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ADAPTIVE LQG CONTROLLER WITH LOOP TRANSFER
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SUMMARY

In this paper we propose for scalar plants an adaptive LQG controller with adaptive input sensitivity
function/loop transfer recovery of an associated adaptive LQ design. The sensitivity recovery can be
viewed as a frequency-shaped loop recovery where the weights involve a sensitivity function. The adaptive
loop/sensitivity recovery is achieved by feeding back the estimation residuals to the control through a
stable bounded input, bounded output (BIBO) adaptive filter Q~. For simplicity we consider fixed but
uncertain plants in the model set and identification schemes where there are consistent parameter
estimates. For non-minimum phase plants an asymptotic partial recovery is achieved via a recursive least
squares update of the BIBO filter Qk. The degree of recovery can be prescribed a priori between zero
and the maximum possible. For the case of minimum phase plant estimates, full loop recovery may be
achieved asymptotically by prescribing a maximum degree of recovery.

The motivation for proposing the new adaptive control algorithm is to enhance robustness of adaptive
LQG designs, taking advantage of the robustness enhancement properties of sensitivity/loop recovery for
off-line designs. The robustness properties of the new algorithm are demonstrated by simulation results.

KEY WORDS Adaptive control Optimal control Loop transfer recovery Robust controller design

1. INTRODUCTION

The linear quadratic (LQ) controller design method for a nominal deterministic plant is a
straightforward state feedback design approach that results in a simple controller which is
optimal with respect to its quadratic performance index. Not only is the design optimal, it also
has certain robustness properties. In classical terms a continuous time LQ design guarantees
60° phase margin and [ – 6, m) dB gain margin (or multivariable equivalent). For discrete time
LQ design the same attractive properties are not guaranteed. However, for most practical cases
the attractive robustness property is still available.’ In linear quadratic Gaussian (LQG)

design, state estimates are used in lieu of states. The state estimator is designed based on a
nominal white Gaussian noise environment to give optimal estimates of the nominal plant
state. For the nominal noise environment the resulting LQG controller gives the optimal
controller in that the expected value of the quadratic index is minimized. However, the result
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of incorporating a state estimator into the controller is that the resulting controller may no

longer possess the desirable robustness present in the original LQ design. The LQG controller

may have intolerable robustness. 2’3
It is usually considered desirable in an LQG controller design to modify the design in such

a way as to achieve full or partial loop transfer recovery (LTR) of the original state
feedback 4-c This modification regains the robustness lost as a result of feeding back state

estimates instead of the states. The technique of References 4–6 developed for minimum phase
plants suffers a shortcoming in that there is no systematic way of coping with non-minimum

phase plants. In an earlier paper 7 a new approach to achieving LTR is proposed. It is based

on H2- or Hm-optimization over the class of all stabilizing controllers. Loop recovery (possibly

only partial recovery) is achieved by feeding back output prediction errors (residuals) from the
state estimator through a stable transfer function Q to the inputs. The approach constitutes

a more systematic way of coping with non-minimum phase plants.
A fixed off-line designed controller, however robust, is limited in the class of plants it can

stabilize and control adequately. It is thus necessary to turn to adaptive control techniques,
involving on-line learning of the plant, to cope with a wider class of plants, plant variations
or plant uncertainties. Of course, adaptive techniques cope with only parametrized structured
uncertainties. To cope with unstructured uncertainties such as unmodelled dynamics, it is usual

to implement adaptively robust controller design. Here we develop an adaptive control design

based on the well understood off-line linear quadratic methods. The adaptive linear quadratic
Gaussian (LQG) controller 8 calculates at each finite time step an estimate of the plant

parameters from which the LQG controller parameters are updated. However, this adaptive
controller is not an adaptive robust controller since it inherits the poor robustness properties
of off-line LQG designs. Clearly there is motivation to seek an adaptive LQG/LTR scheme as
a means to achieve an adaptive robust controller and thereby exploit the full power of linear
quadratic design methodology. If a suitable recursive version of the LQG/LTR design
approach could be devised, it would have a greater potential for robustness, inheriting the
enhanced robustness associated with off-line LQG/LTR. The challenge in achieving a practical
adaptive LQG/LTR algorithm is to minimize complexity increase over an adaptive LQG
algorithm, to avoid high estimator loop gains and to cope with non-minimum phase plants.

