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Adaptive  Maximum-Likelihood Receiver  for Carrier-Modulated 

Data-Transmission Systems 

GOTTFRIED  UNGERBOECK 

Abstract-A new  look is taken  at  maximum-likelihood  sequence 
estimation  in  the  presence of intersymbol  interference. A uniform 
receiver structure  for linear carrier-modulated data-transmission 
systems is derived  which for decision  making uses  a modified  version 
of the Viterbi algorithm.  The algorithm operates  directly on .the 
output signal of a  complex  matched filter and,  in  contrast  to  the 
original  algorithm, requires no squaring  operations; only  multiplica- 
tions by discrete  pulse-amplitude values.are  needed. Decoding of 
redundantly  coded  sequences is included  in  the  consideration.  The 
reason and limits for the superior  error  performance of the  receiver 
over a  conventional  receiver  employing zero-forcing equalization and 
symbol-by-symbol  decision  making  are  explained. An adjustment 
algorithm  for jointly approximating the  matched filter  by a  trans- 
versal filter, estimating  intersymbol  interference  present  at  the 
transversal filter  output,  and  controlling the  demodulating carrier 
phase and the  sample  timing, is presented. 

I. INTRODUCTION 

T HE design of an  optimum receiver for synchronous 

data-transmission  systems that employ linear  carrier- 
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modulation  techniques [l] is discussed. All forms of digita 
amplitude  modulation (AM) , phase  modulation (PM) 

and combinations  thereof,  are covered in a unified manner 

Without  further mention in  this  paper,  the results are alsc 
applicable to baseband  transmission. 

In synchronous  data-transmission  systems  intersymbo 

interference (IN) and noise, along with  errors in thl 

dcmodulating  carrier  phase and  the sample  timing, art 

the primary  impcdiments to reliable data reception [l] 

The goal o f  this  paper is to  present  a receiver structurl 

that deals with all thesc effects in an optimum way an( 
an adaptive  manncr. In  deriving the receiver the concep 

of maximum-likelihood (NIL) sequence cstimation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[a], [3: 
will bc applied.  This  assures that  the receiver is optimun 

in  thc sense of sequence-error probability, provided tha 

data sequences have  equal a priori probability. 

The modulation schemes considered in  this  paper caI 
be viewed in the framework of digital quadraturc ampli 

tude nwdulation (&AM) [l]. They  can thereforc  bc  repre 

sentcd by  an equivalent  linear  baseband-model that  differ, 

from a real baseband  system only& the fact t&t$gna18 

and  channel rsponses arc complcx functions [2], [4], [5] 

Conventional receivcrs for synchronous data signal: 

L 

-- 
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comprise a  linear receiver filter or equalizer,  a  symbol-rate 
sampler, and a  quantizer for establishing symbol-by- 

symbol decisions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA decoder, possibly with  error-detection 

and/or error-correction  capability, may follow. The pur- 

pose of the receiver filter is to  eliminate  intersymbol  inter- 
ference while maintaining  a  high signal-to-noise ratio 

(SNR) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. It has  been  observed by several authors [l], [GI- 
[IS] that for various  performance  criteria the optimum 

linear receiver filter can  be  factored  as  a  mat'ched  filter 

( M F )  and a  transversal filter with tap spacings  equal to 

the symbol  interval.  The ;\IF establishes an  optimum 

SSR irrespective of the residual  IS1 at  its  output.  The 

transversal filter thcn eliminates or a t  least reduces inter- 
symbol  interference at   the expense of diminishing the 

SNR. 
If symbols of a data sequence are correlated by some 

coding law,  a better way than  making symbol-by-symbol 

decisions is to base decisions on thc entire  sequence 

received. The Sam(: argument holds true if data sequences 

are  disturbed  by ISI. The correlation intxoduced by IS1 
between successive sample  values is of discrete  nature  as 

in  the case of coding, in  the sense that a data symbol  can 

be  disturbed  by  adjacent  data  symbols only in  a  finite 
number of ways. IS1 can  even  be viewed as an unintended 

form . of .. part&l_r_esponsc coding. [l]. Receivers that per- 
___~__ __ - -  ~~ 

form  sequence decisions or in  some  other way exploit 
the discreteness of IS1  exhibit  highly  nonlinear  structures. 

Decision feedback  equalization [lo], [ll] represents the 

rcccivcr structures \\-ere ddscribed [12]-[17]. In view of 

the present state of the  art, many of thesc  approaches  can 
be regarded  as attempts to avoid,  by  nonlinear processing 

methods, noise enhancement which  would other)) rise ' occur 
if IS1 n-ere eliminated by linear filtering. 

A new nonlinear receiver structurc was introduced - - by_ 
F o r n g  [lS]. The receiver consists of a "tvhitened" M L p  

(i.e., an NIF followed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb y  a  transvcrsal filter that whitcns 

the  noise), a  symbol-rate  sampler,  and  a  recursive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnon- 
linear processor that employs the Viterbi  algorithm in 

order to perform AilL sequence decisions. The Viterbi 

algorithm was originally invented  for decoding of con- 

volutional codcs [19]. Soon thereafter the algorithm was 

shown to yield AIL scqucncc decisions and  that  it could 

be regarded as a specific  form of dynamic  programming 

[20]-[22]. Its applicability to receivers for channels with 

.earliest - step  in ~ this  direction. Later, several  other  nonlinear 

intersymbol  intcrfercncc and  corrclative !eye1 coding  was 
~ - .  noticed . by . . Omura . and Tcobayashi [24]-[26]. A 
survey  on the Vitcrbi  algorithm is iiven b y  F'orney  [27]. 
Very reccntly,  adaptive  versions of Forney's receiver have 

been  proposed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[as] ,  [29], and  its combination  with 

In l'orney's [lS] receiver,  whitening of the noise is 

essential bccause the Vitcrbi  algorithnl  requires that noise 
components of successive samples be -statistically  inde- 
pendent. In this  paper  a receiver similar to  that of E'orncy 
will  be described. The receiver cnlploys a modified Viterbi 

_ _ _  _-- 
. decisio-n:feedback .- . eyu&zatior!_has he<!uggcsted, r301. 

whitening the noise. In a  different  form the algorithm  has .' $73 
--------------.-~ already  been used for estimating  and  subtracting _c_- IS1  terms1 (J'1?- 

algorithm is restated  and extended so that  it  performs ML 
decisions for complex-valued multilevel sequences. &mr- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
_-I entlv,  Mackechnie [31 - J has  independently  found the same 

algorithm. 
In Section I1 we define the nlodulation scheme. The 

general structure of the maximum likelihood receiver 

(RILR) is outlined in Section 111. In Section IV we derive 

the modified Viterbi  algorithm. The error  performance of 

the MLR is discussed in  Section V and compared  with the 

error  performance of the conventional receiver. Finally,  a 

fully adaptive version of the MLR is presented  in Sec- 
tion VI. 

