
Adaptive Mechanisms and Policies for Managing
Cache Hierarchies in Chip Multiprocessors

Evan Speight, Hazim Shafi, Lixin Zhang, and Ram Rajamony
Novel Systems Architecture Group
IBM Research, Austin, TX 78758

{speight,hshafi,zhangl,rajamony}@us.ibm.com

Abstract

With the ability to place large numbers of transistors on
a single silicon chip, manufacturers have begun developing
chip multiprocessors (CMPs) containing multiple processor
cores, varying amounts of level 1 and level 2 caching, and
on-chip directory structures for level 3 caches and mem-
ory. The level 3 cache may be used as a victim cache for
both modified and clean lines evicted from on-chip level 2
caches. Efficient area and performance management of this
cache hierarchy is paramount given the projected increase
in access latency to off-chip memory.

This paper proposes simple architectural extensions and
adaptive policies for managing the L2 and L3 cache hi-
erarchy in a CMP system. In particular, we evaluate two
mechanisms that improve cache effectiveness. First, we pro-
pose the use of a small history table to provide hints to the
L2 caches as to which lines are resident in the L3 cache.
We employ this table to eliminate some unnecessary clean
write backs to the L3 cache, reducing pressure on the L3
cache and utilization of the on-chip bus. Second, we exam-
ine the performance benefits of allowing write backs from
L2 caches to be placed in neighboring, on-chip L2 caches
rather than forcing them to be absorbed by the L3 cache.
This not only reduces the capacity pressure on the L3 cache
but also makes subsequent accesses faster since L2-to-L2
cache transfers have typically lower latencies than accesses
to a large L3 cache array. We evaluate the performance im-
provement of these two designs, and their combined effect,
on four commercial workloads and observe a reduction in
the overall execution time of up to 13%.

1. Introduction

Several modern chip multiprocessor (CMP) systems em-
ploy a victim cache approach [10] in the lower levels of
the memory hierarchy. Using L3 cache memory as a victim

cache enables better utilization of cache capacity. Further-
more, since inclusion need not be maintained, an L3 victim
cache and the system memory can have distinct data paths.
This can better accommodate the bandwidth requirements
of larger numbers of on-die processors and increased lev-
els of hardware multithreading.

Although victim caches traditionally store modi-
fied lines, writing back clean lines from the L2 to the
L3 can help eliminate subsequent expensive memory ac-
cesses. In such a system, properly managing which cache
lines are written back to the L3 cache can have a dra-
matic impact on the overall performance of the system.
Judicious use of write backs can lower both on-chip re-
source utilization as well as resource usage at the L2 and
L3 levels. This paper examines simple, adaptive mecha-
nisms at the architecture level for managing write backs
with the goal of improving performance.

Three ongoing developments in microprocessor design
make this problem important. First, manufacturers are able
to place very large numbers of transistors on a single silicon
chip, giving rise to chip multiprocessors containing an in-
creasing number of processing cores, L1 and L2 caches, on-
chip directory structures for L3 caches, and memory con-
trollers [9, 13]. Second, the advent of silicon carrier and
multi-chip module technology enables L3 data arrays to be
placed in close proximity to the processor chip with po-
tentially dedicated access links. Third, in an effort to ex-
tract more thread-level parallelism from modern workloads,
chips are designed with increasing numbers of hardware
thread contexts per processor core. Disruptive interactions
between the working sets of these threads can cause signifi-
cant cache performance degradation due to L2 cache capac-
ity misses.

Figure 1 shows the chip multiprocessor (CMP) archi-
tecture organization we examine in this paper. The CMP
consists of eight CPU cores, each with two hardware SMT
threads and private L1 Harvard-style instruction and data
caches. Each pair of CPUs shares an L2 cache through the
core interface unit (CIU). The CIU also routes requests to

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

Intrachip Connection Network Mem Ctrl

L3 Ctrl

L3
Directory

CIU Switch

L2
Slice

L2
Slice

L2
Slice

L2
Slice

NCU

2-way
SMT
Core

L1 I/D

2-way
SMT
Core

L1 I/D

NCU

CIU Switch

L2
Slice

L2
Slice

L2
Slice

L2
Slice

NCU

2-way
SMT
Core

L1 I/D

2-way
SMT
Core

L1 I/D

NCU

CIU Switch

L2
Slice

L2
Slice

L2
Slice

L2
Slice

NCU

2-way
SMT
Core

L1 I/D

2-way
SMT
Core

L1 I/D

NCU

CIU Switch

L2
Slice

L2
Slice

L2
Slice

L2
Slice

NCU

2-way
SMT
Core

L1 I/D

2-way
SMT
Core

L1 I/D

NCU

Figure 1. Baseline Architecture

and from each of the per-CPU non-cacheable units (NCU).
Each L2 is divided into four slices to allow for simultane-
ous concurrent access to four regions of the cache. Physi-
cal memory addresses are statically mapped to one distinct
slice in each L2 cache.

The L2 caches are the points of coherence in the system.
They are connected to each other, the L3 cache, and mem-
ory controller through a point-to-point, bi-directional intra-
chip ring network. The coherence protocol implemented is
an extension of that found in IBM’s POWER 4 systems,
which supports cache-to-cache transfers (interventions) for
all dirty lines and a subset of lines in the shared state [13].
The L3 resides on its own dedicated off-chip pathway that is
distinct from the pathway to and from memory. Both dirty
and clean lines are written back from the L2 caches to the
L3 cache in order to reduce the access time to these lines on
a subsequent miss. A miss to a line that resides both in an-
other on-chip L2 cache and the L3 cache will be serviced via
an L2 cache-to-cache transfer, as this intervention is faster
than retrieving the line from the off-chip L3 cache (See Sec-
tion 4).