In this paper we propose generalizations of the LQG/LTR off-line design approach in
Reference 7 to the on-line adaptive LQG/LTR case. For minimum phase plants the

modifications to the adaptive LQG schemes are straightforward applications of the off-line
results of Reference 7 to the on-line case. For non-minimum phase plants the off-line
optimization LTR procedure with a stability constraint as suggested in Reference 7 is too
involved to be practically performed on-line. Here we propose a recursive optimization based
on the LTR procedure of Reference 7 involving a standard recursive least squares algorithm.
The computational effort involved in the recursive LTR is thus (loosely) of the same order as
that of the identification and that of the LQG design. The algorithm, though developed with

the non-minimum phase plants case in mind, is equally suited when applied to the minimum
phase plants case.

The simulation studies of the paper aim to demonstrate that the proposed adaptive
LQG/LTR scheme can be more robust than an adaptive LQG scheme.

In Section 2 we revise the LQG/LTR methodology of Reference 7 which optimizes over the

class of all stabilizing controllers and present variations which are suitable for on-line
implementation. In Section 3 we present the proposed adaptive LQG/LTR algorithm.
Simulation results are presented in Section 4 and conclusions are drawn in Section 5.
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2. OPTIMIZATION TASK

In this section we first revise the theory on the class of all stabilizing controllers and a method

of off-line loop transfer recovery which can be viewed asanlY2- orlim-optimization over this

class. Next, variations are studied which prove suitable for on-line implementation.

Deterministic plant model

Consider the following state space description of a linear time-invariant stabilizable and
detectable plant G

and transfer function

G: Xk+l = AXk+BUk, yk = Cxk + DUk (la)

matrix

[1G= C(ZZ– A)-lB+D= fl;~ <RP
CID T

(lb)

where RP denotes the class of rational proper transfer function matrices. Throughout the

paper, [ ] T denotes a transfer function matrix according to the convention of (lb).

Stabilizing controllers

A controller KE RP is said to stabilize G E RP if and only if

[-: ‘T’RHm (2)

(Here we assume that the control loop is well posed or equivalently that the inverse in (2)
exists. )

LQG design

Consider a standard LQG design for the plant G of (1) based on the separation principle, 2’3
as in Figure 1 for the case Q(s) = O. The steady state feedback gain vector F is obtained from
an LQ design which involves the solution of the Riccati equation

P;+, = AT[P~ – P~B(BTPIB+ Rc)-lBTPi]A + Q,

Pc = lim Pfj, p; =() (3)
k+–=

F= –(BT~cB + RC)-lBT~cA

parametrized by Rc = R T > 0 and Qc = Q:= C~CC >0, [A, CJ completely detectable, with
interpretation as weighting coefficients in a quadratic index X; (XTQCX + u ‘RCU). The closed
loop arrangement arising from an LQ design is depicted in Figure 2.

Similarly, the steady state estimator gain is obtained from

P2+I = A[P~– P; CT(CP;CT +RC)-lCP~]AT+ Q.

F’ = lim P:, P;=o
t+m

H= –A~eCT(C~’CT + R,)-l

(4)
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Figure 2. State feedback design

parametrized by R, = R? >0, Qc = Q: = B.Bl z O, [A, BJ completely stabilizable, with
interpretation as intensities of independent plant measurement and plant process noise
disturbances in a stochastic model of the plant based on (1). The state estimator loop is
depicted in Figure 3.

