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Abstract. 

In this research, we propose a variant of the Particle Swarm Optimization (PSO) algorithm, namely hybrid 

learning PSO (HLPSO), for skin lesion segmentation and classification. HLPSO combines diverse search 

mechanisms including modified Firefly Algorithm (FA) operations, a new spiral research action, probability 

distributions, crossover, and mutation procedures to diversify and improve the original PSO algorithm. It is used 

in conjunction with the K-Means clustering algorithm to enhance lesion segmentation. Its cost function takes 

both intra-class and inter-class variations into account to increase scalability. Two lesion classification systems 

are formulated based on HLPSO. In the first system, HLPSO is used to devise evolving convolutional neural 

networks (CNN) with optimized topologies and hyper-parameters for lesion classification. In the second system, 

shape and colour features, as well as texture features extracted using the Kirsch operator and Shift Local Binary 

Patterns are used to produce an initial discriminative lesion representation. HLPSO is then used to identify the 

most significant components of each feature vector for ensemble lesion classification. Evaluated using several 

skin lesion data sets, both systems depict superior capabilities in lesion segmentation, deep CNN architecture 

generation, and discriminative feature selection for ensemble lesion classification, and outperform a number of 

advanced PSO and FA variants, classical search methods, as well as other related models on skin lesion 

classification significantly. HLPSO also yields better performances over other classical and advanced search 

methods in solving a number of benchmark tasks related to mathematical landscapes and those in the complex 

CEC 2014 test suite. 

 

Keywords: Skin Lesion Segmentation and Classification, Feature Selection, Clustering, Evolutionary Algorithm, 

Evolving Convolutional Neural Network and Ensemble Classifier. 

1. INTRODUCTION 

Skin lesion classification is a challenging task owing to the visual similarity between benign and melanoma 

lesions. Robust and accurate skin lesion segmentation is an important step leading to reliable melanoma 

diagnosis. Owing to the indiscernible boundary between the tumour and skin as well as considerable physical 

variations in different cases, there are many challenges pertaining to segmentation of skin lesions. In this 

research, we propose a variant of the Particle Swarm Optimization (PSO) algorithm in conjunction with 

clustering, ensemble and deep learning models for scalable lesion segmentation and classification, in an attempt 

to address the abovementioned problems. The proposed PSO model combines diverse search mechanisms 

including modified Firefly Algorithm (FA) operations, a new spiral research action, probability distributions, 

crossover, and mutation procedures to diversify and improve the original PSO algorithm. 
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Conventional clustering algorithms such as K-Means (KM) or Fuzzy C-means (FCM) show impressive 

performance for image segmentation and outlier detection [1, 2]. However they are sensitive to centroid or 

membership initialization, and tend to be trapped in local optima [3, 4]. In this research, we employ the proposed 

PSO variant in conjunction with the KM algorithm to enhance lesion segmentation. Specifically, the proposed 

PSO variant is employed to fine-tune the KM cluster centres, where both inter- and intra-cluster measures are 

taken into account for lesion segmentation.  

 

Two lesion classification systems are subsequently developed. The first system utilizes evolving deep 

convolutional neural networks (CNN) for lesion classification, where the topologies and hyper-parameters of the 

deep networks are devised by the proposed PSO variant. The second system is composed of three key stages, i.e. 

colour, shape and texture feature extraction, feature selection using the proposed PSO variant, and lesion 

classification using ensemble models. Besides the extraction of clinically important colour and shape features, 

Kirsch compass masks and a Local Binary Patterns (LBP) variant, i.e. Shift LBP (SLBP), are employed for 

texture feature extraction from the segmented lesions. The SLBP operator is able to overcome limitations of the 

original LBP operator and better deal with images with low contrast characteristics. Discriminative features are 

identified by the proposed PSO model for subsequent lesion classification. Two ensemble classifiers are 

constructed, whereby each ensemble classifier consists of two base models trained with the optimized colour and 

shape features as well as optimized texture features, respectively. The detailed system architecture is illustrated 

in Figure 1. 

 

 
 

Figure 1 The proposed lesion segmentation and classification systems 

 

The contributions of this research are summarized as follows. 

1. A new PSO variant, known as hybrid learning PSO (HLPSO), is proposed for discriminant lesion 

segmentation, feature selection, and evolving deep CNN model generation for lesion classification. 

HLPSO employs local search strategies (probability distributions, crossover and mutation operations) 

and global search mechanisms (a new spiral search action, random and average FA search actions) to 

overcome stagnation of the original PSO algorithm. 

2. HLPSO is firstly employed for optimization of the KM cluster centroids to derive more accurate 

segmentation of lesion and skin. The new KM variant takes both between- and within-class differences 

into account for lesion segmentation. It also employs a novel alternative strategy for the within-class 

measure, where the largest distance between each centre and its corresponding members is used to 

measure compactness of the clusters. The separation scales of the clusters are also measured by the 

between-class factors. HLPSO in conjunction with the KM variant is employed to minimize the 

division of within-class difference by the between-class variation to achieve robust segmentation of 

lesion and skin. 

3. A novel texture descriptor, which incorporates Kirsch compass masks and SLBP, is proposed to derive 

an initial discriminative lesion representation. The proposed descriptor is capable of dealing with low 

contrast images by extracting spatial patterns and contrast measures of each segmented region. HLPSO 



is employed for feature selection, in order to identify the most significant discriminative characteristics 

related to benign and malignant lesions. 

4. Evolving deep learning models with optimized structures and hyper-parameters are also devised by 

HLPSO for lesion classification. Three different types of convolutional layers are used as the base for 

model generation. A convolutional block is constructed for each type of convolutional layer and its 

associated learning layers such as batchNormalizationLayer and reluLayer. HLPSO is able to generate 

optimized n number of each type of the convolutional block as well as optimized associated weights 

and hyper-parameters. In comparison with the default and other CNN models generated using other 

PSO and FA variants and classical search models, the HLPSO-based systems depict statistically 

superior improvements over other deep learning models. 

5. Evaluated with a combined data set and the ISIC subset, the empirical results indicate that the proposed 

HLPSO-based systems have superior capability of lesion segmentation, discriminative feature 

selection, ensemble and deep CNN based lesion classification, and they outperform a number of 

advanced PSO and FA variants, classical search methods, as well as other related skin lesion 

classification models in the literature by a significant margin. Moreover, HLPSO also shows great 

superiority over other methods for solving diverse benchmark problems related to mathematical 

landscapes and complex CEC 2014 test suite. 

 

The paper is organized as follows. In section 2, the related studies on skin lesion segmentation and classification, 

and swarm intelligence algorithms for image segmentation, clustering and feature selection are presented. 

Ensemble classification techniques are also discussed. The proposed HLPSO variant is discussed in detail in 

Section 3. We present lesion segmentation using HLPSO integrated with a KM variant in Section 4, while 

Section 5 discusses the generation of evolving deep CNN models. Feature extraction, HLPSO-based feature 

selection as well as ensemble models for lesion classification are provided in Section 6. A comprehensive 

evaluation and future directions are presented in Sections 7 and 8, respectively. 

 

2. RELATED WORK 
In this section, we discuss a variety of state-of-the-art investigations on skin lesion segmentation and 

classification, ensemble classification techniques and swarm intelligence and evolutionary algorithms for hybrid 

clustering, feature selection and benchmark optimization. 

 

2.1 Skin Lesion Segmentation and Related Studies 
Yuan and Lo [5] proposed deep fully convolutional-deconvolutional neural networks (CDNNs) to generate 

binary masks for skin lesion segmentation in dermoscopic images. Pixel-wise classification to filter the input 

image into skin and lesion classes was conducted. The training process was used to minimize a loss function 

based on the Jaccard distance. Each CDNN had 29 layers, and its hyper-parameters were obtained by grid 

search. Upsampling and deconvolutional layers were used to restore image resolutions. RGB, Hue-Saturation-

Value (HSV) and lightness in LAB spaces were considered for the segmentation tasks. An ensemble model 

consisting of 6 CDNNs as the base classifiers was used to obtain the final segmentation output. Their work 

showed superior robustness for lesion segmentation. Li and Shen [6] proposed a deep learning framework 

composed of two fully-convolutional residual networks (FCRN) for lesion segmentation and coarse lesion 

classification. The classification results were further refined using a lesion index calculation unit (LICU), which 

measured the importance of pixels based on their distances to the nearest border. Specifically, the two FCRNs 

were trained on the original as well as flipped and rotated augmented images, respectively, to generate the initial 

coarse maps. The distance maps generated by the LICU were convoluted multiplied with the coarse maps to 

yield the refined maps. The average probabilities of the refined maps were used as the final lesion categorization 

results. Alvarez and Iglesias [7] employed an iterative colour-based KM clustering algorithm and ensemble of 

regressions for skin lesion segmentation. Their system consisted of image pre-processing (e.g. removal of 

reflection and hair), colour clustering, feature extraction and Jaccard score calculation. The regression models 

were trained using training images and ground truth masks provided by the ISIC 2017 data set. Morphological 

operations were used as the post-processing procedure. A number of features, including region area, position, 

circularity, solidity, average colour, were extracted from each segmented region. Random Forest and Support 

Vector Regression (SVR) models were used to predict the segmentation scores, respectively, with the average of 

the above scores employed as the Jaccard Index. The process was repeated by increasing the number of clusters 

by one until there was no significant improvement in the Jaccard score. 

 

Ashour et al. [8] proposed a clustering-based method for skin lesion segmentation known as histogram-based 

clustering estimation neutrosophic c-means clustering (HBCENCM). The histogram-based clustering estimation 

(HBCE) method was firstly proposed to identify the number of clusters based on the histogram of each image. 

The pre-determined number of clusters was then used to drive neutrosophic c-means (NCM) clustering for lesion 



segmentation. The proposed HBCENCM model with the horizontal-vertical procedure showed great superiority 

over the original NCM model (without the pre-determined number of clusters) for skin lesion segmentation. 

Their model outperformed other deep learning models for lesion segmentation based on the evaluation of the 

ISIC archive data set. Moreover, fuzzy classification of pixels and histogram thresholding were employed by 

Garcia-Arroyo and Garcia-Zapirain [9] for lesion segmentation. Guo et al. [10] conducted skin lesion 

classification using neutrosophic clustering and adaptive region growing in dermoscopic images. The shearlet 

transform was first used to map the skin lesion images into a neutrosophic set domain. An indeterminate filter 

was also employed to reduce the indeterminacy of the images. The NCM clustering algorithm as well as an 

adaptive region growing method was used to carry out lesion segmentation. The model showed impressive 

performance when it was trained and evaluated using randomly selected subsets of the ISIC 2017 data. Lin et al. 

[11] compared U-Nets with clustering algorithms for skin lesion segmentation. The U-Net with the proposed 

histogram-based pre-processing technique was implemented. The model had 4 contracting steps and 4 expansion 

steps, and was trained over one epoch (i.e. a small number of iterations) with the original as well as flipped and 

rotated augmented images. In addition, for the clustering model, FCM was firstly used to cluster the images into 

distinctive regions of interest. KM was subsequently used to further categorize the identified clusters (i.e. the 

outputs of FCM) based on colour features. The group with the darkest colour features was regarded as the lesion. 

The U-Net model outperformed the clustering algorithms in their experiments, but with inferior trade-off 

between performance and computational efficiency.  

 

On the other hand, evolutionary algorithms are used in conjunction with the clustering methods for medical 

image segmentation tasks. Neoh et al. [3] proposed stimulating discriminant measures (SDM) for image 

segmentation in microscopic blood cancer detection. The SDM model was incorporated with a Genetic 

Algorithm (GA) for discriminative segmentation of nucleus and cytoplasm of lymphocytes/lymphoblasts. Their 

model employed both between-class and within-class variations in the objective evaluation of each set of 

identified cluster centres. Colour, shape, and texture features were subsequently extracted from the segmented 

regions for abnormality detection. The GA-based SDM model achieved superior performance for leukaemia 

classification. A Kernel Possibilistic C-Means algorithm was used in conjunction with PSO for Magnetic 

Resonance (MR) brain image segmentation in Mekhmoukh and Mokrani [4]. The original FCM algorithm was 

sensitive to outlier and noise, and its performance relied heavily on initialization of cluster centres. The PSO 

algorithm was used to initialize the cluster centroids and memberships to overcome the abovementioned 

limitations. Outlier rejection and spatial neighbourhood information were also taken into account to enhance 

performance. Their extended FCM algorithm depicted impressive effectiveness in dealing with noise for MR 

brain image segmentation. 

 

2.2 Skin Lesion Classification 
Tan et al. [12] proposed a modified PSO model for discriminant feature selection in skin lesion classification. 

Their PSO model employed multiple swarm leaders and subswarm concepts. The subswarm particles followed 

the subswarm leader, and avoided the worst solutions in every dimension or randomly selected partial 

dimensions, respectively. Probability distributions and dynamic matrix representations were used to increase 

search diversity. Their model outperformed other search methods significantly for discriminative feature 

selection for a mixed data set and the PH2 database. Lopez et al. [13] employed the VGGNet model and transfer 

learning for skin lesion classification with dermoscopic images. The VGG16 network with 5 convolutional 

blocks and 3 fully connected layers was employed. Three experiments were conducted, i.e. (1) training VGGNet 

from scratch, (2) using a pre-trained VGGNet on ImageNet with the fully connected layers trained with the 

lesion data set, and (3) freezing the first four convolutional blocks with the fifth convolutional block loaded with 

corresponding weights obtained in experiment (1) and the fully connected layers loaded with weights obtained in 

experiment (2). A total of 346 training images and 150 test images were selected from the ISBI 2016 Challenge 

data set for evaluation. Transfer learning in Experiment (3) obtained the best performance. DeVries and 

Ramachandram [14] employed a multiscale Inception-v3 network for skin lesion classification. The model was 

pre-trained on ImageNet and fine-tuned using the ISIC 2017 data set with two different image resolutions, i.e. 

low resolution and high resolution centre-crop images. The extracted features for both resolutions were 

concatenated and passed on to the fully connected layer. The training process updated the weights of the last two 

inception blocks and the fully connected layers while all other layers in the network remained frozen. 

Augmented images were produced for each test image for evaluation. The resulting network with different 

training options was also produced. The combined result of these variant deep networks was used as the final 

classification output. 

 

Bi et al. [15] employed the deep residual networks (ResNet) for skin lesion segmentation and classification. The 

ResNet model employed residual blocks, with each block consisting of several convolutional layers, and other 

associated learning layers. The ResNet model was able to provide shortcut connections that were accumulated 



with the output of the convolution layers. Transfer learning was subsequently conducted, where the model pre-

trained on the ImageNet data set was fine-tuned using both the ISIC 2017 challenge training set and a large 

number of ISIC archive images for segmentation and classification tasks. A multi-scale integration method was 

used for lesion segmentation where different scales and rotations of test images were used as inputs. In addition, 

three methods were used for lesion classification, i.e. (1) a three-class lesion classification task, (2) two binary 

lesion classification tasks (melanoma vs others and seborrheic keratosis (SK) vs benign), and (3) an  ensemble of 

the above two models. Schaefer et al. [16] conducted dermoscopic melanoma classification using ensemble 

models. Their system firstly segmented lesions using border detection algorithms. Then, colour, shape, and 

texture features were extracted from each segmented lesion region. A set of base models was trained on the 

extracted feature subspaces. Diversity of the base classifiers was subsequently evaluated. The discriminative 

base models were selected for ensemble model construction with the redundant ones removed. Their resulting 

model achieved statistically significant superiority over other ensemble classification methods. Kawahara et al. 

[17] employed Alexnet pretrained on ImageNet for 10-class lesion classification. The fully connected layers of 

AlexNet were converted to convolutional layers, in order to extract multi-scale features. The extracted deep skin 

features were used for training a logistic regression classifier for 10-class lesion classification. Max-pooling 

across the spatial dimensions was also conducted to reduce dimensionality of the input images with higher 

resolutions. Besides using pooled-multi-scale feature extraction, a per image normalization and pooling across 

augmented feature space were conducted to enhance performance. 

 

2.3 Evolutionary and Swarm Intelligence Algorithms 
Owing to their superior search capabilities, evolutionary algorithms have been widely used for solving diverse 

optimization problems, such as network routing, planning, job scheduling, image retrieval and classification, and 

design optimization. Especially, nature-inspired swarm intelligence (SI) algorithms have received great attention 

in recent years owing to their simplicity and flexibility. SI algorithms engage a swarm of search agents, which 

interact with one another and follow simple rules for the exploration of an unknown search space. Instead of 

adopting dictated centralized control mechanisms, the search agents conduct the search autonomously with a 

certain degree of randomness. Their communication and social interactions result in the occurrence of intelligent 

global behaviour, which is unknown to individual agents at the beginning of the search process. Such a self-

organizing search process can evolve over a number of iterations to achieve converged states. To ensure the 

effective exploration of the search space for finding global optimality, it is important that the SI algorithms show 

sufficient trade-off between intensification and diversification. SI algorithms have been applied to undertaking 

diverse optimization problems pertaining to classification, regression, clustering and forecasting models, 

including discriminative feature selection, evolving deep architecture generation, parameter tuning and cluster 

centroid enhancement. Motivated by swarm behaviours such as bird flocking and fish schooling, respectively, 

PSO and FA are two of the most popular SI algorithms. Other popular SI algorithms include Cuckoo Search 

(CS), Bat Algorithm (BA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Grey Wolf 

Optimization (GWO), Dragonfly Algorithm (DA), and Flower Pollination Algorithm (FPA) [18]. 

 

Proposed by Kennedy and Eberhart [19], the PSO model employs the personal and global best solutions to lead 

the search process of the particle swarm, as defined in Equations (1)-(2).    

 𝑥𝑖𝑑𝑡+1 = 𝑥𝑖𝑑𝑡 + 𝑣𝑖𝑑𝑡+1     (1) 𝑣𝑖𝑑𝑡+1 = 𝑤 × 𝑣𝑖𝑑𝑡 + 𝑐1 × 𝑟1 × (𝑝𝑖𝑑 − 𝑥𝑖𝑑𝑡 ) + 𝑐2 × 𝑟2 × (𝑝𝑔𝑑 − 𝑥𝑖𝑑𝑡 )  (2) 

 

where 𝑝𝑔𝑑 and 𝑝𝑖𝑑  denote the swarm leader and the personal best solution of particle 𝑥𝑖  in the 𝑑𝑡ℎ dimension, 

respectively. The position and velocity of particle 𝑥𝑖 in the (𝑡 + 1)𝑡ℎ iteration and the 𝑑𝑡ℎ dimension are denoted 

as 𝑥𝑖𝑑𝑡+1 and 𝑣𝑖𝑑𝑡+1, respectively. The acceleration coefficients, 𝑐1 and 𝑐2, are used to adjust the convergence 

speed, while the inertia weight, 𝑤, is used to fine-tune the impact of the previous velocity on the current one, 

with 𝑟1 and 𝑟2 as random vectors. 

 

Unlike the PSO operation, the FA model with Levy flights [20] employs brighter neighbouring solutions, instead 

of the global best solution, to guide the search process, as defined in Equation (3). 

 𝑥𝑖 = 𝑥𝑖 + 𝛽0𝑒−𝛾𝑟𝑖𝑗2 (𝑥𝑗 − 𝑥𝑖) + 𝛼 sign[rand − 12] ⊕ Levy                                 (3) 

 

where 𝑥𝑗 represents a brighter neighbouring solution. The light absorption coefficient, 𝛾, is used to influence the 

attractiveness rate and determine the convergence speed. Note that 𝑟𝑖𝑗  denotes the distance between the two 

fireflies, 𝑥𝑖 and 𝑥𝑗 . The attraction strength between two fireflies decreases as their distance increases.  