, )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 

- from _ _ ~ ~ .  disturbed - .~ binary -- data sequences [_17]. Here the 

11. MODULATION SCHEME 

We  consider a  synchronous  linear  carrier-modulated 

data-transmission  system  with  coherent  demodulation of 
the general form shown  in  Fig. 1. By combining in-phase 

and  quadrature components into complex-valued signals 

(indicated  by  heavy lines in Fig. 1), all  linear  carrier- ' 

modulation schemes can be treated  in a concise and uni- 

form  manner zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ Z ] ,  [4], [.SI. Prior  to  modulation  with 

carrier  frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,, the receiver establishes  a pulse- 

amplitude  modulated (PAM) signal of the form 

~~~~ ~ . . . 

x ( t )  = a, f ( t  - nT)  (1) 

where thc sequence {a,} represents the data symbols, 1' is 

the symbol  spacing, and f ( t )  denotes the  transmitted base- 

band signal ckment. Gcnerally, {a,}  and f ( t )  may  be 

complex (but usually  only one of thcm  is; see Table I) . l  The 

data symbols arc: selected from a  finite alphabet  and  may 

possibly susccd one anothcr only in  accordance with some 
redundant coding rule. 

Assuming a  linear  dispersive  transmission  medium  with 

impulse response g, ( t )  and  additive noise tu,( 2) , the 

receiver will observe the real signal 

L-- ~. - - .. 

-- 
- -. - . 

& ( t )  = & ( t )  * Itc { G z ( t )  cxp ( j U J )  } + & ( t )  (2) 

where * dcnotcs  convolution. One side of thc spectrum of 
yc( t )  is redundant  and  can therefore be clitninatcd  without 

loss of information; thc remaining part  must  be  transposed 
back  in the baseband. In Fig. 1 we adhere to the conven- 

tional  approach of demodulating  by  transposing first and 
thcn eliminating  conlponcnts  around twice thc carrier 

frcqucncy. The demodulated  signal thus becomes 

y ( t )  = a,h(t - ,nT) + ' l U ( t )  ( 3 )  
' 

where 

/ l ( t )  = [ l / e ( t )  cxp ( - j d  - j , c ) l  * f ( t )  

= g ( t )  * S ( t )  (4) 

algorithm that operates  directly on the A!W output  without f ( t )  deperlds or a,. 
A more general class of PAM signals is conceivable where 

\_. - ~. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
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T R A N S M I T T E R   T R A N S M I S S l o N  

MEDIUM RECEIVER If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{a,} were the  actual sequence of the pulse amplitudes 
transmitted during I, then 

w( t I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{a,)) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ( t )  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc a,h(t - nT) ,  t E I (8) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
nTeI 

p e j w c t  WC(t1 z e  - I " c t - I ' pc  
nus t  be the realization of the noise signal ~ ( t )  . Hence, 

owing to  the Gaussian-noise assumption, the likelihood 

function becomes (apart from a  constant of proportional- 

ity) [32] 

- rea l  signal - complex signal 

Fig. 1. General  linear  carrier-modulated  data-transmission  system. 

TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI PCY(t ) , t  E I I  {a741 = PCw(tl{anl)l 

Modulation  Scheme ( a n  I f 0) 

DSB-AM  real 
SSB, VSB-AM 

real . 
real 

P M  
complexs 

I complex 1 = 1 
AM-PM 

real 
complex  real * t u (  t z  I {a,)) CZtl  cztz (9) 

-exp { - 4;o[ ~ [Zb(t'I {an})K-'(t1- t 2 )  

* SBB: f ( t )  = fl(t) f jX(fl(t)] ,  where X is the  Hilbert  trans- 
form [I]. 

and 

w ( t )  = .\riw,(t) exp ( -&J - jpc). ( 5 )  

In (5) the effect of low-pass-filtering the transposed noise 

is neglected since it affects only noise components  outside 

the signal bandwidth of interest. Our channel model does 

not include  frequency offset and phase jitter. It is under- 

stood that  the demodulating  carrier  phase pc accounts for 

these effects. 

111. STRUCTURE OF THE MAXIMUR'I- 

LIKELIHOOD  RECEIVER 

The objective of the receiver is to estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{a,) from  a 
given signal y ( t )  . Let the receiver observe y ( t )  within a 

time  interval I which is supposed to be long enough so 

that  the precise conditions at  the boundaries of I are 

insignificant for the  total observation.  Lct {a,) be  a 

'hypothetical sequence of pulse amplitudes  transmitted 

during I .  The NILR by its definition [a], [SI determines 

as  the best  estimate of (a,} the sequence {a,) = { & }  
that maximizes the likelihood function p [ y ( t )  ,t C I 1 {a,}]. 

In  the following paragraphs  the  shape of the signal 
element h( t )  and  the exact  timing of received signal ele- 

ments  are assumed to be known. The noise of the  trans- 

mission medium is supposed to be  stationary Gaussian 

noise with zero mean  and  autocorrelation  function W,(T) .  
From (5) the autocorrelation  function of ~ ( t )  is obtained 

as 

w(T)  = ~ [ s ( t ) t ~ ( t  + = @(-T) 

= 2W,( T )  exp ( - j w , ~ ) .  (6) 

l?or example, if w c  ( t )  is white  Gaussian noise (WGN) with 

double-sided spectral  density No, then WC(7) = N o 6  (7) 

and W ( 7 )  = 2NoS ( T) . In view of this  important case it is 
appropriate to introduce 

where K-I( T) is the inverse of K ( T )  

K(T)  * K-'(T) = 8 ( T ) . '  (10) 

The correctness of (9) for the complex-signal case is 

proven  in Appendix I. Substituting (S) into (9) and con- 

sidering only terms  that depend  on { a,} , yields 

s1 = 11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa t 1  - iT)K-'(t1 - t s ) k ( t z  - k T )  d t l c l t 2  

I I  

- - 3-1,' 1 = k - i. (13) 

The  quantities zn and s1 can  be  interpreted  as  sample 

values taken  at  the  output of a complex MF with impulse 

response function2 

gRIF(t) = A (  - t )  * K-'( t ) .  (14) 

The derivation  presented is mathematically weak in that 

it assumes I<-'(t) exists. This is not  the case if the spectral 

power density of the noise becomes zero somewhere along 
the frequency axis. The difficulty can be avoided by de- 

fining. zn and s i  in  terms of the reproducing-kernel Hilbert 
space (RKHS). approach [33], [34]. Here it is sufficient 

to consider the frequency-domain  equivalent of (14) given 

by 

CXF(f) = B(f)/K(f) (15) 

wherc C,,,( f )  , H (  f )  , and K (  f )  are  the Fourier  trans- 
forms of y l c F ( t ) ,  h( t )  , and K ( t ) ,  rcspcctively. It follows 

from (15) that ghIF(t)  exists if the spectral power density 



UNGERBOECK: ADAPTIVE MAXIMUM-LIKELIHOOD RECEIVER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
of the noise does not vanish  within the frequency  band 

where signal energy  is received. Only in  this case have we 
a truly probabilistic (nonsingular) receiver problem. It 
can,easily  be shown that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

zn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= gMF(t) * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlt=nT = an-2S-2 + rn (16) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

