of m, one has asymptotic normality of bd(r) with
a faster rate of convergence (as a function of the sample size n) than is possible withbd(0). See Section 7 for an adaptive choice of m and r.

7. Inflation of the asymptotic variance by the factor cr due to the addition of
parameters, see Comment 1, also is found in AG for a bias-reduced log-periodogram
regression estimator of d0. In consequence, the LPW estimator bd(r) maintains exactly
the same advantage over the bias-reduced log-periodogram regression estimator, in
terms of having a smaller asymptotic variance, as the local Whittle estimator has
over the GPH log-periodogram regression estimator. For any r ≥ 0, the ratio of their
asymptotic variances is (cr/4)÷ (π2cr/24) $ .608.
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8. The asymptotic bias in (5.4) is the same as that found in AG for the bias-
reduced log-periodogram estimator of d0. Hence, the LPW estimator has the same
asymptotic bias, but smaller asymptotic variance, than the latter estimator of d0.

Theorem 2 provides new results for the local Whittle estimator bd(0) that is ana-
lyzed in Robinson (1995a).

Corollary 1 Under Assumptions 1—5, m1/2(bd(0)− d0)− νn(0, s)/4→d N(0, 1/4) as
n→∞.

Comments: 1. The “asymptotic bias” of bd(0) is
m−1/2νn(0, s)/4 = −1(s ≥ 2)(2π2/9)(m2/n2)b2 + 1(1 ≤ s < 2)O(ms/ns).

2. An analogous result to Corollary 1, but for the GPH estimator, is given by
Hurvich and Deo (1999, Thm. 2). A comparison of Corollary 1 with Thm. 2 of
Hurvich and Deo (1999) shows that the local Whittle estimator of d0 has the same
asymptotic bias as that of the GPH estimator when s ≥ 2, but smaller asymptotic
variance. The latter is well-known, but the former is a new result. This result
implies that the local Whittle estimator dominates the GPH estimator in terms of
asymptotic mean-squared error (where the latter is defined to be the second moment
of the asymptotic distribution of the estimator) provided m is chosen appropriately.

3. Robinson (1995a) does not provide an expression for the asymptotic bias of
the local Whittle estimator. His Assumption A40 restricts the growth rate of m such
that νn(0, s) = op(1). Henry and Robinson (1996) provide a heuristic expression for
the asymptotic bias of the local Whittle estimator in their equation (1.3).2

6 Optimal Rate of Convergence

In this section, we show that the LPW estimator attains the optimal rate of
convergence for estimation of d0 established in AG for Gaussian processes. In fact,
the LPW estimator attains this rate whether or not the process is Gaussian. This
is an advantage of the LPW estimator over the bias-reduced estimator considered in
AG, which is shown to attain the optimal rate for Gaussian processes. The optimal
rate established in AG is related to, and relies on, results of Giraitis, Robinson, and
Samarov (1997).

We consider a minimax risk criterion with 0—1 loss. The class of spectral density
functions that are considered includes functions that are smooth of order s ≥ 1. The
optimal rate is n−s/(2s+1), which is arbitrarily close to the parametric rate n−1/2 if s
is arbitrarily large. We show that the LPW estimator, bd(r), attains this rate when r
is the largest integer less than s/2 and m is chosen appropriately.

Let s and the elements of a = (a0, a00, a1, ..., a[s/2])
0, δ = (δ1, δ2, δ3)0, and K

= (K1,K2,K3)0 be positive finite constants with a0 < a00 and δ1 < 1/2. We consider
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the following class of spectral densities:

F(s, a, δ,K) = {f : f(λ) = |λ|−2dfϕ(λ), |df | ≤ 1/2− δ1,

Z π

−π
f(λ)dλ ≤ K1, and

ϕ is an even function on [−π, π] that satisfies (i) a0 ≤ ϕ(0) ≤ a00,

(ii) ϕ(λ) = ϕ(0) +

[s/2]X
k=1

ϕkλ
2k +∆(λ) for some constants ϕk with |ϕk| ≤ ak for

k = 1, ..., [s/2] and some function ∆(λ) with |∆(λ)| ≤ K2λ
s for all 0 ≤ λ ≤ δ2,

(iii) |ϕ(λ1)− ϕ(λ2)| ≤ K3|λ1 − λ2| for all 0 < λ1 < λ2 ≤ δ3}. (6.1)

If ϕ is an even function on [−π, π] that is smooth of order s ≥ 1 at zero and
f(λ) = |λ|−2dfϕ(λ) for some |df | < 1/2, then f is in F(s, a, δ,K) for some a, δ, and
K. Condition (ii) of F(s, a, δ,K) holds in this case by taking a Taylor expansion of
ϕ(λ) about λ = 0. The constants ϕk equal ϕ

(2k)(0)/(2k)! for k = 1, ..., [s/2] and ∆(λ)
is the remainder in the Taylor expansion. Condition (iii) of F(s, a, δ,K) holds in
this case by a mean value expansion because ϕ has a bounded first derivative in a
neighborhood of zero.

The optimal rate results are given in the following Theorem. Part (a) is from
Theorem 3 of AG.

Theorem 3 Let s and the elements of a = (a0, a00, a1, ..., a[s/2])
0, δ = (δ1, δ2, δ3)

0,
and K = (K1,K2,K3)

0 be any positive real numbers with s ≥ 1, a0 < a00, δ1 < 1/2,
and K1 ≥ 2πa00.
(a) Suppose {xt} is a sequence of Gaussian random variables with spectral density
function f ∈ F(s, a, δ,K). Then, there is a constant C > 0 such that

lim inf
n→∞ infbdn sup

f∈F(s,a,δ,K)
Pf (n

s/(2s+1)|bdn − df | ≥ C) > 0,

where the inf is taken over all estimators bdn of df and Pf denotes probability when
the true spectral density is f.
(b) Suppose {xt} is a sequence of random variables that has spectral density func-
tion f ∈ F(s, a, δ,K) and satisfies Assumptions 3 and 5 with the innovations {εt :
t = ..., 0, 1, ...} in Assumption 3 having distribution that does not depend on f ∈
F(s, a, δ,K) and with the O(·) term in Assumption 3(c) holding uniformly over
f ∈ F(s, a, δ,K). Let m = ψ1n

2s/(2s+1) for some constant ψ1 ∈ (0,∞) and let r ≥ 0
be the largest integer (strictly) less than s/2. Then,

lim
C→∞

lim sup
n→∞

sup
f∈F(s,a,δ,K)

Pf (n
s/(2s+1)|bd(r)− df | ≥ C) = 0.

Comment: Part (b) of the Theorem is proved by showing that Ψn := m1/2(bd(r)−
df )− [Ω−1r νn(r, s)]1 is asymptotically normal uniformly over f ∈ F(s, a, δ,K), where
[v]1 denotes the first element of the vector v. For a fixed spectral density f, asymptotic
normality of Ψn is established by showing that the normalized score, B−1n Sn(d0, θ0),
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can be written as
P4

u=1 Tu,n, where T1,n = op(1), T2,n = o(1), T3,n →d N(0,Ωr), and
T4,n+νn(r, s)→ 0, see the proof of Lemma 2(e). Hence, asymptotic normality of Ψn

is driven by the term T3,n. The key to the proof of part (b) is that the distribution
of T3,n does not depend on f. One obtains asymptotic normality of Ψn uniformly
over f ∈ F(s, a, δ,K) provided the other terms behave appropriately uniformly over
f ∈ F(s, a, δ,K).

7 An Adaptive LPW Estimator

The definition of bd(r) depends on r, the degree of the local polynomial. In turn,
a suitable choice of bandwidth m depends on r. In this section, we develop a proce-
dure to choose r and m so they adapt to the smoothness of ϕ(λ). The basic method
comes from Lepskii (1990) and has been used in the context of estimation of the
long-memory parameter by GRS, IMS, and HMS. We show that an adaptive LPW
estimator achieves, up to a logarithmic factor, the optimal rate of convergence es-
tablished in the previous section uniformly over values of the smoothness parameter
s ∈ [s∗, s∗], where s∗ and s∗ are constants that satisfy 1 ≤ s∗ ≤ s∗ <∞. Furthermore,
the same estimator achieves this result for all s∗ <∞, so there is no need to select an
upper bound s∗. This contrasts with the procedures considered in Lepskii (1990) and
GRS. The adaptive procedure achieves this rate of convergence without assuming
Gaussianity of the process, which contrasts with the results of GRS, IMS, and HMS.

Let s ∈ [s∗,∞) for s∗ ≥ 1. For a positive constant ψ1, set

m(s) = ψ1n
2s

2s+1 and

r(s) = w for s ∈ (2w, 2w + 2] for w = 0, 1, ... . (7.1)

Equivalently, r(s) = [s/2] if s/2 /∈ N and r(s) = s/2− 1 if s/2 ∈ N.
Denote bds = bd(r(s)) when the bandwidth is m(s). Let h = 1/ logn and Sh be the

h-net of the interval [s∗,∞): Sh = {τ : τ = s∗ + kh, k = 0, 1, 2, ...}. Define

bs = sup
n
s ∈ Sh :

¯̄̄ bdτ − bds ¯̄̄ ≤ m−1/2(τ)ψ2(cr(τ)/4)
1/2ζ(n) for all τ ≤ s, τ ∈ Sh

o
,

ζ(n) = (logn)(log log(n))1/2, (7.2)

where ψ2 is a positive constant. Graphically, one can view the bound in the definition
of bs as a function of τ. Then, bs is the largest value of s ∈ Sh such that |bdτ − bds| lies
below the bound for all τ ≤ s, τ ∈ Sh. Calculation of bs is carried out by considering
successively larger s values s∗, s∗+h, s∗+2h, ... until for some s the deviation |bdτ− bds|
exceeds the bound for some τ ≤ s, τ ∈ Sh.

The adaptive estimator bdbs satisfies the following result.
Theorem 4 Let the elements of a = (a0, a00, a1, ..., a[s/2])

0, δ = (δ1, δ2, δ3)0, and
K = (K1,K2,K3)0 be any positive real numbers with a0 < a00, δ1 < 1/2, and
K1 ≥ 2πa00. Suppose {xt} is a sequence of random variables that has spectral density
function f ∈ F(s, a, δ,K) and satisfies Assumptions 3 and 5 with the innovations
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{εt : t = ..., 0, 1, ...} in Assumption 3 having distribution that does not depend on
f ∈ F(s, a, δ,K) and with the O(·) term in Assumption 3(c) holding uniformly over
f ∈ F(s, a, δ,K). Let s∗ ≥ 1. For all s∗ ∈ [s∗,∞),

lim
C1→∞

lim sup
n→∞

sup
s∈[s∗,s∗]

sup
f∈F(s,a,δ,K)

Pf

³
n

s
2s+1 ζ−1(n)|bdbs − df | ≥ C1

´
= 0.