 



The final term in Equation (3) indicates the randomization operation following a Levy distribution, where 𝛼 

represents the randomization parameter. Specifically, Levy distribution possesses an infinite second moment in 

comparison with a finite second moment in Gaussian distribution. It employs adjustable parameters to 

implement effective mutation operators. A simplified mathematical definition for Levy distribution is provided 

in Equation (4) [20, 21]. 𝑓(𝜎, 𝜏, 𝜑) = √ 𝜏2𝜋  𝑒 −𝜏2(𝜎−𝜑) (𝜎−𝜑)3/2             (0 < 𝜑 < 𝜎 < ∞)                    (4) 

where 𝜑 and 𝜏 denote the shift and scale parameters, respectively. Moreover, Equation (5) defines Levy 

distribution using Fourier transform [20, 21]. 

 𝐿(𝜃,𝑚, 𝛿) = 𝑒−𝜃|𝑚|𝛿                                                                (5) 

 

where 𝜃 denotes a scale parameter with the range of [-1, 1], and 𝛿 represents the Levy index with the range of 

(0, 2]. Equation (5) can be used to implement Cauchy and Gaussian distributions when 𝛿=1 and 𝛿=2, 

respectively. The parameter 𝛿 has a significant impact on the shape of the probability distribution. A smaller 

setting of 𝛿 leads to a longer tail, and vice versa. 

 

Levy flights are effective in exploring an uncertain environment consisting of an unknown large-scale search 

space. They are able to generate more effective offspring solutions with long jumps (especially when 0< 𝛿 < 1) 

in comparison with those of Cauchy and Gaussian distributions. Therefore, Levy flights are more efficient than 

Gaussian and Cauchy random walk mechanisms. Besides FA, Levy flights have been embedded in other swarm 

intelligence algorithms such as fruit flies and spider monkeys [20, 21], and can be used to represent many real-

world physical phenomena such as noise and cooling behaviours [20]. 

 

Moreover, owing to their simplicity and flexibility, PSO and FA and their variants have been employed to solve 

diverse real-life single-objective and multi-objective optimization problems, which include hyperspectral image 

classification [21], colour image segmentation [3], stock price index forecasting [22], data clustering [23] and 

mathematical benchmark optimization [24]. They have also been used for discriminative feature selection for 

facial and bodily expression recognition [25, 26, 27, 28], brain tumour [4], heart disease [29, 30], skin and blood 

cancer [31, 32] detection and classifier ensemble reduction [33]. 

 

Other recently proposed inspiring evolutionary models for solving benchmark functions are available in the 

literature. Motivated by the spiral phenomena in nature, Tamura and Yasuda [34] proposed three two-

dimensional spiral search operations with different parameter settings. These spiral operations adopted the 

search behaviours of logarithmic spirals. Evaluated using three benchmark functions, the proposed methods 

outperformed PSO. The use of randomness in the spiral mechanisms was proposed as their future work. An 

extension of the abovementioned work implemented a multi-dimensional spiral search action [35], which was 

built based on rotation matrices defined in a multi-dimensional space. This multi-dimensional spiral operation 

showed enhanced performance in comparison with those of other search methods for solving diverse 

mathematical landscapes. 

 

2.4 Hybrid Clustering and Classification Models 
There are diverse hybrid evolutionary clustering and classification models proposed in the literature utilising 

meta-heuristic methods integrated with clustering and classification models to further enhance performance. 

Thangavel et al. [36] proposed a clustering model incorporating PSO with Simulated Annealing (SA) for the 

identification of biclusters in gene expression data. SA was used to enhance the stagnant particles to avoid 

premature convergence. Evaluated using three medical data sets, the proposed clustering model showed 

competitive performance, which extracted biclusters with higher coherence and larger volume. Hatamlou [37] 

proposed an optimization model, namely Heart, for clustering analysis. Two search strategies, i.e. the movement 

of blood molecules and the pump action of the heart, were proposed to simulate the contraction and expansion 

actions of the heart. The blood molecule movement operation enabled the molecules to move towards the heart 

to increase global exploration, whereas the pump action empowered dynamic local exploitation around the best 

solution, i.e. the heart. The model was evaluated using a set of six UCI benchmark data sets and outperformed 

KM and three other classical search methods, i.e. PSO, gravitational search algorithm (GSA), and big bang-big 

crunch algorithm (BB-BC), respectively. Farzi and Kianian [38] proposed a k-Medoid based clustering model 

for attributed graph generation. Their model was effective in tackling Political Blogs and DBLP bibliography 

data sets in comparison with other baseline methods. In addition, a meta-heuristic passive mine detection and 

classification model, based on the magnetic anomaly, measurement height, and soil type, was proposed by 



Yilmaz et al. [39]. Firstly, the Multi-layer Perceptron (MLP) with backpropagation learning mechanism was 

used to determine the effectiveness of different combinations of the input variables. Subsequently, the identified 

best feature combinations were used to perform mine detection and classification using traditional as well as 

enhanced k-Nearest Neighbour (KNN) models. Specifically, weight coefficient optimization for the input 

attributes was performed using GA in their enhanced KNN model to improve performance. A set of 32 

classification models was constructed based on the traditional and enhanced KNN methods pertaining to the 

number of different neighbours and different distance metrics. Their findings indicated that the meta-heuristic 

KNN method integrated with the fuzzy distance metrics produced the best mine detection and classification 

performance among all the system prototypes. 

 

Nerurkar et al. [40] proposed a new cost function for the original PSO model for clustering analysis. Their 

fitness function took both intra- and inter-cluster distances into account, with a linear computational cost. The 

PSO clustering model integrated with this new cost function outperformed other evolutionary and non-

evolutionary clustering methods with pure intra-cluster measures for the evaluation of six artificial benchmark 

data sets. Nananukul [41] proposed an enhanced KM clustering model for solving production inventory and 

distribution problems. The cost function of their clustering model took into account the holding costs of 

customers and demand patterns. A reactive Tabu search algorithm was employed to further improve the initial 

solution identified by the KM clustering model. Evaluation using complex real-life customer data indicated the 

superiority of the proposed model. A comprehensive survey of diverse clustering models was provided in Xu 

and Tian [42]. 

 

2.5 Ensemble Classification and Feature Selection Techniques  
Classifier ensemble construction using a modified FA model has been conducted by Zhang et al. [33]. Their 

proposed FA model employed the neighbouring and global best experiences to lead the attractiveness operation 

whereas the local and global worst experiences have been used for the guidance of an evading mechanism. The 

FA model was subsequently used to identify the smallest optimal sets of diversified base evaluators for 

ensemble classifier construction while maintaining classification performance. Their work outperformed the 

full-sized ensemble models as well as the ensemble classifiers devised by other classical and advanced search 

methods significantly, for the evaluation of several UCI data sets. Moyano et al. [43] proposed an evolutionary 

approach, namely Evolutionary Multi-label Ensemble (EME), for the automatic generation of ensemble 

classifiers. Their ensemble construction took the imbalance, dimensionality and relationships among the class 

labels into account. Specifically, each base model was dedicated to the prediction of a subset of classes. Both the 

classification performance and the occurrences of each class label were taken into account for ensemble model 

fitness evaluation. A mutation operator was also employed to identify the relationship of different classes by 

favouring more related combinations of labels. The experimental results for the evaluation of 14 data sets 

indicated the superiority of their EME model over a set of baseline classical and ensemble-based algorithms. 

Ribeiro et al. [44] performed wavenet ensemble construction for short-term load forecasting. Two base model 

generation techniques were adopted, i.e. bootstrapping and cross-validation integrated with the inputs 

decimation algorithm, to ensure the generation of diverse base regressors. Especially, the former focused on 

manipulating data samples while the latter focused on manipulating feature dimensions. The base model 

selection was conducted by using both forward selection and pruning by ranking. Subsequently several ensemble 

aggregation techniques, i.e. simple mean, mode, median, and stacking, were used for ensemble construction. 

Their model outperformed other prediction methods, such as a MLP and a regression tree, for the evaluation of 

two real data sets. Moreover, ensemble classier construction techniques were also studied by Thomas et al. [45] 

for proactive quality monitoring and control. They employed four types of base classifiers for ensemble 

construction, i.e. KNN, MLP, Decision Tree (DT), and Support Vector Machine (SVM). Bagging was used for 

the generation of training data sets in order to increase the diversity of the base models. A series of 19 ensemble 

classifiers was constructed based on the diversity and accuracy of the base models. These ensemble models were 

composed of not only purely the KNN, DT, SVM or MLP evaluators, but also the combinations of different 

types of the base classifiers. The ensemble model constructed by using the four different types of base classifiers 

achieved the minimum global misclassification rate, while the one constructed by purely using the NN base 

classifiers obtained a better non-detection rate. Guo et al. [46] proposed heterogeneous ensemble-assisted multi-

objective evolutionary algorithms (MOEAs) for solving computationally expensive optimization problems. 

Instead of using Gaussian processes (GPs), their model employed a heterogeneous ensemble for fitness 

evaluation. To increase ensemble diversity, two radial basis function networks (RBFNs) and a least square SVM 

model, trained with different input features (selected/extracted subsets of features or full feature sets), were used 

for base evaluator generation. Evaluated using two well-known test suites, i.e. DTLZ and WFG, their model 

achieved better trade-off between performance and computational efficiency in comparison with the GP-assisted 

MOEAs. 

 



Besides the above ensemble model construction investigations, there are also diverse research studies focusing 

on SI and evolutionary algorithm based feature selection. De Souza et al. [47] proposed a Binary Crow Search 

Algorithm (BCSA) for feature selection. A V-shaped transfer function was used to transform the positions of 

crows from continuous values into binary ones. The classical CSA model employs an awareness probability 

factor to balance between intensification and diversification. It also achieves a fast convergence rate by 

memorizing the best known positions of the crows as well as adopting the flight length search parameter. 

Evaluated using six UCI benchmark data sets, their BCSA model showed great discriminative capabilities for 

feature selection and outperformed other search methods such as Binary Bat Algorithm (BBA), Binary PSO 

(BPSO), Sequential Forward Selection (SFS) and Sequential Backward Selection (SBS), in terms of 

classification performance and computational cost. Song et al. [48] proposed an evolutionary multi-objective 

ensemble learning (EMOEL) algorithm for electricity consumption prediction. The EMOEL model was used to 

devise the number of the hidden neurons in the Extreme Learning Machines (ELMs), and in the meanwhile to 

identify the feature extraction methods, the sizes of the time windows as well as the most optimal input feature 

channels (e.g. representing energy consumption data and environmental factors). A variety of prediction models 

recommended by the identified optimized solutions in the Pareto front were aggregated to yield ensemble 

prediction where the Differential Evolution (DE) algorithm was used to optimize the combination coefficients 

for the building of the ensemble. Experimental studies using a real-world electricity consumption data set 

ascertained the efficiency of the EMOEL model in comparison with other search methods. Zhang et al. [30] 

proposed a modified FA model for feature selection. Their FA variant employed two swarm leaders with similar 

fitness scores but remote in positions to guide the search process. Specifically the mean vector of the two swarm 

leaders and optimal neighbouring solutions were further enhanced using the SA model. These enhanced local 

and global signals as well as the chaotic search parameters were then used to lead the attractiveness operation. 

The aforementioned two swarm leaders were also used to divert weak solutions to optimal regions with fast 

convergence rates. The empirical and statistical results for 29 classification and 11 regression data sets indicated 

the superiority and robustness of their FA model over other search methods. Bushehri and Zarchi [49] employed 

Probabilistic Neural Network (PNN) for the self-care problem classification for children with physical and 

motor disability, where the GA was used to conduct feature optimization. A comprehensive survey of SI and 

evolutionary algorithm based feature selection was provided by Xie et al. [50]. 

3. THE PROPOSED HLPSO MODEL 

In this research, we propose the HLPSO model to perform image segmentation, feature selection, and optimized 

deep CNN model generation. HLPSO incorporates diverse search strategies, including modified FA operations, 

a spiral search action, random walks, crossover and mutation procedures, to diversify the original PSO 

operation. Moreover, an extended KM clustering algorithm is proposed for lesion segmentation, whose centroids 

are further enhanced using HLPSO with both intra- and inter-cluster variance measures. Two lesion 

classification systems are formulated. Firstly, HLPSO is used to optimize the structure and hyper-parameters of 

deep CNNs for lesion classification. Secondly, HLPSO is used for feature selection in ensemble lesion 

classification. Algorithm 1 shows the pseudo-code of HLPSO.  

 

Specifically, after initialization of the swarm, all particles are ranked based on their fitness values. The overall 

population is divided into two subswarms, where the first subswarm (subswarm 1) consists of 50% top ranked 

particles while the second subswarm (subswarm 2) contains the remaining particles. Three probability 

distributions, i.e. Gaussian, Cauchy, and Levy distributions, are used to further improve the promising solutions 

in subswarm 1, whereas newly proposed search mechanisms including two neighbouring search strategies, a 

spiral search operation, as well as the PSO action, are used to explore the search space in subswarm 2. Both 

subswarms are combined after a number of iterations. Another set of top ranked promising solutions is 

identified. The crossover and mutation operators are used to generate offspring solutions using the top ranked 

particles as parents. The search process iterates until the termination criteria are met. In the following sub-

sections, we describe each key proposed mechanism comprehensively. 

 

Algorithm 1: Pseudo-Code of the Proposed HLPSO Model 

1. Start 

2. Initialize a population of particles randomly; 

3. Evaluate the population; 

4. Sort the population based on fitness values and identify 𝑔𝐵𝑒𝑠𝑡; 
5. While (!Stagnation) { 

6.      Divide the population into two sub-swarms (with the top 50% particles stored in 

subswarm 1 and the remaining 50% in subswarm 2); 

7.      For (each particle in sub-swarm 1) do { 



8.           Conduct long jumps using Levy flights/Gaussian/Cauchy distributions as in Equations 

(7-9); 

9.           Update the 𝑝𝐵𝑒𝑠𝑡 if the new position developed by long jumps achieves better fitness; 

10.      } End For 

11.      For (each particle in sub-swarm 2) do { 

12.           Randomly select one of the following operations to update the particle position; 

13. 1. Conduct the original PSO operation as defined in Equations (1)-(2); 

14. 2. Conduct the modified FA operation using a randomly selected brighter 

neighbouring firefly as defined in Equation (10); 

15. 3. Conduct the modified FA operation using the average of all brighter neighbouring 

fireflies as defined in Equation (13); 

16. 4. Conduct the spiral search action as defined in Equation (14); 

17.           Update the 𝑝𝐵𝑒𝑠𝑡 if the new position developed by any of the above randomly selected 

operations achieves better fitness; 

18.      } End For 

19.      Combine two sub-swarms; 

20.      Sort the overall swarm based on the fitness values and identify 𝑔𝐵𝑒𝑠𝑡 and the top 20% 

particles; 

21. Generate a set of offspring particles (e.g. 20% of the swarm) using the crossover operation 

and the top ranked particles as parents; 

22. Generate another set of offspring particles (e.g. 20% of the swarm) by mutating the above 

newly generated offspring solutions using the crossover operation; 

23. Replace the bottom 40% particles with the new offspring solutions generated using the 

crossover and the mutation operations as in lines 21-22; 

24.     Sort the population based on the fitness scores and identify the 𝑔𝐵𝑒𝑠𝑡; 
25. } Until (Stagnation) 

26. Output 𝑔𝐵𝑒𝑠𝑡; 
27. End 

 

3.1 Local Exploitation Using Gaussian, Cauchy, and Levy Distributions 
As mentioned earlier, the top 50% particles of the swarm are selected to generate subswarm 1. These particles 

are further enhanced using local search operations such as the Gaussian, Cauchy, and Levy distributions. 

Equation (6) defines these random walk strategies.  

 𝑥𝑖𝑑𝑡+1 = 𝑥𝑖𝑑𝑡 + (𝑈𝑏𝑑 − 𝐿𝑏𝑑) × 𝜀                                                                 (6) 
 

where 𝜀 denotes the random search mechanisms, i.e. Gaussian, Cauchy, and Levy distributions. 𝑈𝑏𝑑 and 𝐿𝑏𝑑            

denote the upper and lower boundaries of the solution vectors in the 𝑑th dimension. The proposed HLPSO 

model randomly selects any of these three probability distributions for position updating in subswarm 1. These 

random walk strategies increase local exploitation of the promising solutions in subswarm 1.  

 

As mentioned in Section 2.3, Gaussian, Cauchy, and Levy distributions are efficient random walk strategies. 

They possess unique search characteristics. The combination of these search operations enables local 

exploitation with sufficient diversity. Equation (7) defines the local search exploitation using the Gaussian 

distribution. 

 𝑥𝑖𝑑𝑡+1 = 𝑥𝑖𝑑𝑡 + (𝑈𝑏𝑑 − 𝐿𝑏𝑑) × 𝑔(𝑘, ℎ)                                                          (7) 
 

where 𝑔(𝑘, ℎ) represents the Gaussian distribution while 𝑘 and ℎ denote the mean and the standard deviation of 

the distribution, respectively. If the new offspring solution 𝑥𝑖𝑑𝑡+1 generated using the Gaussian distribution has a 

better fitness score than that of the current solution vector, 𝑥𝑖𝑑𝑡 , it is used to substitute the current individual. 

Otherwise the current solution 𝑥𝑖𝑑𝑡  is passed on to the next generation. 

 

Similarly, Equation (8) defines the search operation using Cauchy distribution for further enhancement of the 

current decision vector.  

 𝑥𝑖𝑑𝑡+1 = 𝑥𝑖𝑑𝑡 + (𝑈𝑏𝑑 − 𝐿𝑏𝑑) × 𝜗(𝑧, 𝑣)                                                          (8) 
 

where 𝜗(𝑧, 𝑣) denotes the Cauchy distribution with 𝑧 and 𝑣 signifying the location parameter and the scaling 

factor, respectively. If this random walk mechanism is able to produce a fitter solution, 𝑥𝑖𝑑𝑡+1, this new offspring 

solution substitutes the current decision vector. Otherwise, the current individual 𝑥𝑖𝑑𝑡  is used to guide the search 

in the next iteration. 

 



Levy distribution is also used to conduct local exploitation of the particles in the subswarm. Levy flights are 

more effective in exploring an unknown large-scale search space with longer jumps in comparison with those of 

Cauchy and Gaussian distributions. Equation (9) denotes the search action using the Levy distribution. 

 𝑥𝑖𝑑𝑡+1 = 𝑥𝑖𝑑𝑡 + (𝑈𝑏𝑑 − 𝐿𝑏𝑑) × 𝐿(𝜃,𝑚, 𝛿)                                                        (9) 
 

Where 𝐿(𝜃,𝑚, 𝛿) denotes the Levy distribution and 𝜃 and 𝛿 represent the scale parameter and the Levy index, 

respectively. If the fitness score of the new offspring solution 𝑥𝑖𝑑𝑡+1 yielded by the Levy distribution is better than 

that of the current particle 𝑥𝑖𝑑𝑡 , it is used to replace the current solution. Otherwise, the current decision vector 

remains intact and passed on to the next iteration. 

 

The above Gaussian, Cauchy and Levy search mechanisms are randomly selected to conduct effective and 

diversified local exploitation of the particles in subswarm 1. 

 

3.2 The Proposed Modified FA Operations 
The remaining 50% particles are used to form subswarm 2. Several search mechanisms are used to diversify the 

search process in subswarm 2. Specifically, we include random and average FA operations and a new spiral 

search action to overcome stagnation of the original PSO operation. The motivations of using FA operations are 

as follows. Unlike the original PSO algorithm that employs the personal and global best solutions to lead the 

search process, the FA model enables each firefly to follow neighbouring brighter solutions, in order to better 

explore the search space. As such, enhanced FA models are used to provide distinctive alternative search 

behaviours to diversify the search procedure.  

 

In the original FA operation, each individual carries out the search process by following all promising 

neighbouring solutions as indicated in Equation (3). The search process becomes computationally costly as the 

problem dimension increases. Instead of using all brighter neighbouring fireflies, the first modified FA operation 

uses a randomly selected promising neighbouring solution for position updating, as defined in Equation (10), to 

improve computational efficiency and search diversity.  