8-2 = gMF(t) * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh(t)  I t = W  = s--2 (17) 

and that  the covariance of the noise samples r, reads 

Rt = E(PJ,+~)  = 2Nost. (18) 

Since the noise of the transmission medium does not 

exhibit distinct  properties  relative to  the demodulating 

carrier phase, the following relations must hold: 

ECRe ( m )  Re ( m + J ]  = E[Im (rn) Im (rn+d1 
= No Re (st)  (19) 

ECRe (rn) Im ( r n + d ]  = - N I m  (rn) Re ( ~ , + t ) ]  

= No Im ( s i ) .  (20) 

The similarity of s1 and R2 expressed by  (18) implies that 

so 2 I sl I and  that  the Fourier  transform of the sampled 
signal element { s t ]  is a real nonnegative  function 

S*( f )  = s1 exp (--j27rjZT) 2 0 (21) 
1 

with period 1/T. Clearly, the RIF performs a  complete 
phase  equalization, but does not necessarily eliminate IS1 
(ISI: s1 # 0 for 1 # 0).  The main effect of the M F  is that 

it maximizes the SNR, which  we define as 

S/NMF 

instantaneous  peak power of a single signal element 

average power of t’he real part of the noise 

so2 

- - 

- - -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso - - ( 2 2 )  
E { R e  ( ~ 0 ) ~ )  N O  ‘ 

The  part of the receiver which in Fig. 1 was left open can 

now be specified, as indicated  in Fig. 2. From (16) it com- 

prises a M F  and a  symbol-rate  sampling device sampling a t  
times nT. It follows a processor, called maximum-liltelihood 
sequence estimator (MLSE) , that determines  as the most 

likely sequence transmitted  the sequence {a,) = { &,I that 
maximizes the likelihood function given by  (11) , or equiva- 

lently, that assigns the maximum  value to  the metric 

J I (  { a11 ) = 2 Re (En&) - s i s i - k f f k .  ( 2 3 )  
?IT EI iTeI  k T d  

The values of sz are assumed to be known. The sequence 
{ 2.) contains  all  relevant  information  available about {a,) 
and hence forms a so-called set of sufficient statistics [a], 
[3]. The  main difficulty in finding { & ) lies in  the  fact 
that { 2% 1 must only be sought  among  discrete sequences 

627 

Fig. 2.  MLR structure. 

{an)  which comply with the coding rule. The exact  solution 

to  this discrete maximization problem is presented in 

Section IV. 

the nondiscrete sequence {CY,) = { zLn)  that maximizes 

( 2 3 )  and  then quantizing the elements of { z L n  ] in inde- 

pendent symbol-by-symbol fashion, leads . ~ to  the optimum _/ 

conventional receiver zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[SI. Applying the familiar calculus 

of variation to ( 2 3 )  , one finds that { zLn ]  is obtained  from 

{ zn } by a  linear  transversal filter which, having the transfer 
function l/S*( f )  , eliminates ISI.  The series arrangement 
of the RIF and  the  transversal filter is known as  the 

optimum  linear equalizer, which for zero IS1 yields maxi- 

mum  SNR [C], [SI. Calculating the SNlt at  the trans- 
versal filter output in  a  nlanncr  equivalent to  ( 2 2 )  , gives 

Solving the problem approximately by first determining ‘ 

. - - - ~ -  

(24) 

This reflects the obvious fact that, since the M F  provides 

the absolutely  largest SNR, elimination of IS1 by a subse- 
quent filter must diminish the  SNR.  Equation ( 2 4 )  indi- 

cates, however, that a significant loss  will occur only if 
somewhere along the frequency axis S*( f )  dips consider- 

ably below the average  value. 

For systems that  transmit only real pulse amplitudes, 

i.e. , double-sideband amplitude  modulation  (DSB-AM) , 
vestigial-sideband amplitude  modulation  (VSB-AM) , and 

single-sideband amplitude  modulation  (SSB-AM) , it fol- 
lows from ( 2 3 )  that only the real output of the MF is 

relevant. i n  those cases S*( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf) should be replaced by 

$[S*( -f) + X*( f ) ]  without further mention  throughout 

the paper. 

IV.  MAXIMUM-LIKELIHOOD  SEQUENCE 
ESTIAIATION 

In this  section the exact  solution to  the discrete maxi- 

mization problem of ( 2 3 )  is presented. The MLSE 
algorithm that will  be derived  determines the most likely 

sequence { 2,) among sequences {CY, )  that satisfy the 

coding rule. Clearly, the straightforward  approach of com- 
puting J I (  {CY,)) for all sequences allowed, and selecting 
the sequence that yields the maximum  value, is impractic- 

able  in view of the  length  and  number of possible messages. 
Instead,  by  applying  the principles of dynamic  program- 
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ing [22],  we shall  be  able to conceive a nonlinear recursive 

algorithm that performs the same selection with  greatly 

reduced computational effort. The MLSE algorithm thus 

obtained  represents  a modified version of the well-known 

Viterbi  algorithm [lS]-[21],  [23]-[30]. 

The algorithm is obtained, observing sz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= s-1, by first 

realizing from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(23)  that Jr  ( { a,} ) can  iteratively  be com- 

puted  by  the recursive relation 

Jn("',a,-l,a,) = Jn-- l ( ' " ,an- l )  

+ Re zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[a, (22, - soan - 2 S,-~CX~) 1. 
ssn-1 

( 2 5 )  

Conditions concerning t'he  boundaries of I are  not needed 

since once we have  a recursive relationship, the length of I 
becomes unimportant. We now assume that  at  the R4F 
output  IS1 from a  particular  signal'element  is  limited to 

L preceding and L following sampling instants: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
sz = 0, 1 I 1  > L. (26) 

Changing indices we obtain from ( 2 5 )  and  (26) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Jn(. * ',a,-l,an) = J n - l ( .  * .,an-1) 

L 

+ Re [an(22, - soa, - 2 sza,-z) 3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1=1 

(27) 
. ,  

We recall that sequences may  be coded. For most trans- 

mission codes a state representation  is  appropriate. Let 

p j  be the  state of the coder after a j  has been transmitted. 

The coding state p j  dctermines which sequences can  be 

further  transmitted. Given p i  and  an allowable sequence 
( ~ ~ + ~ , a ~ + ~ ,  - - ,aj+k, the  state pj+r; is uniquely  determined  as 

uj: aj+11aj+21* ',ai+k ---f P j + k .  (28) 

The sequence of states { p j }  is  Markovian,  in the sense that 

Pr ( u j  I ~ ~ - 1 ~ p j - 2 ,  * : ) = Pr ( p j  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ j - 1 ) .  

Let us now consider the metric 

J n  (pn-t : ay,-L+1,. * , an )  

= Jrl(un) 

- max {Jn( * ',an--L,a,-L+l,' - , a n )  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(29) 

- 
I . . .  . u ~ - ~ - - l , a ~ - ~ 1  - W - L  
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maximum. With respect to u, this sequence is credited 

ML among all other sequences. It is not difficult to see 

that  the  further one looks back from time n - L, the less 

will a path history  depend on the specific U, to which it 

belongs. One can  therefore expect that all U ,  will have  a 
common path history up  to some time n - L - m; m being 

a  nonnegative  random  variable. Obviously, the common 
