
Soft Comput (2016) 20:2309–2327

DOI 10.1007/s00500-015-1642-4

METHODOLOGIES AND APPLICATION

Adaptive memetic algorithm for minimizing distance in the vehicle

routing problem with time windows

Jakub Nalepa · Miroslaw Blocho

Published online: 11 March 2015

© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract This paper presents an adaptive memetic algo-

rithm to solve the vehicle routing problem with time windows

(VRPTW). It is a well-known NP-hard discrete optimiza-

tion problem with two objectives—to minimize the number

of vehicles serving a set of geographically dispersed cus-

tomers, and to minimize the total distance traveled in the

routing plan. Although memetic algorithms have been proven

to be extremely efficient in solving the VRPTW, their main

drawback is an unclear tuning of their numerous parameters.

Here, we introduce the adaptive memetic algorithm (AMA-

VRPTW) for minimizing the total travel distance. In AMA-

VRPTW, a population of solutions evolves with time. The

parameters of the algorithm, including the selection scheme,

population size and the number of child solutions generated

for each pair of parents, are adjusted dynamically during the

search. We propose a new adaptive selection scheme to bal-

ance the exploration and exploitation of the solution space.

Extensive experimental study performed on the well-known

Solomon’s and Gehring and Homberger’s benchmark sets

confirms the efficacy and convergence capabilities of the pro-

posed AMA-VRPTW. We show that it is very competitive

compared with other state-of-the-art techniques. Finally, the

influence of the proposed adaptive schemes on the AMA-

VRPTW behavior and performance is investigated in a thor-

ough sensitivity analysis. This analysis is complemented with

Communicated by V. Loia.

J. Nalepa (B)

Institute of Informatics, Silesian University of Technology,

Akademicka 16, 44-100 Gliwice, Poland

e-mail: jakub.nalepa@polsl.pl

M. Blocho

ABB ISDC, Zeganska 1, 04-713 Warsaw, Poland

e-mail: miroslaw.blocho@pl.abb.com

the two-tailed Wilcoxon test for verifying the statistical sig-

nificance of the results.

Keywords Memetic algorithm · Adaptation · Parameter

control · Selection scheme · Vehicle routing problem with

time windows

1 Introduction

Route scheduling is one of the most important real-life prob-

lems and became a core issue in transportation, supply chain

management and logistics. Its numerous practical applica-

tions include the bus route planning, post, parcels, food and

beverage delivery, cash delivery to banks and ATM termi-

nals, industrial waste collection, maintenance operations,

and many more. While constructing the routing schedule

for a given distribution problem, it is necessary to consider

a large number of practical issues, e.g., the available fleet

size, truck capacities, travel costs between geographically

dispersed customers, possible time intervals in which cus-

tomers should be visited, and numerous other circumstances.

These factors affect the feasibility of a routing plan.

Minimizing the number of trucks and their total dis-

tance traveled during the service contributes to reducing the

fleet exploitation costs and fuel consumption, it lessens the

price of delivered goods, and helps in reducing the environ-

mental pollution and traffic congestion (Hosny and Mum-

ford 2010). Numerous variants of vehicle routing problems

(VRPs) reflect real-life scheduling scenarios (Dantzig and

Ramser 1959; Creput and Koukam 2008). In the multiple

traveling salesman problem (mTSP)—an extension of a stan-

dard traveling salesman problem—more than one salesman

can serve customers (Bektas 2006). Each customer speci-

fies a non-negative demand, which should be satisfied by the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-015-1642-4&domain=pdf

2310 J. Nalepa, M. Blocho

salesman. Clearly, the number of vehicles (salesmen) should

be as minimum as possible. In the capacitated vehicle routing

problem (CVRP), vehicle capacities cannot be exceeded (Niu

et al. 2014). In commercial transportation problems, cus-

tomers usually expect their orders within a specified time slot.

The vehicle routing problem with time windows (VRPTW)

incorporates delivery time constraints to address this issue

(Kallehauge 2008). It is a two-objective NP-hard discrete

optimization problem (Garey and Johnson 1990). Its main

objective is to minimize the number of homogeneous vehi-

cles serving customers scattered around the map. Then, the

total travel distance is to be minimized. There exist a plethora

of other variants of the VRPs which consider additional

scheduling constraints (Marinakis and Marinaki 2014; Mas-

son et al. 2014).

State-of-the-art algorithms for tackling the VRPTW inclu-

de exact and approximate methods. Since this problem is

NP-hard (Garey and Johnson 1990), the former approaches

can be applied only for relatively small problem instances.

Therefore, various heuristic algorithms that do not guarantee

obtaining the optimal solution but execute very fast have been

introduced to solve the VRPTW in a short time, and became

a main stream of development in this field. They encompass

simulated annealing (Zhong and Pan 2007), tabu searches

(Ho and Haugland 2004), ant colony systems (Gambardella

et al. 1999; Gomez et al. 2014), swarm optimization algo-

rithms (Hu et al. 2013), evolutionary approaches (Repoussis

et al. 2009), genetic and memetic algorithms (GAs and MAs)

(Ghoseiri and Ghannadpour 2010; Nagata et al. 2010; Nalepa

and Czech 2013; Vidal et al. 2013; Nalepa and Blocho 2014),

and more (Bräysy and Gendreau 2005).