 𝑥𝑖 = 𝑥𝑖 +  𝛽 × (𝑥𝑗′ − 𝑥𝑖) + 𝛼′ sign[rand − 12] ⊕ Levy                                   (10) 𝛽 = (1 − 𝛽𝑚𝑖𝑛) × 𝑒−𝛾𝑟𝑖𝑗2 + 𝛽𝑚𝑖𝑛                                                          (11) 𝛼′ = 𝛼′ × (10−40.9 ) 1𝑚𝑎𝑥𝑖_𝐺𝑒𝑛                                                                (12) 
 
where 𝑥𝑗′ denotes a randomly selected neighbouring firefly with a higher light intensity. Equation (11) defines a 

comparatively stronger attractiveness impact to accelerate convergence, where 𝛽𝑚𝑖𝑛 = 0.2. In Equation (12), the 

randomized parameter 𝛼′ is adaptive, and is used to fine-tune the randomized step over iterations. 

 

Instead of using a randomly selected brighter neighbouring solution, the second modified FA operation takes the 

average position of all brighter neighbouring fireflies into account for position updating. As defined in Equation 

(13), this modified FA search mechanism employs the mean of all brighter individuals to lead the search 

process. 

 𝑥𝑖 = 𝑥𝑖 +  𝛽 × (𝑥𝑗′′ − 𝑥𝑖) + 𝛼′ sign[rand − 12] ⊕ Levy                                  (13) 

 

where 𝑥𝑗′′ represents the average position of all brighter neighbouring fireflies.  

 

In comparison with the original FA action where each firefly is guided by each of the brighter neighbouring 

solutions, both proposed search strategies perform movement towards either a randomly selected brighter firefly 

or the average position of all the brighter neighbouring solutions to accelerate convergence.   

 

3.3 The Proposed Spiral Search Operation 
Motivated by MFO [51] and PSO [19], a new logarithmic spiral search operation is proposed, as defined in 

Equation (14). It guides the search process using both personal and global best solutions. This spiral research 

mechanism is able to divert each weak solution to optimal regions in a comparatively small number of iterations. 

 

 



 𝑥𝑖 = (𝑚𝑒𝑎𝑛(𝑔𝑏𝑒𝑠𝑡 + 𝑝𝑏𝑒𝑠𝑡) − 𝑥𝑖) × 𝑒𝑏𝑡 cos(2𝜋𝑡) + 𝑚𝑒𝑎𝑛(𝑔𝑏𝑒𝑠𝑡 + 𝑝𝑏𝑒𝑠𝑡)                               (14)  
 𝑡 = (𝛼′ − 1) × 𝑟𝑎𝑛𝑑 + 1                                                             (15) 

 

where 𝑝𝑏𝑒𝑠𝑡  and 𝑔𝑏𝑒𝑠𝑡  represent the personal and global best solutions, respectively. A constant variable, 𝑏, is 
used to indicate the shape of the logarithmic spiral while 𝑡 ∈ [-1, 1] designates the closeness of the current 

individual to mean of the personal and global best solutions in the next iteration, where -1 and 1 denote the 

closest and farthest to mean of the personal and global best solutions, respectively. The value of 𝑡 as defined in 

Equation (15) is randomly generated for each dimension of each individual, with 𝛼′ defined in Equation (12). 

 

 

 𝑥 = 𝑒𝑏𝑡 cos(2𝜋𝑡) 
 

Figure 2 An example of the logarithmic spiral search trajectory, where the 𝑥 axis denotes the step parameter 𝑒𝑏𝑡 cos(2𝜋𝑡) defined in Equation (14) with 𝑡 ∈ [-1, 1] and 𝑏=1, while the 𝑦 axis denotes 𝑒𝑏𝑡 sin(2𝜋𝑡). (Both 

coordinates work together for spiral search path generation.) The blue and orange circles represent the mean of 

the personal and global best solutions and the current individual, respectively 

 

 
Figure 3 Convergence curves of the proposed spiral search operation, HLPSO, and other search methods over a 

set of 30 runs for deep architecture generation for the ISIC data set 

 

An example of the logarithmic spiral search trajectory is illustrated in Figure 2, where the 𝑥 axis denotes the step 

parameter, 𝑒𝑏𝑡 cos(2𝜋𝑡), defined in Equation (14). As illustrated in the 𝑥 axis in Figure 2, the range of the step 

parameter 𝑒𝑏𝑡 cos(2𝜋𝑡) is [-1.67, 2.75], with 𝑡 ∈ [-1, 1] and 𝑏=1. Given a positive step parameter, the spiral 

search operation explores the search space between the mean of the personal and global best solutions and the 

current individual. On the other hand, a negative step parameter leads the search operation to explore the region 

outside of the space between the mean of the personal and global best solutions and the current individual. In 

other words, a random exploration of the search region within and outside of the area between the current 

individual and the mean of the local and global optimal solutions by following a spiral distribution is initiated. 

Figure 3 shows the convergence curve of the proposed spiral search operation in comparison with those of 

HLPSO (full version), PSO, FA and MFO over a set of 30 runs for deep architecture generation for the ISIC data 

𝑦=𝑒𝑏
𝑡 sin( 2

𝜋𝑡)  



set. Since the spiral operation is guided by both global and personal best experiences, it shows faster 

convergence in comparison with those of PSO, MFO, and FA, and enables the weak solutions to converge to the 

optimal regions in a small number of iterations. 

 

The HLPSO model selects the two modified FA operations, the spiral search and the PSO actions randomly in 

each iteration to diversify the search process and increase global exploration in the second subswarm.  

 

3.4 The Crossover and Mutation Operations 
After a number of iterations, both subswarms are merged. A new set of top 20% particles is identified. Offspring 

solutions are generated using the crossover and mutation operators with these top ranked particles as parents. 

Specifically, the crossover operators are firstly used to generate offspring solutions. Overall, three crossover 

strategies are included in HLPSO, i.e. single point, double point, and uniform crossover operations [52]. A 

roulette wheel selection mechanism is used to determine which crossover operation is used for offspring 

generation. When a single point crossover is applied, the exchange of genes between two parent chromosomes is 

conducted by copying the genes from the beginning to a random crossover point from one parent, with the rest 

copied from another parent. When the double point crossover is performed, the string from the beginning to a 

first random crossover point is copied from one parent, and the genes from the first to the second random 

crossover points is copied from another parent, with the rest copied from the first parent. For the uniform 

crossover, a pseudo-random scalar integer vector, 𝜇, is generated. The following equation is used for offspring 

generation. 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 = 𝜇 × 𝑥𝑙 + (1 − 𝜇) × 𝑥𝑏                                             (16) 

 

where 𝑥𝑙  and 𝑥𝑏  represent two promising parent chromosomes.  

 

The top 20% particles are selected in pairs to perform the crossover operations. The crossover operation 

produces a set (i.e. 20% of the original population) of new offspring particles. Subsequently, these newly 

generated offspring solutions are mutated by altering randomly selected genes. Another set (i.e. 20% of the 

original population) of mutated offspring is produced. These promising offspring solutions from crossover and 

mutation operations are employed to replace the bottom 40% particles in the swarm. 

 

The above proposed local and global search operations of HLPSO increase intensification and diversification of 

the search process to overcome stagnation of the original PSO algorithm. HLPSO is subsequently used for skin 

lesion segmentation, feature selection and optimized deep network generation. Different objective functions are 

used to evaluate the swarm, as detailed in the following sections.  

 

4. LESION SEGMENTATION 

The proposed HLPSO model is first integrated with the KM clustering algorithm for lesion segmentation. 

Segmentation is conducted in lightness (i.e. the L* component) of the CIELAB colour space. Several pre-

processing steps are initially applied to remove noise (e.g. hair removal as well as contrast and sharpness 

enhancement). In the conventional KM algorithm, random initialization of the centroids is very important to the 

clustering performance. However, the search process could be trapped in local optima [3, 4]. To achieve more 

scalable lesion segmentation, HLPSO is used to further improve the centroids obtained by the KM algorithm for 

lesion segmentation. Algorithm 2 shows the proposed lesion segmentation algorithm. 

 

Algorithm 2: Pseudo-Code of the Proposed Lesion Segmentation Algorithm 

1. Start 

2. Initialize a population of particles randomly; 

3. Initialize the KM parameters (e.g. number of clusters); 

4. Conduct KM clustering to obtain the initial cluster centres; 

5. Assign the initial centres obtained from KM to the first particle; 

6. Conduct fitness evaluation of the swarm and identify the personal and global best solutions;    

7. While (!Stagnation) { 

8.           Conduct the proposed HLPSO model for position and velocity updating; 

9.           Perform fitness evaluation of the overall swarm; 

10.           Update the personal and global best solutions; 

11.  } Until (Stagnation) 

12. Use the global best solution, 𝑔𝐵𝑒𝑠𝑡, as the cluster centres to group pixels in the image into 

different clusters.   

13. Visualize the pixels of each cluster; 

14. Calculate Jaccard score and store the segmented skin and lesion images; 

15. End 



 

As indicated in Algorithm 2, KM is used to obtain the initial cluster centres. We consider two clusters, i.e. lesion 

and skin regions, for the segmentation task. A swarm of 20 particles is randomly initialized to represent a set of 

possible cluster centres, with each particle denoting a possible set of centroids. The initial centroids identified by 

KM are assigned to the first particle as the seed. The swarm is subsequently evaluated. Unlike traditional KM 

where the pure within-class variance is considered, the fitness evaluation function, as defined in Equations (18)-

(22), takes both within- and between-class variance into account. HLPSO is used to perform the search of the 

optimal centroids in the pixel space. The final global best solution (i.e. the most optimal centroid) is used to 

cluster the pixels into the lesion and skin classes. The segmented lesion clusters are visualized with the Jaccard 

index calculated.  

 

KM identifies the cluster centres by minimizing the sum of squared distances between all objects in each cluster 

and their centre, as defined in Equation (17) [53]. In other words, the objective function evaluation of KM only 

takes within-class variation into account. 

 𝐽𝐾𝑀 =∑ ∑ ‖𝑜𝑗 − 𝑐𝑖‖2𝑜𝑗∈𝐶𝑖 
𝐶
𝑖=1                                                                  (17) 

where 𝑐𝑖 = 1𝑁𝑖∑ 𝑜𝑗𝑜𝑗∈𝐶𝑖 .  

 

In Equation (17), 𝑜𝑗 ∈ 𝐶𝑖 denotes an object 𝑜𝑗 belonging to cluster 𝐶𝑖, and 𝑐𝑖 represents the centroid (i.e. the 

centre point) of cluster 𝐶𝑖. ‖𝑜𝑗 − 𝑐𝑖‖ denotes the Euclidean distance between 𝑜𝑗 and 𝑐𝑖 . Centroid 𝑐𝑖  is calculated 

using the mean of objects in the cluster. Therefore, the cluster centroids can be easily affected, if very large or 

small values are present in the clusters (such as noisy lesion images), to skew the within-cluster evaluation. 

Moreover, as indicated in Equation (17), the objective function purely focuses on within-cluster variation for the 

discriminant measure. It does not take the between-cluster variation into account.  

 

In order to overcome the limitation of the original partitioning quality measure of KM, we propose a new fitness 

evaluation for each particle (i.e. each set of possible centroids) by considering both within- and between- cluster 

variations. A variant of within-cluster discriminant measure is also employed, in order to better evaluate the 

compactness of clusters and avoid skew of the mean for noisy data as discussed earlier. Equations (18)-(19) 

define the modified within-cluster measure.  

 𝑑𝑖 =   ‖𝑜𝑗 − 𝑐𝑖‖𝑜𝑗∈𝐶𝑖argmax
                                                               (18) 

  𝐿𝑊𝑣 = ∑ (𝑑𝑖)𝐶𝑖=1                                                                     (19) 

 

As indicated in Equations (18)-(19), the within-class measure is conducted by using the sum of the maximum 

distance between the cluster members and the corresponding centre. The maximum distance between the 

members and its centre represents the maximum variation to the mean. There is no any other data object in the 

cluster exceeding such a limit. Such a discriminant measure is able to better measure cluster compactness in 

comparison with the original objective function defined in Equation (17). 

 

We also define the between-class discriminant measure as follows. The separation of two clusters is usually 

determined by the boundary data sample distributions of the two clusters, as indicated in Kuo and Landgrebe 

[54]. Motivated by Neoh et al. [3], we employ the smallest distance between a centre and members of another 

cluster to measure the separation of a pair of clusters. Equations (20)-(22) define the inter-cluster discriminant 

measure. 

 

Given a pair of clusters (e.g. Cluster 1 and Cluster 2), the minimum distances between all the members in 

Cluster 1 and the centre of Cluster 2, and vice versa, are calaculated, as follows. 

 

                                                   𝐶𝑜𝑚1,2 = min (dist(𝑐2, 𝑜𝑖(1))),   ∀𝑖 ∈ {1,2, … , 𝑁1}                                      (20) 

                              𝐶𝑜𝑚2,1= min (dist(𝑐1, 𝑜𝑘(2))) , ∀𝑘 ∈ {1,2, … , 𝑁2}                                    (21) 

 

The between-class variantion is obtained by selecting the smaller value between the two minimum distances. 

The inter-cluster variation therefore indicates the separation scale of the two clusters. 

 



                  𝐿𝐵𝑣 = min(𝐶𝑜𝑚1,2  ,  𝐶𝑜𝑚2,1)                                                  (22) 

 

The fitness evaluation of each particle (i.e. each possible set of centroids) is calculated as division of within-

class variation by the between-class variation, as shown in Equation (23). 

 𝐹(𝑥𝑖) =  𝐿𝑊𝑣𝐿𝐵𝑣                                                                              (23) 

 

Therefore, lesion segmentation using HLPSO aims to minimize the above fitness function. Smaller 𝐿𝑊𝑣 and 

larger 𝐿𝐵𝑣 indicate higher intra-cluster similarity and larger inter-cluster difference, respectively. The HLPSO-

based KM clustering model in combination with the intra- and inter-cluster variance measures depicts superior 

robustness and scalability in lesion segmentation, and is insensitive to noise and centroid initialization. 

Ensemble and deep CNN models are subsequently used to perform lesion classification using the segmented 

lesion sub-images. 

 

5. GENERATION OF EVOLVING DEEP CONVOLUTIONAL NEURAL NETWORKS 

After lesion segmentation, HLPSO is used to generate optimized deep CNNs for benign/malignant lesion 

classification. The CNN models achieve superior capabilities in undertaking diverse computer vision tasks. Its 

performance relies strongly on the selection of effective architectures that fit the tasks. The current architecture 

design and parameter selection for deep learning models mainly rely on trial and error. Therefore, when the 

problem complexity scales up, the manual design of optimal topologies and hyper-parameters becomes a 

difficult task. In order to overcome such barriers, we employ HLPSO to automatically identify optimal 

topologies and hyper-parameters of CNNs for skin lesion classification. 

 

In CNNs, hyper-parameters such as the learning rate and weight decay have significant impact on the network 

performance. A high learning rate leads to sub-optimum performance whereas a low learning rate results in a 

slow training process. Weight decay (i.e. the regularization factor) also plays a very important role in reducing 

overfitting. In addition, the structures and integration of different convolutional layers, the filter sizes and the 

number of filters play significant roles in achieving optimal performance. Therefore, HLPSO is employed to 

optimize the key factors, i.e. the topologies of different convolutional blocks (including different types of 

convolutional layers and their associated layers, weights, and the number of filters), learning rate, and weight 

decay to yield an optimal CNN model for lesion classification. 

 

 

 

 

 

                                                      
  

 

Figure 4 The structure of the initial CNN model 

 

The evolving process of the deep learning models can be conducted in a number of different ways, e.g. starting 

from scratch or a default basic CNN structure. In this research, we start the model evolving process with a basic 

CNN structure, as shown in Figure 4. This basic CNN model is also used as the default model for comparison. It 

contains three types of convolutional blocks. Each convolutional block (convBlock) consists of one 

convolutional layer, one batchNormalizationLayer, and one reluLayer. As shown in Figure 4, there are three 

types of convolutional layers, i.e. one with 𝑛 number of filters (for convBlock 1), another with 2 × 𝑛 number of 

filters (for convBlock 2), and the third with 4 × 𝑛 number of filters (for convBlock 3). These convolutional 

blocks are preceded by the image input layer, and are followed by maxpooling, fully connected, softmax, and 

classification layers.  

 

Table 1 Optimized factors 
Optimized factors Strategy Search range 

Learning rate Directly optimized  [1e-4, 5e-1] 

Weight decay Directly optimized [1e-5, 5e-2] 

Depth of each convolutional block Directly optimized [1, 3] 

Initial number of filters Indirectly optimized, 

calculated using Equation (24) 

[18, 32] 

Weights for each convolutional block and 

the fully connected layer 

Indirectly optimized [-1, 1] 
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The CNN model classifies the input data samples into two classes, i.e. benign and melanoma. The initial basic 

CNN model shown in Figure 4 has depth=1 for each type of convolutional blocks. The generation of the 

evolving deep learning model starts with the abovementioned network structure, and identifies two hyper-

parameters, and the optimal depths of different convolutional blocks and their associated weights and number of 

filters. The directly optimized operators as well as those indirectly optimized factors using HLPSO are listed in 

Table 1. 

 

The optimized network depth shown in Table 1 is shared by the three different convolutional blocks, i.e. the 

optimized CNN model has the same depth of three different types of convolutional blocks. Based on the 

identified optimal network depth, the initial number of filters, 𝜎, for convolutional block 1 is calculated using 

Equation (24).  

 𝜎 =  𝑟𝑜𝑢𝑛𝑑 ( 𝐶√𝐵𝑙𝑜𝑐𝑘𝐷𝑒𝑝𝑡ℎ)                                                           (24) 
 

where 𝐵𝑙𝑜𝑐𝑘𝐷𝑒𝑝𝑡ℎ denotes the optimized depth of each convolutional block and 𝐶 = 32 is a constant variable 

to determine the overall network flexibility and the size of the network parameters. The 𝐵𝑙𝑜𝑐𝑘𝐷𝑒𝑝𝑡ℎ variable 

determines the depth of the networks. Specifically, since the network adopts the same depth, i.e. 𝐵𝑙𝑜𝑐𝑘𝐷𝑒𝑝𝑡ℎ, 
for three different types of convolutional blocks, the total number of convolutional layers in the network is 𝐵𝑙𝑜𝑐𝑘𝐷𝑒𝑝𝑡ℎ × 3. Moreover, in this study, we intend to make the number of filters in each convolutional layer 

proportional to 
1√𝐵𝑙𝑜𝑐𝑘𝐷𝑒𝑝𝑡ℎ. In this way, the networks with different optimized block depths may have a similar 

number of network parameters and require similar computational cost in each iteration. To enhance network 

flexibilities, convBlock 1 utilizes 𝜎 number of filters, while convBlock 2 and convBlock 3 employ 

comparatively higher numbers of filters, i.e. 2𝜎 and 4𝜎 numbers of filters, respectively. A larger setting of the 

constant variable 𝐶 can also be employed to obtain a larger initial number of filters 𝜎 to increase the network 

flexibility and the number of network parameters. As shown in Table 1, the search of the optimized block depth, 𝐵𝑙𝑜𝑐𝑘𝐷𝑒𝑝𝑡ℎ, has the search range of [1, 3]. This search range can be further extended to generate deeper 

networks. 

 

HLPSO is used to optimize the factors shown in Table 1. Each particle represents a possible CNN structure and 

the two recommended hyper-parameters. We split each skin lesion data set into 60:20:20 as the training, 

validation, and test sets. The fitness evaluation of each particle is calculated using the confusion matrix measure 

(i.e. the mean of diagonal results in the confusion matrix) of each identified CNN model for the validation set. 

