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Almost half of the world’s agricultural soils are acidic, and most of them present
significant levels of aluminum (Al) contamination, with Al3+ as the prevailing phytotoxic
species. Lupin is a protein crop that is considered as an optimal alternative to soybean
cultivation in cold climates. Lupins establish symbiosis with certain soil bacteria,
collectively known as rhizobia, which are capable of fixing atmospheric nitrogen.
Moreover, some lupin species, especially white lupin, form cluster roots, bottlebrush-like
structures specialized in the mobilization and uptake of nutrients in poor soils. Cluster
roots are also induced by Al toxicity. They exude phenolic compounds and organic
acids that chelate Al to form non-phytotoxic complexes in the rhizosphere and inside
the root cells, where Al complexes are accumulated in the vacuole. Lupins flourish in
highly acidic soils where most crops, including other legumes, are unable to grow. Some
lupin response mechanisms to Al toxicity are common to other plants, but lupin presents
specific tolerance mechanisms, partly as a result of the formation of cluster roots. Al-
induced lupin organic acid secretion differs from P-induced secretion, and organic acid
transporters functions differ from those in other legumes. Additionally, symbiotic rhizobia
can contribute to Al detoxification. After revising the existing knowledge on lupin distinct
Al tolerance mechanisms, we conclude that further research is required to elucidate the
specific organic acid secretion and Al accumulation mechanisms in this unique legume,
but definitely, white lupin arises as a choice crop for cultivation in Al-rich acidic soils in
temperate climate regions.
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INTRODUCTION

White lupin (Lupinus albus L.) is a singular legume with increasing value both as an agronomic
and a horticultural crop (Jansen, 2006). Lupins seeds present protein contents close to 40% and
are among the most protein-rich plant products, making this legume an excellent protein crop
and a viable alternative to soybean cultivation in cold climates (Lucas et al., 2015; De Ron et al.,
2017). As a horticultural crop, white lupins play a role in ecosystem services as honey plants
and annual ornamentals (Jansen, 2006). White lupin has a notable tolerance to abiotic stresses
(Fernández-Pascual et al., 2007), and a considerable potential as a tool for the recovery of degraded
soils and phytoremediation of toxic metal-polluted soils (Coba de la Peña and Pueyo, 2012;
Quiñones et al., 2013, 2021). Lupins establish symbiosis with soil bacteria leading to the formation
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of nitrogen-fixing root nodules. Moreover, several lupin species
are capable of developing the so-called cluster roots (CR)
(Lambers et al., 2003; Pueyo et al., 2021). P or Fe deficiency and
Al toxicity, which often coexists with P deficiency in globally-
distributed acidic soils, induce the formation of CR, which
promote mobilization of P and other nutrients by secretion
of organic acids (OAs), protons, phosphatases and phenolic
compounds (Sun et al., 2016). These distinctive traits confer
white lupin the competence to grow in N- and P-deprived soils,
mobilizing other nutrients, which are unavailable to most plants.
Unlike other legumes, lupins can grow optimally at pH > 4.0,
and sub-optimally at even lower pHs (Nelson et al., 2001;
Zavalin et al., 2019).