Comments: 1. By Theorem 3, for f ∈ F(s, a, δ,K), the optimal rate of convergence
of an estimator of df for a given value of s is n−s/(2s+1). Theorem 4 shows that the
adaptive LPW estimator, bdbs, achieves this rate up to the logarithmic factor ζ(n)
uniformly over s ∈ [s∗, s∗] for any s∗ ∈ [s∗,∞).
2. Theorem 4 does not require {xt} to be a Gaussian process. In fact, it only requires
xt to have finite fourth moments.
3. For a density f that is in F(s, a, δ,K) for all s <∞, Theorem 4 shows bdbs is n1/2−δ-
consistent for all δ > 0. That is, bdbs has a rate of convergence that is arbitrarily close
to the parametric rate. For example, this is the rate obtained for ARFIMA(p, d, q)
processes.
4. In the simulations reported in Section 8, we take s∗ = 1, which allows for the
smoothness of ϕ(λ) to be any s ≥ 1.
5. We note that the adaptive procedure considered here is not fully data-dependent.
The constants ψ1 and ψ2 must be specified. In the simulation section below, we take
ψ1 = .3 and ψ2 = .2. These choices work well for a variety of different models and
parameter values. Note that analogous constants also appear (or are set equal to
arbitrary values) in the adaptive procedures of Lepskii (1990), GRS, IMS, and HMS.
6. Suppose r(s) is defined to equal zero, which corresponds to the standard local
Whittle estimator, and bs is otherwise defined as above. Then, the result of still
Theorem 4 holds, but only for the class of spectral densities F(s, a, δ,K) for which
ak = 0 for k = 1, 2, ... . This class of spectral densities is analogous to that considered
by GRS. As discussed in AG, this condition is quite restrictive. Spectral densities
that are smooth of order s at zero only satisfy this condition if all the coefficients of
the Taylor expansion of ϕ(λ) about λ = 0 to order [s] are zero.
7. The adaptive estimator of Theorem 4 is not necessarily asymptotically normal.
However, at the cost of a slower rate of convergence, an adaptive estimator can be
constructed that is asymptotically normal with zero asymptotic bias by altering the
definition of m(s) so that m(s) diverges to infinity at a slower rate than n2s/(2s+1).
For example, suppose one defines bs as above but with

m(s) = ψ1n
4r(s)/(4r(s)+1). (7.3)

Then, it can be shown that the result of Theorem 4 holds but with ns/(2s+1) replaced
by nr(s)/(2r(s)+1). Now, suppose the true spectral density of {xt} is f and Assumptions
3 and 5 hold as in Theorem 4. Let sf be the supremum of {s : f ∈ F(s, a, δ,K) for
some (a, δ,K), where (a, δ,K) are as in Theorem 4}. Provided sf < ∞ and sf is
not an even integer, Theorems 3 and 4 imply that r(bs) = r(sf ) wp→ 1. Thus, r(bs)
and m(bs) are essentially non-random for large n. In consequence, the asymptotic
normality result of Theorem 2 applies to the adaptive estimator bdbs with r = r(sf )
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and νn(r(sf ), sf ) = o(1) in the result of Theorem 2, where o(1) holds by (4.6) with
sf ∈ (2r(sf ), 2 + 2r(sf )), m = m(sf ), and m(sf )

sf+1/2n−sf = o(1). Of course,
one would expect that a given level of accuracy of approximation by the normal
distribution would require a larger sample size when r and m are adaptively selected
than otherwise.

8 Monte Carlo Simulations

8.1 Experimental Design

In this section, we present some simulation results that compare the root mean-
square error (RMSE) performance of the adaptive LPW estimator with several adap-
tive estimators in the literature. Additional simulation results for non-adaptive LPW
estimators are given in Andrews and Sun (2001).

We consider three models and several parameter combinations for each model.
The first model we consider for the time series {xt : t ≥ 1} is a first-order autore-

gressive fractionally integrated (ARFIMA (1, d, 0)) model with autoregressive (AR)
parameter φ and long-memory parameter d0:

(1− φL)(1−L)d0xt = ut, (8.1)

where the innovations {ut : t = ..., 0, 1, ...} are iid random variables and L denotes
the lag operator. We consider three distributions for ut: standard normal, t5, and
χ22. The t5 and χ22 distributions are considered because they exhibit thick tails and
asymmetry, respectively. All of the estimators of d0 that we consider are invariant
with respect to the mean and variance of the time series. In consequence, the choice
of location and scale of the innovations is irrelevant. Note that the spectral density
of an ARFIMA(1, d, 0) process is continuous and infinitely differentiable on (0, π].

The second model we consider is a stationary ARFIMA(1, d, 0)-like model that
has a discontinuity in its spectral density at frequency λ = λ0. We call this model a
DARFIMA(1, d, 0) model. Its spectral density is that of an ARFIMA(1, d, 0) process
for λ ∈ (0, λ0], but is zero for λ ∈ (λ0, π]. A DARFIMA(1, d, 0) process {xt : t ≥ 1} is
defined as in (8.1), but with innovations {ut : t = ..., 0, 1, ...} that are an iid Gaussian
process filtered by a low pass filter. Specifically,

ut =
∞X

j=−∞
cjεt−j for t = ..., 0, 1, ..., where cj =

(
λ0
π , for j = 0
sin(λ0j)

jπ , for j 6= 0 (8.2)

and {εt : t = ..., 0, 1, ...} are iid random variables with standard normal, t5, or χ22
distribution. The spectral density fu(λ) of {ut : t ≥ 1} equals σ2u/(2π) for 0 <
λ ≤ λ0 and equals 0 for λ0 < λ ≤ π, where σ2u denotes the variance of ut, e.g.,
see Brillinger (1975, eqn. (3.3.25), p. 58). The spectral density of {xt : t ≥ 1} is
fu(λ) times the spectral density of the ARFIMA(1, d, 0) process that has the same
AR parameter. Thus, the spectral density of a DARFIMA process is a truncated
discontinuous version of that of the corresponding ARFIMA process.

18



The third model we consider is a model that we call a long-memory components
(LMC) model. It is designed to have a finite degree of smoothness s0 at frequency
zero in the short-run part, ϕ(λ), of its spectral density. The process {xt : t ≥ 1} is
defined by

(1− L)d0xt = ut + k(1− L)s0/2vt, (8.3)

where {ut : t ≥ 1} and {vt : t ≥ 1} are independent iid processes both with normal,
t5, or χ22 distribution. The spectral density function of {ut+k(1−L)s0/2vt : t ≥ 1} is

ϕs0,k(λ) =
σ2

2π
+

k2σ2

2π
|1− eiλ|s0 , (8.4)

where σ2 denotes the variance of ut and vt. Because |1 − eiλ| ∼ λ as λ → 0, the
smoothness of ϕs0,k(λ) at λ = 0 is s0.

For the ARFIMA and DARFIMA models, we consider seven values of φ, viz., 0,
.3, .6, .9, −.3, −.6, and −.9. For the DARFIMA model, we take λ0 to equal π/2. For
the LMC model, we take s0 = 1.5 and consider five values of k, viz., 1/3, 1/2, 1, 2,
and 3. For all three models, we consider three values of d0, viz., d0 = −.4, 0, and .4.
For each model, we consider two sample sizes n = 512 and n = 4, 096. In all cases,
1,000 simulation repetitions are used. This produces simulation standard errors that
are roughly 3% of the magnitudes of the reported RMSE’s.

The estimators that we consider include the adaptive LPW (ALPW) estimator
defined in the previous section, the adaptive log-periodogram regression estimator
of GRS, the adaptive FEXP estimator of IMS, and the FEXP estimator of Hurvich
(2001) (H) with the number of terms in the expansion chosen by his local CL method.
Each of these estimators requires the specification of certain constants in the adaptive
or local CL procedure. In addition, the estimator analyzed by GRS requires trim-
ming of frequencies near zero and tapering of the periodogram, and the estimator
analyzed by IMS requires tapering of the periodogram and allows for pooling of the
periodogram.

The constants in the adaptive procedures are tuned to the Gaussian ARFIMA
model with φ = .6 with n = 512. That is, they are determined by simulation to be
the values (from a grid) that yield the smallest RMSE for the Gaussian ARFIMA
model with φ = .6 and n = 512. These values are then used for all of the processes
considered in the experiment. For the ALPW procedure, the grid for the constant
ψ1 is {.1, .2, ..., .5} and the grid for ψ2 is {.05, .10, ..., .70}. For the GRS procedure,
their constant β∗ is taken to be two (as suggested on their p. 192). In addition, we
introduce two constants ψ1 and ψ2 that are analogous to the constants that appear
in the adaptive procedure for ALPW.5 The grid for ψ1 is {.1, .2, ..., 1.0} and the
grid for ψ2 is {.05, .10, ..., .70}. The constants ψ1 and ψ2 are introduced in order to
give the GRS adaptive procedure a degree of flexibility that is comparable to that
of the ALPW procedure. For the IMS procedure, their constant κ is analogous to
the constant ψ2 of the ALPW estimator and is chosen from the same grid as ψ2
and the pooling size (m in IMS’s notation and denoted pool below) is determined
simultaneously with the constant κ from the grid {1, 2, ..., 6}.6
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We analyze several versions of the adaptive estimators. The first version is a
version that is closest to being covered by the theoretical results in the literature. We
refer to these as being the “theoretically-justified” estimators and they are denoted
ALPW1, GRS1, and IMS1. (The ALPW1 estimator is covered by the results of this
paper. The GRS1 estimator uses constants ψ1 and ψ2 that are not covered by the
results of GRS and the IMS1 estimator uses a constant κ and an upper bound on the
number p of Fourier terms that are not covered by the results of IMS, see footnote 7.)
The GRS1 estimator uses the cosine-bell taper with two out of every three frequencies
dropped (as in GRS) and three frequencies near the origin are trimmed (trim = 3)
when n = 512 and six are trimmed (trim = 6) when n = 4, 096. The IMS1 estimator
uses the Hurvich taper (of order one) with one frequency dropped between each
pool group of frequencies, as in Sec. 2.2 of HMS. (Note that for the case where no
differencing is carried out to eliminate potential trends, the IMS and HMS adaptive
estimators are essentially the same except that HMS uses a scheme that deletes fewer
frequencies, which we employ here.)

The second and third versions of the adaptive estimators that we consider do
not have known theoretical properties. The ALPW2 estimator is the same as the
ALPW1 estimator except that a bound is placed on the degree of the polynomial.
Specifically, bs is defined as in (7.2), the bandwidth is taken to bem(bs), and the degree
of the polynomial is taken to be min{r(bs), 2} when n = 512 and min{r(bs), 4} when
n = 4, 096.

The estimator GRS2 differs from GRS1 in that it does not trim any frequencies
near zero. The estimator GRS3 differs from GRS1 in that it does not trim frequencies
near zero, use a taper, or drop two out of every three frequencies. The estimator IMS2
differs from IMS1 in that it does not use a taper or drop any frequencies.

The constants determined by simulation are: ALPW1: (ψ1, ψ2) = (.3, .2); ALPW2:
(ψ1, ψ2) = (.3, .5); GRS1: (ψ1, ψ2) = (.6, .5); GRS2: (ψ1, ψ2) = (.3, .6); GRS3:
(ψ1, ψ2) = (.2, .25); IMS1: (pool, κ) = (2, .65) ; and IMS2: (pool, κ) = (2, .45).

The H procedure requires the specification of a constant α. We consider the two
values α = .5 and α = .8 that are considered in the Hurvich paper. The corresponding
estimators are denoted H1 and H2. (The value α = .8 turns out to minimize RMSE of
the FEXP estimator for the ARFIMA process with φ = .6 and n = 512 over α values
in {.1, .2, ..., .8}.7) The theoretical properties of the H procedure, such as its rate of
convergence, are not given in Hurvich (2001). For this reason, we do not put the H1
and H2 estimators in with the first group of “theoretically-justified” estimators.

The final estimator that we consider is the parametric Whittle quasi-maximum
likelihood (QML) estimator for a Gaussian ARFIMA(1, d, 0) model. This estimator
is misspecified when the model under consideration is the DARFIMA( 1, d, 0) model
or the LMC model. This estimator is included in the simulations for comparative
purposes.

8.2 Monte Carlo Results

Tables I-III give the results for the three models. Each table has a separate panel
of results for n = 512 and n = 4, 096. The numbers reported in the Tables are the
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RMSE’s of the estimators. The first three rows of each panel give results for the
“theoretically-justified” adaptive estimators. The next four rows give results for the
adaptive estimators that do not have theoretical justification (currently). The last
three rows give results for the H1, H2, and parametric Whittle QML estimators.

For brevity, the Tables do not provide results for all combinations of parameters
considered. For example, results for φ = −.3, −.6, −.9 are not given because they
are quite close to those for φ = 0, .3. We only give selected results for d = .4 and we
give no results for d = −.4, because the value of d has only a small effect on RMSE
(except for the IMS1 estimator which exhibits some sensitivity to d). Similarly, we
only give selected results for t5 innovations and we give no results for χ22 innovations,
because the innovation distribution turns out to have a small effect on RMSE.

We start by noting two broad features of the results presented in the Tables.
First, the results for d = 0 and t5 innovations are quite similar to those for d = 0
and normal innovations. Second, with one exception, the results for d = .4 and
normal innovations are quite similar to those for d = 0 and normal innovations. The
exception is: the IMS1 estimator is noticeably worse with d = .4 than with d = 0 for
all ARFIMA models and for the DARFIMA models with n = 512.