portion of tbe  path histories concurs with the most likely 

seyuence {e, ] for which we are looking. 

The final. step  in deriving the MLSE algorithm  is to 

apply  the lnaxinlum  operation defined by (29) t o  (27). 

Introducing the notation of a  survivor  metric also on the 

right-hand side, we obtain 

J,(u,) = 2 Re (anxn) + nlax {J",-l(u,-l) - F(u,- l ,un) } 

(31) 

Ian-11 -0" 

where the maximum is taken over all states { u,-1} that 

have u, as  a possible successor state,  and 

L 

F(U7,-1,u,) E,s~o(, + 2 Re ( E ,   tan-^). (32)  
/ = I  

Verifying (31) , the reader will observe that L is just the 
minimum  number of pulse amplitudes that  must be 

associated with u,. Thus, L takes  on the role of a  constraint 

length  inherent t'o ISI. Equation  (31) enables us t o  calcu- 

late survivor  metrics and  path histories in recursive fash- 

ion. The  path history of a  particular u, is obtained  by 

extending the  path history of the unpl1 which in  (31) yields 

the maximum  by the a,-L associated with the selected ~ ~ - 1 .  

At each sa.mpling instant n ,  survivor  metrics and  path 

histories must be calculated for all possible states u,. 

Instead of expressing path histories in  terms of pulse 
amplitudes cy,-L, they could also be  represented  in any 
other one-to-one related  terms. 

This concludes the essential part  in  the derivation of the 

MLSE algorithm. The algorithm  can  be  extended to pro- 
vide  maximum a poste,riori probability (MAP) decisions, 

as is shown in Appendix 11. However, for reasons given 

there, the  performance improvement which thereby  can be 
attained will usually  be insignificant. 

The. algorithm is identical t o  the original Viterbi algo- 

rithm if there is no IS1 at  the MF output, i.e., F (  u,-l,u,) = 

ansoan. In  the presence of ISI. the algorithm differs from 
the original Viterbi  algorithm in  that  it operates  directlJ 

on the M F  output where noise samples are correlated 

where the maximum is taken over all allowable sequences 

In  accordance  with the VA literature, J ,  is called survivor 
metric.  There exist as  many survivor  metrics as  there  are 

survivor  states 

to  (18). For the original Viterbi  .algorithm 

independence of the noise samples is essential {... ,a,-L-l,an-L} that  put  the coder into  the  state p n - ~ .  
the MF output noisc 

filter which thereby reduces the number 

values of the signal element from 2L + I 
length  inherent  to IS1 is therefore 

uscd by  Forney and  its modified version presented in this 
Clearly, the succession of states { un 1 is again  Markovian. Section.s Clearly, this indicates  fundamental iowel 
Associated with each u, is a  unique path history,  namely, 

un zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL& P ~ - L :  an-L+1, * * . ,an. both  the Viterbi  algorithm as 

the sequence * * -,an-~-l,an-LJ, which in (29) yields the 3 G. D, F ~ ~ ~ ~ ~ ~ ,  private communication. 
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limit to  the complexity of MLSE. Yet  the modified Viterbi 

algorithm offers computational  advantages  in that  the 

large  number of squaring  operations needed for the original 
Viterbi  algorithm C29] are no longer required. Only the- 

simple mu1Jblications by_ discrete pulse amplitude  values 

occurring zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA__  - ~ in .. Re ~~ (~,z,)-~m_u_s& be executed in real- tin1.e. It 

is identical to  the optimum  linear  input section of a 

decision-feedback receiver. In  Section VI we shall see that 

basically the same principle can  be  applied in order to 
realize 'the MF - and  the whitened AiIF in  adaptive  form. - 
Hence in  this respect the two algorithms are  about  equal. 

-. . 

-. - - -- 

, was observed by Price zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 3 5 ]  that Forney's  whitened IMF f- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 0 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(b) 

Fig. 3. (a)  State-transition diagram of binary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a, = (0 , l I )  run- 
length-limited code with runs 5 2 .  (b)  State-transition dlagram 
of corresponding survlvor states for L = 1. 

We shall now illustrate the  algorithm'  by a specific 

example. Let  us consider a simple binary -- . yun-lengthr- 

limited code with a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (0 , l j  and  runs no longer than 
two of the same  symbol. The  state-transition diagram of 

this code is shown in  Fig. 3 (a ) .  According to (30) ,  with 

L = 1 the following survivor states  and allowed transi- 

tions between them  are  obtained: 

-. 

u1 a (p1:l) -+ ( p 3 :  ( 0 , l ) )  a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ U 4 , U 5 ]  

uz p ( p 2 : O )  --+ (p1:l) 4 rT1 

u3 a (p"1) -+ ( p 3 :  ( 0 , l ) )  a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( U * , U 5 ]  

u4 ( p 3 : 0 )  + ( p 2 :  {o,I} a ( u 2 , u 3 ]  

u5 a --+ (p4:0) n u6 

p (p4:0) -+ ( p z :  (0 ,1] )  a { u 2 , u 3 ] .  

The corresponding state-transition  diagram is depicted in 
Fig. 3 (b) .  By  introducing the  time  parameter explicitly, 

we obtain  Pig. 4, in which allowed transitions  are  indicated 
by  dashed lines (the so-called trellis'  picture [20]). The 

solid lines,  as an example, represent the  path histories of 

the six possible states U, and  demonstrate  their  tendency 
t o  merge a t  some time n - I, - 171 into  a common path. 

As the algorithm is used t o  compute the  path histories of 

the  states u,+i, i = 1,2,..., new path-history  branches 

appear on the  right, whereas certain existing branches are 
not continued further  and disappear. In this \yay, with 
some random  time  lag L + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm ,  nz 2 0, a common path 

history develops from left to right. 
In  order to  obtain  the  output sequence ( & ]  only the 

last,  say, M ,  pulse amplitudes of each path history  have 

to be stored. A4 should be chosen such that  the probability 

for m > A4 is negligible compared with  the projected  error 
probability of the ideal system  (infinite M )  .' Then, a t  

time 11, the an-L-br of all path histories will with high 
probability be identical; hence any one of them can be 

taken as a h n - ~ - ~ .  The  path histories can now be shortened 

by the a,-L-bl. Thus  the  path histories are  kept a t  length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
lw, and a  constant  delay  through  the  MLSE of L + M 
symbol intervals  results.  For decoding of convolutional 

codes the value of has been discussed in the  literature 

9,,,,p O O O O 

H , \ , p  0 0 0 0 

n - L - M  " - L - m  "-3 " - 2  n - L  n " + l  

" n - L - M   ' n - L - M + l   " n - 2   " n - L  " n  " n r l  

S t o r e d  pa th  hlstorles L .T 
( L = I l  

Fig. 4. Time-explicit representation of Fig. 3(b) (dashed lines) 
and illustration of path histories a t  time n (solid lines). 

reduction of M ,  is to  take a,-L-,br for the  path history 