It is estimated that roughly 30% of the world’s soils are acidic
(Zheng, 2010). In many areas of the Pacific Ring of Fire, volcanic-
originated soils are particularly acidic, Al-toxic and P-deficient
Andosols that comprise approximately 50% of arable land in
Chile (Redel et al., 2016). Acidic soils are also predominant
in Europe, mostly in the Northern regions (Figure 1). Soil
acidification is accentuated by some agricultural practices (Moore
et al., 2001). Climate change and the fluctuations in rainfall
patterns also contribute to soil acidification. While other metals
are more toxic, aluminum constitutes the main problem of
acidic soils, which depends on soil pH, but also on factors
such as organic matter, phosphates, fluorides, sulfates or ionic
strength (Carr and Ritchie, 1993). Acidic soils are usually rich
in clay minerals such as iron oxides, kaolinite, montmorillonite
and illite that trap P and render it inaccessible for plants
(Zheng, 2010; Eriksson et al., 2016). Therefore, P deficiency
and Al toxicity coexist in acidic soils severely hampering crop
production. Lime and P applications are effective in the short
term, they elevate the soil pH, reduce Al solubility, which is
also displaced from exchangeable sites by Ca, and increase P
availability. However, the soil buffering capacity can diminish
the effects of the amendments. Acidification is increased by
factors such as acid rain and application of ammonium-based
fertilizers, and amendments need to be reapplied, which might
not be sustainable in the long term (Zheng, 2010). A crop such
as lupin, which tolerates Al toxicity and displays mechanisms
to fix atmospheric nitrogen and mobilize P and other nutrients
in nutrient-deprived acidic soils, arises as an ideal option for
sustainable agriculture in temperate zones worldwide.

In plants, Al can cause cytotoxic inhibition, damages to
cell structures and eventual suppression of plant growth and
crop yield (Andersson, 1988). Al toxicity symptoms include
disturbance of the plasma membrane, decrease in water uptake,
damage to photosynthesis, and generation of reactive oxygen
species (ROS) (Wei et al., 2021). Al inhibits auxin transport,
induces ethylene production and reduces root growth (Chauhan
et al., 2021; Wei et al., 2021). Al causes epidermal cell death,
decreasing cell extensibility and conductivity (Chauhan et al.,
2021). Al interferes with the uptake, transport and metabolism
of multiple mineral nutrients (Andersson, 1988). It alters the
expression of numerous genes, it affects the ability of DNA
to replicate, and disturbs signal transduction pathways (Sade
et al., 2016). Some plants have developed Al tolerance through
root secretion of chelating compounds. Several transporters

FIGURE 1 | Map of soil pH in Europe. Source: Land Resources Management
Unit, Institute for Environment and Sustainability, European Soil Data Centre
(ESDAC), esdac.jrc.ec.europa.eu, European Commission, Joint Research
Centre (Panagos et al., 2012).

involved in Al resistance mechanisms belong to the multidrug
and toxic compound extrusion (MATE), the aluminum-activated
malate transporter (ALMT), the natural resistance associated
macrophage protein (NRAMP), the ATP-binding cassette (ABC),
and the aquaporin families (Wei et al., 2021). OAs and phenolic
compounds bind Al and exclude it from the cell and/or sequester
the resulting complexes into the vacuole or the cell wall (Sade
et al., 2016). A fine regulation of the response to Al stress is
achieved by the involvement of phytohormones, Ca2+ signaling
pathways, transcription factors and miRNAs (Matsumoto, 2000).

PHYSIOLOGICAL ALTERATIONS AND
SPECIFIC MECHANISMS INVOLVED IN
LUPIN TOLERANCE TO ALUMINUM

White lupin response to Al toxicity involves physiological and
morphological modifications and mechanisms that differ from
other plants, including other legumes. Due to its high tolerance,
Al toxicity has been scarcely investigated in lupin, but at high
enough concentrations, Al can cause a suppression of vegetative
growth, with decreases in shoot and root biomasses (Hemada
et al., 2020). Lupin CR exudates limit the entrance of Al
into the roots through the formation of non-toxic complexes
(Dakora and Phillips, 2002). Malate, citrate and oxalate are
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involved in Al resistance in plants (Ma, 2000; Ma et al., 2001).
Malate and citrate are secreted from root tips and regulated
by specific transporters (Sharma et al., 2016; Wang et al.,
2017); however, oxalate secretion transport pathways are mostly
unknown (Lv et al., 2021). CR exudates consist mainly of OA
anions (Dessureault-Rompré et al., 2007), protons, phenolic
compounds and phosphatases (Gerke et al., 1994; Gilbert et al.,
1999; Lamont, 2003) that generate changes in the rhizosphere and
mobilize nutrients and toxic metals from insoluble phosphates
(Dakora and Phillips, 2002). OAs act as detoxifying agents by
chelating Al into non-phytotoxic forms (Dakora and Phillips,
2002). OA anion exudation by lupin CR has a strong effect
on cation concentration in the rhizosphere, but this does not
occur through changes in pH, but through metal complexation
(Dessureault-Rompré et al., 2008), ligand exchange (Violante
et al., 1991; Geelhoed et al., 1998) and dissolving organic matter
(Kaiser and Zech, 1997; Beck et al., 1999). P deficiency and Al
toxicity frequently coexist on acid soils, suggesting that response
mechanisms might have evolved to adapt to both stresses through
common regulation pathways (Sun et al., 2016).