Now, we compare the estimators. Among the three theoretically-justified esti-
mators, the ALPW1 estimator performs the best across all three models and both
sample sizes. Its performance in the ARFIMA and DARFIMA models is almost the
same, as desired. This is due to its narrow-band character and the adaptive nature of
the bandwidth selection method. In these models the performance of ALPW1 does
not vary much with φ except for φ = .9. When φ = .9, its performance deteriorates
because of the difficulty of distinguishing an AR root close to unity from the long
memory parameter d0. The same deterioration occurs for most of the other estima-
tors. In the LMC model, the performance of the ALPW1 estimator is best when k is
small and worst when k is large. This is to be expected and is true of all of the other
estimators as well. Not surprisingly, the performance of the ALPW1 and all other
estimators improve substantially as n increases from 512 to 4,096.

The GRS1 estimator performs poorly, in an absolute sense and relative to ALPW1,
when φ = .6 or .9 and when k = 1, 2, or 3. In contrast, the IMS1 estimator performs
poorly, in an absolute sense and relative to ALPW1, for φ ≤ .6 in the ARFIMA
models; for most values of φ in DARFIMA models; and for many values of k in LMC
models. The performance of the IMS1 estimator deteriorates for DARFIMA models
compared to ARFIMA models. This reflects its broad-band character, which is not
designed to be robust against discontinuous spectral densities.

Next, we consider the non-theoretically-justified adaptive estimators ALPW2,
GRS2, GRS3, and IMS2. The ALPW2 estimator outperforms the ALPW1 estima-
tor and all other semiparametric estimators for both ARFIMA and LMC processes
except when φ = .9 or k = 3. However, its performance deteriorates for DARFIMA
processes. It is outperformed by ALPW1 for most cases with DARFIMA processes.
In consequence, it is not possible to order the overall relative performance of ALPW1
and ALPW2.

The GRS2 and GRS3 estimators perform noticeably better than GRS1, especially
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when φ or k is large. Hence, trimming is found to have a negative impact. The GRS3
estimator outperforms the GRS2 estimator across all cases and all models considered.
Hence, tapering also is found to have a negative impact. In an overall sense, the GRS3
estimator performs quite well relative to other semiparametric estimators. Compared
to the ALPW1 estimator, it does better for small values of φ and k, but worse for
large values.

The IMS2 estimator outperforms the IMS1 estimator in all cases but one. In many
cases, the difference is substantial. Hence, again we find the effect of tapering to be
negative. Compared with the other semiparametric estimators, IMS2 performs very
well (in fact, the best) in the cases where the short-run serial correlation is highest,
i.e., φ = .9 or k = 3. But, in most other cases, it is out-performed by the ALPW1,
ALPW2, and GRS3 estimators. It appears that the relative performance of the IMS2
estimator compared to the narrow-band ALPW and GRS estimators improves as the
sample size increases from 512 to 4, 096.

The H1 and H2 estimators perform well when the sample size is 4, 096 and either
φ = .9 or k = 3. In other cases, they do not perform well relative to the ALPW1,
ALPW2, or GRS3 estimators. In particular, they perform poorly for DARFIMA
processes except when φ = .9. The relative strengths of the H1 and H2 estimators are
similar to those of the IMS1 and IMS2 estimators. This is not surprising, because all
of these estimators are broadband FEXP estimators. The H2 estimator outperforms
the H1 estimator for ARFIMA and LMC processes, but the opposite is true for
DARFIMA processes with n = 512. In an overall sense, H2 outperforms H1.

The parametric Whittle QML estimator performs as expected. For ARFIMA
processes, it outperforms all semiparametric estimators by a substantial margin es-
pecially when φ = .9 or when n = 4, 096. For DARFIMA processes, for which it is
misspecified, it performs very poorly. It is substantially outperformed by all semipara-
metric estimators. For LMC processes, for which it is misspecified, it outperforms
the semiparametric estimators for small values of k, which are close to ARFIMA
processes. But, it is outperformed for larger values of k.

To conclude, among the three theoretically-justified estimators, the ALPW1 es-
timator is clearly the best. Trimming hurts the performance of the GRS1 estimator.
Tapering hurts the performance of the GRS1 and IMS1 estimators. Of all the semi-
parametric estimators, the three best ones in an overall sense are the ALPW1, GRS3,
and IMS2 estimators. The narrow-band estimators, ALPW1 and GRS3, perform well
over a broad range of parameter values, but are out-performed by the broad-band
estimator, IMS2, when the serial correlation in the short-run part of the spectrum is
quite large. The broadband estimator IMS2 performs relatively well when the sam-
ple size is large and the amount of serial correlation is high. The parametric Whittle
QML estimator performs very well when the model is correctly specified, moderately
well when the amount of misspecification is modest, and poorly when the amount of
misspecification is large.
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9 Appendix of Proofs

9.1 Proof of Lemma 1

Let Γn0 = {γ ∈ Γ : ||Bn(γ − γ0)|| ≤ Kn, ||γ − γ0|| < δ} for some δ > 0 such that
Ln(γ) is twice differentiable on {γ ∈ Rk : ||γ − γ0|| < δ} and {γ ∈ Rk : ||γ − γ0|| <
δ} ⊂ Γ. Using condition (iv), a Taylor expansion about γ0, and some algebra, we
obtain: for γ ∈ Γn0,
Ln(γ)− Ln(γ0) = ∇Ln(γ0)

0(γ − γ0) +
1

2
(γ − γ0)

0∇2Ln(γ0)(γ − γ0) + ρn(γ)

=
1

2
(Bn(γ − γ0) + Yn)

0[(B−1n )0∇2Ln(γ0)B
−1
n ](Bn(γ − γ0) + Yn)

−1
2
Y 0n(B

−1
n )0∇Ln(γ0) + ρn(γ), (9.1)

where for all γ ∈ Γn0,
|ρn(γ)| ≤ sup

γ∈Γn0
|(γ − γ0)

0(∇2Ln(γ)−∇2Ln(γ0))(γ − γ0)|

≤ ||Bn(γ − γ0)||2 sup
γ∈Γn0

||(B−1n )0(∇2Ln(γ)−∇2Ln(γ0))B
−1
n ||

= ||Bn(γ − γ0)||2op(1). (9.2)

Let γ∗n = γ0 −B−1n Yn. Conditions (ii) and (iii) imply that Yn = Op(1). This and
condition (i) imply that γ∗n ∈ Γn0 wp→ 1. In consequence, by (9.1) and (9.2),

Ln(γ
∗
n)− Ln(γ0) = −

1

2
Y 0n(B

−1
n )0∇Ln(γ0) + ρn(γ

∗
n) and

ρn(γ
∗
n) = op(1). (9.3)

For any ε > 0 and n ≥ 1, let Γn(ε) = {γ ∈ Γ : ||Bn(γ − γ0) + Yn|| ≤ ε}.
Note that γ∗n is in the interior of Γn(ε) wp→ 1. We have Γn(ε) ⊂ Γn0 wp→ 1, and
so, supγ∈Γn(ε) |ρn(γ)| = op(1) by (9.2). Let ∂Γn(ε) denote the boundary of Γn(ε).
Combining (9.1)—(9.3), for γ ∈ ∂Γn(ε),

Ln(γ)− Ln(γ
∗
n) =

1

2
µ0n(B

−1
n )0∇2Ln(γ0)B

−1
n µn + op(1) (9.4)

for some k-vector µn with ||µn|| = ε > 0. The right-hand side is bounded away from
zero wp→ 1 uniformly over all k-vectors µn with ||µn|| = ε by condition (iii). Hence,
the minimum of Ln(γ) over γ ∈ ∂Γn(ε) is greater than its value at the interior point
γ∗n. In consequence, the minimum of Ln(γ) over γ ∈ Γn(ε) is attained at a point, sayeγn(ε), (not necessarily unique) in the interior of Γn(ε) wp→ 1. This point satisfies
the first-order conditions ∇Ln(eγn(ε)) = 0 wp→ 1.

In consequence, for all J ≥ 1, P (∇Ln(eγn(1/j)) = 0 ∀j = 1, ..., J))→ 1 as n→∞.
Thus, there is a sequence {Jn : n ≥ 1} such that Jn ↑ ∞ and P (∇Ln(eγn(1/j)) = 0
∀j = 1, ..., Jn)) → 1 as n → ∞. For example, take J1 = 2, Jn = Jn−1 + 1 if
P (∇Ln(eγn(1/j)) = 0 ∀j ≤ Jn−1 + 1)) > 1 − 1/Jn−1, and Jn = Jn−1 otherwise, for
n = 2, 3, ... . Define eγn = eγn(1/Jn) for n ≥ 1. Then, P (∇Ln(eγn) = 0) ≥ 1−1/Jn−1 →
1 as n → ∞. In addition, eγn ∈ Γn(1/Jn) for all n ≥ 1. Hence, Bn(eγn − γ0) =
−Yn + op(1) = Op(1). ¤

23



9.2 Proof of Lemma 2

Proof of Lemma 2(a). Part (a) holds by approximating sums by integrals. See
Lemma 2(a), (h), and (i) in AG for details (noting that Xj = −2 logλj in AG. ¤

Proof of Lemma 2(b). The normalized Hessian can be written as

B−1n Hn(d, θ)B
−1
n = bG−2(d, θ)

 bG(d, θ)m−1 mX
j=1

yj(d, θ) eXj
eX 0
j

−
m−1

mX
j=1

yj(d, θ) eXj

m−1
mX
j=1

yj(d, θ) eXj

0 , where

eXj = (2 log j, (j/m)2, ..., (j/m)2r)0. (9.5)

Let bGa,b(d, θ) = m−1
mX
j=1

Ij exp(pr(λj, θ))λ
2d
j (2 log j)

a(j/m)2b (9.6)

for a = 0, 1, 2 and b = 0, ..., r. The (1, 1), (1, k), and (k, ) elements of B−1n Hn(d, θ)B
−1
n

for k, l = 2, ..., r + 1 are

bG−20,0( bG0,0 bG2,0 − bG21,0),bG−20,0( bG0,0 bG1,k−1 − bG1,0 bG0,k−1), andbG−20,0( bG0,0 bG0,k+ −2 − bG0,k−1 bG0, −1), (9.7)

respectively, where the dependence on (d, θ) has been suppressed for simplicity.
Define Ja,b as bGa,b(d, θ) is defined, but with Ij exp(pr(λj , θ))λ

2d
j replaced by G0.

That is,

Ja,b = G0m
−1

mX
j=1

(2 log j)a(j/m)2b (9.8)

for a = 0, 1, 2 and b = 0, ..., r. The elements of B−1n JnB−1n are given by the formulae in
(9.7) with bGa,b(d0, θ0) replaced by Ja,b. Note that Ja,b = O(logam) and J0,0 = G0 > 0.
Hence, to prove Lemma 2(b), it suffices to show that

∆a,b := | bGa,b(d0, θ0)/G0 − Ja,b/G0| = op(log
−2m) (9.9)

for a = 0, 1, 2 and b = 0, ..., r.
Let

gj = λ−2d0j G0 exp(−pr(λj , θ0)). (9.10)

24



By summation by parts, we have

∆a,b = |m−1
mX
j=1

(
Ij
gj
− 1)(2 log j)a( j

m
)2b|

≤
¯̄̄̄
¯̄m−1 m−1X

k=1

[(2 log k)a(
k

m
)2b − (2 log(k + 1))a(k + 1

m
)2b]

kX
j=1

(
Ij
gj
− 1)

¯̄̄̄
¯̄

+

¯̄̄̄
¯̄(2 logm)am−1 mX

j=1

(
Ij
gj
− 1)

¯̄̄̄
¯̄

:= ϑ1,a,m + ϑ2,a,m. (9.11)

Using the triangle inequality and then mean-value expansions, we obtain

ϑ1,a,m ≤ m−1
m−1X
k=1

µ¯̄̄̄
(2 log k)a(

k

m
)2b − (2 log k)a(k + 1

m
)2b
¯̄̄̄

+

¯̄̄̄
(2 log k)a(

k + 1

m
)2b − (2 log(k + 1))a(k + 1

m
)2b
¯̄̄̄¶ ¯̄̄̄¯̄ kX

j=1

(
Ij
gj
− 1)