Although evolutionary algorithms were shown to be

extremely effective, these techniques require their numer-

ous parameters to be given prior to the optimization, which

is difficult in practice. These algorithms need to be run mul-

tiple times in a very time-consuming tuning process to find

the most appropriate set of parameter values. Due to the dif-

ficulty of the VRPTW, it became a significant disadvantage

of the mentioned GAs and MAs. This issue was initially

addressed in our preliminary study which showed that adapt-

ing MA parameters using basic mechanisms helps improve

its convergence capabilities (Nalepa 2014). In this paper, we

propose a new adaptive memetic algorithm.

1.1 Contribution

As previously stated, the main drawback of the MAs applied

for solving the VRPTW lies in an unclear tuning of their

numerous parameters. Since the state-of-the-art methods use

static parameter values, they must be set a priori, and do not

change during the optimization process. Clearly, improperly

determined parameters can easily jeopardize the convergence

of the MA and deteriorate its performance. In this paper, we

propose a new adaptive MA (termed AMA-VRPTW) which

dynamically adapts itself according to the current state of

the search without any additional knowledge given prior to

the algorithm execution. This mitigates the necessity of per-

forming a time-consuming tuning process.

The adaptation in AMA-VRPTW includes controlling the

selection scheme, population size, and the number of child

solutions generated during the recombination. Also, we intro-

duce a new adaptive selection scheme which balances the

exploration and exploitation capabilities of AMA-VRPTW

based on the current search progress. Experimental results

obtained for two standard and widely used benchmark sets

empirically demonstrate that our adaptive MA efficiently

controls its parameters on the fly which leads to high conver-

gence capabilities of the proposed method, and show that

AMA-VRPTW is very competitive compared with other

techniques reported in the literature. Finally, we present a

thorough sensitivity analysis on various method components,

followed by the two-tailed Wilcoxon test for assessing sta-

tistical significance of the results to investigate how the pro-

posed adaptation schemes contribute to the performance of

AMA-VRPTW.

1.2 Paper outline

The remainder of this paper is organized as follows. The

problem is formally defined in Sect. 2. Section 3 reviews the

state-of-the-art algorithms for solving the VRPTW. Section 4

discusses in detail the proposed adaptive memetic algorithm.

The results of an extensive experimental study performed on

standard Solomon’s and Gehring and Homberger’s bench-

mark sets, along with the sensitivity analysis on various

method components followed by the two-tailed Wilcoxon

test, are reported and analyzed in Sect. 5. Section 6 concludes

the paper and highlights directions of our future work.

2 Problem formulation

The VRPTW is formulated as a problem of serving M cus-

tomers by a fleet of K vehicles. The vehicles have a constant

capacity Q, which makes the fleet homogeneous. A single

depot (v0) is the start and the finish point of each route. The

customers vi , i ∈ {1, 2, . . . , M}, define their own service

times si , i ∈ {1, 2, . . . , M}. Serving the depot does not take

any time (s0 = 0), whereas the customer service times are

non-negative. A non-negative demand di , i ∈ {1, 2, . . . , M},

is given for each customer. The travel costs between each

pair of travel points (i.e., distances in the Euclidean metric)

are given as c(i, j), where i �= j , i, j ∈ {0, 1, . . . , M}. These

travel costs correspond to the travel times. Each customer

and the depot specifies its earliest and latest time of start-

ing the service (i.e., time window), ei and li , respectively

(i ∈ {0, 1, . . . , M}).

123

Adaptive memetic algorithm for minimizing distance in the VRPTW 2311

More formally, the VRPTW is defined on a directed

graph G = (V, E) with a set V of M + 1 vertices rep-

resenting the customers and the depot, along with a set of

edges E = {〈vi , v(i+1)〉|vi , v(i+1) ∈ V, vi �= v(i+1)}, rep-

resenting the connections between the travel points. Intu-

itively, the 0th vertex v0 represents the depot. Each vehicle

is assigned a set of customers from exactly one route for

service. The i th route is an ordered list of mi customers to

serve: ri = 〈v0, v(ri (1)), . . . , v(mi +1)〉, where v0 = v(mi +1) is

the depot, and v(ri (j)) denotes the j th customer visited in ri .

2.1 Objectives

The VRPTW is a hierarchical objective discrete optimization

problem. The primary objective is to minimize the fleet size

K (i.e., the number of vehicles serving M customers). It

is easy to note that K ≥ Kmin, where Kmin = ⌈D/Q⌉.

Here, D =
∑M

i=1 di denotes the total customer demands.

Secondly, the total distance T traveled by the vehicles is to

be minimized:

T =

M
∑

i=0

M
∑

j=0

K
∑

k=1

x(i, j,k)c(i, j). (1)

The problem is characterized by three decision variables:

x(i, j,k) (i, j ∈ {0, 1, . . . , M}, i �= j,∀k ∈ K) , (2)

ai (i ∈ {0, 1, . . . , M}), and (3)

wi (i ∈ {1, 2, . . . , M}). (4)

If the kth vehicle travels from vi to v j (where i �= j), then

x(i, j,k) = 1 (0 otherwise). Two other decision variables indi-

cate the arrival and the waiting time at vi (ai and wi , respec-

tively). There is no waiting time at the depot (and a0 = e0).

Let σA and σB be two solutions to the VRPTW. Then,

σA is of a higher quality than σB , if (K (σA) < K (σB)) or

(K (σA) = K (σB) and T (σA) < T (σB)).