The setting of HLPSO-based deep network generation is as follows, i.e. dimension=3 (learning rate, weight 

decay, and depth of each convolutional block), and the maximum number of function evaluations=population 

(30) × iterations (10). As illustrated in Table 1, the search boundaries for each optimized element are provided. 

As an example, the hyper-parameters, such as learning rate and weight decay, are assigned to the search ranges 

of [1e-4, 5e-1] and [1e-5, 5e-2], respectively. The block depth has the search range of [1, 3]. The initial number 

of filters (i.e. the number of filters for convBlock 1) is generated using Equation (24) based on the optimized 

block depth. Therefore, the number of filters for convBlock 1 is in the range of [18, 32], while the numbers of 

filters for convBlock 2 and convBlock 3 are 2 and 4 times of those of convBlock 1, respectively. As such, the 

numbers of filters for convBlock 2 and convBlock 3 are in the ranges of [36, 64] and [72, 128], respectively. 

 

Owing to complexity of the training process, we resize the input image to 32×32 to achieve the best trade-off 

between performance and computational efficiency. The generated evolving CNNs are compared with those 

devised by other search methods and the default structure shown in Figure 4 (where network depth=1 for each 

block, learning rate=0.01 (MATLAB default setting) and regularization factor=0.0001 (MATLAB default 

setting)). Besides the abovementioned optimized explicit factors, millions of weights associated with different 

depths of the three types of convolutional layers and their associated other learning layers, and the fully 

connected layer are also optimized. We discuss the detailed evaluation results of the optimized deep CNNs using 

two skin lesion data sets in Section 7. 

 

6. FEATURE SELECTION & ENSEMBLE LESION CLASSIFICATION 

Besides the first deep CNN based lesion classification system, the second system employs HLPSO-based feature 

selection and ensemble classifiers for lesion classification. After segmenting the skin lesions, clinically 

important shape and colour features are extracted from the lesion and skin regions according to the Asymmetry, 

Border, Colour, Diameter, and Enlargement (ABCDE) guideline. A total of 14 shape and 133 colour features are 

extracted. The shape features include area, extent, solidity, perimeter, asymmetry index, compactness index, 

border irregularity index, etc, while the colour features include colour ratio, entropy, variance, Principal 



Component Analysis variance, Tamura coarseness, differences in lightness, Chroma, colour and Hue, etc [32]. A 

new texture descriptor, combining Kirsch Compass Masks [55] with a LBP variant, i.e. SLBP [56], is also used 

for feature extraction. The Kirsch compass kernel is a non-linear edge detector, which identifies the maximum 

edge strength in eight pre-determined directions, namely north, north west, west, south west, south, south east, 

east, and north east. Specifically, it takes a single mask and rotates it to the above eight major compass 

orientations at 45-degree intervals. The Kirsch operator is applied to the segmented lesion regions to extract the 

edges through all eight compass directions. The edge magnitude of the Kirsch operator is calculated as the 

maximum magnitude across all directions [55].  

 

The Kirsch operator is able to provide additional edge information for the segmented lesions, in order to further 

improve lesion boundaries. Texture features are subsequently extracted from both the segmented lesions and 

edge responses generated by the Kirsch operator (see Figure 5). 

 

 
Figure 5 Pipeline processing for texture feature extraction (Top: 1. the original image, 2. GT (or generated) 

mask, 3. segmented lesion sub-image, 4. extracted texture features for the whole segmented lesion region. 

Bottom: 1. segmented lesion sub-image, 2. generated Kirsch compass masks, 3. edge response produced by the 

Kirsch operator, 4. extracted texture features for the detected edges.) 

 

We employ SLBP for texture description. While the original LBP operator is efficient in extracting local texture 

features, it tends to lose neighbourhood contrast and global discriminative information. The SLBP descriptor is 

able to generate a number of binary string outputs for each pixel position to overcome such limitation. It is 

therefore more efficient in detecting fuzzy characteristics of the pixel neighbourhood by generating a 

distribution of binary patterns. It is used in this research to extract texture features from the segmented lesions, 

as well as edge responses generated by the Kirsch operator. These two texture feature vectors are concatenated 

to form the final texture outputs. Figure 5 shows the pipeline processing for texture generation. A texture feature 

vector of 1062 dimensions is obtained for each lesion image. 

 

After extracting a variety of shape, colour and texture features, HLPSO is used to identify the most significant 

characteristics from each feature vector. The cost function for discriminative feature selection is defined in 

Equation (25) [21, 25]. Both classification performance and the number of selected features are taken into 

account in the fitness evaluation to measure the significance of each selected feature subset. In this case, we 

employ Geometric Mean (GM) as the performance indicator for discriminative feature selection. HLPSO is used 

to maximize the classification performance and minimize the number of selected features.  

 𝑓(𝑥) = 𝑤𝐺𝑀 × 𝐺𝑀𝑥 + 𝑤𝑓 × (𝑛𝑢𝑚𝑏𝑒𝑟_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑥)−1      (𝑤𝑓= 1 − 𝑤𝐺𝑀)                         (25) 

 

where 𝑤𝐺𝑀 and 𝑤𝑓 denote the weights for GM performance and the number of selected features, respectively. 

Since classification performance has a higher priority in fitness evaluation, 𝑤𝐺𝑀 has a higher score (e.g. 0.9) 

than that (e.g. 0.1) of 𝑤𝑓.  

 

HLPSO-based feature selection is conducted separately for shape and colour as well as texture features. Two 

ensemble classifiers are formulated for benign/melanoma lesion classification. Each ensemble classifier consists 

of two base models dedicated to the optimized shape and colour as well as texture features, respectively. We 

employ KNN and SVM as the base classifiers in the two ensemble models, respectively. To ensure a fair 

comparison, the default settings of the KNN and SVM classifiers are used for the evaluation of the optimized 

feature subsets identified by each search method. The detailed evaluation results for ensemble lesion 

classification are discussed in Section 7. 



 

7. EXPERIMENTAL STUDIES 

We employ two dermoscopic skin lesion data sets for evaluation of the CNN and ensemble classification 

models. The first data set is a combined data set which consists of dermoscopic lesion images extracted from 

two well-known databases, i.e. Dermofit Image Library [57] and PH2 [58]. It is composed of 270 benign and 

214 melanoma lesion images. The benign subset comprises 190 and 80 images from Dermofit Image Library 

and PH2, whereas the malignant subset comprises 174 and 40 images from Dermofit Image Library and PH2 

respectively. The second data set is the ISIC 2017 data set [59]. A total of 550 (275 benign and 275 melanoma) 

images from ISIC 2017 are randomly selected for evaluating lesion segmentation, while a subset of 400 (200 

benign and 200 melanoma) images with reasonable Jaccard scores for lesion segmentation is selected for 

evaluation of the two proposed systems in lesion classification. 

 

Different PSO and FA variants, i.e. Enhanced Leader PSO (ELPSO) [60], Autonomous Group PSO (AGPSO) 

[61], Dynamic Neighbourhood Learning PSO (DNLPSO) [62], Genetic PSO (GPSO) [63], GMPSO [21], FA 

with neighbourhood attraction (NaFA) [64], CFA1 [22], CFA2 [65], a modified FA (MFA) [66], FA with a 

variable step size (VSSFA) [67], as well as classical search methods, i.e. PSO, FA and Moth-Flame 

Optimization (MFO) [51], are implemented for comparison. We inherit the parameter settings of these classical 

methods and PSO and FA variants from their original studies, as shown in Table 2. The setting of our model is 

identified via trial and error to achieve the best trade-off between model performance and computational 

efficiency. 

 

Owing to the variations and complexities of the problem domains, search dimensions, and model convergence 

speed, we have adopted different experimental settings for the following four optimization tasks, i.e. (1) basic 

and complex benchmark functions, (2) centroid enhancement for image segmentation, (3) deep architecture 

generation and (4) discriminative feature selection for ensemble classification. In addition, to ensure a fair 

comparison, we have employed the same number of Maximum Fitness Evaluations (MaxFEs) as the termination 

criterion for all the methods in each optimization task. In other words, all the algorithms terminate when the 

number of MaxFEs is reached under each experimental setting. 

 

Table 2 Parameter settings of different methods 
Method Parameter setting 

PSO [19] maximum velocity=0.6, inertia weight=0.5, acceleration constants 𝑐1= 𝑐2= 1.5 

FA [20] initial attractiveness=1.0, absorption coefficient=1.0, Levy’s index=1.5, 
randomization parameter=0.5 

MFO [51] Use adaptive parameter settings 

ELPSO [60] 𝑐1=𝑐2=2, standard deviation of Gaussian mutation=1, scale parameter of Cauchy 

mutation=2, scale factor of DE-based mutation=1.2, inertia weight=0.9−(0.9−0.4)×(k

−1)/(MaxGeneration−1), where k and MaxGeneration represent the current and 

maximum iteration numbers, respectively. 

AGPSO [61] maximum velocity=0.6, adaptive decreasing 𝑐1 and increasing 𝑐2 over generations, 

inertia weight=0.9−(0.9−0.4)×(k)/(MaxGeneration), where k and MaxGeneration 

represent the current and maximum iteration numbers, respectively. 

DNLPSO [62] 𝑐1=𝑐2=1.49445, refreshing gap=3, regrouping period=5, inertia weight=0.9−(0.9−

0.4)×(k−1)/(MaxGeneration−1), where k and MaxGeneration represent the current 

and maximum iteration numbers, respectively. 

GPSO [63] maximum velocity=0.6, inertia weight=0.9, acceleration constants 𝑐1 = 2.6, 𝑐2 = 1.5 

GMPSO [21] maximum velocity=0.6, inertia weight=0.5, acceleration constants 𝑐1 = 𝑐2 = 1.5, 
standard deviation of Gaussian distribution=1, scaling factor of Cauchy 

distribution=2, crossover probability=0.6, mutation probability=0.05 

NaFA [64] attractiveness=(1 − 0.2) × 𝑒−𝛾𝑟𝑖𝑗2 + 0.2, absorption coefficient=1.0, Levy’s 

index=1.5, and randomization parameter 𝛼(𝑡 + 1) = ( 19000)1𝑡 × 𝛼(𝑡) where 𝑡 is the 

current iteration. 

CFA1 [22] initial attractiveness=1.0, absorption coefficient=1.0, Levy’s index=1.5, 
randomization parameter=Logistic map  

CFA2 [65] attractiveness=Gauss map, absorption coefficient=1.0, Levy’s index=1.5, 
randomization parameter=0.5 

MFA [66] initial attractiveness=1.0, absorption coefficient=1.0, Levy’s index=1.5, 
randomization parameter=0.5 

VSSFA [67] initial attractiveness=1.0, absorption coefficient=1.0, Levy’s index=1.5, 
randomization parameter=0.4/(1+exp(0.015*(k-MaxGeneration)/3)), where k and 

MaxGeneration represent the current and maximum iteration numbers, respectively. 

HLPSO maximum velocity=0.6, inertia weight=0.65, acceleration constants 𝑐1=𝑐2=2.5, 

attractiveness=(1 − 0.2) × 𝑒−𝛾𝑟𝑖𝑗2 + 0.2, absorption coefficient=1.0, Levy’s 

index=1.5, and randomization parameter 𝛼′ = 𝛼′ × (10−40.9 ) 1MaxGeneration
 



 

7.1 Evaluation Using Classical Benchmark Functions and CEC 2014 Test Suite 
Before performing image segmentation, deep architecture generation, and feature selection for ensemble lesion 

classification, we first employ a set of 11 classic benchmark functions and the well-known CEC 2014 test suite 

[68] for evaluation, in order to ascertain the efficiency of the proposed HLPSO model. 

 

Firstly, the selected 11 classical benchmark functions are defined in Table 3, which represent challenging 

artificial landscapes with varied difficulties. They include unimodal mathematical landscapes with single global 

minima such as F2, and F5-F10, as well as multimodal benchmark functions with multiple local minima such as 

F1, F3, F4, and F11. The following experimental settings are employed for model evaluation, i.e. the number of 

MaxFEs=25,000, dimension=30 and trials=30. All the methods terminate when reaching the number of MaxFEs. 

Table 4 illustrates the detailed empirical and Wilcoxon rank sum test results [33], where mean, min, max, std 

and RS denote the mean, minimum, maximum, standard deviation, and rank sum test results, respectively. The 

symbols of ‘+’, ‘=’ and ‘-’ are used to indicate whether HLPSO is significantly better than, the same, or worse 

than other baseline methods based on the Wilcoxon rank sum test. Similar symbols are also used in subsequent 

tables for performance analysis. 

 

Table 3 Unimodal and multimodal benchmark functions 

 Name Formula Range 

F1 Ackley 𝑓(𝑥) =  −𝑎 𝑒𝑥𝑝( −𝑏√1𝑑∑𝑥𝑖2𝑑
𝑖=1 ) − 𝑒𝑥𝑝(1𝑑∑cos(𝑐𝑥𝑖)𝑑

𝑖=1 )+ 𝑎 + 𝑒𝑥𝑝 (1) 
 a = 20, b = 0.2 and c = 2π 

[-15, 30] 

F2 Dixon-Price  𝑓(𝑥) =  (𝑥1 − 1)2 +∑𝑖𝑑
𝑖=2 (2𝑥𝑖2 − 𝑥𝑖−1)2 

[-10, 10] 

F3 Griewank 𝑓(𝑥) =∑ 𝑥𝑖24000𝑑
𝑖=1 −∏𝑐𝑜𝑠 (𝑥𝑖√𝑖)𝑑

𝑖=1 + 1 

[-600, 600] 

F4 Rastrigin 𝑓(𝑥) = 10𝑑 +∑[𝑥𝑖2 − 10cos (2𝜋𝑥𝑖)]𝑑
𝑖=1  

[-5.12, 5.12] 

F5 Rotated Hyper-

Ellipsoid  
𝑓(𝑥) =  ∑∑𝑥𝑗2𝑖

𝑗=1
𝑑
𝑖=1  

[-65, 65] 

F6 Rosenbrock 𝑓(𝑥) =  ∑[100(𝑥𝑖+1 − 𝑥𝑖2)2 + (𝑥𝑖 − 1)2]𝑑−1
𝑖=1  

[-5,10] 

F7 Sphere 𝑓(𝑥) =  ∑𝑥𝑖2𝑑
𝑖=1  

[-5.12, 5.12] 

F8 Sum of Different 

Powers  
𝑓(𝑥) =  ∑|𝑥𝑖|𝑖+1𝑑

𝑖=1  

[-1, 1] 

F9 Zakharov 𝑓(𝑥) =  ∑𝑥𝑖2𝑑
𝑖=1 + (∑0.5𝑖𝑥𝑖𝑑

𝑖=1 )2 + (∑0.5𝑖𝑥𝑖𝑑
𝑖=1 )4 

[-5, 10] 

F10 Sum Squares 𝑓(𝑥) =  ∑  𝑖𝑥𝑖2𝑑
𝑖=1  

[-5.12, 5.12] 

F11 Powell 𝑓(𝑥) =  ∑[(𝑥4𝑖−3 + 10𝑥4𝑖−2)2 + 5(𝑥4𝑖−1 − 𝑥4𝑖)2𝑑/4
𝑖=1 + (𝑥4𝑖−2 − 2𝑥4𝑖−1)4 + 10(𝑥4𝑖−3 − 𝑥4𝑖)4] 

[-4, 5] 

 

 

Table 4 Evaluation and statistical test results for basic benchmark functions with dimension=30 

 
  HLPSO AGPSO GPSO GMPSO DNLPSO ELPSO MFA NaFA CFA1 CFA2 VSSFA PSO FA MFO 

Ackley MEAN 9.18E-06 2.32E+00 1.77E+01 1.38E+00 3.06E+00 1.47E+01 2.02E+01 8.71E-03 1.58E+01 1.47E+01 1.04E+01 6.21E+00 4.09E-02 8.85E+00 

 MIN 3.02E-06 1.34E+00 1.67E+01 5.41E-04 3.33E-02 1.26E+01 2.02E+01 6.82E-03 1.48E+01 1.38E+01 9.53E+00 3.30E+00 2.02E-02 1.56E-01 

 MAX 2.18E-05 3.29E+00 1.84E+01 3.40E+00 9.56E+00 1.61E+01 2.02E+01 1.15E-02 1.66E+01 1.54E+01 1.11E+01 9.59E+00 8.16E-02 1.50E+01 

 STD 5.44E-06 4.58E-01 4.53E-01 8.37E-01 2.42E+00 8.88E-01 3.79E-15 1.05E-03 4.27E-01 4.34E-01 3.15E-01 1.48E+00 1.46E-02 5.14E+00 



 RS n/a + + + + + + + + + + + + + 

Dixon MEAN 1.80E-01 1.51E+01 5.11E+05 7.13E-01 2.83E+01 1.60E+05 1.62E+06 3.00E+00 1.53E+05 1.34E+05 1.07E+04 1.94E+00 1.93E+00 3.51E+04 

 MIN 1.13E-04 6.67E-01 2.24E+05 6.67E-01 6.67E-01 6.33E+04 1.62E+06 6.70E-01 9.16E+04 9.07E+04 4.59E+03 6.79E-01 6.89E-01 1.93E+00 

 MAX 2.49E+00 3.21E+02 8.56E+05 1.61E+00 3.66E+02 2.50E+05 1.62E+06 1.61E+01 1.93E+05 1.75E+05 1.54E+04 4.90E+00 1.00E+01 6.27E+05 

 STD 5.25E-01 5.97E+01 1.50E+05 1.77E-01 7.24E+01 4.03E+04 2.12E-10 3.93E+00 2.97E+04 1.91E+04 2.84E+03 1.51E+00 1.99E+00 1.21E+05 

 RS n/a + + + + + + + + + + + + + 

Griewank MEAN 5.91E-03 2.70E-02 2.85E+02 1.67E-02 4.22E+00 1.35E+02 6.08E+02 3.31E-03 1.71E+02 1.52E+02 4.37E+01 2.33E-01 5.60E-03 2.18E+01 

 MIN 5.68E-12 1.65E-04 1.21E+02 8.40E-09 1.37E-03 7.71E+01 6.08E+02 1.89E-03 1.23E+02 1.18E+02 3.18E+01 2.76E-02 3.64E-03 6.04E-01 

 MAX 2.95E-02 1.35E-01 4.01E+02 6.82E-02 6.14E+01 1.76E+02 6.08E+02 5.98E-03 2.12E+02 1.82E+02 5.24E+01 1.21E+00 7.80E-03 9.10E+01 

 STD 8.15E-03 2.96E-02 5.59E+01 2.11E-02 1.23E+01 2.49E+01 2.36E-13 1.00E-03 2.08E+01 1.62E+01 4.19E+00 2.74E-01 1.11E-03 3.87E+01 

 RS n/a + + + + + + = + + + + = + 

Rastrigin MEAN 1.69E+01 5.55E+01 3.55E+02 4.05E+01 9.77E+01 2.71E+02 4.29E+02 2.87E+01 2.76E+02 2.67E+02 2.12E+02 5.53E+01 2.40E+01 1.48E+02 

 MIN 3.98E+00 2.21E+01 3.14E+02 1.50E+01 2.86E+01 2.33E+02 4.29E+02 1.69E+01 2.40E+02 2.41E+02 1.94E+02 2.40E+01 1.22E+01 7.17E+01 

 MAX 2.89E+01 1.10E+02 3.85E+02 6.78E+01 1.79E+02 3.08E+02 4.29E+02 4.58E+01 3.11E+02 2.87E+02 2.28E+02 1.13E+02 4.09E+01 2.23E+02 

 STD 5.95E+00 1.87E+01 1.86E+01 1.22E+01 4.03E+01 1.86E+01 1.31E-13 6.53E+00 1.42E+01 1.11E+01 9.95E+00 1.70E+01 6.58E+00 3.98E+01 

