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Abstract

When media is streamed over best-effort networks, media data is buffered at
the client to protect against playout interruptions due to packet losses and random
delays. While the likelihood of an interruption decreases as more data is buffered,
the latency that is introduced increases. In this paper we show how Adaptive Me-
dia Playout (AMP), the variation of the playout speed of media frames depending
on channel conditions, allows the client to buffer less data, thus introducing less
delay, for a given buffer underflow probability. We proceed by defining models for
the streaming media system and the random, lossy packet delivery channel. Our
streaming system model buffers media at the client, and combats packet losses with
deadline-constrained ARQ. For the channel, we define a two-state Markov model
that features state-dependent packet loss probability. Using the models, we develop
a Markov chain analysis to examine the trade-off between buffer underflow proba-
bility and latency for AMP-augmented video streaming. The results of the analysis,
verified with simulation experiments, indicate that AMP can greatly improve the

trade-off, allowing reduced latencies for a given buffer underflow probability.

*This work has been supported in part by a gift from Intel Inc., and, in part, by the Stanford
Networking Research Center.



1 Introduction

This paper investigates a new method of reducing the latencies that are inherent in systems
that stream packetized media over best-effort packet networks. These systems strive to
allow the immediate viewing of media data as it is delivered from a remote server. In
practice, however, the systems must buffer an amount of media at the client to prevent
packet losses and delays from constantly interrupting the playout of the stream. While
the likelihood of a playout interruption decreases as more data is buffered, the delays
that buffering introduces increase. For this reason, system designers must trade the
reliability of uninterrupted playout against delay when determining the amount of data to
buffer. Designers of today’s commercial media streaming products find, for example, that
buffering delays ranging from 5 to 15 seconds typically strike a good balance between delay
and playout reliability [1],[2]. In contrast, viewers accustomed to traditional broadcast
television expect playout to be immediate and program changes to be instantaneous.

Adaptive Media Playout (AMP) allows the client to buffer less data and thus introduce
less delay to achieve a given playout reliability. In this scheme, the client varies the rate at
which it plays out audio and video according to the state of its playout buffer. Generally,
when the buffer occupancy is below a desired level, the client plays media slowly to
reduce its data consumption rate. In the case of live streaming, slowed playout will cause
viewing latency to increase. In this case, faster-than-normal playout may be used during
good channel periods to eliminate any excess latency accumulated with slowed playout.
Faster-than-normal playout is unnecessary in the case of pre-stored programs, however.
Pre-stored programs that are slowed during bad channel periods will simply last longer
at the client. By manipulating playout speeds AMP can reduce initial buffering delays in
the case of pre-stored streams, and reduce the viewing latency of live streams - all without
sacrificing playout reliability.

To control the playout speed of media, the client scales the duration that each video
frame is shown, and processes audio [3],[4] to scale it in time without affecting its pitch. We
find that variations in the media playout rate are subjectively less irritating than playout
interruptions and long delays. Informal tests have shown that playout speed variations of
up to 256% are often un-noticeable, and depending on the content, rate variations up to
50% are sometimes acceptable. Also, note that playout speed modification has a precedent
in traditional media broadcasting, albeit not for the purpose of source rate control: motion
pictures shot at a frame rate of 24 fps are shown on European PAL/SECAM broadcast
television at 25 fps. This is a constant speedup of 4.2% and it is done without audio time
scale modification.

In this paper we characterize the delay versus buffer underflow probability performance

of a streaming system under varying AMP policies and channel conditions. Towards this
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end we define simplified models for the streaming system and the lossy packet delivery
channel. We then present the results of Markov chain analysis and of simulation experi-

ments that were performed using these models.

Retransmission of lost media packets is essential for a video streaming application
over error-prone channels. Continuous video playout at the receiver can only be guaran-
teed if all packets are available due to the interdependency of successive video packets
introduced by motion compensated prediction in modern video encoding schemes like
MPEG-2, MPEG-4, or H.26L. Explicit modeling of a retransmission protocol in the con-
text of a Markov chain based analysis is challenging. As pointed out, for instance, in a
different context in [5], explicit handling of retransmissions requires an intractably large
Markov chain state space. We circumvent this problem with the assumption that retrans-
mission of lost packets during adverse channel conditions can be modeled as a reduction
in throughput. In our experimental results we show that this assumption holds over a
wide range of parameters by comparing our analytical results with simulations that do

explicitly model retransmissions.

To our knowledge adaptive media playout for media streaming systems is relatively
unexplored. The combination of adaptive speech playout and time-scale modification
has recently been proposed for packet voice communication [6],[4],[7]. In comparison
to [4] and [7] we consider adaptive playout of video as well as audio data and relax
the stringent delay constraints imposed for real-time voice transmission so that multiple
retransmissions of lost packets can be afforded. The work that is most similar in the
literature is the video playout smoother proposed in [8]. The analysis developed in [§]
simplifies a two-state source channel model by averaging its behavior over its stationary
distribution, does not consider the state of the server in the case of live streams, and
does not consider retranmsissions, or audio. In [9] Steinbach et al. present an analysis
for Adaptive Media Playout for video streaming that uses a two-state, on-off, burst-error,
Markov channel model. The analysis in [9] is restricted to live streaming with the aim
of minimum mean delay. In comparison, the analysis in this paper allows a more general
channel model with packet loss probabilities modulated by a two-state Markov model. In
addition to live streaming, we analyze the streaming of stored programs with AMP as a
means to reduce the initial pre-roll time.