2.2 Constraints

The VRPTW constraints may be formally expressed by the

following equations:

K
∑

k=1

M
∑

j=0, j �=i

x(i, j,k) =

K
∑

k=1

M
∑

i=0, j �=i

x(i, j,k) = 1 (∀i, j ∈ V),

(5)

M
∑

j=1

x(i, j,k) =

M
∑

j=1

x(j,i,k) = 1 (i = 0,∀k ∈ K), (6)

M
∑

j=1

K
∑

k=1

x(i, j,k) = K (i = 0), (7)

M
∑

i=1

di

M
∑

j=0, j �=i

x(i, j,k) ≤ Q (∀k ∈ K), (8)

ei ≤ ai + wi ≤ li (∀i ∈ V), (9)

max{a(i−1) + s(i−1) + c((i−1),i), ei } ≤ li
(

i ∈ {1, 2, . . . , mk + 1},∀k ∈ K
)

. (10)

It has to be assured that every customer is visited exactly once

(Eq. 5), all the routes start and finish at the depot (Eq. 6), and

the fleet size is equal to K (Eq. 7). The capacity (Eq. 8) and the

time window constraints (Eqs. 9, 10) must hold for each route.

Thus, the total amount of goods delivered to customers by a

vehicle cannot exceed Q, and the service of each customer

must be started before its time window elapses.

Arriving at a customer v(i+1) (at a certain time point) is

visualized in Figs. 1, 2, 3 (axes show the elapsing time τ).

If a vehicle visits v(i+1) within its time window (e(i+1) ≤

a(i+1) ≤ l(i+1)), then the service is immediate (Fig. 1).

Alternatively, the vehicle may arrive at v(i+1) before the

beginning of the time window (a(i+1) < e(i+1)). However,

the service cannot be initiated before e(i+1) (we consider hard

time windows), and the vehicle waits until the time window

is open (see Fig. 2—the dotted line indicates the waiting time

w(i+1) at v(i+1)).

If a vehicle visits v(i+1) after closing its time window

(a(i+1) > l(i+1)), it violates the time window constraint, and

vi

τ

τ

v(i+1) e(i+1) l(i+1)

ei li

s(i+1)

si

c(i,(i+1))

Fig. 1 Visiting a customer v(i+1) within its time window

vi

τ

τ

v(i+1) e(i+1) l(i+1)

ei li

s(i+1)

w(i+1)

si

c(i,(i+1))

Fig. 2 Visiting a customer v(i+1) before its time window starts

vi

τ

τ

v(i+1) e(i+1) l(i+1)

ei li

si

c(i,(i+1))

Fig. 3 Visiting a customer v(i+1) after closing its time window

123

2312 J. Nalepa, M. Blocho

the service is not feasible (Fig. 3). The entire route r contain-

ing v(i+1) becomes infeasible, so as σ .

3 Related literature

3.1 Vehicle routing problem with time windows

Due to the NP-hardness of the VRPTW (Garey and John-

son 1990), and its wide practical applicability, it was exten-

sively studied over the years. Since the computation time

of exact approaches is not acceptable for large-scale prob-

lem instances, a plethora of heuristic algorithms (which find

high-quality, but not necessarily optimal, solutions quickly)

have been proposed. In this section, we review the state-of-

the-art techniques for solving the VRPTW.

Most exact approaches consider minimizing the total

travel distance as the single optimization objective. In

many aspects, they inherit from works devoted to solv-

ing the TSP (Kallehauge 2008). They encompass branch-

and-cut (Bard et al. 2002), and branch-cut-and-price proce-

dures (Abdallah and Jang 2014), algorithms utilizing many

different problem formulations (Kolen et al. 1987; Feil-

let et al. 2004; Larsen 2004; Chabrier 2006; Righini and

Salani 2006; Baldacci et al. 2011), and adopting other

problems for the VRPTW (Irnich and Villeneuve 2006).

Exact methods were summarized in thorough surveys and

reviews (Cordeau et al. 2002; Kallehauge 2008; El-Sherbeny

2010; Baldacci et al. 2012). Although exact algorithms are

continuously being developed, they are still not applicable

to large real-life VRPTW instances due to their execution

time. Also, they are strongly dependent on test characteristics

(Vidal et al. 2013).

In heuristic techniques, two VRPTW objectives are usu-

ally considered independently. Therefore, two-stage algo-

rithms (both sequential and parallel), in which the number

of vehicles is minimized at first, and then the travel dis-

tance is optimized, are a vital research topic. A two-stage

approach enables designing effective algorithms for both

optimization stages independently. In construction heuris-

tics, unserved customers are iteratively inserted into a par-

tial solution (Potvin and Rousseau 1993; Petch and Salhi

2003; Tavares et al. 2009; Pang 2011). Improvement heuris-

tics modify an initial solution to explore the solution space

(Bräysy and Gendreau 2005; Nagata and Bräysy 2009).

Meta-heuristic algorithms, which often couple exploring the

search space with its intensive exploitation, allow for exist-

ing infeasible solutions and deteriorating their quality tem-

porarily. Such approaches include simulated annealing (Chi-

ang and Russell 1996), tabu searches (Ho and Haugland

2004), swarm optimization (Hu et al. 2013), ant colony sys-

tems (Gambardella et al. 1999; Gomez et al. 2014), hybrid

techniques (Liu et al. 2014), and many more (Bräysy and

Gendreau 2005; Coltorti and Rizzoli 2007; Banos et al.