For chip multiprocessor systems such as the one de-
scribed above, we propose two mechanisms for managing
write backs:

• Limit the number of unnecessary clean write backs
from the L2 caches.We first consider the case where
write backs from the L2 caches can only go to the L3
cache. Dirty lines victimized in the L2 caches need to
always be written back to the L3 cache. Such write
backs are necessary since only one valid copy of the
line exists in the system.Cleanlines may also be cho-

sen for replacement in L2 caches. The access latency
to memory is already much higher than that to an L3
cache. This latency gap is projected to be substantially
higher in future designs, and especially so when sili-
con carrier technologies could allow an L3 cache to be
brought “on-chip”. Writing back clean victimized lines
to the L3 thus enables subsequent accesses to these
lines to only pay the L3 access latency rather than the
full memory access penalty.

However, writing back clean victimized lines is un-
necessary if another cache (L2 or L3) already has a
valid copy of the line. An indiscriminate policy that
writes back all clean victimized lines will consume
valuable intrachip ring bandwidth as well as put pres-
sure on other system resources. We regulate the write
back of clean victimized lines by introducing a small
table at each L2 cache that provides a hint as to
whether a cache line is likely to be in the L3 or not.
This table is consulted in order to make a more in-
formed decision whether or not to write back a clean
line to the L3 cache. Note that an incorrect decision
only affects performance, not correctness.

• Write back L2 cache lines to peer L2 caches.Here,
we consider the case where write backs from an L2
cache can be placed in a peer L2 cache. Because neigh-
boring L2 caches are on-chip, providing data via an
L2–to–L2 transfer is more than twice as fast when
compared to retrieving the line from the L3 cache. As
long as there is room available at a peer L2 cache, we
could retain victimized lines (both clean and dirty) on–
chip instead of placing them in the L3. However, on–
chip L2 capacity is very precious compared to off–chip
L3 capacity. When writing back a clean line to a peer
L2 cache, we therefore need to be acutely aware of the
reuse potential for that line.

We use a second adaptive mechanism based again
on a small table to track which lines have high reuse
potential and should be kept on-chip if possible. This
table is consulted when lines are written back from the
L2 and enables lines with high reuse potential to be
picked up by a peer L2 and those for which reuse in-
formation is unknown to be placed in the L3.

We examine the performance benefits of the two mech-
anisms using a set of commercial workload traces gathered
from real machines that represent on-line transaction pro-
cessing (TP, CPW2), enterprise Java computing (Trade2),
and e-mail processing (NotesBench). We feed traces of
these applications into a simulator with a detailed, cycle-
accurate model of the architecture depicted in Figure 1. Re-
sults on these applications show improvements of up to 13%
over the baseline system.

The rest of this paper is organized as follows. Sections 2
and 3 describe the architectural mechanisms and coherence

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

policies we propose to address the problems listed above.
Section 4 provides details on our experimental setup and ap-
plications used. Section 5 gives performance results based
on our detailed simulations. Section 6 talks briefly about re-
lated work, and Section 7 concludes the paper.

2. Selective Clean L2 Write Backs

When a dirty line must be evicted from an L2 cache
to make room for an incoming line, the L2 cache has no
choice: the dirty line must be sent out to somewhere else
in the memory hierarchy. Therefore, for dirty lines, the de-
cision on which lines to accept and which lines to reject is
made by the L3 cache. Accepted lines are placed in the L3
victim cache. Rejected lines may either generate a retry bus
response from the L3, or may be accepted by memory and
incur a full memory latency if accessed later. We model the
former protocol. Lines may be rejected by the L3 if there
are not enough hardware resources to take the line immedi-
ately (e.g., the incoming data queue is full).

Although clean write backs potentially increase pressure
on the intrachip ring and off-chip pins, subsequent L2 cache
misses to these lines will likely be serviced by the faster L3
rather than memory. However, if the number of outstand-
ing loads per thread increases, the performance improve-
ments will diminish due to contention for the intrachip ring
and shared L3 cache. Here we describe an adaptive mech-
anism to limit the number of clean lines written back from
on-chip L2 caches to the off-chip L3 cache in an effort to re-
duce the negative impact of contention.

Indiscriminately evicting clean line from the L2 caches
to the L3 cache means that clean lines may be written back
even though they are already valid in the L3 cache. This can
happen either because another peer L2 cache wrote the line
back or the line has been replaced and missed on repeat-
edly by the same L2. This negatively impacts performance
by increasing demands on both the CMP address and data
rings, and by increasing the snoop processing required at
all bus agents. Table 1 shows that for all our studied appli-
cations, the percentage of clean lines written back to the L3
cache that are already valid in the L3 can be greater than
50%.

CPW 60.0%
NotesBench 59.1%

TP 42.1%
Trade2 79.1%

Table 1. Percentage of Clean L2 Write
Backs Already Present in the L3 Cache

Our simulated baseline coherence protocol will cancel

the data ring transfer when an L2 clean write back request
hits in the L3 cache, somewhat ameliorating the effect of
these “unnecessary” clean write backs on the data bus. To
further reduce pressure on the memory subsystem in the
presence of high contention, the first component of our pro-
tocol is afilter that selectively decides which replaced clean
lines should be sent from the L2 to the L3. If a wrong choice
is made (e.g., the decision not to write back a clean line is
made at the L2, but the line is actually not present in the
L3 or another L2), an access to the line incurs a full mem-
ory latency if it is referenced later. The filtering step takes
place at every L2 cache in the chip multiprocessor. We con-
sider the case where the L2 filtering components operate in-
dependently of each other and the case where the filtering
components co-operate so that only lines not present at any
other L2 cache are sent to the L3 cache.