This paper is organized as follows. In Section 2 we introduce Adaptive Media Playout
(AMP) for low latency media streaming. In Section 3 we first specify our channel model
and our streaming media system. We then develop a Markov chain analysis for AMP

streaming systems. In Section 4 we report our experimental results.



2 Adaptive Media Playout

AMP is the client-controlled variation of the playout speed of media. It allows the client
to adjust its data consumption rate without the immediate involvement of the server.
An AMP-enabled client controls the playout rate of video by simply scaling the duration
that video frames are shown [8]. For audio, signal processing techniques such as the
enhanced WSOLA time-scale modification algorithm proposed in [4] allow low-latency,
packet-by-packet changes in the playout speed while preserving the original pitch of the
audio.

As observed in [10], AMP can be used outright as a form of source rate scalability.
When a stored media program is encoded at a higher rate than a user’s connection can
support, for example, the client can slow its playout rate so that it only consumes data at
a rate supportable by the channel. In this paper, however, we focus on the case that the
mean of the channel’s fluctuating transmission rate is just sufficient to stream a desired
source, but buffering must absorb short-term dips in the channel capacity. In this case,
video quality is strongly dependent on the buffer size and the corresponding delay.

There are two buffering delays that are noticeable to the user: pre-roll delay and
viewing latency. Pre-roll delay is the time that it takes for the client buffer to fill to a
desired level so that playout can begin after a user request. Viewing latency, noticeable
in the case of live streams, is the time interval separating a live event and its viewing time
at the client. To explain how AMP can be used to reduce these delays, we will distinguish
among three separate modes of use, illustrated in Figs. 1, 2, and 3.

The first mode, AMP-Initial, is used to reduce pre-roll delay. In this mode, the client
begins playing media before the buffer is filled to the usual target level, and allows the
buffer to fill to the target level over time by initially playing the media slower than normal.
The buffer fills over time since the data consumption rate during slowed playout is smaller
than the arrival rate of the media packets, assuming that during normal playout the source
rate and the channel goodput match the data consumption rate at the decoder. Once the
target level is reached, the playout speed returns to normal. This technique allows fast
switching between different programs or channels without sacrificing protection against
adverse channel conditions, after the initial buffer is built up.

Fig. 1 illustrates AMP-Initial. The top plot in Fig. 1 shows the assumed source rate
and channel goodput as a function of time. For illustration purposes, the source rate,
the channel goodput and the consumption rate of the playout process at normal playout
speed are 0.1 Mbit/s. The second plot in Fig. 1 shows the client buffer occupancy as a
function of time for the case of non-adaptive playout. We assume a target buffer level of
1 Mbit, yielding a pre-roll time of 10 seconds in this example. The third plot illustrates
the client buffer occupancy for the AMP-Initial scheme in which playout starts when the
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Figure 1: AMP-Initial: For low pre-roll delays, playout begins after only a small number of
frames are buffered at the client. Slow playout allows the buffer occupancy to grow to a safer
target level over time. In this example frame periods are stretched by 20% during slow playout

periods.

buffer occupancy is only half the target level. In our example this occurs after 5 seconds.
The client slows playout initially to allow the buffer occupancy to increase over time.
After a total of 30 seconds the target buffer level is reached. The two lower plots in Fig. 1
show the viewing latency for the non-adaptive and the adaptive case. While the latency
remains constant for the non-adaptive case, for the AMP scheme latency increases from

5 seconds initially to 10 seconds when the target buffer level is reached.

The second mode, AMP-Robust (see Fig. 2), increases the robustness of the playout
process with respect to adverse channel conditions. In this mode the playout speed is
simply reduced whenever the buffer occupancy falls below a threshold. Fig. 2 illustrates.
The top plot in Fig. 2 shows the source rate and channel goodput as a function of time.
As before, the source rate is a constant 0.1 Mbit/s. The channel goodput varies over
time with a reduction to 0.05 Mbit/s at 15 seconds, an improvement to 0.133 Mbit/s at
25 seconds, and a complete channel outage at 40 seconds. The second plot shows the
buffer occupancy as a function of time for non-adaptive playout. The target buffer level is

again 1 Mbit which leads to playout start at 10 seconds. Playout is interrupted, however,
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Figure 2: AMP-Robust: In this scheme, suitable for pre-stored programs where viewing latency

is not important, slowed playout is used to keep the buffer occupancy at a desired level.

after 50 seconds, when reductions in the channel goodput lead to a buffer underflow. The
third plot shows the buffer occupancy for the AMP scheme in which the client stretches
frame periods by by 25% whenever the buffer occupancy falls below the target level. In
this example, buffer underflow is averted with AMP. The lower two traces in Fig. 2 plot
the viewing latency as a function of time. For non-adaptive playout, latency is constant.
For the adaptive case, the latency increases whenever playout is slowed, which is fine for
a pre-stored program. Note that playout starts at 10 seconds for both cases, however,
AMP-Robust can be combined with AMP-Initial to also allow reduced pre-roll time.