 RS n/a + + + + + + + + + + + + + 

Rothyp MEAN 9.26E-09 6.66E-03 2.01E+05 2.78E-06 2.66E+02 9.68E+04 4.38E+05 5.50E+01 1.07E+05 1.00E+05 2.98E+04 5.68E+02 9.04E+00 1.51E+04 

 MIN 7.67E-10 1.00E-04 1.29E+05 2.34E-08 9.43E-04 6.20E+04 4.38E+05 1.85E-01 8.62E+04 7.23E+04 2.15E+04 7.21E-03 2.20E-01 4.37E+00 

 MAX 3.19E-08 5.61E-02 2.81E+05 2.65E-05 3.21E+03 1.20E+05 4.38E+05 4.10E+02 1.30E+05 1.15E+05 3.82E+04 1.69E+04 8.74E+01 6.34E+04 

 STD 8.06E-09 1.28E-02 3.80E+04 5.13E-06 6.35E+02 1.53E+04 2.09E-10 9.00E+01 1.13E+04 1.03E+04 4.24E+03 3.08E+03 1.85E+01 1.76E+04 

 RS n/a + + + + + + + + + + + + + 

Rosenbrock MEAN 2.35E+01 1.56E+02 3.70E+05 4.41E+01 1.19E+02 1.22E+05 2.84E+06 6.65E+01 1.19E+05 7.63E+04 7.92E+03 7.60E+01 5.02E+01 6.62E+04 

 MIN 2.68E-02 5.91E+00 1.28E+05 1.35E+01 2.41E+01 2.03E+04 2.84E+06 2.59E+01 3.61E+04 3.99E+04 3.49E+03 2.79E+00 2.73E+01 3.15E+01 

 MAX 1.37E+02 2.53E+03 6.34E+05 9.65E+01 4.20E+02 1.97E+05 2.84E+06 2.10E+02 1.70E+05 1.10E+05 1.10E+04 3.24E+02 1.28E+02 2.01E+05 

 STD 3.33E+01 4.49E+02 1.21E+05 2.72E+01 9.50E+01 3.95E+04 5.74E-10 5.58E+01 2.87E+04 1.63E+04 1.84E+03 7.59E+01 3.69E+01 5.81E+04 

 RS n/a + + + + + + + + + + + + + 

Sphere MEAN 3.58E-10 1.56E-06 8.31E+01 2.23E-09 5.65E-01 4.20E+01 1.77E+02 6.88E-06 5.00E+01 4.29E+01 1.23E+01 2.46E-02 1.41E-03 3.50E+00 

 MIN 2.80E-11 1.29E-08 4.09E+01 4.70E-11 4.68E-10 2.43E+01 1.77E+02 4.37E-06 3.82E+01 3.05E+01 9.32E+00 7.56E-03 2.19E-04 2.36E-04 

 MAX 2.09E-09 2.10E-05 1.08E+02 2.77E-08 1.13E+01 5.17E+01 1.77E+02 1.23E-05 6.13E+01 5.39E+01 1.49E+01 8.37E-02 2.80E-03 2.62E+01 

 STD 4.66E-10 3.95E-06 1.46E+01 5.04E-09 2.11E+00 7.24E+00 2.24E-14 2.01E-06 6.25E+00 6.31E+00 1.44E+00 1.56E-02 7.17E-04 9.06E+00 

 RS n/a + + + + + + + + + + + + + 

Sumpow MEAN 3.36E-24 7.05E-17 1.37E-01 1.19E-13 1.71E-08 1.29E-02 5.82E-01 1.09E-07 9.38E-03 6.99E-03 2.09E-04 1.73E-05 2.21E-07 2.51E-11 

 MIN 3.53E-28 1.06E-22 2.43E-02 6.59E-15 1.13E-30 2.64E-04 5.82E-01 7.10E-09 1.21E-03 6.90E-04 3.36E-05 1.83E-06 3.01E-08 2.83E-15 

 MAX 3.80E-23 2.04E-15 4.85E-01 3.75E-13 1.83E-07 3.66E-02 5.82E-01 4.41E-07 2.39E-02 1.43E-02 4.45E-04 1.09E-04 6.74E-07 1.54E-10 

 STD 8.61E-24 3.73E-16 1.22E-01 1.09E-13 4.37E-08 9.36E-03 1.34E-16 1.10E-07 4.77E-03 2.90E-03 1.01E-04 2.09E-05 1.61E-07 4.28E-11 

 RS n/a + + + + + + + + + + + + + 

Zakharov MEAN 1.61E+01 7.15E+01 4.72E+02 4.10E+01 1.29E+02 3.39E+02 8.89E+02 3.56E+01 3.76E+02 3.28E+02 2.41E+02 1.35E+02 2.50E+01 1.99E+02 

 MIN 7.03E+00 2.60E+01 4.35E+02 2.12E+01 4.84E+01 2.92E+02 8.89E+02 1.49E+01 3.50E+02 2.88E+02 2.07E+02 8.38E+01 1.43E+01 1.08E+02 

 MAX 2.98E+01 1.26E+02 5.04E+02 8.95E+01 2.58E+02 3.88E+02 8.89E+02 6.37E+01 3.99E+02 3.59E+02 2.65E+02 2.63E+02 5.22E+01 2.95E+02 

 STD 6.44E+00 2.55E+01 1.89E+01 1.43E+01 6.00E+01 2.16E+01 3.33E-13 1.27E+01 1.55E+01 1.83E+01 1.28E+01 4.10E+01 7.51E+00 4.84E+01 

 RS n/a + + + + + + + + + + + + + 

Sumsqu MEAN 5.08E-09 8.74E-01 1.09E+03 7.56E-08 1.72E+01 5.52E+02 2.74E+03 2.16E-01 6.53E+02 6.19E+02 1.82E+02 2.49E-01 5.18E-01 7.18E+01 

 MIN 8.63E-11 1.31E-06 7.75E+02 1.19E-10 4.15E-05 2.50E+02 2.74E+03 2.18E-03 4.46E+02 3.92E+02 1.34E+02 1.34E-02 4.57E-02 1.17E-02 

 MAX 2.57E-08 2.62E+01 1.56E+03 1.13E-06 2.86E+02 7.71E+02 2.74E+03 1.60E+00 8.89E+02 7.41E+02 2.22E+02 5.16E+00 1.51E+00 2.90E+02 

 STD 6.37E-09 4.79E+00 1.89E+02 2.20E-07 6.13E+01 1.13E+02 5.47E-13 3.38E-01 9.75E+01 7.65E+01 1.98E+01 9.35E-01 4.51E-01 7.62E+01 

 RS n/a + + + + + + + + + + + + + 

Powell MEAN 2.03E-03 1.75E+01 4.22E+03 3.79E-03 3.66E+01 1.50E+03 8.55E+03 2.50E+00 1.90E+03 1.43E+03 3.04E+02 8.81E-02 4.88E+00 5.17E+02 

 MIN 4.95E-04 3.69E-03 1.59E+03 8.22E-04 1.25E-03 4.84E+02 8.55E+03 6.84E-02 1.03E+03 5.04E+02 2.04E+02 1.36E-02 1.43E+00 1.35E+00 

 MAX 5.10E-03 1.04E+02 5.74E+03 1.40E-02 9.17E+02 3.19E+03 8.55E+03 6.66E+00 2.37E+03 1.89E+03 4.03E+02 8.87E-01 1.61E+01 3.42E+03 

 STD 1.16E-03 3.64E+01 9.80E+02 2.78E-03 1.66E+02 6.75E+02 1.01E-12 1.71E+00 3.23E+02 3.07E+02 4.63E+01 1.59E-01 3.50E+00 7.95E+02 

 RS n/a + + + + + + + + + + + + + 

 

As shown in Table 4, HLPSO shows great efficiency in solving these unimodal and multimodal benchmark 

functions, and outperforms the advanced PSO and FA variants and classical search methods in most of the test 

cases significantly. The exception is for Griewank, where HLPSO shows similar result distributions to those of 

NaFA and FA over a set of 30 runs. 

 

Secondly, the CEC 2014 test suite has been employed to further ascertain the model efficiency. This test suite 

represents various complex minimization problems, and contains a total of 30 test functions including 3 rotated 

unimodal, 13 shifted and rotated multimodal, 6 hybrid and 8 composition functions with the search range of [-

100, 100]. We have employed the following experimental settings for evaluation, i.e. the number of 

MaxFEs=25,000, dimension=30 and trials=30. All the methods terminate when the number of MaxFEs is 

reached. Table 5 tabulates the detailed empirical and statistical test results.  

 

Table 5 Evaluation and statistical test results for CEC 2014 benchmark functions with dimension=30 

 
  HLPSO AGPSO GPSO GMPSO DNLPSO ELPSO MFA NaFA CFA1 CFA2 VSSFA PSO FA MFO 

F1 MEAN 5.27E+02 6.21E+06 6.17E+08 3.75E+06 4.63E+06 1.30E+09 1.18E+07 1.84E+07 4.76E+08 2.54E+07 2.09E+07 6.17E+08 8.38E+06 7.65E+07 

 MIN 4.88E+02 6.36E+05 2.92E+08 2.59E+05 3.71E+05 8.28E+08 4.88E+06 5.76E+06 1.51E+08 4.67E+06 3.01E+06 3.15E+08 3.75E+06 7.79E+06 

 MAX 1.73E+03 1.99E+07 8.28E+08 2.33E+07 1.55E+07 1.63E+09 2.64E+07 3.17E+07 6.75E+08 1.49E+08 8.40E+07 1.04E+09 2.80E+07 4.05E+08 

 STD 4.01E+00 5.38E+06 1.18E+08 4.14E+06 3.43E+06 2.37E+08 5.33E+06 7.04E+06 1.14E+08 2.76E+07 1.89E+07 2.01E+08 4.34E+06 8.14E+07 

 RS n/a + + + + + + + + + + + + + 

F2 MEAN 2.84E+02 5.04E+03 5.22E+10 2.66E+04 4.11E+07 6.25E+10 5.90E+06 9.56E+04 2.80E+10 7.10E+06 7.31E+08 5.04E+10 2.42E+04 3.95E+09 

 MIN 2.01E+02 4.58E+02 3.30E+10 4.89E+02 2.82E+02 4.97E+10 6.53E+05 6.60E+04 2.14E+10 6.28E+05 7.33E+03 2.38E+10 1.14E+04 1.08E+06 

 MAX 3.92E+02 1.95E+04 6.95E+10 5.12E+05 6.07E+08 7.14E+10 2.47E+07 1.47E+05 3.27E+10 2.26E+07 1.08E+10 7.19E+10 4.37E+04 2.00E+10 

 STD 3.99E-02 4.58E+03 9.60E+09 9.19E+04 1.33E+08 4.91E+09 5.40E+06 2.02E+04 2.99E+09 5.43E+06 2.05E+09 1.15E+10 8.39E+03 6.17E+09 

 RS n/a + + + + + + + + + + + + + 

F3 MEAN 3.99E+02 1.14E+04 2.03E+05 1.12E+04 2.61E+04 1.24E+05 7.98E+04 5.78E+04 8.19E+04 3.32E+04 1.35E+05 2.41E+05 3.12E+04 7.37E+04 

 MIN 3.57E+02 6.25E+02 1.47E+05 4.59E+02 1.84E+03 6.72E+04 1.26E+04 3.46E+04 3.46E+04 1.43E+04 2.49E+04 1.17E+05 1.49E+04 1.40E+04 

 MAX 4.21E+02 6.36E+04 2.74E+05 6.33E+04 7.68E+04 1.80E+05 1.68E+05 8.81E+04 1.18E+05 5.58E+04 8.23E+05 3.55E+05 5.26E+04 1.64E+05 

 STD 4.94E-02 1.27E+04 2.94E+04 1.39E+04 2.06E+04 2.23E+04 4.03E+04 1.14E+04 2.05E+04 1.15E+04 1.49E+05 6.22E+04 9.46E+03 4.64E+04 

 RS n/a + + + + + + + + + + + + + 

F4 MEAN 4.06E+02 4.63E+02 7.59E+03 4.49E+02 5.43E+02 9.86E+03 5.51E+02 4.51E+02 3.48E+03 6.09E+02 6.92E+02 9.58E+03 4.28E+02 8.20E+02 

 MIN 4.00E+02 4.17E+02 3.85E+03 4.00E+02 4.23E+02 6.27E+03 4.60E+02 4.41E+02 1.99E+03 4.60E+02 4.46E+02 5.52E+03 4.25E+02 4.32E+02 

 MAX 4.10E+02 5.51E+02 1.29E+04 4.92E+02 2.17E+03 1.15E+04 6.70E+02 5.04E+02 4.71E+03 9.03E+02 1.99E+03 1.29E+04 4.29E+02 2.80E+03 

 STD 2.27E+00 3.89E+01 2.25E+03 2.90E+01 3.20E+02 1.31E+03 5.15E+01 1.51E+01 7.47E+02 8.60E+01 3.32E+02 2.13E+03 8.83E-01 4.99E+02 

 RS n/a + + + + + + + + + + + + + 

F5 MEAN 5.15E+02 5.20E+02 5.21E+02 5.21E+02 5.21E+02 5.21E+02 5.21E+02 5.20E+02 5.21E+02 5.20E+02 5.21E+02 5.21E+02 5.19E+02 5.20E+02 

 MIN 5.00E+02 5.20E+02 5.21E+02 5.20E+02 5.20E+02 5.21E+02 5.21E+02 5.20E+02 5.21E+02 5.20E+02 5.20E+02 5.21E+02 5.00E+02 5.20E+02 



 MAX 5.21E+02 5.20E+02 5.21E+02 5.21E+02 5.21E+02 5.21E+02 5.21E+02 5.21E+02 5.21E+02 5.21E+02 5.21E+02 5.21E+02 5.20E+02 5.21E+02 

 STD 8.81E+00 1.17E-01 4.79E-02 1.63E-01 3.24E-01 5.45E-02 7.20E-02 1.53E-01 5.72E-02 1.19E-01 2.07E-01 6.69E-02 3.63E+00 1.80E-01 

 RS n/a + + + + + + + + + = + + + 

F6 MEAN 6.01E+02 6.19E+02 6.40E+02 6.14E+02 6.14E+02 6.68E+02 6.34E+02 6.03E+02 6.38E+02 6.41E+02 6.37E+02 6.39E+02 6.01E+02 6.21E+02 

 MIN 6.00E+02 6.14E+02 6.34E+02 6.06E+02 6.06E+02 6.62E+02 6.26E+02 6.01E+02 6.36E+02 6.32E+02 6.23E+02 6.35E+02 6.01E+02 6.15E+02 

 MAX 6.04E+02 6.25E+02 6.43E+02 6.22E+02 6.34E+02 6.72E+02 6.46E+02 6.06E+02 6.41E+02 6.50E+02 6.61E+02 6.44E+02 6.02E+02 6.30E+02 

 STD 1.03E+00 2.74E+00 2.13E+00 3.37E+00 6.05E+00 2.16E+00 5.53E+00 1.48E+00 1.35E+00 4.67E+00 9.45E+00 2.39E+00 7.28E-01 3.67E+00 

 RS n/a + + + + + + + = + + + - + 

F7 MEAN 7.00E+02 7.00E+02 1.13E+03 7.00E+02 7.01E+02 1.29E+03 7.01E+02 7.00E+02 9.39E+02 7.01E+02 7.19E+02 1.17E+03 7.00E+02 7.32E+02 

 MIN 7.00E+02 7.00E+02 8.63E+02 7.00E+02 7.00E+02 1.11E+03 7.01E+02 7.00E+02 8.73E+02 7.00E+02 7.00E+02 8.50E+02 7.00E+02 7.01E+02 

 MAX 7.00E+02 7.00E+02 1.24E+03 7.00E+02 7.25E+02 1.40E+03 7.01E+02 7.00E+02 1.01E+03 7.01E+02 8.46E+02 1.51E+03 7.00E+02 9.37E+02 

 STD 7.79E-02 5.40E-02 8.12E+01 1.72E-02 4.70E+00 6.68E+01 8.13E-02 4.28E-02 3.41E+01 2.03E-01 3.63E+01 1.45E+02 2.93E-02 5.75E+01 

 RS n/a + + + + + + + + + + + + + 

F8 MEAN 8.06E+02 8.56E+02 1.15E+03 8.26E+02 8.68E+02 1.31E+03 8.87E+02 8.45E+02 1.07E+03 9.50E+02 9.48E+02 1.15E+03 8.26E+02 9.47E+02 

 MIN 8.02E+02 8.27E+02 1.10E+03 8.10E+02 8.20E+02 1.25E+03 8.46E+02 8.32E+02 1.03E+03 8.99E+02 8.49E+02 1.08E+03 8.16E+02 8.64E+02 

 MAX 8.15E+02 8.87E+02 1.20E+03 8.58E+02 9.46E+02 1.34E+03 9.55E+02 8.72E+02 1.11E+03 1.03E+03 1.11E+03 1.22E+03 8.67E+02 1.03E+03 

 STD 2.88E+00 1.50E+01 2.53E+01 1.20E+01 3.25E+01 2.12E+01 2.75E+01 1.09E+01 1.81E+01 3.34E+01 6.23E+01 3.45E+01 9.98E+00 3.88E+01 

 RS n/a + + + + + + + + + + + + + 

F9 MEAN 9.09E+02 1.00E+03 1.32E+03 9.75E+02 9.65E+02 1.51E+03 1.05E+03 9.49E+02 1.22E+03 1.09E+03 1.06E+03 1.31E+03 9.24E+02 1.11E+03 

 MIN 9.03E+02 9.57E+02 1.24E+03 9.38E+02 9.29E+02 1.46E+03 9.75E+02 9.27E+02 1.16E+03 9.97E+02 9.58E+02 1.22E+03 9.15E+02 1.06E+03 

 MAX 9.26E+02 1.05E+03 1.41E+03 1.03E+03 1.02E+03 1.56E+03 1.13E+03 9.86E+02 1.25E+03 1.16E+03 1.26E+03 1.41E+03 9.41E+02 1.18E+03 

 STD 4.42E+00 2.37E+01 3.97E+01 2.07E+01 2.44E+01 2.29E+01 3.99E+01 1.19E+01 2.18E+01 3.73E+01 7.02E+01 4.22E+01 6.35E+00 3.77E+01 

 RS n/a + + + + + + + + + + + + + 

F10 MEAN 1.05E+03 2.79E+03 9.67E+03 2.91E+03 4.71E+03 1.51E+04 5.12E+03 4.58E+03 8.63E+03 5.46E+03 7.78E+03 9.83E+03 2.93E+03 3.59E+03 

 MIN 1.00E+03 1.68E+03 8.70E+03 1.56E+03 2.21E+03 1.41E+04 2.62E+03 2.74E+03 7.36E+03 3.92E+03 3.97E+03 9.00E+03 1.44E+03 2.60E+03 

 MAX 1.46E+03 4.44E+03 1.05E+04 4.17E+03 9.01E+03 1.57E+04 7.44E+03 6.59E+03 9.19E+03 7.67E+03 1.52E+04 1.05E+04 4.24E+03 5.45E+03 

 STD 9.61E+01 5.51E+02 4.85E+02 6.65E+02 2.04E+03 3.97E+02 1.26E+03 9.15E+02 3.22E+02 9.06E+02 3.07E+03 4.06E+02 6.73E+02 6.37E+02 

 RS n/a + + + + + + + + + + + + + 

F11 MEAN 1.45E+03 4.55E+03 8.80E+03 4.35E+03 6.35E+03 1.51E+04 7.99E+03 5.22E+03 8.59E+03 8.02E+03 1.16E+04 8.55E+03 3.01E+03 5.12E+03 

 MIN 1.10E+03 2.93E+03 7.63E+03 3.31E+03 2.81E+03 1.41E+04 5.09E+03 3.23E+03 7.70E+03 6.15E+03 5.59E+03 7.77E+03 1.68E+03 3.68E+03 