corresponding to  the largest  survivor  metric.  From (31) 

it is clear that without  countermeasures the survivor 
metrics would steadily increase in  value.  A  suitable  method 

of confining the survivor  metrics to a finite range  is to 
subtract  the largest J,-1 from all 7, after each iteration. 

V. ERROR  PERFORMANCE 

Since the receiver of this  paper realizes the same decision - 
rule as Forney's receiver [lS], it is not surprising that 

-identical error performance willbe found. In  this  section, 

following closely Forney's  approach, we present  a  short 
derivation of the error-event  probability for the modified 
Viterbi-algorithm case. The influence of IS1 present at 

the MF output on the error performance of the  MLR is 
discussed, and bounds for essentially no influence are given 
in explicit form. The results  are compared with the error 
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the receiver. Then 

le,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{&I - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{a,} (33) 

is the error sequence. Since consecutive symbol errors are 

generally not independent of each other,  the concept of 

sequence error  events  must  be used. Hence,  as  error  events 

we consider short sequences of symbol errors that  intui- 

tively are  short compared with-  the mean  time  between 

them  and  that occur independent1.y of each other.  Pre- 

suming stationarity,  the beginning of a specific error  event 

& can  arbitrarily  be aligncd with  time 0: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ e f c }  = ..., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO,O,eo,el,...,elr,O,O,...; I eo I ,  1 eH I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 6 0 ,  

H 2. 0. (34) 

Here 6,, denotes the minimum  symbol error distance 

6o = min { 1 a(i) - a ( k )  1 1 .  (35 )  
iZk  

We are  not concerned with the meaning of error events  in 
terms of erroneous bits of information. 

Let E be the set of events & permitted by  the  trans- 

mission code. For  a  distinct  event & to  happen, two  sub- 
events  must  occur: 

E l :  {a,) is  such that j a,) + j e,} is an allowable data 

&z: the noise terms  are such that {a,)  + {e,) has RiIL 
sequence; 

(wit.hin the observation  interval) . 

It is useful to define beyond that  the subevent 

. E 2 ’ :  the noise terms  are  such that {a,)  + { e , )  has greater 

likelihood than a,) , but  not necessarily R4L. 

Then wc have 

Pr  ( E )  = Pr  ( E 1 )  Pr  (&2 I E l )  5 Pr ( E l )  Pr ( E z ’  I E l )  (36) 

where Pr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Il) depends only on the coding scheme. 

Events El are generally not  mutually exclusive. Note that 
in (36) conditioning of and &2‘ on &1 tightens  the given 

bound, since prescribing &1 reduces the number of other 

events that could, when E2’ occurs, still  have  greater likeli- 

hood, so that &? mould not  be satisfied. From (23 )  we 

conclude that  Pr (E2’ 1 El) is the probability that 

J r ( { a n ) )  <Jz((a,I + {en)) .  (37) 

By  substituting (16) into (23 )  , and observing (33 )  and 

sz = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASVz ,  (37 )  becomes 

l H H  2 

so a-0 k-0 so i-0 

H 

P(&) A- &si-kek < -Re  [E & r j ] .  (3s) 

We call 6 ( E )  the distance of E .  The  right-hand side of (35) 
is  a  normally  distributed  random  variable  with zero mean 
and, from (18) , (19), and ( 2 0 ) )  variance 

Hence, observing ( 2 2 ) ,  the probability of (37)  being 

satisfied is given by 

where 

We continue as indicated by Forney [lS]. Let E(6) be 

the subset of E containing  all  events E with  distance 

6 ( & )  = 6 .  Let A be  the  set of the possible values of 6. 

From (36) and (40) the probability that  any error event 

& occurs becomes and is upper  bounded by 

Pr ( E )  = Pr ( G j  5 c & ( ( S / N M F ) ~ / ~ ~ / ~ )  c Pr ( ~ 1 ) .  

(42) 

&€E  EA . &€E@) 

Owing to  the steep decrease of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&(x), the right-hand side 

of (42) will already a t  moderate SNR be  dominated by 

the  term involving the smallest  value in A, denoted by 

&,in. Likewise, the bound given by (36) becomes tight for 
all E E(6,in), as then Ez’ very likely implies &z. Conse- 

quently,  as the SNR is  increased, Pr ( E )  approachef 

asymptotically 

Pr ( E )  Q (  (S/NMF)1’26n~in/2) Pr  ( E l )  (43) 
E ~ E ( 6 r n i n )  

where 

i 1 
1 €I I I  

6,in2 = min - Zjsi--kek . (44) 

Equations (43) and (44) differ only in  notation from 

Forney’s original finding. 
In  the following this result should be discussed in morc 

detail. Specifically, we are  interested in the influence of IS1 
on the value of &,,in. Using Parseval’s thcorem,  from (21) 
and (3S), P(&) can be rewritten  in the  form 

&eE so i=O k=O 

1iT 

P(&) = T J X*( f )E* (  f) d j  (45) 
so 0 

where E*( f j  is the cncrgy density  spectrum of the err01 

sequence {e,) ,  

I I1 I1 

E*( f )  = ei exp [ j 2 a f ( i  - k )  !!‘lek 2 0. (46) 

If S*( f )  were constant  (no IS1 at  the RilF output), (45) 
becomes 

i=o k-0 

1/11 H 

P ( E )  = T J ,  ~ * ( f )  clf = c 1 ei 12 >_ wrI (~ )602  (47) 

where tuH 2 1 denotes the number of nonzero symbol 

errors of E .  In  this case &,,in would simply be the’smallest 
Euclidian  distance  between any two allowed data se- 

i =O 
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quences. In a noncoded system,  where pulse amplitudes 

of a  given  alphabet may occur in  arbitrary succession, 
single error  events zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( Z U H  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1) with  minimum  distance 

6mi, = 60 would be  the  dominating  error  events.  The  value 

of . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&,,in can  be increased ---- by  redundant ~. -~ sequence - coding,- ,tZ 
e.g.,  by  convolutional encoding [36]. If S*( f )  is not con- -;: L :c -- 

stant, IS1 at  the l\r[F-&put dis toh  the space in which . . t ;  

error-event  distances are measured.  Depending  on the '.. 

weighting of E*( f )  by S*( f )  , error-event  distances  can 

become smaller or larger.  By  sequence coding  one can 
prevent that crror sequences are allowed  which have 8 

spectral  peaks where S*( f )  is small.  This is precisely what , 

r \  

* I  
is accomplished by correlative-level (partial-response) 

/coding [25]. Clearly, if S*( f )  vanishes on one  side of"' 

f = 0, as  in SSB or VSB systems,  only  (real)  data se- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i quences with  symmetric error-sequence spectra E*( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf) = 

LE*(  -f) can  be transmitted. 

We  now limit  our  attention  to noncoded systems. As 
long as IS1 d x s  not exceed-;;;its discussed further  in  the 

following paragraphs, we have &,in = 60. From  (43) the 

probability of occurrence of the  then  dominating single 

error  events becomes 

Pr (8) 'u Q (  ( S / h ' a I , )  1'260/2) 

-- ~.___ 

Pr (eo allowed), amin = a0. (45) 