¯̄̄̄
¯̄

≤ 2am−1
m−1X
k=1

µ
(log k)a2b(

k + 1

m
)2b−1m−1 + a(log(k + 1))a−1k−1(

k + 1

m
)2b
¶

×
¯̄̄̄
¯̄ kX
j=1

(
Ij
gj
− 1)

¯̄̄̄
¯̄

≤ 2a(logm)a(2b+ a)m−1
m−1X
k=1

k−1

¯̄̄̄
¯̄ kX
j=1

(
Ij
gj
− 1)

¯̄̄̄
¯̄ . (9.12)

By altering the statement and proof of (4.8) of Robinson (1995a), as described in
Andrews and Sun (2001), and using (4.9) of Robinson (1995a) without change, or by
(9.58) below, we obtain:

(i)
kX

j=1

(
Ij
gj
− 2πIεj) = Op(k

1/3 log2/3 k + kφ+1n−φ + k1/2n−1/4) and

(ii)
kX

j=1

(2πIεj − 1) = Op(k
1/2), where

Iεj = |wε(λj)|2 and wε(λ) = (2πn)
−1/2

nX
t=1

εte
itλ, (9.13)

as n → ∞ uniformly over k = 1, ...,m. Combining (9.11)—(9.13), ϑ1,a,m and ϑ2,a,m
are Op((log

am)m−1/2 + (logam)mφn−φ) = op(log
−2m), where the equality uses As-

sumption 4.3 ¤
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Proof of Lemma 2(c). By (9.9) and Ja,b = O(logam), we obtain bGa,b(d0, θ0) =

Op(log
am) for a = 0, 1, 2 and b = 0, ..., r and bG0,0(d0, θ0) = G0 + op(log

−2m), where
G0 > 0. These results and (9.7) imply that it suffices to show that

sup
θ∈Θ

| bGa,b(d0, θ)− bGa,b(d0, θ0)| = op(log
−2m) (9.14)

for all a = 0, 1, 2 and b = 0, ..., r. The left-hand side of (9.14) equals

sup
θ∈Θ

|m−1
mX
j=1

Ij [exp(pr(λj, θ))− exp(pr(λj , θ0))]λ2d0j (2 log j)a(j/m)2b|

≤ sup
θ∈Θ,k=1,...,m

|exp {pr(λk, θ)− pr(λk, θ0)}− 1|m−1
mX
j=1

Ij exp(pr(λj , θ0))λ
2d0
j (2 log j)a

= O(λ2m) bGa,0(d0, θ0),

= Op((m/n)2(logam))

= op(log
−2m), (9.15)

where the first equality holds by a mean-value expansion using the compactness of
Θ, the second equality holds by (9.9) and Ja,b = O(logam), and the third equality
holds by Assumption 4. ¤

Proof of Lemma 2(d). We have (i) bGa,b(d0, θ) = Ja,b + op(log
−2m) by (9.9) and

(9.14), (ii) Ja,b = O(logam), (iii) J0,0J2,0 − J21,0 = O(1) by elementary calculations
replacing sums by integrals and noting that the part of J0,0J2,0 that is O(log2m)
cancels with an identical term in J21,0, (iv) J0,0J1,k−1 − J1,0J0,k−1 = O(1) by the
same sort of argument as for (iii), and (v) J0,0 = G0 > 0. Given (i)-(v) and (9.7), to
establish Lemma 2(d) it suffices to show that

sup
d∈Dm(ηn),θ∈Θ

| bGa,b(d, θ)− bGa,b(d0, θ)| = op(log
−2m). (9.16)

Define bEa,b(d, θ) as bGa,b(d, θ) is defined, but with λ2dj replaced by j2d. The formu-

lae in (9.7) for the elements of B−1n Hn(d, θ)B
−1
n also hold with bGa,b(d, θ) replaced bybEa,b(d, θ). Hence, it suffices to show that

Za,b(ηn) := sup
d∈Dm(ηn),θ∈Θ

| bEa,b(d, θ)− bEa,b(d0, θ)| = op(n
2d0 log−2m) (9.17)

for all a = 0, 1, 2, and b = 0, ..., r.
We note that in Robinson’s (1995a) proof of the asymptotic normality of the

local Whittle estimator eH (using his notation) he shows that the Hessian is well
behaved for H ∈ M = {H : (log3m)|H − H0| ≤ ε} on p. 1642 and he shows that
(log3m)( eH − H0) = op(1). There is a slight error in his proof (which can be fixed
without difficulty) that leads us to define Dm(ηn) with log

5m rather than log3m
in the statement of Lemma 2(d). In particular, the second equality in his equation
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following (4.9) on p. 1643 is not correct. The left-hand side of this equality is
unchanged if E is replaced by F and op(n2H0−1) is replaced by op(1) throughout. The
problem in his proof is that bF2(H0) = Op(log

2m), not Op(1), so that bF2(H0)op(1) =
op(log

2m), not op(1), as is necessary for the stated equality to hold. To obtain the
desired result, one needs to show that bEk( eH) − bEk(H0) = op(n

2H0−1 log−km) for
k = 0, 1, 2, rather than op(n

2H0−1), in (4.4) on p. 1642. This can be achieved by (i)
redefining M on p. 1642 to be M = {H : (log5m)|H − H0| ≤ ε} and (ii) showing
that (log5m)| eH −H0| = op(1). The latter holds by the same argument as given by
Robinson (1995a, pp. 1642-43) except that the left-hand side of (4.6) needs to be
op(log

−10m), which holds by the argument given on p. 1643.
The proof of (9.17) is similar to a proof of Robinson (1995a, p. 1642). We have

Za,b(ηn) = sup
d∈Dm(ηn),θ∈Θ

|m−1
mX
j=1

Ij exp(pr(λj, θ))(2 log j)
a(j/m)2bj2d0(j2(d−d0) − 1)|

≤ C sup
d∈Dm(ηn)

m−1
mX
j=1

Ij(log j)
aj2d0 |j2(d−d0) − 1|

≤ 2Ce2ηn log−4m sup
d∈Dm(ηn)

m−1
mX
j=1

Ij(log j)
a+1j2d0|d− d0|

≤ ηn(log
−2m)2Ce2ηn log

−4mm−1
mX
j=1

Ijλ
2d0
j (2π/n)−2d0 (9.18)

for some constant C <∞, where the first inequality uses the fact that sup0≤λ≤2π,θ∈Θ
exp(pr(λ, θ)) < ∞ since Θ is compact, the second inequality uses |j2(d−d0) − 1|
/|d − d0| ≤ 2m2|d−d0| log j ≤ 2m2ηn log

−5m log j = 2e2ηn log
−4m log j for

d ∈ Dm(ηn) by a mean-value expansion and usingm
log−1m = e, and the third inequal-

ity uses d ∈ Dm(ηn). We have m
−1Pm

j=1 Ijλ
2d0
j = bG0,0(d0, 0) = G0 + op(log

−2m) by
(9.9) and (9.14). In consequence, the left-hand side of (9.18) is op(n2d0 log−2m), as
desired. ¤

Proof of Lemma 2(e). Using (4.2) and (9.10), the normalized score is

B−1n Sn(d0, θ0) = bG−1(d0, θ0)m−1/2 mX
j=1

Ã
yj(d0, θ0)−m−1

mX
k=1

yk(d0, θ0)

! eXj

= (1 + op(1))m
−1/2

mX
j=1

(
Ij
gj
− 1)

Ã eXj −m−1
mX
k=1

eXk

!
, (9.19)

where the second equality uses bG(d0, θ0) = bG0,0(d0, θ0) = G0 + op(1) by (9.9).4 The
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right-hand side, with (1 + op(1)) deleted, can be written as

T1,n + T2,n + T3,n + T4,n, where

T1,n = m−1/2
mX
j=1

µ
Ij
gj
− 2πIεj −E(

Ij
gj
− 2πIεj)

¶Ã eXj −m−1
mX
k=1

eXk

!
,

T2,n = m−1/2
mX
j=1

µ
EIj
fj
− 1
¶
fj
gj

Ã eXj −m−1
mX
k=1

eXk

!
,

T3,n = m−1/2
mX
j=1

(2πIεj − 1)
Ã eXj −m−1

mX
k=1

eXk

!
,

T4,n = m−1/2
mX
j=1

µ
fj
gj
− 1
¶Ã eXj −m−1

mX
k=1

eXk

!
, (9.20)

and fj = f(λj), using the fact that E2πIεj = 1. We show that T1,n = op(1), T2,n
= o(1), T3,n →d N(0,Ωr), and T4,n = −νn(r, s) + o(1).

To show T1,n = op(1), we use the following result, which is proved below:

kX
j=1

µ
Ij
gj
− 2πIεj −E(

Ij
gj
− 2πIεj)

¶
= Op(k

1/3 log2/3 k + kφ+1/2n−φ + k1/2n−1/4)

(9.21)
as n→∞ uniformly over k = 1, ...,m. By summation by parts,

T1,n = m−1/2
m−1X
k=1

kX
j=1

µ
Ij
gj
− 2πIεj −E(

Ij
gj
− 2πIεj)

¶³ eXk − eXk+1

´
+m−1/2

mX
j=1

µ
Ij
gj
− 2πIεj −E(

Ij
gj
− 2πIεj)

¶Ã eXm −m−1
mX
k=1

eXk

!

= m−1/2
m−1X
k=1

Op(k
1/3 log2/3 k + kφ+1/2n−φ + k1/2n−1/4)O(k−1)

+m−1/2Op(m
1/3 log2/3m+mφ+1/2n−φ +m1/2n−1/4)O(1)

= Op(m
−1/6 log2/3m+ (m/n)φ + n−1/4)

= op(1), (9.22)

where the second equality uses eXk − eXk+1 = O(k−1) uniformly over k = 1, ...,m
(because log k − log(k + 1) = O(k−1) by a mean-value expansion and
|(k/m)2i − ((k + 1)/m)2i| = (k/m)2i|1 − (1 + k−1)2i| = O(k−1) for i = 1, ..., r) andeXm−m−1

Pm
k=1

eXk = O(1) because logm−m−1
Pm

k=1 log k = logm−m−1(m logm
−m+O(logm)) = 1 + O((logm)/m) by approximating sums by integrals (e.g., see
(6.11) of AG) and (m/m)2i −m−1

Pm
j=1(j/m)

2i = O(1) for i = 1, ..., r.
To show T2,n = o(1), we use the result that

EIj/fj = 1 +O(j−1 log j) (9.23)
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uniformly over j = 1, ...,m. Because Assumptions 1 and 2 imply Assumptions 1—3
of Robinson (1995b), this holds by Theorem 2 of Robinson (1995b) using the nor-
malization of Ij by fj rather than G0λ

−2d0
j . The remainder term in (9.23) is different

from that in Theorem 2 of Robinson (1995b) because the proof of (9.23) only requires
(4.1), and not (4.2), of Robinson (1995b) to hold, given the normalization by fj .

By (9.23),

T2,n = m−1/2
mX
j=1

O(j−1 log j)O(1)( eXj −m−1
mX
k=1

eXk)

= O(m−1/2 logm
mX
j=1

j−1 log j)

= O(m−1/2 log3m) = o(1). (9.24)

We show that β0T3,n →d N(0, β
0Ωrβ) for all β 6= 0 using the same proof as Robin-

son’s (1995a, pp. 1644-47) proof that m−1/2
Pm

j=1(2πIεj − 1)2νj →d N(0, 4), except
with Robinson’s 2νj = 2 log j − m−1

Pm
k=1 2 log k replaced by ζj

= β0( eXj −m−1
Pm

k=1
eXk). Robinson’s proof goes through with the asymptotic vari-

ance 4 replace by β0Ωrβ because (i) m−1
Pm

j=1 ζ
2
j → β0Ωrβ as n → ∞ by Lemma

2(d) and (ii) |ζj − ζj+1| ≤ ||β|| · || eXj − eXj+1|| ≤ Cj−1 for some constant C < ∞
independent of j, which is needed in (4.21) of Robinson’s proof.

Next, we show that T4,n = −νn(r, s) + o(1). By (3.1),

log(fj/gj) = logϕ(λj)− logG0 + pr(λj, θ0)

= 1(s ≥ 2 + 2r) b2+2r
(2 + 2r)!