 MAX 1.87E+03 7.01E+03 9.46E+03 5.81E+03 8.92E+03 1.58E+04 9.29E+03 6.96E+03 8.98E+03 1.05E+04 1.57E+04 9.20E+03 4.46E+03 6.36E+03 

 STD 2.26E+02 7.33E+02 3.72E+02 5.91E+02 1.84E+03 4.23E+02 1.08E+03 8.71E+02 3.35E+02 1.12E+03 3.27E+03 3.91E+02 6.82E+02 6.72E+02 

 RS n/a + + + + + + + + + + + + + 

F12 MEAN 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 

 MIN 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 

 MAX 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 

 STD 4.10E-01 3.28E-01 4.37E-01 6.42E-01 1.24E+00 4.20E-01 1.01E+00 2.85E-02 3.33E-01 4.28E-01 1.51E+00 3.49E-01 1.35E-01 1.67E-01 

 RS n/a + + + + + + - + + + + - + 

F13 MEAN 1.30E+03 1.30E+03 1.31E+03 1.30E+03 1.30E+03 1.31E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.31E+03 1.30E+03 1.30E+03 

 MIN 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03 

 MAX 1.30E+03 1.30E+03 1.31E+03 1.30E+03 1.30E+03 1.31E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.31E+03 1.30E+03 1.30E+03 

 STD 6.84E-02 1.38E-01 6.01E-01 1.18E-01 1.35E-01 1.99E-01 9.19E-02 9.08E-02 2.96E-01 1.33E-01 4.51E-01 8.44E-01 4.45E-02 1.18E+00 

 RS n/a + + + + + + + + + + + + + 

F14 MEAN 1.40E+03 1.40E+03 1.54E+03 1.40E+03 1.40E+03 1.57E+03 1.40E+03 1.40E+03 1.48E+03 1.40E+03 1.40E+03 1.55E+03 1.40E+03 1.42E+03 

 MIN 1.40E+03 1.40E+03 1.49E+03 1.40E+03 1.40E+03 1.53E+03 1.40E+03 1.40E+03 1.46E+03 1.40E+03 1.40E+03 1.48E+03 1.40E+03 1.40E+03 

 MAX 1.40E+03 1.40E+03 1.60E+03 1.40E+03 1.41E+03 1.60E+03 1.40E+03 1.40E+03 1.50E+03 1.40E+03 1.45E+03 1.64E+03 1.40E+03 1.48E+03 

 STD 8.67E-02 2.09E-01 2.75E+01 1.33E-01 2.52E+00 1.61E+01 1.66E-01 1.03E-01 1.03E+01 2.84E-01 1.01E+01 3.75E+01 8.49E-02 2.32E+01 

 RS n/a + + + + + + + + + + + + + 

F15 MEAN 1.50E+03 1.52E+03 1.42E+06 1.51E+03 1.51E+03 6.78E+05 1.55E+03 1.51E+03 1.21E+05 1.66E+03 1.56E+03 2.35E+06 1.50E+03 1.10E+05 

 MIN 1.50E+03 1.50E+03 1.17E+05 1.51E+03 1.50E+03 2.00E+05 1.52E+03 1.51E+03 3.26E+04 1.54E+03 1.51E+03 7.62E+04 1.50E+03 1.51E+03 

 MAX 1.50E+03 1.54E+03 6.41E+06 1.53E+03 1.54E+03 1.19E+06 1.62E+03 1.51E+03 2.57E+05 3.93E+03 1.67E+03 1.03E+07 1.51E+03 2.43E+06 

 STD 5.40E-01 9.08E+00 1.41E+06 6.04E+00 8.81E+00 2.09E+05 2.00E+01 1.62E+00 5.08E+04 4.31E+02 4.42E+01 2.05E+06 1.03E+00 4.41E+05 

 RS n/a + + + + + + + + + + + + + 

F16 MEAN 1.60E+03 1.61E+03 1.61E+03 1.61E+03 1.61E+03 1.62E+03 1.62E+03 1.62E+03 1.61E+03 1.62E+03 1.62E+03 1.61E+03 1.61E+03 1.61E+03 

 MIN 1.60E+03 1.61E+03 1.61E+03 1.61E+03 1.61E+03 1.62E+03 1.62E+03 1.62E+03 1.61E+03 1.62E+03 1.62E+03 1.61E+03 1.61E+03 1.61E+03 

 MAX 1.60E+03 1.61E+03 1.61E+03 1.61E+03 1.61E+03 1.62E+03 1.62E+03 1.62E+03 1.61E+03 1.62E+03 1.62E+03 1.61E+03 1.61E+03 1.61E+03 

 STD 4.96E-01 6.83E-01 1.65E-01 5.87E-01 7.65E-01 3.35E-01 7.13E-01 1.11E+00 1.93E-01 8.95E-01 1.14E+00 1.72E-01 8.10E-01 5.48E-01 

 RS n/a + + + + + + + + + + + + + 

F17 MEAN 3.72E+03 6.09E+05 1.87E+07 7.53E+05 4.29E+05 9.84E+07 2.12E+06 1.41E+06 2.01E+07 2.05E+06 1.79E+06 2.28E+07 5.48E+05 3.10E+06 

 MIN 1.95E+03 6.93E+04 8.02E+06 2.39E+04 3.01E+04 4.77E+07 4.07E+05 1.94E+05 1.01E+07 2.88E+05 2.59E+05 5.31E+06 4.47E+04 1.20E+05 

 MAX 9.72E+03 2.38E+06 3.88E+07 2.59E+06 1.49E+06 1.69E+08 6.03E+06 4.40E+06 3.89E+07 6.00E+06 5.84E+06 6.54E+07 1.45E+06 1.54E+07 

 STD 1.86E+03 5.07E+05 7.82E+06 6.02E+05 3.70E+05 2.97E+07 1.35E+06 9.35E+05 7.85E+06 1.58E+06 1.43E+06 1.18E+07 4.16E+05 4.05E+06 

 RS n/a + + + + + + + + + + + + + 

F18 MEAN 2.33E+03 5.87E+03 1.34E+09 4.28E+03 1.08E+04 4.85E+09 3.61E+03 4.77E+03 1.22E+09 5.43E+03 2.11E+07 1.67E+09 3.27E+03 1.64E+04 

 MIN 1.84E+03 2.02E+03 2.23E+08 1.86E+03 1.98E+03 3.56E+09 1.98E+03 2.40E+03 5.42E+08 2.14E+03 2.35E+03 6.43E+08 2.09E+03 2.19E+03 

 MAX 3.89E+03 1.65E+04 2.15E+09 1.44E+04 1.40E+05 6.25E+09 1.27E+04 1.29E+04 1.93E+09 2.08E+04 3.05E+08 2.72E+09 5.99E+03 2.86E+04 

 STD 6.30E+02 4.41E+03 4.13E+08 3.71E+03 2.52E+04 7.07E+08 2.18E+03 2.71E+03 3.67E+08 4.36E+03 7.57E+07 5.49E+08 1.36E+03 1.12E+04 

 RS n/a + + + + + + + + + + + + + 

F19 MEAN 1.90E+03 1.92E+03 2.17E+03 1.91E+03 1.92E+03 2.37E+03 1.95E+03 1.93E+03 2.06E+03 1.96E+03 1.94E+03 2.27E+03 1.92E+03 1.94E+03 

 MIN 1.90E+03 1.91E+03 2.09E+03 1.91E+03 1.91E+03 2.20E+03 1.92E+03 1.92E+03 2.02E+03 1.92E+03 1.92E+03 2.14E+03 1.91E+03 1.91E+03 

 MAX 1.90E+03 2.00E+03 2.31E+03 1.92E+03 1.99E+03 2.50E+03 2.00E+03 1.93E+03 2.13E+03 2.09E+03 2.00E+03 2.52E+03 1.92E+03 2.01E+03 

 STD 5.81E-01 2.19E+01 5.90E+01 3.08E+00 1.82E+01 7.86E+01 2.97E+01 2.49E+00 2.89E+01 4.11E+01 1.86E+01 8.73E+01 1.72E+00 3.57E+01 

 RS n/a + + + + + + + + + + + + + 

F20 MEAN 2.06E+03 1.10E+04 3.03E+05 1.82E+04 1.62E+04 1.97E+05 4.27E+04 2.26E+04 5.45E+04 2.94E+04 3.50E+04 4.83E+05 8.35E+03 4.36E+04 

 MIN 2.01E+03 3.12E+03 3.78E+04 6.81E+03 2.79E+03 6.36E+04 1.42E+04 5.38E+03 1.56E+04 1.06E+04 5.57E+03 1.05E+05 3.52E+03 1.72E+04 

 MAX 2.14E+03 2.84E+04 8.45E+05 4.14E+04 5.84E+04 5.06E+05 1.09E+05 7.34E+04 1.49E+05 5.20E+04 1.18E+05 1.06E+06 2.46E+04 8.45E+04 

 STD 2.86E+01 6.08E+03 1.87E+05 9.67E+03 1.41E+04 1.03E+05 2.22E+04 1.32E+04 2.81E+04 1.20E+04 2.86E+04 2.87E+05 4.38E+03 1.53E+04 

 RS n/a + + + + + + + + + + + + + 

F21 MEAN 2.79E+03 2.60E+05 5.21E+06 3.88E+05 2.62E+05 4.58E+07 1.20E+06 1.11E+06 7.84E+06 8.45E+05 1.09E+06 5.14E+06 1.49E+05 1.63E+06 

 MIN 2.17E+03 8.13E+03 1.61E+06 8.71E+03 2.24E+04 2.29E+07 1.47E+05 8.70E+04 2.46E+06 8.81E+04 1.54E+05 1.81E+06 1.02E+04 6.74E+04 

 MAX 6.80E+03 9.98E+05 1.56E+07 2.41E+06 1.92E+06 7.49E+07 3.53E+06 4.51E+06 1.28E+07 2.39E+06 2.50E+06 1.16E+07 5.36E+05 1.42E+07 

 STD 8.89E+02 2.12E+05 3.16E+06 5.06E+05 3.74E+05 1.24E+07 8.66E+05 1.05E+06 2.77E+06 5.79E+05 7.98E+05 2.60E+06 1.46E+05 2.62E+06 

 RS n/a + + + + + + + + + + + + + 

F22 MEAN 2.22E+03 2.58E+03 3.73E+03 2.63E+03 2.55E+03 5.42E+03 3.20E+03 2.78E+03 3.43E+03 3.29E+03 3.26E+03 3.87E+03 2.33E+03 2.89E+03 

 MIN 2.20E+03 2.26E+03 3.33E+03 2.23E+03 2.24E+03 4.88E+03 2.41E+03 2.26E+03 2.79E+03 2.72E+03 2.38E+03 3.43E+03 2.23E+03 2.26E+03 

 MAX 2.24E+03 3.17E+03 4.31E+03 3.08E+03 3.45E+03 6.08E+03 4.22E+03 3.25E+03 3.79E+03 4.04E+03 4.43E+03 4.27E+03 2.71E+03 3.38E+03 

 STD 1.02E+01 2.21E+02 2.40E+02 2.25E+02 2.57E+02 3.10E+02 3.47E+02 2.23E+02 2.12E+02 3.17E+02 5.55E+02 2.21E+02 1.33E+02 2.67E+02 

 RS n/a + + + + + + + + + + + + + 

F23 MEAN 2.50E+03 2.52E+03 2.97E+03 2.50E+03 2.50E+03 3.01E+03 2.50E+03 2.51E+03 2.77E+03 2.54E+03 2.54E+03 3.07E+03 2.50E+03 2.60E+03 

 MIN 2.49E+03 2.50E+03 2.76E+03 2.50E+03 2.50E+03 2.80E+03 2.50E+03 2.50E+03 2.69E+03 2.50E+03 2.50E+03 2.83E+03 2.50E+03 2.55E+03 

 MAX 2.50E+03 2.58E+03 3.15E+03 2.50E+03 2.55E+03 3.12E+03 2.50E+03 2.54E+03 2.86E+03 2.65E+03 2.63E+03 3.28E+03 2.52E+03 2.68E+03 

 STD 5.23E+00 2.53E+01 9.18E+01 6.08E-02 9.59E+00 6.74E+01 1.03E+00 1.07E+01 3.99E+01 3.90E+01 3.44E+01 1.20E+02 4.79E+00 3.22E+01 

 RS n/a + + + + + + + + + + + + + 

F24 MEAN 2.56E+03 2.63E+03 2.80E+03 2.62E+03 2.63E+03 2.88E+03 2.67E+03 2.65E+03 2.73E+03 2.68E+03 2.68E+03 2.85E+03 2.61E+03 2.66E+03 

 MIN 2.54E+03 2.61E+03 2.75E+03 2.61E+03 2.61E+03 2.86E+03 2.66E+03 2.65E+03 2.70E+03 2.66E+03 2.66E+03 2.79E+03 2.61E+03 2.61E+03 

 MAX 2.59E+03 2.64E+03 2.84E+03 2.65E+03 2.65E+03 2.91E+03 2.70E+03 2.66E+03 2.75E+03 2.72E+03 2.77E+03 2.92E+03 2.62E+03 2.73E+03 

 STD 1.29E+01 7.67E+00 2.42E+01 8.35E+00 1.03E+01 1.51E+01 1.02E+01 2.19E+00 1.10E+01 1.52E+01 2.58E+01 3.63E+01 2.59E+00 2.98E+01 

 RS n/a + + + + + + + + + + + + + 

F25 MEAN 2.69E+03 2.71E+03 2.75E+03 2.71E+03 2.70E+03 2.87E+03 2.72E+03 2.71E+03 2.76E+03 2.73E+03 2.72E+03 2.75E+03 2.70E+03 2.71E+03 

 MIN 2.67E+03 2.71E+03 2.72E+03 2.70E+03 2.70E+03 2.81E+03 2.70E+03 2.70E+03 2.74E+03 2.72E+03 2.70E+03 2.73E+03 2.70E+03 2.71E+03 

 MAX 2.70E+03 2.72E+03 2.79E+03 2.72E+03 2.71E+03 2.91E+03 2.73E+03 2.71E+03 2.77E+03 2.76E+03 2.77E+03 2.79E+03 2.71E+03 2.73E+03 



 STD 8.30E+00 3.71E+00 1.66E+01 4.64E+00 3.52E+00 2.49E+01 8.05E+00 2.83E+00 8.71E+00 1.04E+01 1.71E+01 1.50E+01 1.82E+00 7.05E+00 

 RS n/a + + + + + + + + + + + + + 

F26 MEAN 2.70E+03 2.72E+03 2.71E+03 2.76E+03 2.71E+03 2.71E+03 2.79E+03 2.80E+03 2.71E+03 2.75E+03 2.80E+03 2.73E+03 2.73E+03 2.71E+03 

 MIN 2.70E+03 2.71E+03 2.71E+03 2.70E+03 2.70E+03 2.71E+03 2.71E+03 2.80E+03 2.71E+03 2.71E+03 2.71E+03 2.71E+03 2.71E+03 2.71E+03 

 MAX 2.70E+03 2.80E+03 2.71E+03 2.80E+03 2.80E+03 2.71E+03 3.00E+03 2.80E+03 2.71E+03 2.81E+03 3.02E+03 3.00E+03 2.80E+03 2.71E+03 

 STD 3.56E-02 3.59E+01 9.92E-01 4.79E+01 1.74E+01 4.74E-01 5.29E+01 8.77E-01 3.52E-01 4.76E+01 1.21E+02 5.95E+01 4.11E+01 5.63E-01 

 RS n/a + + + + + + + + + + + + + 

F27 MEAN 3.11E+03 3.38E+03 3.75E+03 3.35E+03 3.28E+03 4.93E+03 4.07E+03 3.43E+03 3.88E+03 4.26E+03 4.08E+03 3.85E+03 3.25E+03 3.56E+03 

 MIN 3.10E+03 3.12E+03 3.32E+03 3.11E+03 3.11E+03 4.87E+03 3.18E+03 3.33E+03 3.66E+03 3.96E+03 3.65E+03 3.34E+03 3.16E+03 3.13E+03 

 MAX 3.13E+03 3.76E+03 3.97E+03 3.72E+03 3.84E+03 5.00E+03 4.30E+03 3.55E+03 4.05E+03 4.52E+03 4.66E+03 4.07E+03 3.42E+03 3.84E+03 

 STD 6.15E+00 2.50E+02 1.86E+02 2.05E+02 1.74E+02 3.32E+01 2.15E+02 5.60E+01 9.47E+01 1.11E+02 2.86E+02 1.69E+02 6.04E+01 2.06E+02 

 RS n/a + + + + + + + + + + + + + 

F28 MEAN 3.20E+03 4.33E+03 4.34E+03 3.26E+03 3.21E+03 8.63E+03 3.26E+03 4.03E+03 4.92E+03 5.81E+03 3.30E+03 4.52E+03 3.67E+03 3.65E+03 

 MIN 3.14E+03 3.82E+03 3.70E+03 3.15E+03 3.14E+03 7.30E+03 3.17E+03 3.87E+03 4.50E+03 4.45E+03 3.14E+03 3.85E+03 3.52E+03 3.54E+03 

 MAX 3.43E+03 5.11E+03 5.56E+03 3.48E+03 3.48E+03 9.80E+03 3.64E+03 4.91E+03 5.29E+03 7.68E+03 4.04E+03 5.68E+03 4.69E+03 3.84E+03 

 STD 7.83E+01 3.60E+02 4.19E+02 8.42E+01 8.03E+01 6.80E+02 8.89E+01 1.79E+02 2.33E+02 7.68E+02 1.84E+02 4.62E+02 2.58E+02 7.96E+01 

 RS n/a + + + + + + + + = + + + + 

F29 MEAN 3.29E+03 1.62E+06 3.99E+06 3.13E+03 3.15E+03 1.30E+08 3.16E+03 3.29E+04 1.53E+07 2.10E+07 3.92E+03 5.84E+06 1.31E+04 3.38E+05 

 MIN 3.12E+03 4.40E+03 1.90E+05 3.11E+03 3.11E+03 7.15E+07 3.12E+03 1.19E+04 8.63E+06 4.62E+03 3.13E+03 1.75E+06 5.63E+03 4.63E+03 

 MAX 3.92E+03 1.47E+07 1.09E+07 3.23E+03 3.34E+03 1.81E+08 3.24E+03 5.91E+04 2.61E+07 6.81E+07 1.40E+04 1.36E+07 2.13E+04 3.43E+06 

 STD 1.50E+02 3.52E+06 2.71E+06 3.22E+01 6.33E+01 2.56E+07 3.52E+01 9.88E+03 3.50E+06 2.61E+07 2.29E+03 2.64E+06 3.91E+03 8.75E+05 

 RS n/a + + - - + - + + + + + + + 

F30 MEAN 3.40E+03 5.88E+03 7.63E+04 4.15E+03 4.24E+03 2.35E+06 4.67E+03 2.34E+04 4.11E+05 1.29E+04 5.43E+03 1.59E+05 1.20E+04 1.02E+04 

 MIN 3.27E+03 4.28E+03 2.49E+04 3.31E+03 3.68E+03 1.12E+06 3.90E+03 8.70E+03 1.11E+05 5.61E+03 4.11E+03 4.38E+04 5.48E+03 5.84E+03 

 MAX 3.67E+03 1.21E+04 2.30E+05 4.98E+03 4.99E+03 3.28E+06 5.31E+03 4.84E+04 7.16E+05 4.40E+04 2.46E+04 8.29E+05 2.66E+04 6.32E+04 

 STD 1.03E+02 1.87E+03 4.56E+04 3.86E+02 2.95E+02 5.94E+05 3.78E+02 9.40E+03 1.47E+05 1.00E+04 3.64E+03 1.61E+05 5.21E+03 1.03E+04 

 RS n/a + + + + + + + + + + + + + 

 

As shown in Table 5, the results indicate that HLPSO achieves the best performances for 27 out of 30 functions, 

i.e. F1-F5, F7-F11, F13-F28, and F30, in comparison with those of all the baseline methods. GMPSO obtains the 

most optimal results for F29, while FA and NaFA perform the best for F6 and F12, respectively. To further 

indicate the significance of the proposed HLPSO model, the Wilcoxon rank sum test is conducted. The statistical 

results indicate that our model performs statistically better than the baseline methods in most of the test cases. 