The third mode, AMP-Live (see Fig. 3), is suitable for the streaming of live programs.
In this mode, the client slows playout during bad channel periods but may also play media
faster than normal during good channel periods to eliminate any viewing latency that has
accumulated during periods of slowed playout. By playing the media faster and slower
than normal, the mean viewing latency can be reduced for a given probability of buffer
underflow. Fig. 3 illustrates. For AMP-Live, whenever the buffer occupancy falls below
the target level, playout is slowed. When the occupancy is greater than the target level,
media is played faster than normal to eliminate excess latency. In this example, during

faster playout the client reduces frame periods by 25%, which corresponds to an increase
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Figure 3: AMP-Live: For live streams, low viewing latency is desirable. In this scheme the client
slows playout when poor channel conditions threaten to starve the client buffer. During good
channel periods, however, faster-than-normal playout is used to eliminate latency accumulated

with slowed playout.

in 33% increase in the data consumption rate. Therefore, the buffer remains at the target
level in the third plot of Fig. 3 during fast playout. Latency, shown in the bottom plot of
Fig. 3, decreases during faster-than-normal playout.

3 Analysis

In this section we develop techniques to analyze a streaming media system with respect
to latency, pre-roll delay and probability of buffer underflow. We begin in Sections 3.1,
and 3.2 by specifying the channel and the system models that we assume in our analysis.
With these established, we then present our Markov queuing treatment in Section 3.4.
Throughout our analysis, we will be making the simplifying approximation that frames

of media are of uniform size, and media packets each contain one frame.



3.1 Channel Model

Our channel model features a fixed raw packet transmission rate and a two-state Markov
process that modulates the packet error probability. Packet losses occur randomly with
a loss probability that is dependent on whether the channel is in the good or the bad
state. The model, a Gilbert-Elliott packet loss model[11] , allows us to investigate the
effects of bursty packet losses on the buffering performance of a streaming system, but
it does not simulate the variations in packet inter-arrival time known as delay jitter.
With buffering delays on the order of seconds, and round-trip times on the order of
hundreds of milliseconds, however, the effects of delay jitter, typically on the order of tens

of milliseconds, are minor compared to those of packet loss.

Let the channel model be characterized by parameters

(R’ tpT0p7TG7TBapGapB) (1)

where R is the raw transmission rate, the number of packetized, uniformly-sized frames of
media that can be transmitted per normal frame period, tr. For instance R = 2.0, means
that two frames of media can enter the channel per normal frame period. T and T are
the mean channel state durations, and ps and pgp are the packet loss probabilities, for
the good and bad states, respectively. The channel remains in the good and bad states
for random holding times that are distributed exponentially with parameters 1/7 and
1/Tp, respectively. Finally, t,.,, specifies the one-way propagation time from server to
client.

While our simulation experiments implement the continuous-time channel model as
described above, in our analysis we use a discrete-time version of this channel. In discrete
time the exponentially distributed holding times are approximated with geometrically
distributed times with the approximation growing exact as we increase the number of
discrete slots per unit time [12]. Throughout, we assume that packet loss and channel
state transition events are independent given the state of the channel. Again, we assume
throughout that the frames of media are of uniform size (in bits), and that each frame

represents tr seconds of the program at normal playout rates.

3.2 Streaming Media System

As shown in Fig. 4, our system model consists of a source, a server, a channel, and a
client. The source generates uniformly-sized frames and passes them to the server. If
the source is a live program, throughout the streaming session it passes a new frame to
the server every tr seconds. If the source is a pre-stored program, all of the frames are

transferred to the server at the start of the session.



When a frame is transferred to the server, it is given a sequence number, placed in
a packet, and queued in the transmission queue (TX). A copy of the packet is also kept
in the packet store in case it needs to be retransmitted later. When a retransmission
request is received, the requested packet is placed in the retransmission queue (RTX)
in sorted order according to sequence number. When packets are waiting, every tp/R
seconds one is transmitted over the channel with packets in the RTX queue given priority
over those in the TX queue. Once in the channel, packets either arrive at the client after
a fixed propagation delay, or are lost with probability ps, s € {G, B}, the channel-state
dependent loss probability.

At the client, playout begins when the backlog in the playout queue reaches a specified
threshold. After playout begins, the playout queue is serviced at a rate p(n), which is
constant during non-adaptive playout, and varies with n, the playout queue backlog,
during adaptive playout. When a packet arrives at the client with a non-contiguous
sequence number, the client assumes that the missing packets have been lost. The client
places retransmission requests for the missing packets into the retransmission request
queue (RTX Req.), in sorted order according to sequence number. When this queue is
non-empty, a packet is transmitted through the channel, back to the server every ¢r/R.
Retransmission requests are never lost. The rationale is that since the requests are much
smaller than frames of media, they can be adequately protected. After a fixed propagation
delay, the retransmission requests arrive at the server where the appropriate packet is

fetched from the packet store and placed in the retransmission queue.