λ2+2rj +O(λqj) and

fj/gj = 1 + 1(s ≥ 2 + 2r) b2+2r
(2 + 2r)!

λ2+2rj +O(λqj), where

q = min{s, 4 + 2r}, (9.25)

uniformly over j = 1, ...,m, using ex = 1 + x + x2ex∗/2 for x∗ between 0 and x. (If
s = 2+ 2r, the remainder O(λqj) is actually o(λ

q
j) = o(λ2+2rj ).) Hence, if s ≥ 2 + 2r,

T4,n = m−1/2
mX
j=1

µ
b2+2r

(2 + 2r)!
λ2+2rj +O(λqj)

¶Ã eXj −m−1
mX
k=1

eXk

!

= m5/2+2rn−(2+2r)m−1
mX
j=1

(2π)2+2rb2+2r
(2 + 2r)!

(
j

m
)2+2r

Ã eXj −m−1
mX
k=1

eXk

!
(9.26)

+m−1/2
m−1X
j=1

( eXj − eXj+1)

jX
i=1

O(λqi ) +m−1/2
mX
j=1

O(λqj)

Ã eXm −m−1
mX
k=1

eXk

!
.

where the second equality uses summation by parts. The second and third summands
on the right-hand side of (9.26) are O(mq+1/2n−q) because eXj − eXj+1 = O(j−1)
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uniformly over j = 1, ...,m and eXm −m−1
Pm

k=1
eXk = 1 + o(1) by the calculations

following (9.22).
The following results are proved by approximating sums by integrals, see the proof

of Lemma 1 in AG for details. Suppose m→∞, then for k = 1, ..., r,

1

m

mX
j=1

(
j

m
)2+2r

Ã
(
j

m
)2k − 1

m

mX
i=1

(
i

m
)2k

!
=

1

2r + 2k + 3
− 1

(3 + 2r)(2k + 1)
+ o(1)

=
(2 + 2r)

(3 + 2r)2
ξr,k + o(1) and

1

m

mX
j=1

(
j

m
)2+2r

Ã
2 log j − 1

m

mX
i=1

2 log i

!
=
2(2r + 2)

(3 + 2r)2
+ o(1). (9.27)

For the case where s > 2 + 2r, the combination of (9.26) and (9.27) gives T4,n
= −νn(r, s) + o(1), using Assumption 4. When s = 2 + 2r, the term O(mq+1/2n−q)
is really o(mq+1/2n−q) in (9.26) and the latter is o(1) using Assumption 4. Hence, in
this case too, T4,n = −νn(r, s) + o(1).

When 2r < s < 2+2r, T4,n is given by the right-hand side of (9.26) with the term
that contains b2+2r deleted and with q = s. Hence, by the remarks following (9.26),
T4,n = O(ms+1/2n−s) = −νn(r, s).

Now we prove (9.21). Parts of the proof are similar to parts of Robinson’s (1995a)
proof of his equation (4.8). Let = k1/3 log2/3 k. We have

X
j=1

µ
Ij
gj
− 2πIεj −E(

Ij
gj
− 2πIεj)

¶
= Op(k

1/3 log2/3 k) as n→∞ (9.28)

by the same argument as in Robinson (1995a, p. 1648). We write

kX
j= +1

µ
Ij
gj
− 2πIεj −E(

Ij
gj
− 2πIεj)

¶

=
kX

j= +1

µ
(
Ij
fj
− 2πIεj)fj

gj
−E(

Ij
fj
− 2πIεj)fj

gj

¶
+ 2π

kX
j= +1

(Iεj −EIεj)

µ
fj
gj
− 1
¶

:= A1 +A2. (9.29)

We have

EA21 ≤ E

 kX
j= +1

(
Ij
fj
− 2πIεj)fj

gj

2 = O(k2/3 log4/3 k + kn−1/2), (9.30)

where the equality holds by the same proof as in Robinson (1995a, pp. 1648—51) for
the quantity given in the third equation on his p. 1648. The only difference is that the
factor fj/gj does not appear in Robinson (1995a). It can be shown that this factor
has no impact on the proof because fj/gj = 1 + o(1) uniformly over j = 1, ...,m.
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Next, we have

EA22 = 4π2
kX

j= +1

Var(Iεj)
µ
fj
gj
− 1
¶2
+ 8π2

kX
i= +1

i−1X
j= +1

Cov(Iεi, Iεj)
µ
fi
gi
− 1
¶µ

fj
gj
− 1
¶

= O(1)
kX

j= +1

λ2φj +O(n−1)
kX

i= +1

i−1X
j= +1

λφi λ
φ
j

= O(k(
k

n
)2φ) +O(

k2

n
(
k

n
)2φ)

= O(k(
k

n
)2φ), (9.31)

where the second equality uses (9.25) and Theorem 5.2.4 of Brillinger (1975, p. 125),
which states that Var(Iεj) = O(1) and Cov(Iεi, Iεj) = O(n−1) uniformly over
i, j = 1, ..., n with i 6= j. Brillinger’s Assumption 2.6.2(1) imposes strict station-
arity, which does not hold in the present case. However, his proof only requires
fourth-order stationarity. The fourth order cumulant spectrum of {εt : t = 1, 2, ...} is
the same as that of an iid process with finite fourth moment, which is sufficient.

Combining (9.28)—(9.31) gives (9.21). ¤

9.3 Proof of Theorem 3(b)

The choice of r as the largest integer less than s/2 implies that s > 2r and
s ≤ 2 + 2r. Hence, νn(r, s) = O(ms+1/2n−s) = O(1). By the definition of m, m1/2 =

ψ
1/2
1 ns/(2s+1). In consequence, the result of Theorem 3(b) follows from

sup
f∈F(s,a,δ,K)

¯̄̄̄
¯Pf

ÃÃ
m1/2(bd(r)− d0)

m1/2Diag
¡
(2πm/n)2, ..., (2πm/n)2r

¢³bθ(r)− θ0

´ !

−Ω−1r νn(r, s) ≤ x

¶
−Φ(Ω1/2r x)

¯̄̄̄
→ 0

(9.32)

as n→∞ for all x ∈ Rr+1.
To prove (9.32), we use the results of Sections 4 and 5. We show that these

results hold uniformly over f ∈ F(s, a, δ,K). To this end, we note that although
ϕ(λ) is not necessarily smooth of order s for f ∈ F(s, a, δ,K), conditions (ii) and (iii)
of F(s, a, δ,K) provide the Taylor expansion of logϕ(λ) which is all that is needed
in the proofs of Lemma 2(b) and (e), where smoothness of order s is used.

Let unif—f abbreviate uniformly over f ∈ F(s, a, δ,K).
The proof of Lemma 1 goes through unif—f provided conditions (ii)—(iv) hold

unif—f and {Kn : n ≥ 1} in condition (iv) does not depend on f. In consequence, the
conclusion of the Lemma is that a solution to the FOCs holds wp→ 1 unif—f and
Bn(eγn − γ0) = −Yn + op(1) unif—f. To verify that conditions (ii)—(iv) of Lemma 1
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hold unif—f when Ln(γ) = mRr(d, θ), we need to show that parts (b)—(d) of Lemma
2 hold with op(1) holding unif—f. Inspection of their proofs shows that they do. Part
(a) of Lemma 2 does not depend on f, so uniformity over f is not an issue.

Inspection of the proof of part (e) of Lemma 2 shows that T1,n = op(1) unif—f ;
T2,n = o(1) unif—f because Theorem 2 of Robinson (1995b) holds unif—f by Lemma
3(b) of AG; and T4,n = −νn(r, s) + o(1) unif—f using the definition of F(s, a, δ,K).
The term T3,n, which is asymptotically normal, does not depend on f. Hence, its dis-
tribution function differs from that of a normal distribution function unif—f trivially.
Combining these results yields

sup
f∈F(s,a,δ,K)

|Pf (B−1n Sn(d0, θ0) + νn(r, s) ≤ x)−Φ(Ω−1/2r x)|→ 0 as n→∞ (9.33)

for all x ∈ Rr+1.
Given the above unif—f extensions of the results of Lemmas 1 and 2, Theorems 1

and 2 have analogous extensions. The result of the extended Theorem 1 is the same
as that of (9.32) with bd(r) replaced by ed(r). The result of the extended Theorem 2
is exactly (9.32). ¤

9.4 Proof of Theorem 4

Before proving Theorem 4, we introduce some notation and state two Lemmas.
The proofs of the Lemmas are given after that of Theorem 4. Let Rr(τ),τ (d, θ),
Bn,τ , Sn,τ (d, θ), Hn,τ (d, θ), Xj,τ , Dm(τ)(η), and Jτn be defined as the corresponding
quantities without the τ subscripts (or superscript) are defined in the text, but with
m and r replaced by m(τ) and r(τ), respectively. (We use the symbol Jτn rather than
Jn,τ because Ja,b is used for a different quantity in the Proof of Lemma 2(b) above
and also below.) Let θ0 denote θ0 defined as in (3.2) with r = r(τ). Let bdτ and bθτ
denote the LPW estimators with m = m(τ ) and r = r(τ).

Let 1 ≤ s∗ ≤ s∗ < ∞. For any sequences of sets {En,τ : n ≥ 1} for τ ∈ [s∗, s∗],
we say that the sets {En,τ : n ≥ 1} are “uniformly ζ−2(n) small” if for some positive
finite constant C

sup
s∈[s∗,s∗]

sup
f∈F(s,a,δ,K)

sup
τ∈[s∗,s]

Pf (En,τ ) ≤ Cζ−2(n) for all n ≥ 1. (9.34)

Lemma 4 Suppose the assumptions of Theorem 4 hold. Let s∗ ≥ 1. Then, for each
s∗ ∈ [s∗,∞), the LPW estimators {(bdτ ,bθτ ) : n ≥ 1} satisfy

Bn,τ

Ã bdτ − dfbθτ − θ0

!
= −Ω−1r(τ)B−1n,τSn,τ (df , θ0) + εn,τ ,

where the sets {{||εn,τ || > C∗ζ(n)} : n ≥ 1} are uniformly ζ−2(n) small for all C∗ > 0.
The dimensions of θ, Sn,τ (d, θ), Hn,τ (d, θ), Xj,τ , and Jτn depend on τ through

r(τ), the degree of the polynomial. But, by definition, r(τ) is constant for all τ ∈ Tw,
where

Tw = (2w, 2w + 2] for w = 0, 1, ... . (9.35)
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Given this, in the following Lemma, we consider τ ∈ Tw∩ [s∗, s] separately for a finite
number of values w rather than considering τ ∈ [s∗, s] all at once.

Lemma 5 Suppose the assumptions of Theorem 4 hold. Let s∗ ≥ 1. For each s∗ ∈
[s∗,∞), each integer w in the set {0, 1, ..., [(s∗−2)/2]+1}, and each constant C∗ > 0,
there exists a positive finite constant C such that

sup
s∈[s∗,s∗]

sup
f∈F(s,a,δ,K)

sup
τ∈Tw∩[s∗,s]

Pf
¡||B−1n,τSn,τ (df , θ0)|| > C∗ζ(n)

¢ ≤ Cζ−2(n).

Proof of Theorem 4. We write

Pf
³
n

s
2s+1 ζ−1(n)|bdbs − df | ≥ C1

´
:= Π+n +Π

−
n , where

Π+n = Pf
³
n

s
2s+1 ζ−1(n)|bdbs − df | ≥ C1, ŝ ≥ s

´
and

Π−n = Pf

³
n

s
2s+1 ζ−1(n)|bdbs − df | ≥ C1, ŝ < s

´
. (9.36)

We want to show that limC1→∞ lim supn→∞ sups∈[s∗,s∗] supf∈F(s,a,δ,K)Π
+
n = 0 and

likewise for Π−n .
We consider Π+n first. By the triangle inequality and the definition of ŝ, we have

Π+n ≤ Pf
³
n

s
2s+1 ζ−1(n)|bdbs − bds| ≥ C1/2, ŝ ≥ s

´
+ Pf

³
n

s
2s+1 ζ−1(n)|bds − df | ≥ C1/2

´
≤ Pf

³
n

s
2s+1 ζ−1(n)m−1/2(s)ψ2(cr(s)/4)

1/2ζ(n) ≥ C1/2
´

+ Pf

³
n

s
2s+1 ζ−1(n)|bds − df | ≥ C1/2

´
:= Π+n,1 +Π

+
n,2. (9.37)

We have

lim
C1→∞

lim sup
n→∞

sup
s∈[s∗,s∗]

sup
f∈F(s,a,δ,K)

Π+n,1 = lim
C1→∞

1
³
ψ
−1/2
1 ψ2(cr(s∗)/4)

1/2 ≥ C1/2
´
= 0

(9.38)
using the fact that cr is non-decreasing in r and r(s) is non-decreasing in s.