Enzymes of the TCA cycle, the glycolysis pathway and the
glyoxylate cycle are involved in OA biosynthesis (Igamberdiev
and Eprintsev, 2016). The conversion of pyruvate to malate,
phosphoenolpyruvate to oxaloacetate and oxaloacetate to malate
are Al-induced in soybean (Dong et al., 2004). Al toxicity
increases malate exudation in Lupinus pilosus (Ligaba et al.,
2004). The activities and gene expression levels of citrate
synthase, malate dehydrogenase and phosphoenolpyruvate
carboxylase have been reported to increase in white lupin CR
under P deficiency (Johnson et al., 1994; Uhde-Stone et al., 2003).
Aconitase and malic enzyme activities are also affected by Al
stress in soybean (Xu et al., 2010; Zhou et al., 2018).

Differences exist between P deficiency- and Al toxicity-
induced citrate secretion (Wang et al., 2007). P deficiency induces
citrate release from mature CR, while Al triggers exudation from
the subapical root zones of lateral roots and from mature and
senescent CR. Al-induced citrate exudation is inhibited by P
limitation at the seedling stage, but is stimulated at later stages.
Citrate secretion is dependent on plasma membrane H+-ATPase
in lupin under P deficit (Tomasi et al., 2009), and H+-ATPase
also participates in regulating Al-activated citrate exudation in
different legumes (Shen et al., 2005; Guo et al., 2013). However,
Al-activated lupin citrate secretion is independent of plasma
membrane H+-ATPase. Citrate secretion is coupled with K+

efflux in P-deficient lupin plants, which may compensate H+

efflux and keep the charge balance, but this Al-induced K+ efflux
is independent of Al-induced citrate exudation (Zeng et al., 2013).
OAs release is mediated by the activation of transport systems
and the expression of stress-induced specific genes (Ma, 2000).
In white lupin, LaALMT1 contributes to malate, but not citrate
release (Zhou et al., 2020). Contrary to some ALMT homologs in
other species, LaALMT1 expression, which is involved in root-
to-shoot translocation, is not stimulated by Al. Other LaALMT
homologs, which are upregulated by Al, might have a role in lupin
Al-tolerance (Zhou et al., 2020). MATE/AACT/DTX transporters
might be involved in Al-stimulated citrate release in lupin (Chen
and Liao, 2016; Zhou et al., 2020). Besides malic and citric, oxalic,

fumaric, malonic and α-ketoglutaric acids have been identified in
the rhizosphere of white lupin (Mimmo et al., 2008), and might
contribute to lupin Al tolerance. In certain plants, oxalate rather
than citrate or malate is involved in Al tolerance (Yang et al., 2011;
Lv et al., 2021), but the regulation of oxalate secretion requires
further study. Recently, a potential mechanism for Al tolerance
in alfalfa has been described that involves oxalate secretion and
ABA-mediated signaling (Lv et al., 2021). Flavonoids exuded by
lupin roots play a key role in the establishment of symbiosis by
inducing the expression of rhizobial nod genes (Cooper, 2007),
but flavonoids secreted by CR do not differ from those secreted by
regular roots (Weisskopf et al., 2006; Cesco et al., 2010). Secretion
of flavonoids by CR precedes that of OAs (Cesco et al., 2010;
Chen and Liao, 2016), and they can chelate the metal ions that
are solubilized by OAs (Weisskopf et al., 2006; Wei et al., 2021).