The exceptions are for F5, F6 and F28, where the proposed HLPSO model shows similar result distributions to 

those of VSSFA, CFA1, and CFA2, respectively. In addition, HLPSO is statistically worse than GMPSO, 

DNLPSO, and MFA for F29, FA and NaFA for F12, and FA for F6, respectively. Overall, HLPSO shows great 

superiority over other methods in solving diverse complex rotated, shifted, hybrid and composition benchmark 

functions. 

 

7.2 Evaluation of Skin Lesion Segmentation 
We subsequently evaluate the HLPSO-based KM clustering model for skin lesion segmentation. The classical 

search methods, other PSO and FA variant models, as well as KM and FCM clustering algorithms are employed 

for performance comparison. The following experimental setting is employed, i.e. image size=200×200, number 

of cluster=2, and trials=30. All the search methods employ the same number of MaxFEs, i.e. population (20) × iteration (20), as the stopping criterion. Each search method is integrated with KM and the new cost function 

based on the within- and between-cluster variance for foreground background pixel classification. We employ 

484 and 550 images from the combined and the ISIC 2017 data sets, respectively, for segmentation evaluation. 

The Jaccard scores and the Wilcoxon rank sum test results (denoted as ‘RS’) are calculated for performance 

comparison. Table 6 tabulates the segmentation results for both the combined and the ISIC data sets.  

 

Table 6 Jaccard scores and statistical test results for skin lesion segmentation  

 
  HLPSO KM FCM AGPSO GPSO GMPSO DNLPSO ELPSO MFA NaFA CFA1 CFA2 VSSFA PSO FA MFO 

Combined MEAN 0.727 0.672 0.6502 0.6945 0.7133 0.6946 0.7072 0.7027 0.7109 0.693 0.7123 0.7069 0.6901 0.6957 0.6906 0.7139 

  RS n/a + + + + + + + + + + + + + + + 

ISIC MEAN 0.7315 0.685 0.6931 0.715 0.7132 0.7006 0.7122 0.6951 0.7107 0.6957 0.7049 0.7075 0.7138 0.6983 0.7051 0.6966 

  RS n/a + + + + + + + + + + + + + + + 

 

 

Table 7 Comparison with related studies for the ISIC data set in lesion segmentation 
Studies Methodology Segmentation results 

(Jaccard score) 

Yuan and Lo [5] Fully convolutional-deconvolutional networks 0.765 

Li and Shen [6] two fully convolutional 
residual networks+a lesion index calculation unit 

0.711 

Bi et al. [15] MResNet-Seg (Multi-scale)  0.760 

Ronneberger et al. [69] U-net 0.651 
Shelhamer et al. [70] FCN-8s 0.696 

Alvarez and Iglesias [7] KM+ensemble of regressions 0.679 

Wen [71] II-FCN  0.697 

This research HLPSO+KM+within- and between-cluster 

variance 

0.7315 

 
 



As indicated in Table 6, the HLPSO-based clustering model shows superior search capabilities in improving 

cluster centroids for pixel classification. In comparison with conventional KM and FCM models, it is insensitive 

to noise and centroid initialization, and achieves improved segmentation performance. It also outperforms all 

other baseline search methods statistically for foreground background pixel classification. The convergence 

curves for the combined and the ISIC data sets over a set of 30 runs are depicted in Figures 6-7.  

 

 
 

Figure 6 Convergence curves over a set of 30 runs for the combined data set for image segmentation (where 𝑥 

and 𝑦 axes denote the iteration number and the within- and between-cluster variance measure, respectively.)  

 

As shown in Figure 6, for the combined data set, most of the PSO variants operate with faster convergence rates 

than those of the FA methods over a set of 30 runs. The HLPSO-based clustering model shows the fastest 

convergence rate comparing with other clustering models incorporated with classical and advanced search 

methods. CFA1 and VSSFA have faster convergence speeds in comparison with those of other FA methods 

while AGPSO, ELPSO and DNLPSO converge faster than other PSO variants. Owing to the inclusion of diverse 

search strategies to mitigate premature convergence, all the PSO variants possess faster convergence rates in 

comparison with that of the original PSO algorithm, while the proposal of diverse strategies to overcome 

stagnation in the FA variants ascertains their search efficiency as compared with the original FA model. MFO 

also operates with a faster convergence speed in comparison with those of the original FA and PSO algorithms.  

 

 
 

Figure 7 Convergence curves over a set of 30 runs for the ISIC data set for image segmentation (where 𝑥 and 𝑦 

axes denote the iteration number and the within- and between-cluster variance measure, respectively.) 

 

Moreover, as illustrated in Figure 7, for the ISIC data set, owing to the embedding of diverse random walk 

strategies and a number of global search mechanisms, the proposed HLPSO model shows superior search 

efficiency and obtains a faster convergence speed than those of all the baseline methods. Equipped with a 



genetic crossover operator for the enhancement of swarm diversity, the GPSO model has a faster convergence 

speed over a set of 30 runs in comparison with those of other PSO variants whereas ELPSO operates with the 

slowest convergence rate. Guided by both neighbouring and global best experiences, the search process of MFA 

possesses better convergence capabilities in comparison with those of other FA methods with NaFA converging 

the slowest. Also, FA has a faster convergence rate, followed by those of MFO and PSO.  

 

Figure 8 depicts several example segmentation results of the proposed HLPSO model. As illustrated in Table 7, 

in comparison with related methods in the literature for the ISIC 2017 data set, the proposed clustering model is 

among top performers for lesion segmentation. It also does not require any training, and has a better trade-off 

between computational efficiency and model performance, in comparison with those of other existing supervised 

learning methods [5, 6, 15]. 

 

 
 

Figure 8 Example segmentation results using the HLPSO-based KM clustering model (Left: the mixed data set, 

Right: the ISIC data set. In each set, from left to right, 1. the original image, 2. GT mask, 3. segmented lesion 

output using the proposed clustering model) 

 

7.3 Evaluation of Evolving Deep CNNs for Lesion Classification 
Lesion images filtered using both the ground-truth (GT) masks and the segmentation outputs using the enhanced 

KM clustering are used for lesion classification. As such, the input images contain coloured lesion regions in the 

foreground with a black background. In short, only lesion information is used for melanoma classification in 

deep learning models. All the segmented lesion images for the mixed data set are used for lesion classification 

while for the ISIC data set, we select 400 segmented images with reasonable Jaccard scores for lesion 

classification task. The following experimental setting is used, i.e. image size=32×32, and dimension=3. To 

ensure a fair comparison, all the methods employ the same number of MaxFEs, i.e. population (30) × iteration 

(10), as the stopping criterion. The adaptive CNN models devised by HLPSO and other search methods are 

subsequently used for melanoma classification. A default CNN network, as shown in Figure 4 (where network 

depth=1, learning rate=0.01 (MATLAB default setting) and the regularization factor=0.0001 (MATLAB default 

setting)), is also employed for performance comparison. We employ 60:20:20 as the training, validation and test 

set ratio for each data set. 

 

7.3.1 Evaluation using the combined data set 
The combined data set is first used for evaluating deep architecture generation. The mean results of 30 

individual runs for each method are used as the main criterion for performance comparison. Table 8 shows the 

detailed results for the combined data set. The input lesion images filtered by the GT and segmented masks are 



denoted as ‘GT’ and ‘Seg’ cases, respectively. As indicated in Table 8, for both cases, the adaptive CNN models 

devised by HLPSO outperform those of other search methods and the default CNN network significantly in most 

cases. The lesion images filtered by the GT masks possess accurate lesion segmentation information for lesion 

classification while the input images filtered by the segmentation outputs using the extended KM clustering also 

carry significant discriminative information. They both lead to reasonable performances, with a higher accuracy 

rate obtained for GT filtered input images. 

 

Table 8 also tabulates the statistical Wilcoxon rank sum test results (denoted as ‘RS’) to indicate the 

effectiveness of the proposed model. With the GT filtered images as the inputs, the deep learning models 

generated by HLPSO show great superiority over those yielded by other search methods and the default 

network, except for those of GPSO, CFA2 and VSSFA, which have the same result distributions to those of 

HLPSO. With the input images filtered by the segmentation outputs, our adaptive CNNs also achieve improved 

performance as compared with those of others. The exceptions are for GMPSO, VSSFA, PSO, and FA based 

deep learning models, which achieve similar performances to those of the HLPSO model. 

 

Table 8 Classification and Wilcoxon rank sum test results for optimized CNNs using the combined data set 

  HLPSO AGPSO GPSO GMPSO DNLPSO ELPSO MFA NaFA CFA1 CFA2 VSSFA PSO FA MFO default 

GT MEAN 0.9137 0.8481 0.8871 0.7889 0.7980 0.6631 0.7569 0.8142 0.5876 0.8152 0.8788 0.8385 0.8159 0.8086 0.7495 
 RS n/a + = + + + + + + = = + + + + 

Seg MEAN 0.8317 0.7263 0.7865 0.7888 0.7046 0.6919 0.7185 0.7543 0.6120 0.7446 0.7768 0.7784 0.7818 0.7502 0.7446 

 RS n/a + + = + + + + + + = = = + + 

 

Figure 9 illustrates the convergence curves over a series of 30 runs for the mixed data set with GT filtered 

images for training and validation. HLPSO shows the fastest convergence rate in comparison with those of all 

the baseline models. All PSO models have comparatively faster convergence speeds in comparison with those of 

all the FA variants. The convergence speed of MFO is also faster than those of the original FA and its variant 

models. As mentioned earlier, GPSO employs a genetic crossover operator to increase swarm diversity. It 

converges faster than all other PSO variants. Besides GPSO, AGPSO with adaptive search parameters and the 

original PSO algorithm also show comparatively faster convergence speeds. Moreover, equipped with chaotic 

attractiveness coefficients, CFA1 and CFA2 possess better convergence rates than those of other FA variants. 

Furthermore the search process of PSO illustrates more efficient convergence capabilities in comparison with 

those of MFO and FA for deep architecture generation for this combined data set. The convergence curves for 

the mixed data set with the images filtered by the segmented masks show similar cases for all the algorithms. 

 

 
Figure 9 Convergence curves over a set of 30 runs for the combined data set for deep architecture generation 

(where 𝑥 and y axes denote the iteration number and classification performance, respectively.) 

 

Moreover, Table 9 shows the identified average learning rate, weight decay, and block depth for each method 

over a series of 30 runs for the mixed data set with GT segmented images as the inputs. The empirical results 

indicate that HLPSO, GPSO, and CFA2 generate comparatively smaller deep architectures owing to the 

identified smaller block depths for each convolutional block, as well as comparatively smaller learning rates and 

moderate weight decays. These configurations result in networks with sufficient capability of overcoming local 

optima. MFA also constructs comparatively smaller deep architectures but with comparatively larger learning 



rates and smaller weight decays. The empirical results indicate that the identified shallow networks with large 

learning rates and small penalties to large weights have constrained capabilities in feature learning, and are more 

likely to converge prematurely. On the other hand, ELPSO and CFA1 yield the largest networks with the largest 

block depths for each convolutional block, as well as comparatively larger learning rates. The experimental 

results indicate that such networks with large learning steps are more likely to converge to sub-optimal solutions 

with a more expensive training cost. More in-depth analysis on deep architecture generation is provided in 

Section 7.3.2. 

 

Table 9 The identified average optimal hyper-parameters over a series of 30 runs for the combined data set with 

GT filtered images as inputs 

 
  Accuracy Learning 

rate 

Weigh 

decay 

Block 

depth 

HLPSO mean 0.9137 2.47E-04 2.58E-02 2.2333 

 std. 2.67E-02 8.03E-04 1.75E-02 8.17E-01 

AGPSO mean 0.8481 4.78E-03 3.10E-02 2.3 

 std. 1.12E-01 1.33E-02 1.72E-02 8.37E-01 

GPSO mean 0.8871 1.00E-04 2.97E-02 2.0667 

 std. 3.26E-02 4.14E-20 2.02E-02 9.07E-01 

GMPSO mean 0.7889 2.12E-03 1.87E-02 2.4 

 std. 9.05E-02 6.34E-03 1.61E-02 8.55E-01 

DNLPSO mean 0.798 1.16E-02 3.52E-02 2.6333 

 std. 1.51E-01 2.04E-02 1.97E-02 4.90E-01 

ELPSO mean 0.6631 2.62E-02 2.28E-02 2.6667 

 std. 1.94E-01 1.59E-02 1.37E-02 5.47E-01 

MFA mean 0.7569 1.59E-02 1.75E-02 2.2 

 std. 1.91E-01 1.30E-02 1.19E-02 4.07E-01 

NaFA mean 0.8142 4.53E-03 2.32E-02 2.5667 

 std. 7.84E-02 5.09E-03 1.32E-02 5.04E-01 

CFA1 mean 0.5876 3.20E-02 3.50E-02 2.9333 

 std. 2.07E-01 5.47E-03 1.04E-02 2.54E-01 

CFA2 mean 0.8152 1.01E-03 2.37E-02 2.2 

 std. 6.74E-02 2.74E-03 1.11E-02 5.51E-01 

VSSFA mean 0.8788 2.72E-03 2.36E-02 2.4333 

 std. 8.00E-02 6.15E-03 1.17E-02 6.26E-01 

PSO mean 0.8385 2.29E-03 2.17E-02 2.4 

 std. 1.41E-01 8.78E-03 1.35E-02 8.14E-01 

FA mean 0.8159 7.29E-03 2.79E-02 2.5333 

 std. 1.23E-01 7.69E-03 1.25E-02 5.07E-01 

MFO mean 0.8086 1.90E-04 2.14E-02 2.3667 

 std. 4.69E-02 4.74E-04 1.77E-02 7.65E-01 

 

7.3.2 Evaluation using the ISIC data set 
The above experimental setting is also used for evaluation of the ISIC data set. The average confusion matrix 

performance over 30 individual runs for each method is also used for performance comparison. Table 10 

presents the classification and statistical test results (denoted as ‘RS’) for the ISIC data set. Again the lesion 

images filtered by both the GT masks and segmentation outputs are used for evaluating the optimized CNN 

models. As indicated in Table 10, the deep learning models devised by HLPSO achieve the best performances, 

and outperform all other networks statistically. In other words, when using the lesion images filtered by both the 

GT and the segmented masks, our adaptive CNN models outperform all other optimized models and the default 

network statistically. 

 

Table 10 Classification and Wilcoxon rank sum test results for optimized CNNs using the ISIC data set 

 
  HLPSO AGPSO GPSO GMPSO DNLPSO ELPSO MFA NaFA CFA1 CFA2 VSSFA PSO FA MFO default 

GT MEAN 0.7376 0.6314 0.6710 0.6525 0.5985 0.5744 0.5876 0.6629 0.5093 0.6722 0.6314 0.6571 0.6597 0.6476 0.6138 

 RS n/a + + + + + + + + + + + + + + 

Seg MEAN 0.7005 0.6519 0.6204 0.6103 0.6326 0.5880 0.6356 0.6549 0.5177 0.6225 0.6541 0.6301 0.6352 0.6441 0.6150 

 RS n/a + + + + + + + + + + + + + + 

 

Besides the above experiments, we have also incorporated a fine-tuning procedure into the optimization process 

of our model to further enhance its performance. Based on Fielding and Zhang [72], after the identification of 

the best performing deep neural network using the proposed HLPSO model, we combine the training and 

validation sets of each test data set into a larger training set and conduct fine-tuning of the optimized model 

using this larger data set for a number of epochs, in order to reduce any effect of overfitting. As indicated in 

Table 11, the results obtained after fine-tuning for both data sets show significant improvements. 

 



Table 11 Evaluation results of HLPSO with and without fine-tuning 

 
 HLPSO (before fine-tuning) HLPSO (after fine-tuning) 

Combined data set (GT) 0.9137 0.9537 

Combined data set (Segmented) 0.8317 0.8885 

ISIC data set (GT) 0.7376 0.8427 

ISIC data set (Segmented) 0.7005 0.7883 

 

Figure 10 illustrates the convergence curves over a series of 30 runs for the ISIC data set with the images filtered 

by the GT masks for training and validation. HLPSO shows the fastest convergence speed in comparison with 

those of all the baseline methods. The original and modified PSO algorithms converge faster in comparison with 

the original FA and its variant models. The convergence speed of MFO is between those of PSO and FA 

variants. Moreover, GMPSO, which incorporates subswarm strategies, GA operators and probability 

distributions, has the fastest convergence speed among the PSO variants. Besides GMPSO, GPSO and DNLPSO 

show better convergence capabilities than those of other PSO models. Also owing to the employment of optimal 

solutions from a dynamic neighbourhood, the convergence speed of NaFA is the fastest among the FA variants. 

MFA and FA also show subsequent more efficient convergence rates than those of other FA models. The 

convergence curves of the ISIC data set with the images filtered by the segmented masks show similar cases for 

all the algorithms. 

 

 
Figure 10 Convergence curves over a set of 30 runs for the ISIC data set for deep architecture generation (where 𝑥 and 𝑦 axes denote the iteration number and classification performance, respectively.) 

 
Further analysis on the identified hyper-parameters for the ISIC data sets is provided. The optimal hyper-

parameters identified over a set of 30 runs for the ISIC data set with GT filtered images are listed in Table 12. 

 

Table 12 The identified average optimal hyper-parameters over a series of 30 runs for the ISIC data set with GT 

filtered images as inputs 

 
  Accuracy Learning 

rate 

Weight 

decay 

Block 

depth 

HLPSO mean 0.7376 4.30E-03 2.39E-02 2.3667 

 std. 5.71E-02 2.11E-03 1.61E-02 4.90E-01 

AGPSO mean 0.6314 1.09E-02 2.93E-02 2.5333 

 std. 1.22E-01 1.27E-02 1.53E-02 5.07E-01 

GPSO mean 0.671 5.28E-03 3.00E-02 2.6333 

 std. 9.83E-02 8.66E-03 1.45E-02 4.90E-01 

GMPSO mean 0.6525 4.94E-03 2.58E-02 2.7 

 std. 1.15E-01 8.43E-03 1.46E-02 4.66E-01 

DNLPSO mean 0.5985 1.28E-02 3.06E-02 2.67 

 std. 1.19E-01 1.37E-02 2.21E-02 4.79E-01 

ELPSO mean 0.5744 2.05E-02 2.38E-02 2.5333 

 std. 1.10E-01 1.52E-02 1.65E-02 5.07E-01 

MFA mean 0.5876 1.09E-02 1.45E-02 2.0667 

 std. 1.00E-01 1.05E-02 1.29E-02 2.54E-01 

NaFA mean 0.6629 4.77E-03 2.56E-02 2.7333 

 std. 1.04E-01 3.04E-03 1.26E-02 4.50E-01 

CFA1 mean 0.5093 3.50E-02 4.20E-02 2.9 

 std. 3.76E-02 9.72E-03 1.44E-02 3.16E-01 



CFA2 mean 0.6722 7.39E-03 2.66E-02 2.4595 

 std. 1.18E-01 1.05E-02 1.01E-02 5.45E-01 

VSSFA mean 0.6314 7.84E-03 2.29E-02 2.5 

 std. 9.64E-02 1.06E-02 1.06E-02 5.09E-01 

PSO mean 0.6571 8.11E-03 2.40E-02 2.6333 

 std. 1.11E-01 9.56E-03 1.59E-02 4.90E-01 

FA mean 0.6597 7.56E-03 2.34E-02 2.4667 

 std. 1.15E-01 6.69E-03 1.12E-02 5.07E-01 

MFO mean 0.6476 8.08E-03 2.15E-02 2.6667 

 std. 1.03E-01 1.10E-02 1.54E-02 4.71E-01 

 

The HLPSO-based deep architectures achieve the best performance in comparison with the deep networks 

generated by all other FA and PSO variants and classical methods. As illustrated in Table 12, it identifies 

comparatively smaller convolutional block architectures with an average network depth of 2.3667 for each 

convolutional block, in comparison with those of nearly all the baseline methods. The following two sets of 

identified hyper-parameters lead to the best performances of the proposed HLPSO-based CNN models with 60-

20-20 for training, validation, and test, i.e. learning rate=0.0014, weight decay=0.05, depth=2 (for each 

convolutional block), and learning rate=0.004, weight decay=0.0472, depth=2 (for each convolutional block). 