The output feedback LQG (stabilizing controller) constructed from F and H based on the
separation principle is then given as

[

~= A+ BF+HC+HDF –H
F 1OT

(5)

See Figure 1 with Q(s) = 0,

Class of all stabilizing

Now define coprime

con trollers

factorization for G and K as

G= N~-L =ti-t~, N, Ikf, ~,kfc RH”

K=uV-l= ~-~fi, U, V,~, ~CRH”
(6)
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such that the following double Bezout equation is satisfied.

The set of factorization we work with here are given in terms of F and I-i and are as follows
(for a more detailed discussion of coprime factorization see Reference 9).

[G-~1=[4-+fyT-!]T(8)

[1[
A+ BF’B

1Mu -- F.- F7=;
NV=

C+ DF; D I ~
(9)

It is shown in Reference 9 that the class of all stabilizing controllers K(Q) for G can be
uniquely parametrized in terms of arbitrary Q < RHrn as

K(Q) =( U+ MQ)(V+NQ)-’ =K+ ~-’Q(I+ V-’NQ)-l V-l (lo)

Duals can also be defined as

K(Q)= (ti+Q~)-’(ti +Q~)=K+ p-’(I+Q~p-’QV’l V-l (11)

k noise
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Figure 4. Class of all stabilizing controllers
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It can be shown from (6)–(9) that the class of all stabilizing controllers can be organized as

in Figure 110 or in Figure 4 where

[
J= K

~-,

~-l — 1~-1~

Here Q 6 RHrn is interpreted as an augmentation to the nominal

back the estimation residuals r = (y – j) to the plant controls.

Loop/sensitivity recovery

(12)

LQG controller K feeding

To regain robustness at the plant input, it is proposed in Reference 6 that Q E RHm be

selected to achieve partial (or perhaps full) loop/_sensitivity recovery of the original LQ
controller. Loop recovery is said to take place if F(zI – A)- lB – K(Q)G ~ O and input
sensitivity recovery takes place if [1 – F(zI – A)- Ill] -‘ – [1 – K(Q)G] -1 ~ O. It is pointed out
in Reference 7 that the sensitivity difference terms above can be viewed as a frequency-shaped
loop difference where the frequency weighings are the sensitivities, which weight most heavily

the crossover frequencies of the loop gain. Thus simple manipulations give, as in Reference 7,

[[- F(zI-A)-’B]-’ - [1- K(Q)G] “ = A4[F(zI- A)-’B-K(Q)G] [1- K(Q)G] ‘1

Now define the sensitivity difference as

c~= [Z– F(ZI– A)-lB] “ – [l–K(Q)G]-l = M(I– ~)– MQ~ (13)

Full input sensitivity function recovery is achieved if e~ is zero subject to closed loop stability,

i.e. Q < RHrn. Correspondingly, partial input sensitivity function recovery is achieved if c~ is
made small in some sense. Typical criteria are the two norm or infinity norm.

Towards an adaptive Iooplsensitivity recovery

Let us first define a frequency-shaped sensitivity error so as to achieve calculational
simplicity, particularly for on-line versions. The error we consider is

G&= G[l-F(zI- A)-lB]-’ -G IK(Q)G]G1-l

= NIF(zI - A)-’B– K(Q)G] [l– K(Q)G] ‘1 = IV(Z– ~) – NQ~ (14)

Clearly, from (14), achieving a small Gc~ can be viewed as frequency-shaped loop recovery of
the original LQ design where the frequency weights are N and the sensitivity function is
[1 – K(Q)G] -1. The appropriateness of working with a minimization of Gc~ is virtually

identical to that of working with c~, as studied in Reference 6, and so is not repeated here.
Let us define, in obvious operator notation,

elk = (Gz~)w~ (15)

where w~ is a sample function of a zero-mean, unit-covariance white noise and elk is the

filtered response to wk. Clearly, the H2-minimization of Gc~ is equivalent to the minimization
task

k
min lim ~ ~ f? Tif?li (16)

Q~RH-k-wki=l

This minimization task can be performed off-line. Here we wish to apply standard least squares
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techniques so as to achieve a practical on-line optimization. For minimum phase plants the
task (16) can be achieved using least squares and the least squares Q turns out to be stable
anyway. For non-minimum phase plants the minimization of (16) cannot be performed using
a standard recursive least squares minimization algorithm since such an algorithm will yield

a Q that is unstable. TO see this, note that with N-L denoting the left inverse,

Q= (~- ~)~-Lf RHmistheunconstrained least squares solution giving a zero index.