Several genes involved in auxin and ethylene signaling have
been shown to control both P deprivation and Al stress suggesting
a P-Al signaling crosstalk (Sun et al., 2016). Phytohormones
have different roles in different plants under Al stress (Rangel
et al., 2007; Rademacher et al., 2011; Yang et al., 2014; Sun
et al., 2016). Auxin response factors (ARF) in roots are regulated
by Al-modulated miRNAs (Wang et al., 2005; Liu et al., 2007).
Ethylene biosynthesis genes are induced by Al (Sun et al., 2016),
and ACC synthase and ACC-oxidase activities correlate with Al-
induced ethylene evolution (Sun et al., 2007; Swarup et al., 2007).
Ethylene triggers auxin synthesis in the transition zone of the
root apex, inhibiting root growth (Yang et al., 2014). In fact, CR
regulatory components are common to regular roots (Secco et al.,
2014). CR formation is initiated by the same phytohormones
and transcription factors employed by simple-patterned roots
(Coudert et al., 2010; Petricka et al., 2012). PIN and LAX auxin
carriers (Billou et al., 2005; Grieneisen et al., 2007; Swarup
et al., 2008), or Aux/IAA proteins working in combination with
ARFs (Vanneste and Friml, 2009) occur in both CR and regular
root tips. Root-originated auxin has also been detected in lupin
CR (Meng et al., 2013). Transcription factors involved in root
meristem function and CR development are also coincident
(Galinha et al., 2007; Carlsbecker et al., 2010; Secco et al., 2014).
A simplified representation of the molecular mechanisms in lupin
CR in response to Al toxicity is presented in Figure 2.

ROLE OF RHIZOBIA IN LUPIN
ALUMINUM TOLERANCE

Plant growth-promoting rhizobacteria (PGPR) can positively
affect Al stress tolerance reducing Al uptake and accumulation,
decreasing lipid peroxidation and enhancing root development
through ACC deaminase and IAA production or induction of
plant genes. Some rhizobia possess PGPR properties, produce
exopolysaccharides and secrete OAs, phenolic compounds and
sugars that can chelate Al (Kang et al., 2021). Malate-chemotaxis
is a mechanism for the recruitment of beneficial rhizobacteria
(Rudrappa et al., 2008). Lupin-nodulating rhizobia belong
primarily to the Bradyrhizobium genus, although several other
bacteria have been shown to form efficient symbiosis with
lupins (Msaddak et al., 2021). Rhizobial entry occurs at the
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FIGURE 2 | Simplified metabolic pathways in a white lupin cluster root cell in response to Al stress. Aluminum present in the rhizosphere enters the cells primarily
through aquaporins and NRAMP transporters. Through the action of Ca2+ signaling pathways, transcription factors and miRNAs, Al induces replication of DNA that
leads to activation of the TCA cycle, the glycolysis pathway and the glyoxylate cycle. This leads to the accumulation of organic acids and phenolic compounds.
Activation of specific transport systems (MATE, ALMT, ABC-transporters) leads to the exudation of these compounds into the rhizosphere. OAs and phenolic
compounds chelate Al cations outside and inside the cells. Intracellular complexes are accumulated in the vacuole. Extrusion of H+ and K+ contribute to the
maintenance of the membrane potential. Ethylene production increases, while auxin and cytokinin levels increase or decrease depending on the developmental
stage and the different root zones. Abbreviations: 2-OG, 2-oxoglutarate; AACT, aluminum-activated citrate transporter; ABC, ATP-binding cassette; ACON,
aconitase; AMLT, aluminum-activated malate transporter; ACL, ATP citrate lyase; ART1, Al Resistance Transcription Factor 1; Ac-CoA, Acetyl CoA; Asn, asparagine;
Asp, aspartic acid; CS, citrate synthase; DTX, detoxification transporter; Gln, glutamine; Glu, glutamic acid; ICL, isocitrate lyase; LDH, lactate dehydrogenase;
MAPK, mitogen-activated phosphate kinase; MATE, multidrug and toxic compound extrusion; MDH, malate dehydrogenase; ME, malic enzyme; MS, malate
synthase; NRAMP, natural resistance associated macrophage protein; OAA, oxaloacetate; PDH, pyruvate dehydrogenase; PEP, phosphoenolpyruvate; PEPC, PEP
carboxylase; Phe, phenolic compounds; PK, PEP kinase; SS, sucrose synthase; STOP1, Transcription factor sensitive to protein rhizotoxicity 1; TFs, transcription
factors.