3.3 Playout Control

In the diagram shown in Fig. 4, packets are removed from the playout queue at the playout
rate p(n). In the non-adaptive case this rate is constant and given by 1/tp. With AMP,
the client varies the playout speed according to some policy to control p(n). For example,

a simple playout policy for AMP-Live might be:

= n < Nadapt

st
,LL(’I’L) =3 # n= Nadapt (2)
\ f%F n > Nadapt

where s > 1 represents a decrease in playout speed, f < 1 is an increase in playout speed,
n is the number of contiguous frames in the playout queue, and N4, is a threshold
value. When there are fewer than Nyqep: frames in the playout queue, each frame plays

for s - tg seconds. When the number in the queue exceeds Nggqp:, €ach frame plays for
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Figure 4: Our streaming video system model. The source generates frames and passes them to
the server. The server queues packetized frames for transmission (TX) and frames which must
be retransmitted (RTX). The server transmits a packet every tr/R seconds with priority given
to RTX. Packets are delayed and delivered or with probability ps, s € {Good, Bad} they are lost.
The client removes packets from the playout queue at a rate x(n) which in the adaptive case is
a function of the playout queue backlog. When packets arrive at the client with non-contiguous
sequence numbers, a retransmission request is queued (RTX Req.). Retransmission requests are

never lost in the channel.

f - tr seconds. In general, we can define different functions p(n) depending on our goals

with respect to robustness, mean latency, and initial pre-roll delay (compare Section 2).

3.4 Markov Queuing Analysis

This section develops a Markov chain analysis of the system shown in Fig. 4. The goal
is to enumerate the possible states of the system and then find probability distributions
over these states. In our system, packets are lost randomly. Since each combination of
packet losses places the system in a unique state, the number of states is exponential
in the number of packets in the system. An explicit analysis of our system would be

intractable.

For packet loss rates of < 20%, typical of the Internet [13], however, after a few
retransmission attempts the probability that a packet is received is nearly 1. Because
the playout buffer in our system will allow a few seconds for retransmission attempts,
and round trip times will be a few hundred milliseconds, each packet will have many
retransmission opportunities. In our analysis we can therefore use the approximation that
our system is a packet erasure channel with unlimited time for retransmission attempts.
We can thus model packet loss as a reduction in throughput [14],[15]. Fig. 5 shows

the simplified system that we assume in our analysis. Now, at discrete transmission
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opportunities tz/R seconds apart, a packet crosses the channel with probability 1 — p,
s € {G, B}, or remains in the TX queue with probability p;. The state dependent mean
throughput thus becomes R - (1 — py).

Source
3 AR
! TX Queue 3 3 77777777777777777777777777777
Server Channel Client

Figure 5: The simplified streaming video system model. To allow a tractable Markov chain

analysis, we translate the packet loss rate into a reduction in transmission rate.

3.4.1 Analysis for Live Streams (AMP-Live)

For live streaming, we would like to find the probability of client buffer underflow as a
function of mean latency. We proceed by first finding the probability distribution over
the possible states of the system at the end of the pre-roll buffering period. With this
distribution in hand, we can then find the probability distribution over the state space of
the system during playout. From this we find the probability of underflow and the mean

latency.

We can express the state of the system during the pre-roll period with the vector
SPE = (m,n,c,k, ¢). (3)

In (3), the component m € {0, ..., M} specifies the TX queue backlog, the component n
€ {0,..., Ngar } specifies the playout queue backlog, and ¢ € {G, B} specifies the state of
the channel. The client begins playout when Ny,,; frames are in the playout buffer. M is
the maximum size of the TX queue. We analyze the system in discrete time with K time
slots per frame period. The state component k& € {0,..., K — 1} encodes the system’s
slot position within the frame period. This component is necessary so that by observing
the state of the system, one can know whether it is time for the source to deliver a frame
to the server. Similarly, the state component ¢ is necessary because in our model packets
are transmitted to client at ¢tr/R second intervals. With ¢, by observing the state of the

system, one can know if the current time slot corresponds to a transmission time.
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We set R, the packet transmission rate, so that ¢t/ R, the packet transmission interval,
is an integer number of time slots. For instance, if K = 4, we may set R = 4/3 so that
transmissions occur every 3 time slots while frame deliveries from the source occur every 4
time slots. If the first transmission occurs at £ = 0, subsequent transmission opportunities
will occur every three slots, at k = 3, k = 2, k = 1, and finally again at £ = 0, whereupon
the cycle repeats. The state component ¢ € {0,...,® — 1} specifies the system’s position
in this cycle relative to k, its position in the source delivery cycle. In our example, at any
given time slot, the system can be in one of 12 possible positions with respect to the two
cycles, 12 being the least common multiple of 3 and 4. In this case we need ® = 3 so that

there are 12 (k,¢) pairs, enough to uniquely specify the 12 phase positions.

Because a (k, ¢) pair uniquely specifies the position of the system in the packet trans-
mission cycle, we can define a function I,(k, ¢) that indicates if a (k, ¢) pair corresponds

to a packet transmission time.