Note that the (1, 1) element of the diagonal matrix Bn,τ ism1/2(τ). Thus, Lemmas
4, 5, and the nonsingularity of Ωr(τ) combine to give: for each C∗ > 0 there is a
constant C <∞ such that

sup
s∈[s∗,s∗]

sup
f∈F(s,a,δ,K)

sup
τ∈[s∗,s]

Pf

³
m1/2(τ)|bdτ − df | > C∗ζ(n)

´
≤ Cζ−2(n). (9.39)

This establishes the desired result for Π+2,n.
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Next, we consider Π−n . We have

Π−n =
X

τ∈Sh:τ+h<s
Pf

³
n

s
2s+1 ζ−1(n)|bdτ − df | ≥ C1, ŝ = τ

´
+Pf

³
n

s
2s+1 ζ−1(n)|bdτs − df | ≥ C1, ŝ = τs

´
≤

X
τ∈Sh:τ+h<s

Pf (ŝ = τ) + Pf

³
n

s
2s+1 ζ−1(n)|bdτs − df | ≥ C1

´
:= Π−n,1 +Π

−
n,2, (9.40)

where τs ∈ Sh and s− h ≤ τs < s.
Now, we bound Pf (ŝ = τ). By the definition of ŝ, if ŝ = τ, there exists τ 0 ≤ τ ,

τ 0 ∈ Sh such that |bdτ+h− bdτ 0 | > m−1/2(τ 0)ψ2(cr(τ 0)/4)
1/2ζ(n). In consequence, for all

τ ∈ Sh with τ + h < s,

Pf (ŝ = τ) ≤
X

τ 0∈Sh:τ 0≤τ
Pf

³
|bdτ+h − bdτ 0 | > m−1/2(τ 0)ψ2(cr(τ 0)/4)

1/2ζ(n)
´

≤
X

τ 0∈Sh:τ 0≤τ
Pf

³
m1/2(τ + h)|bdτ+h − df | > κζ(n)

´
+

X
τ 0∈Sh:τ 0≤τ

Pf

³
m1/2(τ 0)|bdτ 0 − df | > κζ(n)

´
,

≤ 2(s∗ − s∗)(logn) sup
τ 00<s

Pf

³
m1/2(τ 00)|bdτ 00 − df | > κζ(n)

´
, (9.41)

where κ = ψ2(cr(s∗)/4)
1/2/2. The third inequality holds because there are at most

(s∗−s∗)(logn) elements τ 0 ∈ Sh for which τ 0 ≤ τ. Note that the third inequality only
applies for τ such that τ + h < s. It is for this reason that we decompose Π−n into
Π−n,1 +Π

−
n,2 in (9.40).

Equations (9.39)-(9.41) give: for some C <∞,

sup
s∈[s∗,s∗]

sup
f∈F(s,a,δ,K)

Π−n,1 ≤ 2(s∗ − s∗)2(logn)2Cζ−2(n)

= O((log logn)−1) = o(1) as n→∞. (9.42)

Next, we have

ns/(2s+1)n−τs/(2τs+1) ≤ ns/(2s+1)n−(s−h)/(2s−2h+1) = nκs,hh ≤ nh = nlog
−1 n = e,

(9.43)
where κs,h = (2s+ 1)−1(2s− 2h+ 1)−1 ≤ 1. This, τs < s, and (9.39) give: for some
C <∞,

ns/(2s+1) ≤ m1/2(τs)eψ
−1/2
1 and

Π−n,2 ≤ Pf

³
m1/2(τs)|bdτs − df | ≥ C1e

−1ψ1/21 ζ(n)
´

≤ Cζ−2(n) = o(1) as n→∞. (9.44)
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This completes the proof of the theorem. ¤

Next, we prove Lemma 4. For convenience, what we show is that for some C <∞,

sup
s∈[s∗,s∗]

sup
f∈F(s,a,δ,K)

sup
τ∈[s∗,s]

Pf (||εn,τ || > Cζ(n)) ≤ Cζ−2(n) for all n ≥ 1. (9.45)

This is sufficient because the proof of (9.45) goes through unchanged with ζ(n) re-
placed by eCζ(n) for all constants eC > 0.

To show (9.45), we establish three Lemmas that reflect the same steps as are used
in the text to prove Theorem 2. We start by establishing an analogue to Lemma 1.
Let {Ln,τ (γ) : n ≥ 1} be a sequence of minimands for estimation of the parameter
γ0 ∈ Γ ⊂ Rk, where Γ is the parameter space and τ ∈ T indexes different minimands.
Suppose the distribution of Ln,τ (γ) depends on f ∈ F , where F denotes some index
set. Let G ⊂ T × F . Denote the gradient and Hessian of Ln,τ (γ) by ∇Ln,τ (γ) and
∇2Ln,τ (γ) respectively. Let {ζ(n) : n ≥ 1} be a sequence of positive constants for
which ζ(n) → ∞ as n → ∞. In our application of the Lemma, we take ζ(n) =
(logn)(log log(n))1/2.

Lemma 6 Suppose γ0 is in the interior of Γ, Ln,τ (γ) is twice continuously differ-
entiable in γ on a neighborhood of γ0 for all τ ∈ T, and there exist a positive finite
constant C and sequences of k × k non-random nonsingular matrices Bn,τ such that

(i) sup
τ∈T

||B−1n,τ ||ζ(n)→ 0 as n→∞,

(ii) sup
(τ,f)∈G

Pf
¡||(B−1n,τ )0∇Ln,τ (γ0)|| > Cζ(n)

¢ ≤ Cζ−2(n) for all n ≥ 1,

(iii) sup
(τ,f)∈G

Pf
¡
λmin

¡
(B−1n,τ )

0∇2Ln,τ (γ0)B
−1
n,τ

¢
< C

¢ ≤ Cζ−2(n) for all n ≥ 1, and

(iv) sup
(τ,f)∈G

Pf ( sup
γ∈Γ:||Bn,τ (γ−γ0)||≤Kn,τ

||(B−1n,τ )0(∇2Ln,τ (γ)−∇2Ln,τ (γ0))B
−1
n,τ ||

> Cζ−1(n)) ≤ Cζ−2(n) for all n ≥ 1
for some sequences of scalar constants {Kn,τ : n ≥ 1} for which Kn,τζ

−1(n)→∞ as
n→∞ for each τ ∈ T.

Then, there exist a positive finite constant C1 and sequences of estimators {eγn,τ :
n ≥ 1} for each τ ∈ T such that the probability that the first-order conditions do not
hold at eγn,τ goes to zero at the following rate:

sup
(τ,f)∈G

Pf (∇Ln,τ (eγn,τ ) 6= 0) ≤ C1ζ
−2(n) for all n ≥ 1

and
Bn,τ (eγn,τ − γ0) = −Yn,τ + εn,τ , where

Yn,τ = ((B−1n,τ )
0∇2Ln,τ (γ0)B

−1
n,τ )

−1(B−1n,τ )
0∇Ln,τ (γ0) and

sup
(τ,f)∈G

Pf
¡||εn,τ || > C1ζ(n)

¢ ≤ C1ζ
−2(n).
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Proof of Lemma 6. Throughout let C0 denote a positive finite constant that may
differ across equations. Let

Γn0 = {γ ∈ Γ : ||Bn,τ (γ − γ0)|| ≤ Kn,τ , ||γ − γ0|| < δ} (9.46)

for some δ > 0 such that Ln,τ (γ) is twice differentiable on {γ ∈ Rk : ||γ − γ0|| < δ}
and {γ ∈ Rk : ||γ − γ0|| < δ} ⊂ Γ.

By a Taylor expansion about γ0 and some algebra, we obtain: for γ ∈ Γn0,
Ln,τ (γ)− Ln,τ (γ0)

= ∇Ln,τ (γ0)
0(γ − γ0) +

1

2
(γ − γ0)

0∇2Ln,τ (γ0)(γ − γ0) + ρn,τ (γ)

=
1

2
(Bn,τ (γ − γ0) + Yn,τ )

0[(B−1n,τ )
0∇2Ln,τ (γ0)B

−1
n,τ ](Bn,τ (γ − γ0) + Yn,τ )

−1
2
Y 0n,τ (B

−1
n,τ )

0∇Ln,τ (γ0) + ρn,τ (γ), (9.47)

where for all γ ∈ Γn0,
|ρn,τ (γ)| ≤ ||Bn,τ (γ − γ0)||2 sup

γ∈Γn0
||(B−1n,τ )0(∇2Ln,τ (γ)−∇2Ln,τ (γ0))B

−1
n,τ ||. (9.48)

Let γ∗n,τ = γ0 −B−1n,τYn,τ . Conditions (ii) and (iii) imply that for some C0

sup
(τ,f)∈G

Pf
¡||Yn,τ || > C0ζ(n)

¢ ≤ C0ζ−2(n) for all n ≥ 1. (9.49)

This, Kn,τζ
−1(n)→∞ as n→∞, and condition (i) imply that sup(τ,f)∈G Pf (γ∗n,τ /∈

Γn0) ≤ C0ζ−2(n) for all n ≥ 1. In consequence, by (9.47), (9.48), and condition (iv),
for some C0,

Ln,τ (γ
∗
n,τ )− Ln,τ (γ0) = −

1

2
Y 0n,τ (B

−1
n,τ )

0∇Ln,τ (γ0) + ρn,τ (γ
∗
n,τ ),

|ρn,τ (γ∗n,τ )| ≤ ||Yn,τ ||2 sup
γ∈Γn0

||(B−1n,τ )0(∇2Ln,τ (γ)−∇2Ln,τ (γ0))B
−1
n,τ ||, and

sup
(τ,f)∈G

Pf (|ρn,τ (γ∗n,τ )| > C0ζ(n)) ≤ C 0ζ−2(n) for all n ≥ 1. (9.50)

Let C00 be any positive finite constant. Define

Γn,τ (x) = {γ ∈ Γ : ||Bn,τ (γ − γ0) + Yn,τ || ≤ x} and
Cn = C 00ζ(n). (9.51)

Note that γ∗n,τ is in the interior of Γn,τ (Cn) unless γ∗n,τ is not in Γ. The latter occurs
with probability less than or equal to C0ζ−2(n) for n large by (9.49) and condition
(i).