The proposed selective write back mechanism uses a
small lookup table called the Write Back History Table
(WBHT). This table is associated with each L2 cache in
the system, and is organized and accessed just like a cache
tag array. The following steps outline how the WBHT re-
duces unnecessary clean write backs:

1. When a clean line is written back from the L2 cache,
the write back request is sent out on the intrachip ring.

2. The L3 cache snoop response indicates that it does or
does not currently have the line in a valid state.

3. When the L2 caches receive the combined bus re-
sponse, an entry for the line is allocated in the WBHT
if the line is present in the L3 cache.

4. The next time this line is brought into the cache and
subsequently chosen for replacement by whatever re-
placement policy is in force for the L2 cache, the table
is checked to see if a corresponding entry exists. If so,
the write back is deemed unnecessary and is aborted.
Otherwise, the line is written back to the L3 cache.

5. Lines disappear from the WBHT due to the fact that
there are many fewer entries than possible tag values,
ensuring that lines that have not been accessed for a
long time will lose their place in the table using an
LRU policy.

Note that this table may be accessed after a line has been
evicted from the cache and placed in the write back queue
associated with the local L2 cache. Therefore, access to this
table is not on the critical path of a cache miss, and we do
not find it unreasonable to assume a fairly large table size
(32K tag entries, or about 9% of our L2 cache size) and
level of associativity (16-way).

2.1. Potential Negative Effects

Because the information in the WBHT serves only as a
performance hint, there is no correctness issue if the con-

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

tents of the WBHT begin to diverge from the actual con-
tents of the L3 cache. This can occur for two reasons:

• The L3 may replace a line due to capacity constraints.
If that line has an entry in a WBHT, the L2 cache will
not write back the clean line to the L3, but will sim-
ply replace it. If the line is accessed again, the request
will have to get the line from memory if it cannot be
satisfied by another on-chip L2 cache.

• Entries in the WBHT get overwritten due to the small
size of the WBHT relative to the total number of cache
lines in the system. In this case, clean write backs from
the L2 caches will be sent to the L3 even if the line al-
ready exists in the L3 cache.

One additional problem can arise due to the slight
lengthening in the time a write back may reside in the
write back queue while the WBHT is consulted. This
can potentially lead to the queue becoming full. If the
write back queue becomes full, misses to the L2 cache
will be blocked and will have to wait for an open slot.
However, in practice we did not observe this even with
a modest write back queue length of eight in the base
system.

2.2. Protocol Enhancements

The largest detrimental effect we discovered oc-
curs when memory pressure is low in the system. In this
case, writing back all clean lines to the L3 does not hin-
der performance because there are no contention effects
associated with unnecessary clean write backs. Com-
bined with the long access penalty should the WBHT
mis-predict whether a line is already in the L3 or not, per-
formance will degrade even with successful WBHT pre-
diction rates of more than 75%. We account for this by us-
ing the number of retries on the intrachip bus as an “on/off”
switch for the WBHT. We implement a simple timer and
maintain a count of retry transactions that occur due to
race conditions or resource limitations. When the num-
ber of retries in a specified period of time goes below a cer-
tain threshold, we do not use the WBHT to make decisions
regarding whether or not to write back a clean line, al-
though we do keep the table up-to-date. Instead, all clean
write backs are sent to the L3 cache. Surprisingly, a com-
mon threshold of two thousand retries every one million
processor cycles works well for the applications pre-
sented here.

Because of the details of our bus protocol, all L2 caches
see the combined snoop response indicating that the L3
cache currently has a valid copy of the line. By having all
L2 caches observe this reply, we can place the line’s tag in
all WBHTs on the chip instead of just the L2 performing
the write back. The effects of this optimization are exam-
ined in Section 5.

3. Maximizing L2–L2 Transfers

In our assumed CMP architecture, L2 cache–to–cache
transfers are considerably faster (by more than a factor of
two) than L3 hits. This provides an incentive to maximize
L2 misses that are serviced by peer L2 caches. In the base
system, L2 write backs (both clean and dirty) are absorbed
by the L3 victim cache. In order to reduce latency, we pro-
pose allowing other L2 caches to absorb (orsnarf) write
backs when they are able to do so. For this to work, the fol-
lowing issues need to be addressed:

• Minimize negative interference at the recipi-
ent cache:In order to minimize the chances of an ab-
sorbed write back replacing a useful cache line, we
need to be selective in choosing candidate lines for re-
placement in the recipient L2 cache. One obvi-
ous choice is invalid lines. Our replacement algo-
rithm first looks for invalid lines. If none are found, we
search for lines that are in the “Shared” state. Shared
lines are less expensive to replace since, in our coher-
ence protocol, lines will likely only be in that state if
another cache has a copy.

• Ensure that snarfed write backs are reused:The
key to the success of the proposed mechanism is the
reuse of write back lines snarfed by other L2 caches.
This requires two conditions. First, a means of identi-
fying lines likely to be reused. Second, managing the
LRU information at the recipient cache to optimize the
chances of such lines staying at the destination until
they are reused.