Least squares minimization task

A variation of the minimization task (16) which can be made arbitrarily close to the task

(16) is the more standard least squares minimization task over all Q of appropriate dimension

lk
min lim – ~ e,Tei (17)

Q k+wk,.1

where with O < y < m and applying (14)

‘k=[:::l”[:;ilw’’ [N(’-2iNQNlwk
We propose to implement a recursive minimization

(18)

lk
min – ~ (?:?; (19)

Q kicl
where @idenotes an estimate of ei.

Stability of least squares Q

We will now show the key theoretical result of the paper, crucial for achieving the proposed
practical adaptive LQG/LTR controller. For a controllable and observable scalar plant G the
minimization of (17) for y > 0 ensures the stability of Q and allows a rationalization for

specific disturbance response construction of (18) and least squares Q selection.

Lemma 1

Consider the controllable and observable scalar plant G of (1) and a controller K(Q) with
(6), (7) and (10), (11) holding. Consider also a zero-mean, unit-variance white noise wk and
that the noise response ek is given by (1 8). Assume a minimal realization of Q. Consider the
least squares minimization task of (17) with ~ >0 giving a least squares Q denoted QLS. Then
the optimal ek has a bounded variance, as does QLs Wk. Moreover, QLS is stable and is given by

QLS=Z-’[(%*N4S-’”
(20)

where Z*Z = (N~)*(N~) + -yfi*~ with Z, Z-1 < RHm and [~s denotes the stable terms in
a partial fraction expansion of X.

Proof’ Part(i). From (18) we see that with Q = O, then ek is the output of a linear stable
time-invariant system driven by wk and so has a bounded variance, being
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It is clear that for the optimal selection of Q the variance of ek is less than this variance and
is bounded.

We have that (~, @ are coprime. Also, from (7), Vfi – N~ = 1 and in the scalar plant case

equivalently V~ – UN= 1 so that (N, @ are coprime. These two coprime conditions imply

that the pair ( – N~, -y~) is also coprime for ~ >0. Thus there exist XI, X2 f RHrn such that

(7XZti -X, Nfi) = 1 (21)

For the scalar plant case, when Qfi = fiQ and Qfi = ~Q, premultiplying (18) by [XI X21
yields under (21 )

[x, X2] f?k - X,N(I– ~)~k= @Vk

Since the operators on ek and wk on the left-hand side are time-invariant and stable, and ek

(and of course wk) has a bounded variance, under the minimization (17) yielding an optimum
Q as Q’s, then QLswk has a bounded variance. Consequently, under the assumption on wk,
it is clear that for Q’s time-invariant, Q’s must be stable.

Part (ii). For the minimization of (17) consider a Q of appropriate order. Then from the
results of the first part of this lemma we have by the ergodic theorems

lk
min lim – ~ e~ei = min lim : ~ e~e; = min ~11 ek II;

Q k+cokl.l QGRH”k+mki.1 Q c RH”

Now for wk a zero-mean, unit-variance white noise sequence we have

11[ 111
N(1– U) – N~Q 2

min ~11 ek II; = min
Q E RHw Q E RHw tiQ 2

(22)

Define Z*Z = (N~) + ~fi”~ with Z, Z-’ E RH”. It is immediate from spectral factorization
theory that a stable and minimum phase spectral factor Z exists. That ( Z*Z ) -1 E RP and
thereby Z-1 ERP follows since A?- 1c RP and -y >0. Decomposing [ – N~ y~ T into an
inner–outer factor pair, from (22) we then have

‘in [Nw!+[~zQ 2Q cRH”

2

‘Q~:z I [(+m31[N(’~v)l+ zQll:

1( ?
–N-* 2

—— min ~ N(l–~)+ZQ
QcRHL 2

Then, from Reference 8, with Q = Q’s of (20), (23) is minimized as claimed.