We have Γn,τ (Cn) ⊂ Γn0 except on a sequence of sets with small probabilities:
sup

(τ,f)∈G
(1− Pf (Γn,τ (Cn) ⊂ Γn0)) ≤ C 0ζ−2(n) (9.52)
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for n large, by (9.49) and the assumption that Kn,τζ
−1(n) → ∞ as n → ∞. In

consequence, for some C 0,

sup
(τ,f)∈G

Pf

Ã
sup

γ∈Γn,τ (Cn)
|ρn,τ (γ)| > C 0ζ(n)

!
≤ C0ζ−2(n) (9.53)

using (9.48) and condition (iv).
Let ∂Γn,τ (Cn) denote the boundary of Γn,τ (Cn). Combining (9.47), (9.50), and

(9.53), for all γ ∈ ∂Γn,τ (Cn) and some C 0,¡
Ln,τ (γ)− Ln,τ (γ

∗
n,τ )

¢
C−2n =

1

2
µ0n(B

−1
n,τ )

0∇2Ln,τ (γ0)B
−1
n,τµn + λn,τ (γ), (9.54)

for some k-vector µn with ||µn|| = 1, where

λn,τ (γ) = (ρn,τ (γ)− ρn,τ (γ
∗
n,τ ))(C

00)−2ζ−2(n) and

sup
(τ,f)∈G

Pf

Ã
sup

γ∈Γn,τ (Cn)
|λn,τ (γ)| > C 0ζ−1(n)

!
≤ C 0ζ−2(n). (9.55)

Let An,τ be the set on which first summand on the rhs of (9.54) is greater than
C > 0 uniformly over all k-vectors µn with ||µn|| = 1 and supγ∈Γn,τ (Cn) |λn,τ (γ)| < C.
Then, the complement of An,τ , i.e., Ac

n,τ , satisfies for some C
0

sup
(τ,f)∈G

Pf (A
c
n,τ ) ≤ C 0ζ−2(n) (9.56)

for n large by condition (iii) and (9.55). Hence, the minimum of Ln,τ (γ) over
γ ∈ ∂Γn(Cn) is greater than its value at the interior point γ∗n,τ except on Ac

n,τ . In
consequence, for each n large and all τ ∈ T , the minimum of Ln,τ (γ) over γ ∈ Γn(Cn)
is attained at a point, say eγn,τ , (not necessarily unique) in the interior of Γn(Cn)
except on Ac

n,τ . These points satisfy the first-order conditions ∇Ln(eγn,τ ) = 0 except
on Ac

n,τ . In addition, eγn,τ ⊂ Γn(Cn) and, hence, ||Bn,τ (eγn,τ − γ0) + Yn|| ≤ C 00ζ(n)
except on Ac

n,τ . Given (9.56), this completes the proof of the Lemma. ¤

Next, we apply Lemma 6 with Ln,τ (γ) = m(τ)Rr(τ),τ (d, θ), γ = (d, θ0)0, and
F = ∪s∈[s∗,s∗]F(s, a, δ,K). We apply Lemma 6 a finite number of times–each time
with T = Tw ∩ [s∗, s∗] and G = Gw = {(τ, f) : τ ∈ Tw ∩ [s∗, s], f ∈ F(s, a, δ,K) for
some s ∈ [s∗, s∗]} for some w ∈W = {0, 1, ..., [(s∗−2)/2]+1}–to get results that hold
for all (τ, f) ∈ ∪w∈WGw. Note that the supremum of a function over (τ, f) ∈ ∪w∈WGw
equals the supremum over s ∈ [s∗, s∗], f ∈ F(s, a, δ,K), and τ ∈ [s∗, s].

The definition of m(τ) guarantees that ||B−1n,τ ||ζ(n)→ 0, as required by condition
(i) of Lemma 6. Condition (ii) holds by Lemma 5. To verify conditions (iii) and (iv)
of Lemma 6, we need to establish some properties of the Hessian of m(τ)Rr(τ),τ (d, θ),
viz., Hn,τ (d, θ). This is done in the following Lemma.
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Lemma 7 Suppose the assumptions of Theorem 4 hold. Let s∗ ≥ 1. For each s∗ ∈
[s∗,∞) and each integer w in the set W, there exists a positive finite constant C such
that

(a) sup
τ∈Tw∩[s∗,s∗]

||B−1n,τJτnB−1n,τ−Ωr(τ)||→ 0 as n→∞,

(b) sup
s∈[s∗,s∗]

sup
f∈F(s,a,δ,K)

sup
τ∈Tw∩[s∗,s]

Pf
¡||B−1n,τ (Hn,τ (df , θ0)− Jτn)B

−1
n,τ || > Cζ−1(n)

¢
≤ Cζ−2(n),

(c) sup
s∈[s∗,s∗]

sup
f∈F(s,a,δ,K)

sup
τ∈Tw∩[s∗,s]

Pf (sup
θ∈Θ

||B−1n,τ (Hn,τ (df , θ)−Hn,τ (df , θ0))B
−1
n,τ ||

> Cζ−1(n)
¢ ≤ Cζ−2(n), and

(d) sup
s∈[s∗,s∗]

sup
f∈F(s,a,δ,K)

sup
τ∈Tw∩[s∗,s]

Pf ( sup
d∈Dm(τ)(ηn),θ∈Θ

||B−1n,τ (Hn,τ (d, θ)−Hn,τ (df , θ))B
−1
n,τ ||

> Cζ−1(n)
¢ ≤ Cζ−2(n), where ηn = ζ−2(n).

Proof of Lemma 7(a). For τ ∈ Tw ∩ [s∗, s∗], B−1n,τJτnB−1n,τ − Ωr(τ) does not depend
on τ and the proof of Lemma 2(a) applies. ¤

Proof of Lemma 7(b). We employ the same definitions as in the Proof of Lemma
2(b), but with m = m(τ) and r = r(τ). By (9.7), (9.8), Ja,b = O(log2a(m(τ)),

and some fairly standard manipulations, it suffices to show that the sets {| bGa,b −
Ja,b| > Cζ−1(n) log−2m(τ) : n ≥ 1} are uniformly ζ−2(n) small for a = 0, 1, 2,
b = 0, 1, ..., r(τ). By Markov’s inequality, the latter is implied by

Ef | bGa,b(df , θ0)− Ja,b|2 ≤ 2G0(Efϑ
2
1,a,m +Efϑ

2
2,a,m) = O(ζ−4(n) log−4m(τ)) (9.57)

uniformly over s ∈ [s∗, s∗], f ∈ F(s, a, δ,K), τ ∈ Tw ∩ [s∗, s], for a = 0, 1, 2. The
inequality in (9.57) holds by (9.11).

To show the equality in (9.57) holds, we use the following results:

(i) Ef

 kX
j=1

(
Ij
gj
− 2πIεj)

2 = O
³
k2/3 log4/3 k + k2+2τn−2τ + kn−1/2

´
and

(ii) Ef

 kX
j=1

(2πIεj − 1)
2 = O(k) as n→∞ (9.58)

uniformly over k ∈ {1, 2, ...,m(τ)}, s, f, and τ. Using (9.12), the Cauchy-Schwarz
inequality, and (9.58), we obtain: for some C <∞ independent of s, f, and τ,

Efϑ
2
1,a,m ≤ C(log2am)m−2

Ã
m−1X
k=1

k−1
!

m−1X
k=1

k−1E

 kX
j=1

(
Ij
gj
− 1)

2

≤ C(log2a+1m)m−2
m−1X
k=1

k−1O(k + k2/3 log4/3 k + k2+2τn−2τ + kn−1/2)

≤ C(log2a+1m)
¡
m−1 +m2τn−2τ

¢
, (9.59)
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where m = m(τ). Using (9.12) and (9.58), we have

Efϑ
2
2,a,m ≤ C(log2am)m−2O

³
m+m2/3 log4/3m+m2+2τn−2τ +mn−1/2

´
≤ C(log2am)(m−1 +m2τn−2τ ) (9.60)

uniformly over s, f, and τ. The rhs in (9.59) and (9.60) is o(ζ−4(n) log−4m), so the
equality in (9.57) holds.

Finally, we prove (9.58). Part (ii) follows from Robinson’s (1995, p. 1647) proof
of his (4.9). To prove part (i), we choose an integer ≤ k and write Ef (

Pk
j=1(Ij/gj−

2πIεj))
2/3 as

Ef

X
j=1

(
Ij
gj
− 2πIεj) +

kX
j= +1

(
Ij
gj
− Ij

fj
) +

kX
j= +1

(
Ij
fj
− 2πIεj)

2 /3 (9.61)

≤ Ef

X
j=1

(
Ij
gj
− 2πIεj)

2 +Ef

 kX
j= +1

Ij
gj
(1− gj

fj
))

2 +Ef

 kX
j= +1

(
Ij
fj
− 2πIεj)

2 .
The first expectation on the rhs of (9.61) divided by two is uniformly bounded by

Ef

X
j=1

Ij
gj

2 +Ef

X
j=1

2πIεj

2 ≤ X
j=1

Ef (Ij/gj)
2 +

X
j=1

Ef (2πIεj)
2 = O( 2),

(9.62)
where the last equality follows from the fact that Ef (Ij/gj)

2 = O(1) and Ef (2πIεj)
2 =

O(1) uniformly over j ∈ {1, 2, ...,m(τ)}, s, f, and τ. The second expectation on the
rhs of (9.61) is uniformly bounded by

k
kX

j= +1

Ef

I2j
g2j
(1− gj

fj
)2 = O

k
kX

j= +1

λ2τj

 = O(k2(k/n)2τ ), (9.63)

where the first equality uses Ef (Ij/gj)
2 = O(1) and a Taylor expansion of logϕ(λ)

to order 2r(τ). The third expectation on the rhs of (9.61) is uniformly bounded by

O
³
log2 k + (k log2 k)/ + k1/2 log k + kn−1/2

´
, (9.64)

which follows from Robinson’s (1995) proof on pp. 1648-51. Setting = k1/3 log2/3 k,
(9.61)-(9.64) combine to give part (i) of (9.58). ¤

Proof of Lemma 7(c). As in the proof of Lemma 7(b), it suffices to show that

Ef sup
θ∈Θ

³ bGa,b(df , θ0)− bGa,b(df , θ)
´2
= O

¡
ζ−4(n) log−4m(τ)

¢
(9.65)
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uniformly over s, f, and τ, for all a = 0, 1, 2 and b = 0, ..., r(τ). Using (9.15) and the
definition of bGa,0(df , θ0) in (9.6), the left-hand side (lhs) of (9.65) is bounded by

O(λ2m(τ))Ef
bG2a,0(df , θ0) = O((m(τ)/n)2)(log2am(τ))), (9.66)

where the equality holds by (9.57) and Ja,0 = O(log2am(τ)). The rhs of (9.66) is
O(ζ−4(n) log−4m(τ )) by the definitions of m(τ) and ζ(n). ¤

Proof of Lemma 7(d). As in the proof of part (c) above, it suffices to show that
the expectation of the square of the lhs of (9.16) is O(ζ−4(n) log−4m(τ)) uniformly
over s, f, and τ. As in (9.17), this is implied by

EfZ
2
a,b(ηn) = O

³
n4df ζ−4(n) log−4m(τ)

´
(9.67)

uniformly over s, f, and τ for all a = 0, 1, 2, and b = 0, ..., r(τ), where Za,b(ηn) is
defined in (9.17). Equation (9.67) holds because (9.18) and bG0,0(df , 0) = O(1) (by
(9.57) and (9.65)) imply that EfZ

2
a,b(ηn) = O(η2n(log

−4m(τ))n4df ). ¤

We now use the results of Lemma 7 to verify conditions (iii) and (iv) of Lemma 6
with G = Gw for each w ∈W. Condition (iii) holds by Lemma 7(a) and (b) and the
positive definiteness of Ωr(τ). Condition (iv) holds withKn,τ = m(τ)1/2ηn log

−5m(τ),
where ηn = ζ−2(n), by Lemma 7(c) and (d). In consequence, the following Lemma
holds.

Lemma 8 Suppose the assumptions of Theorem 4 hold. Let s∗ ≥ 1. Then, for each
s∗ ∈ [s∗,∞), there exist solutions (edτ ,eθτ ) to the FOCs (∂/∂(d, θ0)0) Rr(τ),τ (d, θ) = 0

except on sets that are uniformly ζ−2(n) small and

Bn,τ

Ã edτ − dfeθτ − θ0

!
= −Ω−1r(τ)B−1n,τSn,τ (df , θ0) + εn,τ

where the sets {{||εn,τ || > C∗ζ(n)} : n ≥ 1} are uniformly ζ−2(n) small for all
C∗ <∞.

Using strict convexity of Rr(d, θ), the solutions (edτ ,eθτ ) to the FOCs equal the
LPW estimators (bdτ ,bθτ ) except on sets that are uniformly ζ−2(n) small (by the
argument given at the beginning of Section 5). Hence, Lemma 8 implies Lemma 4.

It remains to prove Lemma 5.

Proof of Lemma 5. For convenience, we show that: for some C < ∞, the result
of Lemma 5 holds with C∗ replaced by C. This is sufficient because the proof of the
latter holds without change with ζ(n) replaced by eCζ(n) for all constants eC > 0.