• Minor modifications to the cache coherence proto-
col: The cache coherence protocol needs to be modi-
fied to allow multiple L2 caches to signal their ability
to absorb a write back. The snoop response generation
has to use a fair policy for selecting the cache to re-
ceive the line in order to distribute the snarfed write
back load to reduce negative interference effects.

• Minimize cache controller complexity: Since L2
cache controllers typically do not perform line fills
for data that was not requested, the cache con-
troller has been modified to allow this. Instead of
resorting to retries on resource conflicts at the poten-
tial recipients, we conservatively decline the cache
line in that situation.

Since write back line reuse is a significant performance
factor for the proposed technique, we ran experiments to
understand the frequency of reuse of lines that are written
back. Table 2 shows, for each trace used, the percentage of
cache lines written back from L2 caches that are later reused
both as a percentage of total write backs attempted and write
backs accepted by the L3. The table indicates that L2 write
back reuse varies across applications, but most applications

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

Application % Total % Accepted

CPW2 27.1 38.4
NotesBench 33.9 53.2

TP 15.5 18.6
Trade2 28.9 58.7

Table 2. Write Back Reuse Statistics

exhibit a significant reuse of L2 write back blocks. This of
course makes a good case for having an L3 cache. But in ad-
dition, since L2-L2 cache transfers are faster than L3 hits in
our system, there is a clear incentive to use any available
L2 capacity to keep the lines on-chip in a peer L2 if pos-
sible. Analysis of L2 utilization shows that for all applica-
tions, there was not enough underutilized space occupied by
invalid cache lines that can be used to accept snarfed data.
We therefore also victimize lines in peer L2 caches that are
in the Shared state because such lines are likely to not be
the only cached copy of the line in the system. Conversely,
a line in the Exclusive state is guaranteed to be the only
valid copy on-chip, and is therefore not a logical choice for
replacement. Modified lines are problematic since replac-
ing them would force another write back, resulting in addi-
tional traffic.

Another important optimization to improve the effective-
ness of the proposed technique is to be selective in choos-
ing the lines that are snarfed. If every write back from an
L2 cache were snooped by all L2 caches on the chip, the in-
crease in pressure on the L2 tags will likely offset any per-
formance gains we hope to achieve. To reduce write backs
that must access peer L2 cache tags, we added another table
(separate from the write back history table) to track cache
lines that were written back and later reused by an L2 cache,
in effect tracking lines that have been missed on multiple
times. As with the WBHT, this table is organized as a cache
that maintains the tags of lines that have been replaced, with
an additional bit per entry specifying when the line has been
missed on either locally or by another L2 cache. The tag for
a line is entered into the table when the line is written back
by any L2 cache. If the line is later missed on, and the line
still has an entry in the table, the “use bit” is set indicat-
ing that the line has been previously replaced and subse-
quently missed on. When such a line is written back again,
the lookup table is consulted, and on a hit with the reuse bit
set, a special bus transaction bit is set to trigger the snarf al-
gorithm at snooping L2 caches.

The cache controllers and the cache coherence proto-
col have to be modified slightly to allow an L2 cache to
accept a write back by another L2 cache. The cache con-
trollers themselves were modified to include logic similar
to that used in the L3 controller to accept write backs. How-
ever, unlike the L3 where only a single cache may accept a

write back, multiple L2’s that snoop a write back might de-
cide to accept it. Their acceptance is signaled using a spe-
cial snoop reply. Note that if an L2 cache finds that it al-
ready has the line in a clean state, the bus response will
cause the write back to be squashed in a manner similar to
the baseline L3 protocol described in Section 2. In our sys-
tem, a central entity, referred to as the “Snoop Collector”,
monitors snoop responses from all bus agents in order to de-
termine the final snoop response. This process occurs in the
base coherence protocol implementation. The Snoop Col-
lector was modified to deal with the write back snarf ac-
knowledgments from multiple L2 caches to choose a win-
ner in a fair round-robin fashion from the set of L2 caches
that are able to accept the cache line. Since the final snoop
response is seen by all bus agents in our system, caches that
were willing to accept write backs but did not win are able
to deallocate any buffers or other resources that had to be re-
served in order to avoid deadlocks.

4. Experimental Methodology

We evaluate the performance impact of the architectural
extensions and policies described in Sections 2 and 3 using
the Mambo [3] PowerPC full system simulation environ-
ment. We simulate the system described in Section 1 using
this simulation environment on all four industry-standard
commercial workloads.

4.1. Mambo Simulation Environment

For the four commercial workloads examined here, we
have L2 cache traffic traces captured on a real SMP ma-
chine running the full workloads. We feed the traces into
the Mambo cache hierarchy simulator. The cache hierarchy,
interconnection network, coherence protocol, and memory
subsystem are modeled in detail, including accurate queu-
ing, contention, and timing (Table 3 shows important sys-
tem parameters and contentionless access latencies). The
coherence protocol implemented is an extension of the one
used in IBM’s POWER 4 systems, which supports both
shared and dirty cache-to-cache transfers [13]. One parame-
ter we vary is the maximum number of outstanding read and
write misses per thread that can be simultaneously present
in the system at a time. This parameter would be deter-
mined in real systems by either the number of entries in
the load/store queue in a superscalar processor, the num-
ber of MSHRs supported by the cache hierarchy, the num-
ber of concurrent threads supported by each core, and/or the
application(s) being executed. Changing this simulation pa-
rameter serves to increase or decrease the memory pressure
on the system. Finally, all traces contain both application
and OS references, and therefore give a more realistic pic-
ture of the characteristics of the applications executed.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