Rationale fOr definition of ek

(23)

•1

In defining a disturbance response ek as in (18) for minimization in the task (17), the
inclusion of the term elk is justified in terms of sensitivity recovery. The inclusion of the term

ezk = ~Qtiwk, -y >0, in the minimization task (17) achieves the requirement that Q E RHm.
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Clearly, performing theminimization task of (16) without any constraint on Q and taking
y=O for the scalar plant case will yield Q=(I– ~)~-*. It is shown in Reference 6 that
consequently the zeros of the plant G are contained in the modes of Q. If G is non-minimum

phase, then Q is unstable. From (10) it is straightforward to show that this is equivalent to the
plant–controller pair containing ‘unstable zero–pole cancellations’. Therefore the closed loop

system is not stable in the definition of (2). It is well known that such a situation will not occur
if in Figure 5(a) ~k is bounded for bounded wk. This can be translated to requiring ~k of
Figure 5(b) to be bounded. Now the transfer function from wk to ~k is given by f/( = QfiWk.

Thus selecting ezk = y~k, y >0, in the minimization of (17) avoids the ‘unstable zero–pole

cancellations’ mentioned above.

Degree of sensitivitylloop recovery, y

Loop recovery is achieved in Figure 1 by adding the signal s derived from passing the

estimation residue r through a stable transfer function Q to the control. Thus s = O implies no
loop recovery. On the other hand, zero constraint on s allows for the possibility of full loop
recovery. In our case, selecting the penalizing constant y to be either infinity or zero in the
minimization task (19) caters for the two extreme cases. Thus choosing a finite ~ between zero
and in ftnit y can be interpreted as determining the degree of loop recovery desired.

3. ADAPTIVE LQG/LTR ALGORITHM

In this section we present an adaptive LQG controller for scalar plants with sensitivity recovery

(frequency-shaped loop transfer recovery) motivated by the off-line theory of Reference 7
reviewed in the previous section. The rationale for the algorithm is implicit in the development

of the previous section.
The algorithm proposed consists of three parts. In the first part a standard identification

algorithm such as the recursive least squares or the extended least squares algorithm is used
to identify a model of the plant. In the second part a standard LQG controller using the
parameter estimates and based on a single- (or multiple-) step update Riccati equation 8 is used

‘QG In the third part there is adaptive sensitivityto achieve a state feedback control signal u k .
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recovery by means of an adaptive Qk feeding back estimation residuals rk, giving Sk = Qkrk,
‘QG Details are now developed.which adds to the state feedback control uk .

Signal model

We shall assume the scalar variable ARMAX model

fiyk= fiuk + c~k

2= 1 + alz-l+ . ..+ ani”, B= blz-l+.. +bnz-n,

c= 1 +Clz-’ + ““”+ cnz-n (24)

where Wk is a random white noise sequence. This can be restructured as

yk=6T$Ok+wk
(25)OT= [al...a~ bl...b~ cl... cJ,

$5;= [–yk.l .. . – Yk-n uk-l... un-n Wk-l . . . Wk. n]

Identijcation: extended least squares

The following standard algorithm is used to obtain plant parameter estimates ok from
input/output measurements:

k

()

–1

Pk = ~ +i@? = ~k. I – Pk.l@k(l + ~~pk-l~k)-~~;pk- 1, suitably initialized
i=l

+:= [–yk- l... ‘Yk-n uk-l... u” fikil-fik. n], -n], ~k=yk–~:ok (26)

ok= [tilk... ti(/( blk...b~k dlk... dnk]

Standard conditions such as persistence of excitation, etc. are necessary to ensure consistency
of the parameter estimates. These conditions will not be discussed here. See Reference 11 for
more details.