1 if a packet is transmitted

(4)

0 otherwise

I¢(ka ¢) = {

We can also define a function g,4(k, ) to determine the value that ¢ will take on in the

next time step, given the values of £ and ¢ in the current state.
Let
wPR(t) = [mg ), 7T (), - s T M 41) (Norare 4 1)(@) (K@) 1) (5)

be the probability distribution over the state space of the system at discrete time t. Let
the function upr(STE(t)) map each possible vector (m,n,c, k, ) to a unique index i €
{0, ..., (Mpmaz +1)(Nstart +1)(2) (K)(®) — 1}. The elements of the vector in (5) are given
by n7R(t) = Pr{upr(STE(t)) = i}. We assume that at the beginning of the session,
the channel state is distributed according to the stationary distribution of the two-state
channel model, the first packet has arrived at the server (m = 1), and there are no packets
at the client (n = 0). Thus, the initial probability distribution over the state space is

' TGT:}-GTB if i = upr(1, 0, Good, 0 ,0)
mR(0) = 72— if i = upg(1, 0, Bad, 0, 0) (6)
| O otherwise

Once streaming begins, the source delivers a packet to the server in states for which
k = 0, incrementing m. From one time slot to the next, the k¥ component transitions
deterministically to (k + 1) mod K and the ¢ component transitions deterministically
to g,(k, ¢). For states indicated by I4(k,®) and for which the TX queue is not empty

12



(m > 0), a packet crosses the channel with probability 1 — p., incrementing n and and
decrementing m. States for which the channel is good may transition to a state for which
the channel is bad with probability 1/(K - T) and vice versa.

Let the transition matrix, PP% € R(Mmas+1)(Nstars+1)2)(K)(®)X (Mmaz +1)(Nstars+1)(2)(K)(®)

[PPH]; = Priupa(S™"(t +1)) = j [ upr(S" (1)) = i}, (7)

encapsulate these transition probabilities. With the transition matrix, we can find the

probability distribution over the state space at a given time:
PRt 4+ 1) = 7PB(t) PPE, (8)

Because playout starts when Ng,,; packets have been stored in the client buffer, and
our goal is to find the distribution over the states of the system when playout starts,
we specify that our transition matrix transfers any probability that flows into a state for
which n = Ng.+ back into that state with probability one. Thus, if we start with the
initial distribution 77%(0) given in (6) and propagate the distribution forward in time,
whenever probability mass moves into a state for which n = N4, it stays there, adding
to the probability accumulated for that state’s particular values of m, ¢, k, and ¢. In time
all the probability mass moves to states for which n = Ny, and the distribution ceases
to change over time. At that point we have found the distribution over m, ¢, k, and ¢

when playout starts.

We find the distribution over m, ¢, k, and ¢ at playout start as

rht, = Jim o) 9)

which in practice we find by propagating the state forward according to (8) until

Z TR (tpinar) > 1 — € (10)
1EN
where N' = {upr(m,n,c,k,¢) V (m,n,c,k, @) : n = Ny} is the set of states for which
the client buffer backlog has reached n = N+, and pre-roll has completed. The starting
distribution is the distribution over n = Ny, m, ¢, k, and ¢ in 77E(t finar) Dormalized
by Sien T (L finat)-
Once we have the probability distribution over the states of the system when playout
starts, 7Lf

start?

playout (PL) and from these we can find the quantities we seek: mean latency and

we can continue to find the distribution over the states of the system during

underflow probability. We can specify the state of the system during playout with the

vector

SPE(t) = (m,n, ¢, k, ¢, ) (11)
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where ¢ and k and ¢ are the same as in the pre-roll case, m € {0,1,2,..., M} is the
server buffer backlog, and n € {0,1,2,..., N} is the client buffer backlog. ¢ € {0...¥ —
1} encapsulates information regarding the current playout rate and the phase of packet
departures from the client buffer relative to the frame period.

To understand the state component, v, consider the non-adaptive playout case. During
non-adaptive playout, a frame is removed from the playout queue every frame period. If
playout begins at £ = 0, then every K time slots when £ = 0, a frame is taken from the
playout queue for playout. Now suppose that for states in which n is below a threshold
Nadapt, the adaptation scheme plays each frame for K + 1 slots. In this case a frame will
leave the playout queue when £ = 0, k = 1, £ = 2, and so on. Then, if n should regain the
threshold value, frames will once again depart every K slots. Instead of frame departures
occurring whenever £ = 0, departures will now occur at whatever offset has accumulated
during slowed playout.

In the state vector (m,n,c, k, ¢,1), ¥ allows us to keep track of these offsets as well
as the current playout speed. We need 1 to determine if a frame departs the playout
queue during a given time slot. Fig. 6 illustrates with an example. In the figure, K = 4,
s =1.25and f = .75 (f and s were introduced in Sec. 3.3). Thus slow frames play for 5
slots, normal ones for 4 slots and fast ones for 3. If, for example, playout starts at £ = 0
and ¥ = 0 and the playout speed remains normal, ¥ will remain at zero and every 4 slots
a frame will arrive at the server and a frame will depart the client. Similarly, if playout
starts with ¢y = 4 and playout speed remains slow, a packet departs the client every 5
slots and v cycles between 4 and 8. In general, however, each time a packet is removed
from the client for playout (the n — —’s in the figure), the playout rate is determined
according whether n is above or below Ng4.,:. % changes accordingly. The large arrow
in the figure illustrates how ¥ may change during a frame departure at the client if the
playout speed changes. In this case playout changes from normal to slow because we are
supposing that n < Nygap:-

Given k£ and 1, we can determine, therefore, whether a frame departs the client buffer
in the current state, and given v, k, and n, we can determine the next value of ¥. Let

the the function I, (k,) indicate packet departure times,

1 if a packet departs

(12)

0 otherwise

Ly(k, ) = {

Also, let gy (k, 1, n) specify the deterministic transition that the 1) component of the state

will take, given the values of ¢, n and k.