Processors 8, 2-way SMT
Frequency 6 GHz

L2 Size 4 slices, 512 KB each
Number of L2 Caches 4

L2 Associativity 8-way
L2 Latency 20 cycles

L2-to-L2 Transfer Latency 77 cycles
L3 Size 4 slices, 4 MB each

L3 Associativity 16-way
L3 Latency 167 cycles

Bi-directional Ring Bus 1:2 core speed, 32B-wide
Memory Controller 1:2 core speed
Memory Latency 431 cycles (from core)

Table 3. System Parameters

4.2. Applications

We used traces from four commercial, industry-standard
workloads as described below.

Transaction Processing (TP):This workload models an
online transaction processing system that involves a similar
mix of transactions and database properties as in the TPC-C
benchmark from the Transaction Processing Council [14].
TPC-C benchmark runs require strict audited adherence to
a set of rules which is not true of our TP workload. The TP
workload was tuned to yield over 92% CPU utilization.

CPW2: The Commercial Processing Workload (CPW)
application simulates the database server of an online trans-
action processing (OLTP) environment and tests a range of
database applications, including simple and medium com-
plexity updates, simple and medium complexity inquiries,
realistic user interfaces, and a combination of interactive
and batch activities. In particular, while the transaction pro-
cessing (TP) application maintains an extremely high load
on the CPU, CPW2 is designed to be measured at approxi-
mately 70% CPU utilization in order to avoid misrepresent-
ing the capacity of larger systems. CPW2 also uses database
and system values that better represent the way the system is
shipped to IBM customers. More information on this work-
load is available [8].

NotesBench:NotesBench [11] is a workload for evaluat-
ing email server performance. NotesBench simulates an av-
erage group of users performing everyday mail tasks while
connected to a Domino Lotus Notes mail server. The work-
loads cover a variety of protocols such as IMAP, NRPC
(Notes Remote Procedure call, which is Domino/Notes na-
tive mail), and HTTP.

Trade2: Trade2 is an end-to-end Web application mod-
eled after an online brokerage. Trade2 leverages J2EE com-
ponents such as servlets, JSPs, EJBs, and JDBC to provide
a set of user services through the HTTP protocol. The spe-

cific services modeled in Trade2 enable users to register for
account and profile establishment, log into an account with
session creation after validation, retrieve the current account
balance and market conditions, modify the user profile, ob-
tain security quotes and purchase stock establishing a new
portfolio holding, viewing the portfolio, selling portfolio
holdings, and logging off. More information on Trade2, in-
cluding details on the EJB implementation and the database
schema used is available [7]. Sample code for the Trade2
application is available for download [6].

5. Performance Evaluation

In this section we describe the performance improve-
ments of utilizing the write back history table to reduce
the number of unnecessary write backs and allowing write
backs from L2 caches to be absorbed by peer on-chip L2
caches. All results are presented relative to the baseline sys-
tem described in Section 1 where all clean and dirty lines re-
placed in the L2 cache are sent to the L3 cache. This base-
line configuration does filter lines written back from the L2
if the line appears in the L3 cache by having the L3 cache
squash the initial write back request after it is snooped.

5.1. Results for Write Back History Table

Figure 2 shows the percentage performance improve-
ment in execution time relative to the base configuration of
the four commercial applications when a 32K-entry WBHT
is used. We present results for varying numbers of allowed
outstanding load miss requests per thread (four threads feed
each L2 cache in the system). Note that the actual perfor-
mance improvement is a factor of both the number of write
back notifications the WBHT can eliminate as well as the
current level of memory pressure. As the maximum num-
ber of outstanding loads is increased, more pressure is ex-
erted on the memory hierarchy. Table 4 gives relevant statis-
tics comparing the base protocol with the system enhanced
with the WBHT for six outstanding loads per thread. As de-
picted in Figure 2, because the WBHT reduces intranode
bus utilization by eliminating unnecessary write backs, it
has a greater impact on performance with increasing mem-
ory pressure.

Table 4 also gives the percentage of times the WBHT
made “the right decision” on whether to write back a clean
line or not. We measure this by peeking into the L3 cache
in the simulator when the WBHT makes its decision and
counting whether the decision was correct or not. In gen-
eral, the WBHT correctly predicts whether a line is resi-
dent in the L3 cache between 60% and 75% of the time.
For situations where the L3 hit rate is critical to perfor-
mance (e.g., low memory subsystem contention and high
data reuse, as in the TP application), these levels of mis-
prediction may hinder performance, leading to our use of

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

CPW2 NotesBench TP Trade2
Base WBHT Base WBHT Base WBHT Base WBHT

WBHT Correct N/A 63.1% N/A 67.3% N/A 75.3% N/A 60.4%
L3 Load Hit Rate 50.5% 37.3% 70.5% 70.4% 32.4% 25.4% 79.0% 67.8%

L2 Write Back Requests 73M 50M 31M 30M 88M 70M 133M 64M
L3-issued Retries 3.0M 2.6M .24M .24M 66M 63M 2.0M 1.5M

Table 4. Effects of Write Back History Table (6 Loads per Thread Maximum)

the retry counter as a switch for the WBHT (see Section 2).
Therefore, with low memory pressure (one or two outstand-
ing loads per thread), the small retry rate ensures that the
WBHT is not invoked, and most applications show no per-
formance improvement or degradation, with the exception
of TP. At two outstanding loads per thread, the retry rate in
TP is barely high enough to exceed our threshold, trigger-
ing the use of the WBHT. However, Table 4 indicates that
TP has a a very low L3 hit rate, which the WBHT further re-
duces from 32.4% to 25.4%, causing performance to dip as
shown in Figure 2.