LQG adaptive controller

The parameter estimates ok of (26) allow estimates of the deterministic plant state space
matrix written in companion matrix form as (1) with

For the performance index Z7. ~ (y; + R,u~), where R, is a scalar constant, the following are
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standard equations defining an adaptive LQG control u ,&Qc:‘2

U;~G = Fkik

Q,= C;Ck, pg=o

Fk = – (BzPkBk + RC)- ‘BZ~LAk

P~+l = A~[P; – ~;Bk(B~~~Bk + RC)-lBIP~]Ak + Q,

~k+l = Ak..i?k+ BkUk – Hkrk, rk = yk – Ck,i?k

Hk = [(dlk – dlk)... (dnk – ~nk)] T

145

(28)

Variations on these recursions allowing

implementation 10 can also be accommodated.

Adaptive Qk

Consider the adaptive LQG controller with

multistep iterations or central tendency

a stable adaptive filter Qk tuned on-line to
achieve sensitivity recovery of the original LQ design. Let us first parametrize Q~ (here a scalar)
in terms of parameters 0 for the time-invariant case as

Qe= 6]2-’+ . ..+~pz-P e= [al. ..% (31... (3pl
l+alz-’ +..+%””””

(29)

For the time-varying Qk case there is an obvious generalization with e now time-varying as

ek = [CIlk... %k 61k...6pk]

We proceed to define an algorithm for ek selections based on Lemma 1 but for the time-
varying case as here where G is estimated on-line. Using (27) and (28), define from the
time-invariant filters of (8) the time-varying version

[ 1
(30)

Ak+ Hkck ‘ Bk
I–tik= ‘--F; --A--

[

Ak + BkFk ‘ Bk
Ivk= ---c; ---i--

IOT” 1IOT
Filtered regressors

Now, with fik derived from (26), define filtered versions of fik as

{k=

and regressors

ok= [(ek-1 - fk-l)... (em-m- {k-m) tk-l... tp]T, T,

Least squares ek selection

Consider the on-line least squares index

lk
min – ~ e?jg eilg,

e kisl
ek/0 = ~k – eT@k

f?k= rk– etf#Jk (31)

(32)
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This optimization leads to parameters ek with the associated least squares algorithm given as

follows:

Note here

ek= ek.l +Fk&u- e:-ldk)

dk= [(@k-l – fk-l)... (t,,,,, – {k-m) &k-l . .. Ek-p]T. i?k=.tk-e~~k

that dk, ~k and & are vectors.

(33)

Adaptive loop

Define a signal S/(= Qkrk as follows, recalling that rk = yk – ck~k. Thus

Sk=OI_l~k, ~~= [- Sk-l... ‘Sk-m rk-l... ~p]p]

Then the plant input is given by

uk=u~QG+Sk

where u ~QG is given from (26).

Stability of adaptive controller

The first two parts of the adaptive scheme consisting of the parameter estimator and the
adaptive LQG controller are standard and analysis with regards to consistency of parameter
estimates and stability of the LQG controller can be found for example in Reference 12. For

our scheme, if asymptotically the plant estimate G ~ G and the resultant adaptive LQG
controller is stabilizing, then from Lemma 1 the optimization task will yield a stable Qk. From
the theory on the class of all stabilizing controllers we then conclude that asymptotically the
resultant adaptive controller consisting of the adaptive LQG controller and the stable operator

Q~ derived from the LTR optimization algorithm will yield a stable closed loop.
Closed loop stability and good performance, however, cannot be guaranteed during the

transient stage. To achieve closed loop stability and a reasonable performance during the
transient stage, switching algorithms such as those presented in References 11 and 13 may have
to be used, in which case stability analysis in our case will be no different from that presented
in those references. These issues will not be pursued further here.

4. SIMULATION RESULTS

Example

A third-order actual plant described by an ARMAX model given as follows is used in this
example to demonstrate the robustness properties of the adaptive LQG/LTR controller.