For comparison, the error  performance of the optimum 
conventional receiver is given by 

Pr ( E )  Q ( ( S / N L )  1430/2) Pr (eo allowed), 

I e o l = l o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
l e d = &  

S/NL I SIN,,. (49) 

We note that in (45) IS1 at  the M F  output has  essentially 

no influence on the error  performance of the MLR, whereas 

in (49) IS1 affects the error  performance of the conven- 
tional receiver through the loss of SNR expressed by (24). 

The evaluation of Pr ( E )  is shown by Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 for a specific 

octal  AW-PM.schcme. 

In order to  determine the degree of IS1 up  to which (4s) 

holds, we must look for multiple  error  events ( t u I I  2 2) 

with  distance  smaller than 6,. Such  error  events would 

then be more probable than  the minimum single error 

events. A first condition for the nonexistence of such  events 
can  be  derived from (4.5) and  the  inequality expressed in 

(47).  Noting that 

- -_ . 

1 

so 
d2 ( E )  2 - min 1 S* ( j )  ] ZOI/ (&) aO2 (50)  

i t  follows that if 

l iT 

min ( ~ * ( f )  ) t u r r ( & )  2 so a T ~ * ( f )  cv (51) 

is satisfied, no  cvcnt & can  have  smaller  distance  than 6,,. 

Hence,  a sufficient but  not necessary condition for the 
nonexistence of multiple  error  events  with  distance  smaller 

Im (e,) 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  (a) Minimum symbol error  distance  in  a specific octal 
pulse-amplitude alphabet.  (b) Minimum symbol errors and 
probabilities that  they  may occur (assuming that pulse ampli- 
tudes are  transmitted with  equal probability). 

Z Pr (eo allowed) = 2(Q + #) = f ,  Pr ( E )  N +Q((2*S/N)1 '2 ) .  
leOl=60 

than 6o is that S*( f )  dips nowhere more than 6 dB 

[20 log ( Z O H  = 2 )  ] below average  value. 

A second generally less restrictive  condition is that 

which is the familiar  condition for peak  distortion at   the 

RIF output being  smaller than  unity.  In order to prove 

this sufficient but again not necessary condition for  the 
nonexistence of error  events & with  distance  smaller than 

60, one  should  first realize from (34) and  the Schwarz 

inequality that 

€I  €I  

1 C Bl+kek j 5 C 1 e k  1' - 6?, 1 # 0. ( 5 3 )  

Condition (.52) can then  be verified by  transforming  and 

bounding a?(&) as follows : 

k=O k=U 

1 

so 1 &=O 

I /  

d2 ( E )  = - S I  BL+kek 

I 1  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k = O  so 1#0 k = O  

H 

2 j e k  l 2  - - C I S I  I 1 C Bl+kek I 

> - 6,,* + cc 1 e k  12 - 602) 1 - - c I s1 I) 

- > 602 [holds, if (52) is true]. (54) 

Comparing (52)  with the definition of S*( f) in (21) 
reveals that   at  distinct frequcncics, S*( f )  may  approach 
zero level without  this significantly affecting  the crror 

pcrformancc: of the MLIt. This was first obscrvcd by 

Kobayashi [25] for NIL decoding of (2m - 1)-ary cor- 

relative-level encoded signals. A simal of this kind  can 

I /  

I: =0 ( So I ,  l#O 

__ 
-.-. Y v 

just  as well be  interpreted  as a noncoded  m-ary signal  with 

intentionally  introduced ISI, which  causes S*( f) to be-, 
come zero (usually) at  f = 0 and/or 1/22". For the RILR 

~ ___.__ 
__ 1_ - _ _  --_____-_..- 

the t\vo concepts are  equivalent. A conventional  receiver, 

however,. can  interpret such signals only as  (am - 1)-ary 
coded  sequences and  thereby loses in the limit 3 dB, unless c ,/3, 64' \- . e- \. ,:,, ,\;,..,? 

@'-" (-& &.& ~ ' j  
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error correcting schemes are used. But even then  the  losJ  must be minimized as a function of these  parameters,  with 

can only partly  be compensated, since the hard decisions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA30 held constant.  Differentiating (Ci7) and  applying  the 

made  by  the symbol-by-symbol decision circuit of the i Robbins-Monro stochastic  approximation  method [46] 
conventional receiver cause an irreversible loss of infor- 'i leads to  the stochastic  steepest-descent  algorithm com- 

mation. 
- 

prising the following recursive relations: 

VI.  AUTOMATIC  RECEIVER  ADAPTATION 

So far the exact signal and  timing characteristics  have 

been assumed to be known. However, in a realistic case 
t'he MLR must  at least  be  able to extract the carrier  phase 

and sample  timing from the signal received. Beyond that, 

automatic  adjustment of the MF will often  be desirable 

or necessary. In  this section we present an algorithm that 

simultaneously adjusts  the demodulating  carrier  phase 
and  the sample  timing,  approximates the RIF by a trans- 

versal  filter, and  estimates IS1  present at   the approximated 

&IF output.  The algorithm works in decision-directed 

mode in much the same way as described by Kobayashi [5] 
and Qureshi and Newhall [29]. 

In  the proposed fully adaptive  MLR  the RiIF is  approx- 

imated by a transversal  filter,  similar to  the familiar 

adaptive equalizers described by Lucky et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. [l], [38], 
[39] and  others zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[SI, [40]-[45]. An analog  implementation 

will be  assumed. Assuming N + 1 taps equally spaced by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
rP  seconds with tap gains gi, 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 i 5 N ,  the  output signal 

of the transversal filter at  the  nth sampling instant nT + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ~ ,  

where T~ denotes the sampling phase, becomes 

N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, 

g;(n+1) = - (y (47 g zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo a n i ,  0 5 i 5 N (58) 

Wl(n+C = 3 ( n )  + (y , (n)7 - 1 nun-2, 1 5 I I I I L (59) 

.*(n+1) = 7 (n) - Re ( F n i n ) ,  ( 60) 

pc(n+l) = pe(n) + a,(,) Im ( ~ ~ 2 % ) .  (61) 

The step-size gains ag, a8, a'., and 0 1 ~  must  be positive and 

may depend. on n. In (60) 2, denotes the time  derivative 

of the transversal filter output at the  nth sampling instant. 

As the algorithm adjusts  the  transversal filter as RIIF, the 

values 31 approach the values sl required by  the RILSE 
algorithm. 

Equations (58) and (59) differ from the corresponding 

equations of ,  an adaptive decision-feedback equalizer, or 

whitened RIIF, only by  the  fact  that here at  the transversal 

filter output L preceding and L trailing  IS1 terms are 

considered. The algorithm will force IS1  outside  this 

interval t o  zero. The  true RIF characteristic may often 

require  a  large  value of L. However, since the complexity 
of the  MLSE algorithm increases exponentially  with L, 
for  the choice of L a compromise suggests itself [as]. In  

- 

-- 

2, = c giv(nT + 7 8  - i T p , P e )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP c giyni(T,,p,). (55) 
many practical cases already  with  values L = 1 or L = 2, 

Note  that according to (4) and ( 5 )  we have y ( t,pc) a be  obtained.  The  potential  advantages of MLSE  can  thus 