Let the probability distribution over the playout state space at time ¢ be given by:

wPE(t) = [mg P (t), 7T E (@), - T v ) @) ) @) (0) 1) (13)
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Figure 6: The small arrows indicate the cyclical succession of i values over time if playout
remains either normal, slow, or fast. In this example K = 4 slots/frame, s = 1.25 (5 slots per
frame departure during slow playout), and f = 0.75 (3 slots per frame departure during fast
playout). m + 4+ and n — — indicate frame arrivals at the server and frame departures at the
client, respectively. The large arrow is an example of how 1) may change after a frame departure
at the client (n — —) if the playout speed changes. In this case playout changes from normal to

slow because we are supposing that n < Nygapt-

where 771 (t) = Pri{upr(S**(t)) = i}. upr(ST*) maps state vectors to unique indices .

When playout begins, the distribution over the state space is as given in (9):

ifm e {O,l,---,Mmaz}a

[Wﬂal.z'l‘t]uPR(m,Nstart,c,k,qb) n = N w _ k
- start -
[ 0N e o) = (14)
0 otherwise
Let the state transition matrix during playout be
[P"];; = Priupc(S™"(t + 1)) = j | upr(S"" () = i}. (15)

Some of the components of the state transition deterministically: & transitions to (k + 1)
mod K, ¢ transitions according to g4(k, ), and ¢ transitions according to gy (k, 1, n).
The transitions of the m and n components are not generally deterministic. While the
influence of frame deliveries at the server when & = 0 and playout queue departures
when Iy (k, 1) = 1 is deterministic, m and n are affected non-deterministically for states,
indicated by Iy, in which a packet crosses the channel with probability 1 — p.. Channel
state transitions are also non-deterministic.

Underflows at the client occur when n = 0, no packet arrives during the slot, and

Iy(k,) = 1, indicating that a packet is needed for playout. When an underflow occurs,
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playout freezes and the session must begin again with the pre-roll process. Therefore,
any mass that corresponds to an underflow is redistributed according to the starting

distribution 7EE, to simulate re-buffering and a resumption of playout.

sto

Note that the random process {S¥%(t), SPX(t+1), SPX(t+2), ... } is cyclostationary
with period K, because of the periodic, deterministic packet arrivals from the source.
Using any of the K cyclostationary distributions, we can find the probability of underflow
during a time slot as the probability that the state of the system has n = 0, no packet
arrives from the server, and a packet is due to be removed from the client. Let any of the

K cyclostationary distributions be 7%, Then

Pr{under flow} = Y ,s0n=0cksw Lok, V)1 —Is(k, ¢)(1 —pc))m upLL(mn ko) T

Em:O,n=0,6,¢,w,k I¢ (k’ ,lp)ﬂ-g]fL (m,n,c,k,¢,’¢)
(16)

Because packets enter the system deterministically at frame-period intervals and packets
leave the system when they are played out, each packet in the system constitutes one
frame period of latency. We can thus find the mean latency, L, in units of frame periods
by finding the mean number of packets in the system during playout.

L=tygp+ 3, (mAn+ k)T ek on (17)
m,n7c’k7¢7w

3.5 Analysis for Stored Streams (AMP-Initial, and AMP-Robust)

Our analysis proceeds differently when the source of the media stream is not live but has
been previously stored. First, since the entire program is available from the start, there
is no reason to keep track of the state of the server buffer. A packet is always available.
Similarly, viewing latency is not a meaningful quantity. The quantities of interest here
are pre-roll delay and the underflow probability during playout.

We can find the probability distribution over the states of the system when playout
begins in same manner as in the live program case. In the process we can also find the
mean pre-roll time. We begin by defining our state space. Because we do not need to
track the backlog of the server’s TX queue, the state of the system during pre-roll can
now be specified with a vector S°® = (n,c, k, @), where n. € {n: 0 < n < Ny} is the
backlog of client’s playout queue, ¢ € {Good, Bad} is the state of the channel, & € {0,

.., K — 1} is the time slot position of the state within a frame period, and ¢ specifies the
offset of packet transmission opportunities relative to frame periods as described earlier.

Let the probability distribution over the state space of the system at time slot ¢ be
PR PR PR
T () = [mp " (t),m (), - 2(Nstm+1) 1] (18)
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where 17E(t) = Pr{upr(STE(t)) = i}. upr maps state vectors to unique indices.

Just as in the live program case, we assume that at the beginning of a session the chan-
nel state is distributed according to the stationary distribution of the two-state channel
model and that there are no packets queued at the client (n = 0). Thus the starting

probability distribution over the state space is

( TG’IETB if 1 = U,pR(O, GOOd, 0, 0)
wFE(0) = 4 ot if i = upr(0, Bad, 0, 0) (19)
| 0 otherwise

Once streaming begins, the state of the system can transition in the same way as in the
pre-roll case for live streams, except that in the stored program case, packet transmission
opportunities are no longer contingent upon whether a packet is waiting in the TX queue.
When I,(k, ) = 1, a packet crosses the channel with probability 1 — p., incrementing
n. Again, we build a transition matrix PP® which specifies the transition probability
between each pair of states, so that 7FE(t + 1) = PPExPR(¢).