2013).

Evolutionary algorithms (EAs) have been very exten-

sively explored for tackling the VRPTW (Thangiah et al.

1991; Zhu 2000; Ombuki et al. 2006; Repoussis et al. 2009).

Genetic algorithms (GAs) consist in evolving a popula-

tion of solutions. It is then continuously improved in the

biologically inspired manner, in which chromosomes are

successively selected, crossed-over, and mutated. Similarly,

memetic algorithms (MAs) are built upon the population-

based approach, and combine EAs for exploring the solution

space with local refinement procedures for exploiting solu-

tions already found. MAs (both sequential and parallel) were

shown to be very effective in solving the VRPTW (Nagata

et al. 2010; Blocho and Czech 2012a, b, 2013; Nalepa and

Czech 2013; Vidal et al. 2013, Nalepa and Blocho 2014).

Memetic techniques have been applied to a bunch of other

optimization and pattern recognition problems in a variety

of science and engineering domains (Li et al. 2013, 2014;

Guan et al. 2014; Jin et al. 2014; Marinaki and Marinakis

2014; Nalepa and Kawulok 2014), and they outperformed

other evolutionary algorithms in terms of the convergence

capabilities.

3.2 Adaptive evolutionary algorithms

The most important shortcoming of the mentioned GAs

and MAs is an unclear selection of their numerous para-

meters to ensure the proper convergence speed, exploration

and exploitation capabilities. Since these methods use sta-

tic parameters (i.e., they do not change during the execu-

tion), this decision significantly influences the performance,

and should be undertaken very carefully. Thus, the cur-

rent state-of-the-art GAs and MAs for VRPTW must be

executed multiple times to determine an acceptable set of

appropriate parameters, which is usually a computationally

intensive and time-consuming task. In our recent work, we

showed how the choice of the co-operation scheme (defin-

ing the co-operation of parallel processes, called islands) in

the parallel MA influences the search (Nalepa and Blocho

2014). Here, we address the issue of an automatic control

of various algorithm parameters in the proposed adaptive

MA. Thus, the necessity of performing the tuning process is

mitigated.

A significant research effort has been put into proposing

approaches for improving EAs by optimizing their parame-

ters. Two main streams of development include parameter

tuning and control. The former techniques determine “good”

parameter values before the algorithm run. In a majority of

such methods, a single parameter is tuned at a time, which

may result in sub-optimal choices since the parameters are

not independent. Clearly, this process is very time consuming

and does not necessarily lead to optimally selected values.

123

Adaptive memetic algorithm for minimizing distance in the VRPTW 2313

Also, trying all parameter combinations is practically impos-

sible. Each EA run is inherently dynamic and adaptive, and

different parameters may be “optimal” at various steps of

the optimization. This is not considered in tuning schemes—

they find a single set of parameters used during the entire

execution.

Control techniques aim at setting parameters of dynamic

EAs on the fly (i.e., during the algorithm execution). Control

EAs are classified based on many aspects: what is changed

(selection scheme, mutation rate, etc.), how is it done (deter-

ministic, feedback-based, and self-adaptation), what is the

scope (level) of change (population level, individual level,

etc.), and what is the evidence upon which the change is

carried out (monitoring the progress of the search, popula-

tion diversity, performance of operators, etc.) (Eiben et al.

1999). However, by tradition, the main criteria of classify-

ing strategies for parameter control are the (straight-forward)

what, and (less-obvious) how. Control strategies are divided

into three categories based on the “how aspect”: determinis-

tic (the parameter is updated without any feedback from the

running EA), adaptive (there is a feedback from the EA, and

the parameters are adjusted accordingly), self-adaptive (para-

meters are encoded into individuals and evolve). Following

this taxonomy, the proposed AMA-VRPTW is an adaptive

MA.

4 Adaptive memetic algorithm

In this section, we present in detail the proposed adaptive

MA (AMA-VRPTW). We introduce a new adaptive selec-

tion scheme, termed the adaptive exploration–exploitation

scheme (AE2), which balances the exploration and exploita-

tion of the solution space based on the current optimization

state. The dynamic adaptation of various algorithm para-

meters, including the population size, selection scheme and

the number of children generated for each pair of parents

during the recombination process, is discussed. It is worth

pointing out that the crossover, mutation, and education pro-

cedures applied in AMA-VRPTW have been already uti-

lized in our earlier works and other MAs (Nagata et al.

2010; Blocho 2013; Nalepa et al. 2014; Nalepa and Blocho

2014), and proved to be very robust. Here, we briefly discuss

them.

4.1 Chromosomes

In AMA-VRPTW (Algorithm 1), each individual pi , i ∈

{1, 2, . . . , N }, represents a solution σi with K routes (there-

fore, K (pi) = K (σi) = K , and T (pi) = T (σi)) in a pop-

ulation of size N , where N = NI at the beginning (line 1).

The initial population is generated using a guided ejection

Algorithm 1 Adaptive memetic algorithm (AMA–VRPTW).