These settings yield the accuracy rates of 0.8486 and 0.8443, respectively, before fine-tuning. 

 

As indicated in Table 12, MFA, HLPSO, CFA2, FA and VSSFA identify deep networks with comparatively 

smaller architectures whereas GMPSO, NaFA, PSO, MFO, DNLPSO, GPSO, and CFA1 yield deeper networks. 

ELPSO and AGPSO construct middle-sized networks. Most of the models produce similar weight decay 

settings, resulting in similar penalties to large weights in the networks. The obtained learning rates vary in 

different models. 

 

Specifically, the MFA model constructs the smallest deep architectures with large learning rates and small 

weight decays in most of the test cases. However, the identified shallow deep networks have constrained 

capabilities in feature learning, and the large learning rates are more likely to result in the CNN models being 

trapped in local optima, therefore, leading to less optimal performance. HLPSO constructs the second smallest 

CNN architectures as well as comparatively smaller learning rates and reasonable settings for weight decays. In 

comparison with all the baseline methods, its identified optimal topologies show sufficient capabilities in feature 

learning. On the other hand, the identified small learning rates are more capable of avoiding local optima by 

applying suitable learning steps to guide the model training process more efficiently. The identified weight 

decays also achieve reasonable trade-off between the application of large penalties to large weights and 

possibilities in allowing the weights to grow freely. Therefore, HLPSO-based deep networks achieve the best 

performances for a successive of 30 runs in comparison with all other baseline methods. CFA2 identifies the 

third smallest network topologies. Its search process identifies comparatively larger learning rates and weight 

decays as compared with those of HLPSO, which lead to comparatively slightly larger learning steps in the 

training process and more intense penalties to large weights, therefore, resulting in comparatively lower average 

accuracy scores, as shown in Table 12. Other methods, e.g. GMPSO, NaFA, PSO, MFO, DNLPSO, GPSO, and 

CFA1, tend to generate comparatively larger networks with higher learning rates in comparison with those of 

HLPSO. While most of these larger networks produce sufficiently good performances, they are still less 

competitive than those of HLPSO. Besides that, such deeper networks may also lead to high computational costs 

in the subsequent training process. CFA1 generates the deepest networks with the largest learning rates and 

weight decays. These characteristics result in less efficient models, with comparatively worse classification 

performance.  

 

Overall, large learning rates with extremely deeper (e.g. CFA1 and DNLPSO) or shallower networks (e.g. MFA) 

are more likely to converge to sub-optimal solutions and result in less competitive performances. On the other 

hand, reasonable network sizes with comparatively smaller learning hyper-parameters tend to achieve 

compelling performances for both data sets. Moreover, owing to the proposed diverse search strategies, HLPSO 

is able to overcome stagnation and attain global optimal solutions effectively pertaining to deep architecture 

generation. It outperforms all the baseline models significantly with optimal sizes of the deep architectures and 

more effective learning parameters. The empirical and statistical test results further ascertain the efficiency of 

the proposed HLPSO model. 

 

7.3.3 Computational cost for deep architecture design 
We further analyse the computational cost for deep architecture design. Since all the models employ the same 

maximum number of function evaluations as the stopping criterion for deep architecture generation and the 

fitness evaluation is the most time consuming component that contributes to most of the computational cost, all 

the methods have the same computational cost for CNN model design principally, i.e. population × the 



maximum number of iterations. However, each model has different internal search strategies. The computational 

cost varies slightly. Table 13 illustrates the mean computational cost of each method over 30 runs for deep 

architecture generation for both the combined and ISIC data sets with images filtered by the GT masks as inputs. 

 

Table 13 The mean computational cost (in seconds) of each method over a set of 30 runs for deep architecture 

generation 

 
Seconds HLPSO AGPSO GPSO GMPSO DNLPSO ELPSO MFA NaFA CFA1 CFA2 VSSFA PSO FA MFO 

Combined 586.89 591.73 397.54 700.87 624.01 595.52 588.42 553.73 537.44 432.93 572.19 547.30 498.42 502.00 

ISIC 451.92 513.0 435.04 518.08 484.97 493.63 320.18 373.15 384.20 354.67 382.29 386.26 383.84 362.66 

 

HLPSO and certain PSO and FA variants embed diverse search strategies, and they are likely to generate 

slightly larger computational costs than those of classical search methods. For the ISIC data set, HLPSO shows 

similar or lower computational costs as compared with those of GPSO, AGPSO, GMPSO, DNLPSO, and 

ELPSO. For the mixed data set, HLPSO shows comparatively lower computational costs as compared with 

those of AGPSO, GMPSO, DNLPSO, ELPSO, and MFA, respectively. 

 

7.4 Evaluation of Ensemble Classifiers for Lesion Classification 
We evaluate HLPSO-based feature selection and ensemble lesion classification system in this section. We 

extract shape, colour and texture features from both lesion and skin sub-images filtered by the GT and the 

generated masks. Optimized features are identified for lesion classification. In short, both lesion and skin 

features are used for lesion classification.  

 

The following experimental settings are applied, i.e. image size=500×500, and dimension=147(shape+colour) or 

1062(texture). We employ 80:20 as the training and test ratio for each data set. To ensure a fair comparison, all 

the methods employ the same number of MaxFEs, i.e. population (50) × iteration (500), as the termination 

criterion. Each ensemble model comprises two base classifiers, which are dedicated to the optimized shape and 

colour as well as texture features, respectively. Sub-images filtered by both the GT and segmented masks are 

used as the inputs for ensemble lesion classification. 

 

A total of 30 individual runs are used for evaluating each search method. The average GM scores over 30 runs 

are used as the main criterion for performance comparison. Table 14 illustrates the average GM performance and 

Wilcoxon rank sum test results (denoted as ‘RS’) for the combined data set. Using GT filtered input images, 

HLPSO outperforms all other methods for both KNN- and SVM-based ensembles, with MFA achieving the best 

performance for KNN-based ensemble with hold-out validation. When the SVM-based ensemble classifier is 

used, HLPSO-based feature selection shows statistically significant improvements over other feature selection 

methods. Integrated with the KNN-based ensemble model for both 10-fold and hold-out validations, our results 

are statistically better than those of other methods in most cases. The exceptions are for DNLPSO, GMPSO, and 

MFA, which have the same result distributions to those of HLPSO. NaFA and CFA1 also show similar results to 

those of our model when combined with the KNN-based ensemble classifier in the hold-out validation. Using 

the input images filtered by our segmentation outputs for both training and test, feature selection using HLPSO 

achieves significant superiority over all other methods statistically for both ensemble classifiers, except for PSO-

based feature selection, which has a similar GM performance to those of HLPSO integrated with SVM-based 

ensemble in hold-out validation. Figure 11 shows the convergence curves of all the methods over 30 runs with 

GT segmented images as the inputs in the training stage. HLPSO operates with the fastest convergence rate as 

compared with those of all the baseline methods for discriminative shape+colour and texture feature selection 

during the training process. Besides HLPSO, for both feature selection tasks, equipped with dynamic 

neighbourhood learning, adaptive search coefficients and swarm diversity enhancement respectively, DNLPSO, 

AGPSO and GMPSO show faster convergence rates than those of other PSO variants. With the employment of 

chaotic and adaptive search parameters respectively, CFA1, CFA2 and VSSFA operate with the fastest 

convergence rates among all the FA variants. MFO also shows a better convergence speed than those of PSO 

and FA for both feature selection tasks. 

 

Table 14 Ensemble classification and statistical test results for the combined data set 

 
      HLPSO AGPSO DNLPSO GPSO ELPSO GMPSO CFA1 MFA VSSFA NaFA CFA2 PSO FA MFO 

G
T

 

ESEM KNN 10-Fold 0.9543 0.9387 0.9460 0.9396 0.9411 0.9449 0.9436 0.9511 0.9401 0.9422 0.9422 0.9394 0.9306 0.9395 

RS n/a + = + + = + = + + + + + + 

Hold-out 0.9452 0.9322 0.9407 0.9347 0.9350 0.9389 0.9384 0.9475 0.9342 0.9382 0.9361 0.9334 0.9283 0.9347 

RS n/a + = + + = = = + = + + + + 

ESEM SVM 10-Fold 0.9788 0.9575 0.9571 0.9573 0.9519 0.9573 0.9557 0.9534 0.9620 0.9612 0.9577 0.9554 0.9533 0.9567 

RS n/a + + + + + + + + + + + + + 



Hold-out 0.9736 0.9584 0.9583 0.9590 0.9534 0.9590 0.9577 0.9544 0.9642 0.9634 0.9630 0.9579 0.9565 0.9567 

RS n/a + + + + + + + + + + + + + 

S
E

G
 

ESEM KNN 10-Fold 0.9033 0.8783 0.8720 0.8794 0.8801 0.8796 0.8791 0.8847 0.8732 0.8763 0.8782 0.8745 0.8725 0.8777 

RS n/a + + + + + + + + + + + + + 

Hold-out 0.9070 0.8814 0.8761 0.8826 0.8824 0.8817 0.8800 0.8880 0.8749 0.8769 0.8803 0.8745 0.8767 0.8804 

RS n/a + + + + + + + + + + + + + 

ESEM SVM 10-Fold 0.9063 0.8832 0.8822 0.8895 0.8862 0.8880 0.8859 0.8824 0.8777 0.8864 0.8889 0.8928 0.8802 0.8847 

RS n/a + + + + + + + + + + + + + 

Hold-out 0.9005 0.8875 0.8865 0.8936 0.8911 0.8921 0.8889 0.8844 0.8837 0.8903 0.8931 0.8962 0.8840 0.8894 

RS n/a + + + + + + + + + + = + + 

 

 
Figure 11 Convergence curves over a set of 30 runs for the combined data set for shape+colour (left) and texture 

(right) feature selection (where 𝑥 and 𝑦 axes denote the iteration number and classification performance, 

respectively.) 

Table 15 illustrates the average GM results and statistical rank sum test results (denoted as ‘RS’) for the ISIC 

subset. Using GT filtered images as the inputs, HLPSO-based feature selection shows statistically significant 

improvements over nearly all other methods. The exceptions are for AGPSO, GMPSO, CFA1, VSSFA, and FA, 

which show similar result distributions to that of HLPSO when the KNN-based ensemble model in hold-out 

validation is used. Using images filtered by the segmented masks for training and test, our model outperforms 

nearly all other methods statistically, except for GMPSO which achieves a similar performance to that of 

HLPSO combined with KNN-based ensemble in hold-out validation. As illustrated in Figure 12, over a set of 30 

runs, HLPSO converges faster than all other baseline models for both shape+colour and texture feature 

optimization in the training stage with images filtered by the GT masks for training and validation. Besides 

HLPSO, for both feature selection tasks, MFO illustrates a faster convergence speed than those of nearly all the 

PSO and FA variants. Moreover DNLPSO, GMPSO and AGPSO show faster convergence rates than those of 

other PSO variants, while CFA2, VSSFA and CFA1 illustrate the best convergence capabilities than those of all 

other FA variants.  

 

Table 15 Ensemble classification and statistical test results for the ISIC data set 

 
      HLPSO AGPSO DNLPSO GPSO ELPSO GMPSO CFA1 MFA VSSFA NaFA CFA2 PSO FA MFO 

G
T

 

ESEM KNN 10-Fold 0.8805 0.8394 0.8315 0.8362 0.8247 0.8451 0.8439 0.8126 0.8564 0.8453 0.8336 0.8378 0.8407 0.8467 

RS n/a + + + + + + + + + + + + + 

Hold-out 0.8162 0.8043 0.7988 0.7942 0.7865 0.8027 0.8017 0.7725 0.8156 0.8006 0.7964 0.7948 0.8000 0.8007 

RS n/a = + + + = = + = + + + = + 

ESEM SVM 10-Fold 0.8825 0.7682 0.7722 0.7797 0.7709 0.7755 0.7631 0.7783 0.7951 0.7802 0.7700 0.7764 0.7940 0.7875 

RS n/a + + + + + + + + + + + + + 

Hold-out 0.8398 0.7741 0.7780 0.7797 0.7748 0.7749 0.7680 0.7837 0.7993 0.7815 0.7822 0.7827 0.7898 0.7902 

RS n/a + + + + + + + + + + + + + 

S
E

G
 

ESEM KNN 10-Fold 0.8236 0.7916 0.7930 0.7864 0.7883 0.7985 0.7841 0.7619 0.7728 0.7865 0.7970 0.7934 0.7910 0.7869 

RS n/a + + + + + + + + + + + + + 

Hold-out 0.8132 0.7868 0.7927 0.7856 0.7891 0.7999 0.7900 0.7686 0.7756 0.7878 0.7943 0.7902 0.7897 0.7841 

RS n/a + + + + = + + + + + + + + 

ESEM SVM 10-Fold 0.8355 0.7767 0.7782 0.7613 0.7832 0.7870 0.7717 0.7689 0.7292 0.7525 0.7687 0.7789 0.7482 0.7521 

RS n/a + + + + + + + + + + + + + 

Hold-out 0.8250 0.7797 0.7740 0.7605 0.7852 0.7878 0.7688 0.7561 0.7362 0.7622 0.7691 0.7832 0.7505 0.7601 

RS n/a + + + + + + + + + + + + + 

 



 
Figure 12 Convergence curves over a set of 30 runs for the ISIC data set for shape+colour (left) and texture 

(right) feature selection (where 𝑥 and 𝑦 axes denote the iteration number and classification performance, 

respectively.)  

 

Table 16 depicts the comparison with related lesion classification methods in the literature for the ISIC data set. 

Since each study employed different sets of (archived, original and augmented) training and test images and 

different strategies for performance evaluation, Table 16 serves as an approximate performance indicator. Most 

existing methods used the original images filtered with GT masks for training. With the GT filtered images as 

the inputs, ensemble lesion classification with HLPSO-based feature selection shows superior performance, and 

is among the top performers for the ISIC data set. Moreover, with a smaller size (only 32×32) of images as 

inputs, the evolving deep neural networks also achieve a superior performance after fine-tuning. 

 

Table 16 Comparison with related results in the literature for the ISIC data set for lesion classification 

 
Studies Methodology Recognition rate 

Li and Shen [6] two fully convolutional 

residual networks+a lesion index calculation unit 

0.823 

Bi at al. [15] deep ResNets 0.896 

Mirunalini et al. [73] Inception-v3 (to extract feature vector) + neural networks 0.655 

Chang [74] Inception-v3 (full image) + Inception-v3 (segmented region) 0.705 
Zhang et al. [75] CNN in Caffe 0.658 

This research HLPSO-based evolving deep CNNs (with 32x32 input) 0.8427 (hold-out) 

This research Kirsch+SLBP+HLPSO-based feature selection+ensemble 

classification 

0.8825 (10-fold) 

0.8398 (hold-out) 

 

The proposed HLPSO model has both local and global strategies to enhance its search process and achieves 

superior performances as compared with those of FA-based as well as PSO-based variants. On one hand, NaFA 

[64] employs brighter fireflies from a pre-defined constrained neighbourhood to lead the search process. CFA1 

[22] and CFA2 [65] adopt Logistic and Gauss maps as the attractiveness coefficients respectively. An adaptive 

random search parameter is implemented in the VSSFA [67] model while MFA [66] uses the Tent map for 

population initialization and both neighbouring and global best solutions for position updating. Since the search 

processes of these FA variants are mainly based on the original FA operation, if there are no brighter fireflies in 

the neighbourhood, they are very likely to be trapped in local optima. 

 

On the other hand, ELPSO [60] employs a five-step strategy to further enhance the global best solution 

including Gaussian, Cauchy, opposition- (for each dimension as well as for the whole particle) and DE-based 

mutations. GMPSO [21] employs the GA and probabilities distributions to diversify the subpopulation and 

enhance the subswarm leader, respectively. Adaptive search parameters, i.e. increasing and decreasing 

acceleration coefficients, are implemented in AGPSO [61], whereas GPSO [63] employs a genetic crossover 

operator to diversify the particle swarm. DNLPSO [62] employs the historical best memories in a dynamically 

updated neighbourhood to lead the search process. Again, since the original PSO operation led by a single leader 

largely dominates the search process of the primary swarms of the above PSO variants, such search processes 

tend to stagnate prematurely. 

 

In comparison with the above PSO and FA variants, diverse local and global search strategies are proposed for 

the HLPSO model to overcome the local optima traps. Two FA variants (led by a randomly selected promising 

neighbouring solution and the average of all brighter neighbouring fireflies, respectively), the PSO operation and 



the spiral action are used as the four global search mechanisms to increase exploration, while crossover, 

mutation and probability distributions are used to increase local exploitation. In particular, the above four global 

search actions cooperate with each other to overcome stagnation. As an example, when the PSO operation led by 

a single leader stagnates, the FA and spiral search actions based on multiple neighbouring and global promising 

solutions are able to drive the search process out of the local optima traps. When FA-based strategies are trapped 

in local optima due to the lack of brighter fireflies present in the neighbourhood, the PSO and spiral search 

operations led by the global promising solutions are used to mitigate premature convergence. In short, the above 

local and global search strategies work in a collaborative manner to attain global optimality and account for the 

superior performance of the proposed model in comparison with those of other search methods.  

 

8. CONCLUSIONS 
In this research, we have proposed a new PSO variant, i.e., HLPSO, for segmentation, discriminative feature 

selection, and evolving adaptive deep CNN model generation for lesion classification. The key contributions of 

this research include the following. (1) The proposed HLPSO model incorporated with KM clustering and a new 

cost function based on intra- and inter-cluster variance is used to overcome centroid initialization sensitivity and 

local optima traps of the KM clustering model for foreground background pixel classification in lesion 

segmentation. (2) Deep architecture design and optimal hyper-parameter selection are the main bottleneck for 

deploying deep neural networks to new application domains. These tasks require profound domain knowledge, 

and are mainly conducted by manual trial-and-error procedures. To overcome such limitations, HLPSO is used 

to automate this process and identify optimal topologies and hyper-parameters of CNNs automatically for skin 

lesion classification. The empirical results indicate that the adaptive CNN models with optimized topologies and 

hyper-parameters devised by HLPSO outperform those of other state-of-the-art FA and PSO variants and 

classical search methods and the default network for lesion classification statistically. (3) Moreover, ensemble 

lesion classification with HLPSO-based feature selection has achieved great superiority over other existing 

lesion classification methods in the literature. The proposed diverse search strategies account for the superiority 

of discriminative feature selection over other classical and advanced search methods. (4) To further indicate the 

model efficiency, we have employed classical benchmark functions as well as the complex CEC 2014 test suite 

for evaluation. The experimental results and statistical tests further indicate the efficiency of HLPSO in solving 

diverse complex rotated, shifted, hybrid and composition benchmark functions. 

 

For future work, other clustering algorithms can be used for integration with the proposed HLPSO model and 

the intra- and inter-cluster variance measures to enhance lesion segmentation. We will also conduct evolving 

deep architecture generation for other complex computer vison tasks [76, 77], such as medical image 

segmentation, object tracking, salient object detection, and visual question generation. The proposed ensemble, 

deep and clustering models could also be incorporated to identify any new, unseen lesion case on an incremental 

basis. 
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