y(t,p, = 0) exp ( -jpc?, where cpc is the demodulating  be exploited to a commensurate degree a t  a still manage- 

carrier phase. The ideal RIF characteristic  can  be accom- able receiver 
plishcd if 1/aT, exceeds or at least  is equal to the band-  Introducing the  wnmetry condition i - 1  = 52 into (56) I 

width of y(t), and Nrp  corresponds to  the duration of the we Obtain Of (59) 

i=O i=O a good approximation of the ideal RIIF characteristic will 

signal element h ( t )  . - 
For the derivation of the  adjustment algorithm we make 

i p + l )  = 3 p  + as(7L)(7nun+l + ?,an-$, 1 5 I 5 L. 

the usual  assumption that  the  transmitted  data sequence 
{a ,  ] is known. The decision delay of the Viterbi  algorithm 

will be taken  into account later when we devise the final 

adaptive  MLR  structure.  In Section I11 we have seen that 

the M F  is rigorously defined by  the  fact  that  it minimizes 

the noise power relative to  the  instantaneous peak power 
of the signal element.  Let il, j I I _< L, be  estimated  values 

of the sample  values of the signal element at  the  trans- 
versal filter output.  Then 

L 
- 1  r ,  = zn - i1a,-2 (56) 

represents the estimated noise component of 2,. In order 

to  adjust  the  parameters g i ,  il, T,, and pC, thc variance of F,, 

2=-L 

N N  

Var (3,) = C C S i E C g n i ( ~ s , ~ c ) ~ n k ( 7 8 , ~ C ) ] g k  
i=o k=O 

N L  

- 2 Re { C C SiE[gnz(~s,pC) un-21iL! 
i=o l=-L 

L L  + &E[G,-ia,-k]& (57) 
i=-L k=-L 

(62) 

This modification has the desirable effect of forcing the 

transversal filter to produce at  its  output a symmetric 

signal element even if L and  the  transversal filter param- 

eters  are  not fully adequate to achieve therewith the ideal 
MF characteristic. 

Equations (60) and (61) have been reported by 
Kobayashi [SI. They describe thc operation of two  first- 

order phase-locked loops. Theoretically, if by (58) the 

(complex) tap gains arc  adapted,  the  adjustment of '7. 

and pe appears to be  not really necessary. In practice, 
however, these phases must  be controlled in order to com- 

pensate cdrrier and sampling  frequency offsets. In case of 

considerable offset one might even add second-order terms 

to (60) and (61). 
The  structure of the proposed MLR is seen in Fig. 6. 

It is basically a combination of the approaches of Icobay- 

ashi [5] and Qureshi and Newhall [as], except that here 

the  transversal filter approximates  a true MI! with  IS1 a t  
the transversal filter not being predefined. The receiver 
operates  in decision-directed mode with the MLSE ex- 
hibiting a decision delay of A4 + L symbol  intervals  (see 
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Fig. 6. Adaptive hfLlt. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m- 4.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA!j 

Section IV) . In ordcr t o  shorten the feedback delay, tenta- 
tive decisions taken from the  path history  with  largest 

survivor  metric  arc employed in the feedback paths  as sug- 

gested by Qureshi [SO]. With  this  approach, delays of 

symbol intervals  must  be used in  the forward  paths.  Not 
shown in  Fig. 6 is the possibility of incorporating decision- 

feedback cancellation of further trailing  IS1  in the rc- 

ceiver [30]. 
In  the remainder of this section we discuss topics related 

to convergcnce and convexity of the  adjustment  algorithm. 

It must be assumed that already safe enough decisions are 

available.  To begin with, r9 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqe are considered as given 

constant values. With sufficiently small stcp-size gains ag 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,, convergence from arbitrary initial  settings yi(") 

and i1(") towards globally optimum  settings gi*'(r,,(p,) and 

i l*(r,) is assured by  the  quadratic positive-definite nature 

of var (Fn) in g i  and g l .  For  adaptive zero-fhrcing equalizers 
(cquivalcnt to L = 0) it  has hecn shown [45] that fastcst 
convcrgence takes place if ag corrcsponds to  1/[N X 
avcragc power of ~ ( t ) ] .  The additional  variability  intro- 

duced by (59) and eventually (60) and (61) , and the 
delay of M symbol intervals necessary for decision- 

directed  opcration, suggest that a. must  here bc somewhat 

smaller than  the prcccding value. 
In Appendix 111 we calculate yi*(rs,qc) and i i * ( ~ , ) ,  

thus showing that with  adequate  values of N ,  L, r,, and 7, 

the transversal filter indeed assumes the desired Rill? 
charactcristic. We further  evaluate  the minimum  value of 

var (Fn)  as  a  function of 7.. On the whole, convexity is 
found  within an interval  comparable to  thc  length of the 

transvcrsal filter dclay  line; yet, dcpcnding on the value 

of r,, there can  bc some small ripplc. If 1/27, does not 

exceed thc  bandwidth of y ( t )  this ripple  can even bccome 
quite pronounccd. In  any case, thc  form of var (Fn) will 

guarantec that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArS docs not  drift at\vaJr when all quantities 

g l ,  i l l  rs, and pe arc  adjustcd  simultaneously. 
Another case of interest  relates  to  carrier  and  timing 

synchrodization  in an otherwise already optimized and 
fixed receiver. In Appendix I11 var (7n) is calculated  as a 

function of 7. and pe for fixed values qi*(rs*,p,*) and 
J^Z*(T,*), T ~ *  and pC* being the timing  phase and carrier 

phase to which the optimum receiver settings  correspond. 

It is shown that var (Fn) is convex in a region around 
T,* and pc*, which depends  mainly  on the form of the 

ing in decision-directed mode and disregarding phase 

ambiguity, T,  and pe must  in principle be close to  the 

optimum  settings. Convergence towards r,* and pC* should 

therefore generally not  be  a problem. 

- 

VII. SUNIRIIARY AND CONCLUSIONS 

A uniform fully adaptive receiver structure has been 

derived for synchronous  data-transmission  systems that 

employ linear carrier-modulation  techniques. The  struc- 

ture realizes the NIL sequence rule. In  the receiver, first 

an information  reduction to a  set of sufficient statistics 

takes place by the demodulation,  matched filtering, and 

symbol-rate  sampling process. Sequence estimation  is per- 
formed by a modified Viterbi  algorithm that exhibits the 

same performance characteristics  as the original scheme. 

The algorithm  represents an  attractive design alternative 

due to  the fact that squaring  operations  are no longer 

.--- needed. Besides add  and compare  opcrations, only a  few 

simple  multiplications by discretc  pulse-amplitude  values 

must  be performed in real time. In addition  to performance 

ga,ins realized by the MLSE principle, one may expect that 
the approximation of the NIF  will gencrally require fewer 

filter taps  than  arc needed for the zero-forcing equalizer 

of a  convcntional receiver. The ---- proposed adaptation- - 
c- scheme . permits compromisc solutions between the con-- 
ventional receiver and- thc ideal AIL receiver. 

The choice of the decoding delay of RIILSE in the 