junction between a root hair and an adjacent epidermal cell
(González-Sama et al., 2004), and rhizobia are distributed
between the daughter cells (Fedorova et al., 2007; Coba de la
Peña et al., 2018), while endoreduplication processes take place
(González-Sama et al., 2006). Al can severely inhibit rhizobial
growth and decrease nitrogenase activity (Lesueur et al., 1993;
Arora et al., 2010). However, highly Al-tolerant strains have been
characterized (Vargas et al., 2007; Ferreira et al., 2012; Kang
et al., 2021). Strains isolated from acidic Al-contaminated soils

show a high production of exopolysaccharides and a decreased
outer membrane permeability (Ferreira et al., 2012). Al stress
also promotes the production of Al-chelating siderophores (Roy
and Chakrabartty, 2000). Overall, Bradyrhizobium species are
more tolerant to acid and Al stress than fast-growing species
(Flis et al., 1993). Several mechanisms have been proposed
for acid tolerance, including changes in lipopolysaccharide
composition of the outer membrane or polyamine accumulation
(Chen et al., 1993; Ferreira et al., 2012; Jaiswal et al., 2018).
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High exopolysaccharide production by lupin-nodulating
bradyrhizobia has been proposed to prevent Hg toxicity (Arregui
et al., 2021; Quiñones et al., 2021). Physical sequestration,
exclusion and complexation mechanisms contribute to reduce
metal availability (Rajkumar et al., 2010). Metals bind to carboxyl
and hydroxyl groups on the cell surface, and to microbial
secreted substances (Pulsawat et al., 2003). Many lupin species
and native soil rhizobia are naturally resistant to low pH and
Al toxicity, and tolerant rhizobia favor plant establishment
and development (Sprent, 2009). Interestingly, white lupin
appears to have developed a strategy to avoid excessive OAs
microbial degradation (Weisskopf et al., 2006). The stability
of carboxylates in the soil is key to maintain P acquisition and
counteract Al toxicity. This is achieved by a temporal regulation
of the secretion of isoflavonoids, antifungal cell wall-degrading
enzymes, chitinase and glucanase prior to OAs excretion,
thus reducing microorganisms population and preventing OA
degradation (Neumann et al., 1999; Burzyński et al., 2000;
Zhu et al., 2005).

DISCUSSION

The gradual acidification of the world’s cultivated soils is
predominantly driven by agricultural practices and global change.
A decrease in pH leads primarily to the complexation of P,
rendering it unavailable to plant roots, and to the release of
phytotoxic Al cations. Alkaline amendments, such as lime,
temporarily increase soil pH. However, in the long term, they
might contribute to surface water eutrophication. Sustainable
alternatives are needed to confront this global problem. In acidic
soils, plants can prevent Al toxicity in a zone around the root
tip, by avoiding its entrance into root cells mainly through the
exudation of AOs (Wei et al., 2021). Lupin CRs are specialized
organs composed of hundreds of small rootlets with active root
tips that are able to exudate AOs and other metabolites (Pueyo
et al., 2021 and references therein). We propose that CR multiply
the defense mechanisms present in other plants, thus significantly
increasing Al tolerance. Cultivation of lupin, a plant that is able
to cope with Al toxicity and possesses the ability to fix nitrogen in
symbiosis with rhizobia and the capacity to mobilize P and other
various nutrients through CR exudation, is able to contribute
to a sustainable management of agricultural soils affected by
low pH and Al toxicity, without compromising crop production.
Additionally, the elevated protein content in lupin seeds makes
it an extremely valuable crop due to the increasing demand of
plant protein. Accurate studies on Al content in lupin organs
grown in acidic soils with different soil textures and different Al
speciation must be performed to ensure the seed protein safety
used for feed and food.