By (9.19) and (9.20),

B−1n,τSn,τ (df , θ0) = bG−1(df , θ0) 4X
k=1

Tk,n,τ , (9.68)
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where Tk,n,τ denotes Tk,n, defined in (9.20), with m = m(τ) and r = r(τ) for k =
1, 2, 3, 4 and bG(df , θ0) is defined in (2.3) with m = m(τ). By definition, bG(df , θ0) =bG0,0(df , θ0). By (9.57) and Markov’s inequality, for some C <∞,

Pf (| bG0,0(df , θ0)− J0,0| > Cζ(n)) ≤ Cζ−2(n), (9.69)

where the inequality holds for all τ ≤ s, f ∈ F(s, a, δ,K), and s ∈ [s∗, s∗]. Note that
J0,0 = G0 > 0. In consequence, it suffices to show that for some C <∞,

Pf (||Tk,n,τ || > Cζ(n)) ≤ Cζ−2(n) for k = 1, 2, 3, 4, (9.70)

where the inequality holds for all τ ≤ s, f ∈ F(s, a, δ,K), and s ∈ [s∗, s∗].
For k = 2 and k = 4, (9.70) holds because

T2,n,τ = o(1) and T4,n,τ = O(1) (9.71)

uniformly over τ ≤ s, f ∈ F(s, a, δ,K), and s ∈ [s∗, s∗], where the former result holds
by (9.23) and (9.24) and the latter holds by (9.25)-(9.27).

To establish (9.70) for k = 3, let hj(τ ) = eXj − m−1(τ)
Pm(τ)

k=1
eXk. Then, by

Markov’s inequality, we have

Pf

³
||T3,n,τ || ≥ Cζ(n)

´
= Pf (||m−1/2(τ)

m(τ)X
j=1

(2πIεj − 1)hj(τ)|| ≥ Cζ(n))

≤ C−2ζ−2(n)m−1(τ)E||
m(τ)X
j=1

(2πIεj − 1)hj(τ)||2. (9.72)

By the second last paragraph of the proof of Lemma 2(e), Var(Iεj) = O(1) and
Cov(Iεj , Iεk) = O(n−1) uniformly over j, k = 1, ..., n with j 6= k. Also, by Lemma

2(a) of AG, m−1(τ)
Pm(τ)

j=1 hj(τ)
0hj(τ ) = O(1) uniformly over τ ≤ s. In consequence,

E||
m(τ)X
j=1

(2πIεj − 1)hj(τ)||2

= (2π)2
m(τ)X
j=1

Var(Iεj)hj(τ )0hj(τ) + 8π2
m(τ)X

j,k=1,j 6=k
Cov(Iεj, Iεk)hj(τ)0hk(τ)

= O(m(τ)) (9.73)

uniformly over τ ≤ s, f ∈ F(s, a, δ,K), and s ∈ [s∗, s∗]. Combining (9.72) and (9.73)
establishes (9.70) for k = 3.

For k = 1, (9.70) holds using (9.21)-(9.22) and the proof of (9.21) given in (9.28)-
(9.31). In particular, the moment bounds in (9.30) and (9.31) are used to bound the
tail probabilities of interest using Markov’s inequality. ¤
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Footnotes
1 The authors thank Patrik Guggenberger, John Geweke, Doug Hodgson, the

editor, and three anonymous referees for comments; and Carol Copeland for proof-
reading the paper. Andrews thanks the National Science Foundation for research
support via grant numbers SBR—9730277 and SES-0001706. Sun thanks the Cowles
Foundation for support under a Cowles prize. The authors’ email addresses are don-
ald.andrews@yale.edu and yisun@ucsd.edu.

2 Henry and Robinson’s (1996) expressions in (1.3) for the bias contain two ty-
pos. All three of their expressions are missing a minus sign because the preceding
expression for bH −H is missing a minus sign. Also, their right-hand side expression
in (1.3) should have 1/2 in place of 2 in the numerator. With these corrections, their
expressions for the asymptotic bias are equivalent to ours.

3 Note that the summing of terms of the sort O(ka) over k = 1, ...,m, which is
done implicitly here and explicitly below, is notationally convenient and is justified
provided the O(·) holds uniformly over k = 1, ...,m. The requisite uniformity holds
here, as is stated explicitly. Robinson (1995a, 1995b) also utilizes this notation.

4 It might seem, and indeed it was suggested to us by a discussant, that the proof
given below can be simplified and the assumptions on m weakened by establishing
the asymptotic normality of the right-hand side of (9.19) with gj replaced by fj .
Ostensibly, this replacement would be justified by noting that fj/gj is uniformly
bounded away from infinity and zero. Such a replacement, however, is not correct. If
it were, the normalized score would be asymptotically normal with mean zero, which
is not the case.

5The constants ψ1 and ψ2 appear as a multiplicative constants on the right-hand
side of GRS’s formulae for the bandwidth m(γ) in their (3.6) and for d(β0) in their
(3.8), respectively.

6IMS require that their constant κ > 6. Such a choice provides poor finite sample
performance for all of the cases that we considered. In consequence, we did not
impose this bound and we selected κ from the same grid {.05, .10, ..., .70} as for the
analogous constant ψ2 for the ALPW and GRS procedures. The selected κ value was
not at the upper end of the grid.

In addition, IMS require that the number of terms, p, in their Fourier series
expansion is less than a bound (their Kεn) that is very restrictive. For example, with
pool = 1, the bound allows for at most zero terms when n ≤ 18, 000 and at most
one term when n ≤ 58, 000. The bound is more restrictive when pool > 1. We do
not impose this bound because it would eviscerate the semiparametric nature of the
estimator. Instead, we required that p ≤ 20.

7Note that α = .9 is not included in the grid because it does not yield a local CL

criterion given that m = n.9 ≥ n/2.
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TABLE I
RMSE for ARFIMA(1,d,0) Processes with AR Parameter φ

(a) n = 512

d = 0 d = 0 d = .4
Normal t5 Normal

φ φ φ
Estimator 0 .3 .6 .9 .6 .9 .6 .9

ALPW1 .145 .142 .145 .423 .140 .420 .151 .425
GRS1 (taper, trim = 3) .160 .197 .397 .855 .393 .864 .394 .857
IMS1 (pool = 2, taper) .234 .252 .291 .448 .311 .460 .379 .579

ALPW2 (r ≤ 2) .098 .098 .118 .551 .121 .552 .126 .551
GRS2 (taper, no trim) .164 .172 .244 .662 .254 .657 .253 .668
GRS3 (no taper, no trim) .131 .133 .159 .502 .157 .501 .166 .499
IMS2 (pool = 2, no taper) .203 .209 .217 .315 .215 .320 .222 .301

H1 (α = 0.5) .288 .309 .321 .438 .308 .420 .310 .436
H2 (α = 0.8) .182 .206 .233 .459 .235 .457 .241 .480

Parametric Whittle QML .066 .128 .134 .112 .141 .107 .140 .156

(b) n = 4096

d = 0 d = 0 d = .4
Normal t5 Normal

φ φ φ
Estimator 0 .3 .6 .9 .6 .9 .6 .9

ALPW1 .061 .061 .060 .207 .058 .201 .062 .213
GRS1 (taper, trim = 6) .056 .081 .169 .586 .168 .581 .169 .587
IMS1 (pool = 2, taper) .045 .133 .122 .218 .120 .220 .142 .273

ALPW2 (r ≤ 4) .041 .041 .045 .336 .043 .333 .048 .340
GRS2 (taper, no trim) .063 .066 .108 .396 .109 .388 .114 .401
GRS3 (no taper, no trim) .052 .052 .065 .222 .064 .219 .070 .228
IMS2 (pool = 2, no taper) .046 .076 .073 .155 .073 .154 .071 .145

H1 (α = 0.5) .067 .076 .083 .125 .082 .123 .084 .132
H2 (α = 0.8) .052 .062 .073 .147 .075 .144 .077 .156

Parametric Whittle QML .013 .028 .046 .025 .045 .025 .045 .032



TABLE II
RMSE for DARFIMA(1,d,0) Processes with λ0 = π/2 and AR Parameter φ

(a) n = 512

d = 0 d = 0 d = .4
Normal t5 Normal

φ φ φ
Estimator 0 .3 .6 .9 .6 .9 .6 .9

ALPW1 .143 .142 .146 .423 .149 .430 .146 .425
GRS1 (taper, trim = 3) .160 .200 .390 .857 .395 .868 .394 .859
IMS1 (pool = 2, taper) .448 .448 .445 .464 .468 .490 .520 .578

ALPW2 (r ≤ 2) .181 .185 .244 .676 .248 .676 .244 .637
GRS2 (taper, no trim) .176 .181 .243 .656 .254 .657 .253 .668
GRS3 (no taper, no trim) .131 .142 .159 .503 .157 .501 .165 .499
IMS2 (pool = 2, no taper) .268 .266 .262 .303 .252 .311 .246 .299

H1 (α = 0.5) .356 .348 .317 .404 .326 .401 .309 .427
H2 (α = 0.8) .396 .393 .384 .389 .403 .409 .363 .429

Parametric Whittle QML .866 .616 .949 1.202 .951 1.209 .852 .855

(b) n = 4096

d = 0 d = 0 d = .4
Normal t5 Normal

φ φ φ
Estimator 0 .3 .6 .9 .6 .9 .6 .9

ALPW1 .060 .060 .059 .207 .055 .204 .061 .213
GRS1 (taper, trim = 6) .056 .081 .169 .586 .168 .581 .169 .587
IMS1 (pool = 2, taper) .146 .146 .146 .127 .148 .130 .121 .120

ALPW2 (r ≤ 4) .096 .096 .091 .334 .089 .327 .091 .303
GRS2 (taper, no trim) .063 .066 .108 .396 .109 .388 .114 .401
GRS3 (no taper, no trim) .051 .052 .066 .222 .064 .219 .070 .229
IMS2 (pool = 2, no taper) .096 .096 .096 .106 .093 .103 .100 .125

H1 (α = 0.5) .126 .125 .123 .117 .124 .119 .110 .127
H2 (α = 0.8) .120 .120 .119 .113 .122 .119 .119 .139

Parametric Whittle QML .346 .579 .930 1.256 .933 1.257 .905 1.068



TABLE III
RMSE for LCM Model with Smoothness Index s0 = 1.5 and Weight k

(a) n = 512

d = 0 d = 0 d = .4
Normal t5 Normal
k k k

Estimator 1/3 1/2 1 2 3 1/2 2 1/2 2

ALPW1 .139 .139 .139 .168 .216 .145 .171 .138 .164
GRS1 (taper, trim = 3) .172 .190 .230 .384 .486 .172 .384 .177 .375
IMS1 (pool = 2, taper) .247 .249 .264 .298 .336 .262 .297 .307 .323

ALPW1 (r ≤ 2) .096 .097 .106 .167 .245 .098 .167 .098 .164
GRS2 (taper, no trim) .165 .173 .175 .262 .337 .182 .269 .181 .265
GRS3 (no taper, no trim) .131 .131 .136 .181 .245 .121 .184 .128 .176
IMS2 (pool = 2, no taper) .207 .207 .209 .209 .229 .194 .215 .215 .233

H1 (α = 0.5) .264 .265 .276 .303 .333 .259 .307 .271 .311
H2 (α = 0.8) .178 .182 .199 .241 .298 .169 .229 .182 .245

Parametric Whittle QML .064 .069 .129 .273 .368 .064 .269 .069 .274

(b) n = 4096

d = 0 d = 0 d = .4
Normal t5 Normal
k k k

Estimator 1/3 1/2 1 2 3 1/2 2 1/2 2

ALPW1 .061 .060 .060 .065 .100 .060 .068 .061 .058
GRS1 (taper, trim = 6) .061 .066 .108 .213 .305 .066 .210 .066 .212
IMS1 (pool = 2, taper) .056 .075 .123 .136 .166 .075 .138 .070 .105

ALPW2 (r ≤ 4) .043 .043 .045 .067 .113 .041 .070 .041 .067
GRS2 (taper, no trim) .068 .068 .079 .137 .201 .067 .137 .066 .135
GRS3 (no taper, no trim) .051 .052 .056 .085 .122 .053 .087 .049 .080
IMS2 (pool = 2, no taper) .050 .058 .070 .085 .085 .058 .086 .062 .089

H1 (α = 0.5) .072 .073 .078 .089 .100 .078 .089 .079 .091
H2 (α = 0.8) .056 .058 .065 .087 .107 .060 .089 .061 .087

Parametric Whittle QML .023 .033 .104 .236 .320 .032 .235 .031 .232