(1 - l.55~-l +0.695z-2+ O. 085~-3)yk =(~-l-3.5z-2 +3. Oz-3)uk+ ~k (36)

The plant has stable poles at z = 002, 0”5 and 0.85 and non-minimum phase zeros at z = 105

and 2. To demonstrate the robustness of the adaptive LQG/LTR controller, we undermodel

the plant order in the recursive least squares algorithm. A second-order model is assumed for
the identification algorithm instead of a third-order model.

(34)

(35)
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Figure 7. Plots of parameter estimates of plant model: (a) adaptive LQG controller; (b) adaptive LQG/LTR controller
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Consider first the implementation of a standard adaptive LQG controller, i.e. without
on-line loop recovery. The results of a simulation are summarized by Figures 6(a) and 7(a).

The estimated plant parameters of Figure 7(a) drift and eventually the closed loop system

exhibits unstable behaviour as shown by the plant output in Figure 6(a). The adaptive LQG

controller, without modification, is clearly not robust enough to handle this undermodelling

situation in the identification algorithm.
The adaptive LQG/LTR controller as described in Section 3 is next implemented for the

same plant with undermodelling in the identification algorithm as above. The penalty on Sk,
-yof (18), is chosen as ~ = 0”01 and a third-order Q~ is used. Figure 6(b) shows the plant output
for this simulation run. The plant output remains bounded. The plant parameter estimates are
shown in Figure 7(b). The parameters drift as in the adaptive LQG case; however, as a result
of the more robust controller implemented, the plant input and output signals remain bounded
and therefore there is no wild swing in the estimates. Clearly the adaptive LQG/LTR controller
is more robust in this situation.

Discussions

1. For a given fixed ~ and a Q of appropriate dimension, asymptotically the operator Qk
approaches the transfer function given by (20). As y -0, it is easy to deduce that the poles
of the time-invariant optimal Q approach the minimum phase zeros of the plant and the
reflection of any non-minimum phase zeros of the plant into the unit circle. Clearly, if the
plant possesses zeros on or close to the unit circle, asymptotically Qk approaches a marginally
stable transfer function. In simulation runs (not reported here) where the plant contains zeros

close to the unit circle a selection of a small ~ gives rise to a marginally stable Q, which results
in a marginally stable closed loop. Thus ~ has to be chosen large to avoid such a situation.
However, with a large ~, Qk ~ O and little loop recovery is achieved.

2. As mentioned before, our proposed scheme is an adaptive robust controller as opposed
to a robust adaptive controller. Thus for a situation as depicted in the simulation runs above
where the parameter estimates drift slowly, the additional LTR component serves to make the
‘almost time-invariant’ controller more robust. This more robust controller can then cope with

more diverse variations than the less robust LQG (i.e. without LTR) controller. However, if
the plant is subjected to rapid variations, causing the parameter estimates to change rapidly,
the adaptive LQG/LTR controller is not going to perform any better than the adaptive LQG
controller. To cope with more rapid variations in plant uncertainties, it is necessary to look

at robust adaptive schemes, e.g. the switching schemes of References 11 and 13.

6. CONCLUSIONS

In this paper an adaptive LQG controller with adaptive input sensitivity function/loop transfer
recovery of an associated adaptive LQ design for a scalar plant is described. Loop recovery

is achieved by feeding back estimation residuals to the control through a stable operator Qk
and is motivated by robustness properties of off-line LQG/LTR techniques. The algorithm
adapts on-line a robust LQG/LTR controller. On-line LTR is achieved by optimizing over Q~
using straightforward least squares techniques. The least squares index is constructed both to

achieve loop recovery and to maintain closed loop stability of the system.

The proposed adaptive algorithm appears attractive from both a computational complexity
and performance/robustness viewpoint. As expected, the adaptive LQG/ LTR algorithm
appears to have at least as good a robustness as the corresponding adaptive LQG scheme and
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is more robust than the adaptive LQG scheme in some situations. It appears worthwhile to
apply analytical and simulation studies to reflect a comparison between the proposed algorithm
and adaptive predictive schemes and others in common use.
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