-5

 0

 5

 10

 15

 1 2 3 4 5 6

P
er

ce
nt

ag
e

Im
pr

ov
em

en
t

Maximum Outstanding Loads Per Thread

CPW2
NotesBench

TP
Trade2

Figure 2. Runtime Improvement Over Base-
line of Write Back History Table

At six outstanding loads per thread, all applications with
the exception of NotesBench show marked improvement
over the baseline protocol. Of course, the real performance
of each of these applications likely lies somewhere on the
lines plotted in Figure 2 depending on system details. In
Trade2, despite the L3 hit rate dropping from 79% to 68%,
the large reduction in L2 write back requests and subsequent
decrease in the L3 retry rate allows Trade2 to perform well
in our system. In contrast, the WBHT is almost never in-
voked for the NotesBench application due to the very low
demands placed on the memory subsystem by this appli-
cation. CPW2 shows modest improvement with increasing

memory pressure.
Figure 3 shows the performance increase over the base-

line system when we allow all L2 caches to allocate entries
in their WBHT simultaneously, in contrast to Figure 2 in
which only the L2 cache attempting the write back would
do so. The trends are basically the same for each applica-
tion. In this experiment, all L2 caches snoop the combined
bus response indicating that the L3 has a clean line already.
Thus, an entry is allocated in all WBHT’s instead of just
the one attempting the write back. This global distribution
provides a small increase for all applications when mem-
ory contention is high, with Trade2 benefiting the most (a
2% increase over the previous results).

-5

 0

 5

 10

 15

 1 2 3 4 5 6

P
er

ce
nt

ag
e

Im
pr

ov
em

en
t

Maximum Outstanding Loads Per Thread

CPW2
NotesBench

TP
Trade2

Figure 3. Runtime Improvement of Updating
All WBHTs Using L3 Snoop Response

Figure 4 plots the improvement in performance, normal-
ized to the performance with a 512-entry WBHT, for our
workloads as the size of the WBHT is varied from 1K en-
tries to 64K entries. We can see that all applications gen-
erally perform better as the history table increases in size,
although the performance of NotesBench, CPW2, and TP
grows much slower than that of Trade2. If lines that are re-
peatedly written back from the L2 and then subsequently
missed on can be kept in the WBHT, its effect on perfor-
mance will be much more pronounced. As the table grows,

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1000 10000 100000

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Number of WBHT Entries

CPW2
NotesBench

TP
Trade2

Figure 4. Normalized Runtime of Varying L2
WBHT Sizes Normalized to 512-Entry WBHT
System

more of these lines are kept longer as the conflict rate in
the table decreases. Eventually, tags for lines remain in
the WBHT so long that the history table gets out of sync
with the actual contents of the L3, leading to a leveling
off in performance with very large table sizes (larger than
those shown in Figure 4). Statistics show that many lines in
Trade2 are written back and then re-referenced more than
300 times, whereas few lines in CPW2 show this behavior
more than 20 times, leading to the discrepancy in the per-
formance gain between the two applications.

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6

P
er

ce
nt

ag
e

Im
pr

ov
em

en
t

Maximum Outstanding Loads Per Thread

CPW2
NotesBench

TP
Trade2

Figure 5. Runtime Improvement Over Base-
line of Allowing L2 Snarfing

5.2. Results for L2-to-L2 Write Backs

Figure 5 shows the performance improvement of the four
commercial applications relative to our baseline configura-
tion when using an L2-to-L2 history table containing 32K
entries. In the L2-to-L2 write back case, L2 caches snoop
write backs from peer L2 caches and absorb them if possi-
ble. Additionally, if a peer L2 cache snoops a write back re-
quest, and the line is already valid in the peer L2, the actual
write back operation is squashed through a special snoop re-
ply.

Recall that L2-to-L2 write backs replace invalid or po-
tentially useful shared cache lines in the recipient L2 in an
attempt to convert L3 or memory accesses into L2-to-L2
transfers. Our concern that using space in peer L2 caches
for write backs would lead to worse hit rates for those L2
caches absorbing the write backs proved unfounded. Ta-
ble 5 shows that for all applications, the use of L2-to-L2
write backs was not detrimental to local (i.e., snarf recipi-
ent) L2 cache hit rates. In fact, all four applications showed
improved L2 hit rates, although the improvement was slight
for the majority of the applications. This improvement in hit
rate can be attributed to snarfed lines being used at the re-
cipient cache, effectively performing a useful prefetch.

As seen in Figure 5, the performance improvement for
CPW2 and NotesBench remains relatively flat regardless of
changes in the memory pressure. Table 5 indicates that for
NotesBench, the 2.4% performance improvement over the
base case arises from a large reduction in the number of L3
retries (94%), and a slight reduction in the number of off-
chip accesses (1.1%). The reduction in L3 retries for all ap-
plications occurs because lines being written back are fre-
quently found in peer L2 caches. The squashing of these
write backs reduces the occupancy of requests sitting in the
L3 queues, thereby reducing the retries the L3 must issue.
For NotesBench, 6% of snarfed lines were used to satisfy re-
quests from a thread associated with the snarfing L2, while
13% of snarfed lines were used to satisfy data requests by
other L2 caches on the chip. CPW2 shows similar trends to
NotesBench for L2-to-L2 transfers.