1: done ← false; N ← NI ; �N ← NI , s ← 0; T (pB
p) ← ∞; S ← AB;

2: Generate N solutions with K routes each; ⊲ GES

3: while (not done) do

4: Determine N pairs (pa , pb); ⊲ Selection

5: for all (pa , pb) do

6: T (pB
c) ← ∞; Nc ← 1; reproduce ← true;

7: while (reproduce) do

8: pc ← GenerateChild(pa , pb); ⊲ Fig. 4

9: pB
c ← UpdateBestChild(pB

c , pc);

10: if (T (pB
c) < T (pa) or T (pB

c) < T (pb) or Nc > N/2) then

11: reproduce ← false;

12: end if

13: Nc ← Nc + 1;

14: end while

15: end for

16: Form the next population of size N and update pB ;

17: if T (pB) < T (pB
p) then

18: s ← 0; ⊲ Reset the steady state counter

19: else

20: s ← s + 1; ⊲ Increase the steady state counter

21: if (s > sM and s ≤ P) then

22: S ← LES;

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

Adaptation ⊲ Switch to LES

23: else if s > P then

24: S ← AB; N ← N + �N ; ⊲ Switch to AB, increase N

25: s ← 0; ⊲ Reset the steady state counter

26: end if

27: end if

28: pB
p ← pB ; ⊲ Update the best individual in the previous generation

29: Verify termination condition and update done;

30: end while

31: return the best solution pB (in the last generation);

123

2314 J. Nalepa, M. Blocho

Fig. 4 Generation of a child solution in AMA-VRPTW. The repair procedure is executed only if the child is not feasible (rendered in light pink)

(color figure online)

search (GES) (Nagata and Bräysy 2009), recently improved

in our works (Nalepa and Czech 2012; Nalepa et al. 2014).

Guided ejection search is employed to minimize K at first,

and then to create N feasible solutions (each containing K

routes) (line 2). In GES, the search is started from a fea-

sible solution in which each customer is served within a

separate route (thus, K = M). Then, the algorithm repeat-

edly attempts to decrease K by one at a time. A route to be

deleted is selected randomly, and the customers from this

route are inserted into the ejection pool (EP), which contains

unserved customers. Afterwards, the attempts of re-inserting

the EP customers into the partial solution are undertaken.

If there are no feasible (i.e., not violating capacity and time

window constraints) insertions for a given customer taken

from the EP, then the other customers from the partial solu-

tion are removed and inserted into the EP. GES executes until

K = Kmin (see Sect. 2.1), or its computation time exceeds the

limit τK . It is then executed until N solutions with K routes

are found, or the execution time of this process surpasses the

limit τN (in this case, the solutions already found are copied

and mutated—see Sect. 4.4—until N individuals are gener-

ated). The maximum computation time of minimizing K and

generating the initial population is then τI = τK +τN , where

τK denotes the maximum time of minimizing K , and τN is

the maximum time of generating N solutions.

4.2 Selection

The population of solutions is subsequently evolved in AMA-

VRPTW to optimize T (lines 3–31). At first, N pairs (pa, pb)

of individuals from the i th generation Gi are selected to cre-

ate the generation G(i+1), according to the selection scheme

S (Algorithm 1, line 4, see also Fig. 4). This selection scheme

is adaptively determined during the optimization process (see

Sect. 4.6). In this paper, we propose to combine the AB selec-

tion (AB), which has high exploration capabilities (Kawulok

and Nalepa 2012; Nalepa and Czech 2013), with the scheme

locally exploiting best individuals (we term it the local

exploitation selection, LES) into the adaptive exploration–

exploitation scheme (AE2). AE2 adaptively determines the

execution mode (either explorative or exploitative) based on

the optimization progress.

In AB, each individual pi , i ∈ {1, 2, . . . , N }, is selected

as pa at first. Then, the individual p′
i is chosen as pb, such

that pi �= p′
i . Each individual can be selected once as pa ,

and once as pb. Clearly, this selection takes O(N) time. In

LES, the population is sorted according to the fitness of the

individuals (the lower T , the higher fitness), and divided into

ǫ parts [it requires O(N log N) time]. Then, N/ǫ pairs of

parents are drawn and crossed-over for each population part

to exploit them independently. AE2 dynamically switches

between AB and LES to balance the exploration capabilities

of the former scheme with the LES exploitation behavior (see

Sect. 4.6 for details).

4.3 Crossover

For each pair of selected parent solutions (pa, pb), a new

individual pc is generated using the edge assembly crossover

operator (EAX) (Algorithm 1, line 8). This operator was

introduced for the TSP (Nagata 2006), and later adapted to the

CVRP (Nagata 2007). Originally, the EAX was defined for

undirected graphs. Then, it was enhanced for directed graphs

to handle time window constraints of the VRPTW (Nagata

et al. 2010). Its operation [taking TEAX(M) = O(M2) time,

where M is a number of customers in each parent (Blocho

2013)], is visualized in Fig. 5 [the figure is inspired by Nalepa

and Blocho (2014)]. It is worth mentioning that a solution

obtained using the EAX may be infeasible, and its feasibility

needs to be restored (see Sect. 4.4).

4.4 Repair, education and mutation

The repair, education and mutation procedures are the hill-

climbing methods based on traditional neighborhoods for

the VRPTW (Potvin and Rousseau 1995; Kindervater and

Savelsbergh 1997; Nagata et al. 2010). Let N (σ) denote

the neighborhood of σ , obtained by applying the following

operators (moves): 2-opt* (Fig. 6), out-exchange (Fig. 7),

out-relocate (Fig. 8), in-exchange (Fig. 9), and in-relocate

(Fig. 10). To decrease an extremely large neighborhood size,

we consider Nvi
nearest (in the Euclidean metric) customers

for each vi (Nagata et al. 2010).