Lupins are cultivated worldwide, but they are a minority
crop. L. albus readily forms CR under moderate P deficiency,
Fe deficiency or Al toxicity, while some other cultivated lupins
are capable of producing CR under harsher stress conditions
(Pueyo et al., 2021), which implies that they probably share Al-
detoxification systems. While L. albus is the most studied species
in terms of tolerance mechanisms, other Lupinus species are

also quite tolerant to acidic soils and Al toxicity. CR formation
is triggered by specific soil conditions, but the mechanisms
involved are similar to those known to control growth of regular
roots. CR provide an expanded surface to interact with the
rhizospheric soil. Lupins establish symbiosis with soil bacteria,
mostly within the Bradyrhizobium genus, which contribute to Al
immobilization. Al tolerance mechanisms in lupin are common
to other Al-tolerant plants, but specific features derived from the
root structural modifications and the interaction with symbiotic
bacteria are outstanding. Here, we have analyzed the existing
knowledge on the particular mechanisms that control lupin
tolerance to Al. Citrate exudation induced by Al in lupin is
not coupled with H+ secretion through plasma membrane H+-
ATPase, and when Al toxicity is concomitant with P deficiency, a
K+ efflux occurs that is not caused by Al stress alone (Zeng et al.,
2013). Contrary to some homologs in other plants, LaALMT1
expression is not stimulated by Al, and it is not involved in
malate exudation. The transport mechanisms in Al-induced
citrate secretion are not completely understood and need further
investigation. This research line has not really progressed in the
last few years; however, the fully white lupin sequenced genome
and some novel technologies, including omics and advanced
transformation techniques, provide new tools to elucidate the
specific Al-triggered mechanisms that lead to citrate (and other
less studied metabolites) exudation.

While different rhizobacteria can help reduce Al stress,
the slow-growing bradyrhizobia that nodulate lupin have
been reported to produce abundant exopolysaccharides, which
immobilize metal ions. Lupin tolerance mechanisms have been
investigated and deciphered to some extent; however, little is
known on the accumulation of metals by lupin. Rooibos tea
(Aspalathus linearis) is a legume that also grows in acidic,
Al-rich, nutrient-poor soils (Kanu et al., 2013). Like lupin, it
forms CR that exude Al-chelating molecules, and it accumulates
Al–Si complexes (Kanu et al., 2013). It has been proposed
as a suitable candidate for phytoremediation. Recently, white
lupin has been reported as an Hg-resistant plant capable of Hg
rhizosequestration, especially in CR, with null translocation of
the metal to the aerial parts of the plant (Quiñones et al., 2021).
It appears that CR have a role not only in elevated secretion of
metal chelators, but also in the immobilization of toxic metals,
a subject that certainly requires further investigation for its
practical application in avoiding translocation to the aerial parts
of the plant, a topic that requires further analyses, and for the
elucidation of metal sequestration mechanisms in plant roots.

White lupin in symbiosis with tolerant bradyrhizobia
represents a potentially powerful tool for metal-polluted soil
phytoremediation and degraded landscape restoration, entailing
significant environmental benefits. Moreover, lupin cultivation
involves an enrichment of the soils with N through atmospheric
N2 fixation, and nutrients such as P and Fe through CR exudates-
mediated solubilization that may be taken advantage of by
rotating crops. In conclusion, lupin cultivation as a protein
crop arises as an optimal environment-friendly alternative to
exploit acidic soils in temperate zones affected by Al toxicity,
where other crops might not be sufficiently productive to be
economically viable.
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