Trade2 shows a 5.9% performance improvement with
high numbers of outstanding loads. Trade2 has the highest
reduction in off-chip accesses of the four workloads used
here (Table 5), as well as the highest increase in local L2 hit
rates.

The sharp rise in performance with L2 snarfs for the
TP workload results from a dramatic decrease in retry re-
sponses generated by the L3 cache. Over 99% of all L3
retries, of which there are a relatively large number (see
Table 4), are eliminated. Additionally, 16% of the snarfed
lines are used by the snarfing L2 to satisfy cache accesses, a
higher rate than any other application studied, even though
the overall reduction in off-chip accesses is the lowest of

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

CPW2 NotesBench TP Trade2
Performance Improvement 1.7% 2.4% 13.1% 5.6%

Reduction in Off-Chip Accesses 1.2% 1.1% .8% 5.2%
Write Backs Snarfed 3.7% 2.5% 2.8% 7.0%

Snarfed Lines Used Locally 10% 6% 16% 4%
Snarfed Lines Provided for Interventions 16% 13% 14% 10%

Increase in Local L2 Hit Rate .4% 1.2% .3% 3.7%
L3-Issued Retry Rate Reduction 96% 94% 99% 93%

Table 5. Effects of L2-to-L2 Write Backs (6 Loads Per Thread Maximum)

any application. Given that the TP workload typically ex-
hibits high CPU utilization in practice, this level of memory
pressure may never be experienced in the actual execution
of the application. Discovering the correct level of memory
pressure for each of these applications for use in future sys-
tem design is the subject of ongoing work.

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 1000 10000 100000

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Size of L2 Snarf Table

CPW2
NotesBench

TP
Trade2

Figure 6. Runtime of Varying L2 Snarf Ta-
ble Sizes Normalized to 512-Entry Snarf Ta-
ble System

Figure 6 shows the performance improvement trend as
the number of entries maintained in the L2-to-L2 transfer
table is varied when six outstanding load misses per thread
are allowed. The results show that the interaction between
the size of this table and performance improvements varies
for the applications studied. When the table is too small, the
L2 controllers cannot maintain enough history, so some op-
portunities for improvement are missed. On the other hand,
as the L2 snarf table size increases, the possibility of stale
data affecting the correctness of write back decisions is in-
creased. Overall, the size of the L2 snarf table has little im-
pact on the effectiveness of the mechanism beyond a certain
point, with Trade2 again showing the most sensitivity to the
size of the table. However, the performance of this appli-

cation improves by only 4.5% over the minimal table size,
even with a very large table size of 64K entries.

 0

 5

 10

 15

 20

 1 2 3 4 5 6

P
er

ce
nt

ag
e

Im
pr

ov
em

en
t

Maximum Outstanding Loads Per Thread

CPW2
NotesBench

TP
Trade2

Figure 7. Runtime Improvement Over Base-
line of Combined Tables

5.3. Interaction

Finally, we examined the effect on performance of com-
bining the write back history table and the L2 snarf ta-
ble. In the combined case, we use two tables, but to pre-
serve the overall space requirements, each table is only 16K
entries as opposed to 32K entries as used in Sections 5.1
and 5.2. Figure 7 shows that the performance benefits of
the individual optimizations are not additive. Considering
Trade2, which showed the most promising results for L2-to-
L2 write backs, the combined version improved by less than
the selective write back alone when the memory pressure is
high. When the pressure is low, the performance afforded by
snarfing L2 write backs allows the runtime to improve over
that of the WBHT-only system. Keep in mind that while
most applications showed little sensitivity to the L2 snarf
table, all applications benefit from a larger write back his-
tory table. The benefits of combining the two schemes allow

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

TP to perform better than either the WBHT or L2 snarf ta-
ble alone, despite the fact that the tables are half the size
here as in Sections 5.1 and 5.2.

6. Related Work

Norman Jouppi [10] first proposed to use a fully-
associative victim cache to improve the performance of
direct-mapped caches. Since then, victim caching has
been the subject of many research projects, including de-
signs of victim caches for vector registers [4] and the
use of victim caches to reduce power [12]. The major-
ity of these projects focus on improving the performance of
L1 caches. All of the projects that we are aware of use vic-
tim caches that are closely positioned to the main caches.
This study focuses on the use of a large, off-chip L3 vic-
tim cache for clean and dirty lines in a CMP system.

Bhandarkar and Ding [2] show that L2 miss penalty has
the strongest negative effect in CPI (Cycles Per Instruc-
tions). To speed up the handling of L2 misses, many ar-
chitectures are incorporating another level of caches (L3
caches) between L2 and memory. For instance, Intel Ita-
nium2 [9] is equipped with an on-die L3 cache up to 6MB.
IBM POWER4 [13] allows each dual-processor chip to
share a 32MB L3 cache, whose directory is on the chip but
whose data is off the chip.

The Piranha system [1] attempts to improve cache uti-
lization by not supporting inclusion between the L1 and L2
caches and allowing forwarding of requests from L2 to L1
caches.