A solution σc (represented by pc) may be infeasible, and

it undergoes the repair. In this process, local search moves

are performed to decrease the penalty term of the generalized

cost function Fg(σ) (Nagata et al. 2010):

Fg(σ) = T (σ) + β1 · Pc(σ) + β2 · Ptw(σ), (11)

where T (σ) denotes the total travel distance of σ , and Pc(σ)

along with Ptw(σ) are the penalty components representing

the violations of the capacity and time window constraints.

Pc(σ) is the sum of the total capacity which exceeds in σ ,

and Ptw(σ) denotes the sum of all time window violations.

123

Adaptive memetic algorithm for minimizing distance in the VRPTW 2315

1

2

3

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

4

5

6

Fig. 5 Illustration of the EAX operator (Nagata et al. 2010) applied to

pa and pb (solutions σa and σb, respectively): a the graph Ga corre-

sponding to σa , b the graph Gb corresponding to σb , c the union of edges

from Ga and Gb (Ea ∪ Eb), d the intersection of edges from Ga and Gb

(Ea ∩ Eb), e the edges from (Ea ∩ Eb) are removed from (Ea ∪ Eb) to

form Gab ((Ea ∪ Eb)\(Ea ∩ Eb)), f–h six AB-cycles (consisting of Gab

edges traces alternately—Ea edges are traced forwardly, and Eb edges

reversely), i the intersection of Ea and the selected E-set (ES) (a ran-

dom AB-cycle); here we pick up the AB-cycle from h as the E-set, j the

intersection of Eb and ES , k the intermediate solution with subroutes

((Ea\(Ea ∩ ES)) ∪ (Eb ∩ ES)), l the graph Gc corresponding to the

child pc after applying local moves (see Sect. 4.4) to the intermediate

solution k for removing the subroutes

vi

v(i+1)v(i−1)

v(j−1)
vj v(j+1)

vi

v(i+1)v(i−1)

v(j−1)
vj v(j+1)

rα

rβ

rα

rβ

Fig. 6 2-opt* operator applied to the routes rα and rβ

vi

v(i+1)v(i−1)

v(j−1)
vj v(j+1)

vi

v(i+1)v(i−1)

v(j−1)
vj v(j+1)

rα

rβ

rα

rβ

Fig. 7 Out-exchange operator applied to the routes rα and rβ

vi

v(i+1)v(i−1)

v(j−1)
vj v(j+1)

vi

v(i+1)v(i−1)

v(j−1)
vj v(j+1)

rα

rβ

rα

rβ

Fig. 8 Out-relocate operator applied to the routes rα and rβ

vi

v(i+1)v(i−1)

vi

v(i+1)v(i−1)

rα rα

Fig. 9 In-exchange operator applied to the route rα

vi

v(i+1)v(i−1)

vi

v(i+1)v(i−1)
rα rα

Fig. 10 In-relocate operator applied to the route rα

The analysis of the beta scaling coefficients suggested to set

β1 = β2 = 1.0, and Nvi
= 50 (Nagata et al. 2010).

In the repair procedure, the subneighborhoods [denoted as
⋃

v∈r N (σc, v)] for each infeasible customer (from a random

infeasible route r belonging to σc) are created at first. A new

solution σ ′
c, σ ′

c ∈
⋃

v∈r N (σc, v), which minimizes the value

of (β1 · Pc(σc) + β2 · Ptw(σc)), replaces the infeasible σc.

This process executes until σc is feasible, or there are no

repair moves left.

If pc is feasible, then it is educated. Here, only feasible

moves improving the solution quality, i.e., decreasing T (pc),

are accepted. If there are no more improvement moves, then

the education finishes. Afterwards, pc is mutated by at most

IM moves (not violating the constraints). The best feasible

child pB
c is updated if T (pc) > T (pB

c) (Algorithm 1, line 9).

4.5 Adaptive number of children

The child solution inherits structure information from both

parents (see Fig. 5). This inheritance strongly depends on

the E-set selection process. Thus, creating a larger number

123

2316 J. Nalepa, M. Blocho

of children (Nc > 1) for each pair (pa, pb) is beneficial and

increases the probability of obtaining a well-adapted indi-

vidual. However, if Nc is very large, then the search con-

vergence and computation time may be jeopardized and sig-

nificantly slowed down since creating a feasible child takes

O(M2) time (Blocho 2013). Intuitively, the number of chil-

dren should depend on the current optimization progress,

since it is intrinsically dynamic and adaptive.

Here, we propose to keep generating child individuals pc

until a solution which is better (i.e., it has a shorter total

travel distance T) than at least one of its parents is found

(Algorithm 1, lines 10–12). This suggestion is based on the

mentioned inheritance observation. More precisely, it means

that the parent solutions could not be further improved by

local refinement moves, and combining them with other (per-

haps less-fitted) individuals is necessary to guide the search

efficiently. Therefore, more global structure changes intro-

duced by the EAX operator are crucial to escape from locally

optimal solutions. Since crossing over two individuals does

not guarantee obtaining a child better than the parents, we

define the maximum number of children (N/2) which cannot

be exceeded during the recombination process. This upper

bound dynamically increases along with the increase of the

population size N . On the one hand, it maximizes the proba-

bility of exploiting (usually) more diversified individuals. On

the other hand, this limit prevents from generating too many

children which do not contribute to the population layout and

will be discarded.