As in the live streaming pre-roll case, we build the transition matrix so that any
mass in states for which n = Ny, transitions back to that state with probability 1. By
propagating the state forward in time, we can find the distribution over ¢, k, and ¢ when
playout starts (see (9), (10)). By also observing how much mass flows into the n = N4
states at each time ¢, we can find the mean pre-roll time,

Ton =3 (£ 770 - X af"(e- 1) -1, (20)

t=1 \ieN ieN
where N' = {upg(n,c,k,d) V (n,c,k,¢): n = Ngar} is the set of states for which n =
Ngiart Packets have arrived at the client and playout can begin.

Once we have the distribution over the states of the system when playout starts, we
can proceed to find the probability that an underflow will occur by a given time during
the playout of a stored program. Let the state of the system during playout be given
by S*¥ = (n,c,k, ¢,1) where n € {0,...,N}, ¢ € {Good, Bad}, k € {0,...,K — 1},
¢ €{0,...,&—1} and ¢ € {0,...,¥ — 1}. The state components are the same as in
the playout of a live stream, but the component m is eliminated because it is no longer
necessary to track the backlog of the server queue. A packet is always waiting.

As in the live playout case, let 77% be the distribution over the states of the system

during playout. Let upz(ST*) map state vectors to unique indices, i. The probability
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distribution over the states of the system at playout start is given by

[ﬂgﬁ"t]uPR(Nstwt,c,k,@ if n = Nstart: w =k
[ 0N o) = (21)
0 otherwise

We again define a transition matrix, P’" to propagate the distribution forward in
time. The transition matrix is similar to that of the live playout case, except now packet
transmission opportunities are no longer contingent on whether a packet is available in
the TX queue. Another difference concerns the handling of underflows. Because the
goal is to determine the probability that a buffer underflow will occur by a given time
during playout, an extra state is added to the state space for underflows. In our transition
matrix, any mass that corresponds to an underflow, which occurs in states for which n = 0,
Iy(k,,n) =1, and no packet crosses the channel, transitions to this underflow state. We
specify that the underflow state transitions to itself with probability 1. Thus, any mass
that enters the underflow state remains there. As the transition matrix propagates the
distribution forward in time, the mass that accumulates in the underflow state corresponds
to the probability that an underflow has occurred by a given time.

4 Experimental Results

In this section we present the results of Markov chain analysis and simulation experi-
ments for the three AMP schemes that we have considered: AMP-Live, AMP-Robust and
AMP-Initial. The results show that our AMP schemes do in fact enhance the buffering
performance of streaming media systems. They also validate our Markov chain analysis
by showing close agreement between analytical and experimental outcomes.

As described in Section 3.4, in our analysis we use a simplified treatment of packet loss
and ARQ (see Fig. 5) that is based on the assumption that the round-trip time is short
enough to allow several retransmission attempts before packets are due for playout. In our
simulation experiments, however, we explicitly model packet losses and retransmissions
(see Fig. 4). The model includes a simple ARQ protocol in which the client requests
retransmissions when packets arrive out of order as described in Section 3.2. Note that in
this model, round-trip times are bounded below. For example, suppose a packet is lost.
The client learns of the loss, at the earliest, tr/R seconds later when the next packet
arrives. If the client immediately queues a retransmission request, the request will arrive
at the server no earlier than 2- (tp/R) + t,.0p seconds after the original packet loss. When
the server retransmits the lost packet, the retransmission may arrive at the client 3-(¢z/R)
+ 2 - tyrep seconds after the packet loss, at the earliest. For ¢p = 100 ms, R = 4/3, and
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tprop = 10 ms, a lower bound on the round-trip time is 245 ms. If multiple packets are

lost, queuing delays will increase round trip times.

4.1 Results for AMP-Live

AMP-Live is designed to allow reduced viewing latencies for a given probability of buffer
underflow during the streaming of a live program. In Section 3.4.1 we presented a Markov
chain model to analyze this scheme. Fig. 7 plots results for a channel characterized by
torop = 10 ms, R =4/3, Tz = 28.5 s, Tg = 1.5 s, pg = .01, and pp = 1, and for a playout
speed control policy as given in (2) with frame period scaling factors s and f as indicated
for each trace. The figure plots the Mean Time Between Buffer Underflows (MTBBU) in
minutes, as a function of mean latency in seconds.

In our Markov analysis the mean viewing latency is given by (17). MTBBU can be

found as a function of the per-time-slot underflow probability given in (16):

MITBBU = (Pr{unierﬂow}) (Kt-F60> (22)

The expression follows if each discrete time slot is seen as an independent Bernoulli trial

with the outcome being either underflow, or no underflow. The waiting time until an
underflow occurs is therefore distributed geometrically over the succession of time slots.
The expression in (22) is the mean of this geometric random variable expressed in minutes.
In simulation experiments we find the mean latency by averaging how long it takes for
frames to be played out after they are delivered by the source. Likewise, we find MTBBU
by simply averaging playout durations between buffer underflows. In Fig. 7, there are
three traces. The first, with s = f = 1, is the non-adaptive case where the viewing
latency is a fixed value given by the pre-roll delay. In the second trace with s = 1.25 and
f = .75, frame periods can be stretched or compressed by 25%. In the third trace frame
periods can be stretched or compressed by 50 %. We see that for the given channel and
adaptation rates, AMP-Live can reduce the mean latency by 25 to 35 percent compared to
the non-adaptive case, for a fixed MTBBU. Conversely, for a given latency, the MTBBU
can be improved by a factor of 2 or more, with only 25 % playout adaptation. We see

good agreement between simulation and analytical results.