Even though L3 caches are becoming more common,
only a limited number of studies have been done on how to
best exploit them to reduce memory latency. Ghaiet al. [5]
demonstrate that an 8-way 4MB L3 shared by four proces-
sors decreases the average memory access time by 6.5% and
reduces the traffic by 95% from a system without an L3.
In their experiments, the L3 cache maintains inclusion with
the caches above it. While the L3 cache may filter out some
snoop traffic to the L2 cache in a multi-CMP system, it in-
creases the snooping delay for cache-to-cache transfers. To
maintain inclusion, whenever the L3 replaces a line it must
broadcast an invalidation request to all L2 caches. In addi-
tion, supporting inclusion requires replicated copies to be
stored in the L2 and L3 caches simultaneously, causing in-
efficient use of L2 and L3 cache space. For these reasons
we did not choose to support inclusion for our study.

7. Conclusions and Future Work

In this paper, we have examined both architectural and
policy decisions regarding the use of a large, shared L3
cache in the context of a chip multiprocessor. We believe
that the present-day trend of placing more cores with sup-

port for more independent hardware threads on a single
CMP will lead to increased pressure on the cache hierarchy.
In such a situation, managing all aspects of cache interac-
tions is important. Here we have shown that simple, adap-
tive mechanisms to more intelligently manage write back
traffic can have a positive impact on performance.

We have proposed the use of a small hardware table to
provide hints to L2 caches as to which lines are present in
a lower-level L3. This write back history table serves to fil-
ter the writing back of clean lines from the L2 cache when
there is a good chance that these lines are already present in
the L3 cache. Our experiments with four commercial work-
loads show that a small history table, on the order of 10%
or less than the size of the L2 cache, can remove more than
50% of such “unnecessary” clean write backs. Depending
on the memory pressure, this can lead to an up-to 13% per-
formance improvement.

We have also evaluated allowing L2 write backs of lines
believed to be candidates for reference in the near future to
be placed in peer on-chip L2 caches. The results of this op-
timization varied across the applications studied with most
applications showing some improvement. We saw reduc-
tions in off-chip accesses and L3 retry rates for all applica-
tions, and the lines “snarfed” by peer L2 caches were used
to both satisfy local requests and interventions.

Currently, we are investigating alternate L3 organiza-
tions and policies, including having separate buses for chip-
private L3 caches and memory, similar to the POWER 5
architecture from IBM. One idea we are investigating for
reducing the size of the WBHT presented here is to allow
each entry in the table to serve multiple cache lines, reduc-
ing the size of each entry and providing greater coverage at
the risk of increased prediction errors. Finally, we are devel-
oping new replacement algorithms that take into account in-
formation contained in the history tables presented here to
better utilize all available cache space.

Acknowledgments

This work was supported in part by the Defense Ad-
vanced Research Projects Agency (DARPA) under contract
No. NBCH30390004. Details presented in this paper may
be covered by existing patents or pending patent applica-
tions.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

References

[1] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk,
S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese. Pi-
ranha: A Scalable Architecture Based on Single-Chip Mul-
tiprocessing.Proceedings of the 27th Annual International
Symposium on Computer Architecture, pages 282–293, June
2000.

[2] D. Bhandarkar and J. Ding. Performance Characterization
of the Pentium Pro Processor.Proceedings of the 3rd IEEE
Symposium on High Performance Computer Architecture,
pages 288–297, February 1997.

[3] P. Bohrer, M. Elnozahy, A. Gheith, C. Lefurgy, T. Nakra,
J. Peterson, R. Rajamony, R. Rockhold, H. Shafi, R. Simp-
son, E. Speight, K. Sudeep, E. V. Hensbergen, , and
L. Zhang. Mambo - A Full System Simulator for the Pow-
erPC Architecture.ACM SIGMETRICS Performance Evalu-
ation Review, 31(4), March 2004.

[4] R. Espasa and M. Valero. A Victim Cache for Vector Reg-
isters. International Conference on Supercomputing, pages
293–300, July 1997.

[5] S. Ghai, J. Joyner, and L. John. Investigating the Effective-
ness of a Third Level Cache.Technical Report TR-980501-
01, Laboratory for Computer Architecture, The University of
Texas at Austin, May 1998.

[6] IBM. Websphere Performance Benchmark Sample.
http://www.ibm.com/software/webservers/appserv/wpbsdo-
wnload.html.

[7] IBM. Application Development Using the Versata Logic
Suite for Websphere. Redbook SG24-6510-00, Available
from http://www.redbooks.ibm.com, December 2002.

[8] IBM. iSeries Performance Capabili-
ties Reference V5R2. Available from
http://publib.boulder.ibm.com/pubs/html/as400/online/chgf-
rm.htm, 2003.

[9] Intel Corporation. Intel Itanium-2 Processor Specification
Update.Document Order Number 249634, July 2004.

[10] N. P. Jouppi. Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully Associative Cache and
Prefetch Buffers. Proceedings of the 17th International
Symposium on Computer Architecture, pages 364–375, June
1990.

[11] Lotus NotesBench Consortium. NotesBench Description.
Available from http://www.notesbench.org.

[12] G. Memik, G. Reinman, and W. Mangione-Smith. Reduc-
ing Energy and Delay Using Efficient Victim Caches.Inter-
national Symposium on Low Power Electronics and Design,
pages 262–265, August 2003.

[13] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sin-
haroy. POWER4 System Microarchitecture.IBM Journal of
Research and Development, 46(1):5–26, January 2002.

[14] Transaction Processing Performance Council. TPC
Benchmark C Standard Specification. Available from
http://www.tpc.org/tpcc/spec/tpcccurrent.pdf.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