4.6 Adaptation

The recombination process, which is conducted for each pair

(pa, pb), is followed by forming the next population (Algo-

rithm 1, line 16). It depends on the current selection scheme

S in AE2 (see Sect. 4.2). In the case of AB selection, the

best child pB
c , generated for a pair (pa, pb), replaces the par-

ent pa in G(i+1), only if T (pB
c) < T (pa). In LES, N best

solutions are selected to form G(i+1) from the set of 2 · N

individuals, containing N best children and the current pop-

ulation Gi (N solutions). It is worth noting that in both cases

the best individual (i.e., with the largest fitness) in the popu-

lation survives. Finally, the best solution pB found up to date

is updated if it is necessary (line 16).

After creating a new population, the adaptation process

is carried out. First, it is verified if the best solution has

been improved since the last generation (line 17). If so,

the current configuration of the AMA-VRPTW settings is

kept for further exploitation. Also, the steady-state counter

s, indicating the number of consecutive generations with-

out any improvement in the fitness of the best individual, is

reset (line 18). Otherwise, if pB has not been updated, s is

increased (line 20).

In the proposed selection scheme (AE2), AB and LES

selections are dynamically switched between each other to

balance both exploration and exploitation of the solution

space. The selection scheme S is changed to LES (it is AB at

the beginning to explore the initial population, see line 1) for

a better local exploitation of the subpopulations of size N/ǫ

once s exceeds sM (line 22). Here, sM = N/4 is the maxi-

mum steady-state selection counter. If s surpasses P = N/2

(the maximum steady-state population counter), then S is set

back to AB, and �N new individuals, where �N = NI , are

added to the current population, to explore new regions of

the search space (line 24). Additionally, the counter s is reset

after introducing new genetic material (line 25). Note that

other mechanisms for introducing new individuals, e.g., the

population re-generation process, are not employed in AMA-

VRPTW, since the population diversity is increased while

appending new individuals to the population.1 It is worth

noting that sM and P depend on the current population size

N . This approach allows for increasing the probability of

crossing over a larger number of unique pairs of individuals

in both explorative (AB) and exploitative (LES) schemes.

Thus, the probability of obtaining a well-fitted individual

inheriting valuable information from both parents grows.

Finally, the best individual in the previous generation (pB
p)

is updated (line 28), and the stopping condition is verified

(line 29). The algorithm is terminated if its execution time

exceeds the maximum time limit τ . Also, it can be stopped if

pB is not improved for a given number of consecutive gen-

erations, or if a solution of an acceptable quality is already

found. Then, the best solution in the last generation (pB) is

returned (line 31). The crossover, repair, and education proce-

dures are the most time-consuming parts of AMA-VRPTW,

hence its time complexity is O(M2).

5 Experimental results

5.1 Setup

Extensive experiments were conducted to investigate the per-

formance of AMA-VRPTW, and to compare its efficacy with

other state-of-the-art techniques. AMA-VRPTW was imple-

mented in C++ language and run on a computer equipped

with an Intel Core i7 2.3 GHz (16 GB RAM) processor.

Its maximum execution time was limited by τ = 3.2 min

for Solomon’s set, and τ = 4.5 min for Gehring and

Homberger’s set (τ includes τI). The initial population is

very small (NI = 10, and �N = NI). In LES, we divide

the population into two equinumerous parts (ǫ = 2). The

maximum number of local moves in the mutation procedure

is IM = 100.

1 New individuals usually are of a lower quality than those already

optimized, and differ from them significantly.

123

Adaptive memetic algorithm for minimizing distance in the VRPTW 2317

Table 1 Abbreviations of the state-of-the-art methods taken for comparison (S—Solomon’s set, GH—Gehring and Homberger’s set)

Symbol Set Method References

2SHLS S Two-stage hybrid local search Bent and Van Hentenryck (2004)

TSH S Tabu search heuristics Ho and Haugland (2004)

HACS S Hybrid ant colony system Chen and Ting (2005)

2SH-EP S|GH Two-stage heuristics with ejection pools Lim and Zhang (2007)

GH GH A general heuristics for VRPs Pisinger and Ropke (2007)

ILS S|GH Iterated local search Ibaraki et al. (2008)

AGEA S|GH Arc-guided evolutionary algorithm Repoussis et al. (2009)

BPLNS S|GH A branch-and-price-based LNS Prescott-Gagnon et al. (2009)

EAMAα S Edge assembly memetic algorithm (N = 200) Nagata et al. (2010)

EAMAβ S|GH Edge assembly memetic algorithm (N = 100) Nagata et al. (2010)

GP–GA S Goal programming and genetic algorithm Ghoseiri and Ghannadpour (2010)

AC-IH S Ant colony with insertion heuristics Balseiro et al. (2011)

LNS S Large neighborhood search Hong (2012)

MA-DM S|GH Memetic algorithm with diversity management Vidal et al. (2013)

CPSO S Hybrid chaos-particle swarm optimization Hu et al. (2013)

AC-CH S Ant colony with characterization heuristics Gomez et al. (2014)

5.2 Datasets

AMA-VRPTW was tested on two classical benchmarks

of large-scale VRPTW problem instances proposed by

Solomon (1987), and Gehring and Homberger (1999). They

became the standard sets for evaluating emerging algorithms

to solve the VRPTW, since they reflect various real-life

scheduling circumstances. All large-scale tests (in both sets)

are split into subclasses, containing customers grouped into

clusters (C subclass), dispersed randomly on the map (R sub-

class), and those containing a mix of both clustered and ran-

domized customers (RC subclass). Among these subclasses,

it is possible to distinguish problems with smaller vehicle

capacities and considerably short time windows (C1, R1,

and RC1), and those with larger vehicle capacities and longer

scheduling horizons (C2, R2, and RC2). These characteris-

tics strongly influence the structure of final solutions, e.g., a

larger fleet is necessary to serve customers in the case of

small truck capacities and tight time windows.