4.2 Results for AMP-Robust

For stored streams, the performance-defining quantities are pre-roll delay and underflow
probability. AMP-Robust is designed to reduce the buffer underflow probability given
an initial buffer size and associated pre-roll delay. In Section 3.5 we presented a Markov

chain model to analyze this scheme with respect to these quantities.

19



o s=1.0,f=1.0
¢ s=1.25,f=0.75 A
A s=15f=5

analytical

=
o
(N
T

MTBBU in minutes

10" |

I I I I L I

1 2 3 4 5 6
Mean Latency in seconds

Figure 7: Mean Time Between Buffer Underflows (MTBBU) vs. Mean Latency for a channel
C characterized by tyrop = 20 ms, R =4/3, T =28.5s, Tp = 1.5 s, pg = .01, and pp = 1.

In Fig. 8 we plot the pre-roll delay that is necessary such that a program will play
for a given duration with underflow probability less than 1%. Playout duration is plotted
along the independent axis, and the required pre-roll time for 99% reliability is plotted
on the dependent axis. The results are for a channel characterized by t,,,, = 20 ms, R =
4/3, T =185, Tp = 2 s, pg = .01, and pp = 1, and playout speed control policy as given
in (2), with frame period scaling factors f = 1, and s as indicated for each trace. Playout
begins when the client buffer backlog reaches Ng,+ packets, and playout is slowed when
the backlog falls below Nygapt = Niiare. In this plot, we constrain the maximum number
of packets that can be stored in the playout queue to N = 200, or 20 seconds of media
data.

In this plot we see that AMP-Robust allows playout durations that are orders mag-
nitude longer for a given pre-roll time and for Pr{underflow} < 0.01 than the playout
durations allowed by the non-adaptive case. Conversely, for a given reliable playout du-
ration, AMP-Robust can allow pre-roll times to be reduced by a factor of two or more.
Because the maximum number of packets in the client buffer is constrained to N = 200,
and because the probability of a long bad channel period increases the longer that playout
continues, the required pre-roll time turns sharply upward for playout durations beyond
several hundred seconds. In Fig. 9 of Sec. 4.3 we will see that using a larger buffer can

eliminate the upward turns.
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Figure 8: A plot of the required pre-roll time as a function of program length so that
Pr{underflow} < 0.01 for AMP-Robust. In this plot T = 18 s, Tp = 2 s We see that AMP-
Robust allows shorter pre-roll times for a given playout rate than the non-adaptive (s = 1.0)

case.

4.3 Results for AMP-Initial

In this section we see that AMP-Initial, by allowing N+ to be less than N4, offers
shorter pre-roll times for a given underflow probability and program length compared to
AMP-Robust. The Markov chain analysis is the same as in the previous section, but now
Nitart < Nadapt-

Compare Fig. 9 to Fig. 8. The channel parameters remain the same: ¢,,,, = 20 ms, R
=4/3, Tg =18 s, Tg = 2 s, pg = .01, and pp = 1. To achieve the further reductions in
pre-roll time for a given playout duration as shown in Fig. 10, however, we allow playout
to start when the threshold Ny, is achieved, but fix Ny44p¢, the threshold for playout rate
adaptation, at 100 frames. In other words, for these traces playout is slowed whenever

fewer than 10 seconds of media remain in the buffer.

When the maximum size of the client buffer is allowed to increase to N = 400, or 40
seconds of media, the results are as shown in the Fig. 10. In this overprovisioned scenario,
where the mean channel capacity is higher than the rate of the source, the larger buffer
can provide the desired reliability, regardless of program playing time, provided enough
data is buffered before playout begins. In this scenario, as in the N = 200 case, AMP
again allows pre-roll times to be reduced by factors of 2 or more. Unlike the the N = 200
case, however, the required pre-roll time for a reliable playout duration does not suddenly

increase as programs grow longer. Compare Figs. 10 and 9.
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Figure 9: As in Fig. 10, a plot of the mean program length so that Pr{underflow} < 0.01
for AMP-Initial. Because Nggqp: = 100 for all Nysqr¢, we see shorter pre-roll times for a given

program length as compared to AMP-Robust in Fig. 8.

5 Conclusions

In this paper we propose and analyze adaptive media playout for low latency video stream-
ing over lossy packet networks. We present a Markov chain analysis of AMP video stream-
ing and study the delay-underflow trade-off for three cases. In the first case we consider
AMP for low initial delay which enables fast switching between programs. The second
case considers adaptive media playout for interactive and time critical streaming sessions.
In the third case we show how AMP can be used to significantly decrease the buffer under-
flow probability for streaming of stored programs. For all three AMP schemes, we show
that significant performance improvements can be obtained in comparison to non-adaptive

media playout.
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