presence of IS1 and  the dynamics of the prcsented  adjust- 
ment  algorithm  have  not been discussed in  detail. Also 

the issues __ of cffective ~- - __-. &AM coding and  joint  transmitter- 

receiver design have  not bcen addressed.  These could be 
fruitful  arcas for further research.  For example, how should 

the  transmitter filter bc designed for a given channel 

characteristic in order to  attain with (52) as  secondary 
condition maximum SNlZ at  the matched filter output? 

The specific implcmcntation of RilL receivers will be 

another  interesting  topic.  Rccent progress in  circuit  tech- 

nology will allou- here for much more complex dcsigns than 

we are still used to. 

- -. - 

- . 

APPENDIX I 

l'ItOO1~ OF (9) 

Owing to  the onc-to-one relation bctween , tue( t )  and 

~ ( t )  expressed by ( 5 )  we have [ S a ]  

It follows from (6) ,  (7) , and  (10)  that 
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APPENDIX I1 

EXTENSION OF THE  MLSE  ALGORITHM 

TO THE MAP RULE 

We proceed as indicated by Forney zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[27]. To satisfy 
the  MAP rule  t,he  algorithm  has to determine t.he sequence 

[a,) which maximizes 

Pr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ {an) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ( t ) , t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 11 - p C y ( t ) , t  E I I {an} ]  Pr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAClan)]. 

(A41 

Since there is a one-to-one correspondence between {a,) 
and  the sequence of survivor states { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu,) , and since { u,} is 

Markovian, we have 

Pr [ { a , } ]  = Pr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[(a,}] - II Pr (un Iu,--l). (A5) 
nT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEI 

It follows from (30) that 

Pr (un 1 un--l) = Pr ( p a  I ~ ~ - 1 ) .  (A6) 

Taking the logarithm of (A4)  and observing (AS) , it is 

seen that transitions (u,-l,un) are to be weighted by 

In [Pr (un I In  this way the MAP version of (31) 
becomcs 

J,(U,) = 2 Re (E,z,)  + max (Jn--l(un--l) - F(un--l,u,) 
lo*-11 -an 

+ 4Nu In [Pr (u, 1 un- l ) ] } .  (A7) 

The factor 4No follon-s from (11) and, according to (22) , 
is inversely proportional to  the SNR at  the A i l F  output. 

The AIL rule and  the MAP rule are therefore  equivalent 

for infinite SNR.  The MAP rule  can offer a significant 

advantage only at very low SNRs  and when a code is 

used that leads to considerable differences among the 

conditional  probabilities Pr ( u,. I ~ ~ - 1 ) .  

APPENDIX I11 

First, we show that minimizing var (7%) with do held 

constant indeed adjusts  the  transversal filter as M F ,  and 

that thereby the values of s1 are provided to a sufficient 

degree of approximation.  Second, we study  the convexity 
of var (7,) relative t o  the sampling  phase T ~ .  Assuming 

sampling instant ' n  = 0, we drop the index 11. in  the follow- 
ing  calculations. 

To begin with, the sampling  phase 7. and  the  demodulat- 

ing  carrier  phase ppc arc considered as given constant  values. 
It follows from ( 5 7 )  that  the optinlum tap gains qi* and 

N L 

E(L7J i )  qi* - E(6-za-k) is* 
i=O k=-L 

= (0. 1 s  I l l  < L  
(-49: 

--x, 1 = o  

where X acts  as Lagrangian  multiplier. Substitution o 
(AS) and (A9) into (57) yields 

var [P I {gi*(~s,(pc)},(i~*(~8)}] = var (7 1 7,) = X. (A101 

From (3) and (5.5) we have 

y i ( ~ ~ )  = akh(7, - i~~ - k T )  + W ( T ,  - i ~ p ) .  ( A l l :  
k 

With power series notations 

h(t ,D) = h( t  + IcT)Dk (A121 
IC 

L 

i*(D) = iL*Dl 

z=-L 

(A14' 

= { L ( T ,  - ~T,,D-~)A(D)C*(D)J~~, 0 5 i 5 N (A15 

and 

N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{C A(D)h (Ts  - k 7 p , D ) g k * ] o l  

k = O  

= (A(D)i*(D) - X J D ~ ,  1 1  I 5 L. (A16 

Here [ . ] D z  indicates the coefficient belonging to Dl. Wit1 

L not being too  restricted,  and t u i k  = W [  ( i  - k) rP1 
substitution of (A16) into (A15) yields in good approx 

imation 

N 

t u i k q k *  N XL(7, - i ~ ~ )  , 0 5 i 5 N .  (A17 
k=O 

Let .tutk-l be the elements of the inverse of the (IV + 1) >( 



UXOEIIBOECK: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.ID.IPTIVE M.\SIMUM-I,IKELIHOOD RECEIVER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(AT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1) matrix  with  elements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw,k. Then from (A17), 

-v 
y k *  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh(rs  - i r p ) ~ ~ k i - l ,  0 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN .  (AlS) 

i=O 

Substituting (AlS) into (A16) , and observing (A12) and 

(A14), we obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N ,V 

i l *  & x  h(rs  - i rp)  L C k i - l h ( r s  - krp  + IT) 
i-0 k=n 

+~{A-’(D)].I, I I j 5 L. (A19) 

For  nloderat’e SNR n-e can neglect the  last  term  in (A19) 
which involves minor  approximation. Comparison of 

(AlS) with (14) and of (A19) with (17) exhibits that 

with  adequate values of N ,  rp,  L, and r,, the desired 

adjustment of the adaptive MLR will be achieved. 

We investigate now the qonvexity of var zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7) relative 

to rg .  Considering (A10) and determining X from (A19) 
with 1 = 0, find 

var (P I rs)  2~ 
bo . (A20) 

N N  

h(rs  - iTp)Wki-lh(rs - kr,) 
i=o L=O 

The denominator of (A20) expresses the weighted energy 

of the values of h ( t )  seen at  time t = r ,  at  the transversal 
filter taps. We assume that  the length of the  transversal 

filter delay line N r p  exceeds or a t  least corresponds to  the 
duration of h ( t ) .  Var (7 1 r8 )  will then, on the whole, be 
convex within an  interval  comparable to Nrp. Unless the 

tap spacing rP is very  small, however, there will be some 

ripple within  this rcgion. 

Suppose now that for some rS* and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApo* the optimum 

values yt* and C1* are given. In  attempting  to resynchronize 

the receiver, only rS and pe should  be  readjusted.  Let 

Ar8 = r8 - rS* and Ape = pPe - pC*. In (57) only the 

second term  depends  noticeably on AT, and ApG. Using 

( A l l )  and 

N 

c Oi*(T,*,Pc*)h(T8 - i r p  + IT,%) 
i=n 

‘V S (  AT, + ZT) exp ( -jApc) (A21) 

\\.here s(i.1 denotes the time-continuous signal element at 

the MF output [s(Z?’) = s l ] ,  (57) becomes 

var (7 1 Ars,Ap,;) N first teim + third  term 

I, 

- 2 Ite { s(ZT)E(&al) 
/=-L I; 

. s (Ar8  + k T )  exp (-jAp,) } .  (A22) 

Alinimizing (A22) with respect t o  ApC yields 
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var (P 1 Ars) ‘v first term + third  term 

L 

- 2 I S(ZT)E(&U~)S(AT~  + kT) 1 
z=-L li 

(A231 

The form of (A23) permits local minima to occur within 

short  distance  from rS*. However, with the receiver work- 

ing in decision-directed mode, I AT, 1 < T/2 can  be 

assumed, and hence convergence towards r,* and pc* can 
hardly be a problem. 
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