In each Solomon’s instance, there are M = 100 cus-

tomers to serve, whereas in Gehring and Homberger’s

set, there are problems with various M’s, where M ∈

{200, 400, 600, 800, 1000}. The number of tests varies (from

8 to 12) between Solomon’s subclasses (56 instances in total).

Each Gehring and Homberger’s subclass contains 10 prob-

lems (60 instances in total for each M). Tests are distin-

guished by their unique names: αγ in Solomon’s set, and

α_β_γ in Gehring and Homberger’s set, where α denotes

the subclass (C1, C2, R1, R2, RC1, and RC2), β relates to

M (2 for 200, 4 for 400, and so forth), γ is the test identifier

(γ ∈ {01, 02, . . . , 12} for Solomon’s set, γ ∈ {1, 2, . . . , 10}

for Gehring and Homberger’s set). In this study, we consider

the entire Solomon’s set, and only 200-customer Gehring and

Homberger’s instances.

We compare AMA-VRPTW with a number of state-of-

the-art methods for solving the VRPTW. Table 1 summa-

rizes the algorithms taken for comparison for Solomon’s and

Gehring and Homberger’s sets (it is common that the authors

report the results obtained using their algorithms only for one

benchmark set). Also, we present the world’s best (currently

known) results published at the SINTEF website2 Finally,

we report the sensitivity analysis on various AMA-VRPTW

components followed by the two-tailed Wilcoxon test to ver-

ify statistical significance of the results. This study shows

how these components influence the AMA-VRPTW perfor-

mance, and how they contribute to the convergence capabil-

ities of the proposed MA.

5.3 Creating the initial population

The first stage of AMA-VRPTW consists in minimizing the

number of routes K , and generating the initial population of

N solutions (see Sect. 4 for more details). Here, we utilized

GES (Nagata and Bräysy 2009), which has a relatively high

time complexity O(M2.7), where M is the number of clients

to serve (Blocho 2013). Hence, the maximum execution time

τI is imposed on this procedure. As already mentioned, if τI is

exceeded, then the algorithm is terminated and the solutions

2 See http://www.sintef.no/Projectweb/TOP/VRPTW/; reference date:

June 20, 2014. Note that the world’s best results are a set of solutions

obtained using various algorithms—both sequential and parallel.

123

http://www.sintef.no/Projectweb/TOP/VRPTW/

2318 J. Nalepa, M. Blocho

Table 2 Average time τ K
A (in s) of generating a feasible solution with

K B routes using GES (out of 200 runs) for Solomon’s and Gehring and

Homberger’s sets (superscripts S and GH, respectively)

Subclass τ
K (S)
A τ

K (GH)
A

C1 0.06 0.23

C2 0.16 0.38

R1 5.25|0.62 0.08

R2 2.22|0.11 0.52|0.23

RC1 1.71|0.61 0.17

RC2 0.15 0.79|0.27

For some subclasses indicated the average time τ K
E excluding the most

time-consuming instances (τ K
A |τ K

E)—see Table 3

Table 3 Average time τ̃ K
A (in s) of generating a feasible solution with

K B routes using GES (out of 200 runs) for the most time-consuming

VRPTW instances

Solomon’s Gehring and Homberger’s

Instance τ̃ K
A Instance τ̃ K

A

R104 37.60 R2_2_1 3.15

R112 19.15 RC2_2_5 2.66

R204 1.31 RC2_2_6 3.04

R207 9.44 –

R211 12.79 –

RC106 19.15 –

already found are copied and mutated until N individuals

are generated. We generate a pool of 20 · NI solutions at

first (within τI). Solutions are taken from this pool when N

is increased on the fly, as discussed earlier. If N > 20 · NI

at some point during the optimization, then GES is run to

generate new (missing) individuals.

Although the theoretical complexity of GES is significant,

it runs very fast in practice, and the above-mentioned situ-

ation of copying and mutating already found solutions hap-

pened for less than 2.6 % of the considered instances. The

average execution time τ K
A (out of 200 independent runs) of

generating a single feasible solution (with K = K B , where

K B is the world’s best minimum K) is given in Table 2. For

some subclasses (R1, R2, and RC1 for Solomon’s set, and

R2 and RC2 for Gehring and Homberger’s set), we present

the average time (τ K
E) excluding the most computationally

intensive tests (Table 3). In most cases, the average time

necessary for generating a solution with K = K B is well

below 0.4 s for both benchmarks (Table 2), and it is negli-

gible compared with the execution time of AMA-VRPTW.

Solving only four Solomon’s instances took more than 10 s

on average (Table 3). If these tests are excluded from τ K
A for

Solomon’s set, then it is τ K
A = 0.29 s. The results indicate

that less-structured tests containing randomly scattered cus-

tomers (R and RC subclasses) are more difficult to solve by

GES in a short time. Since AMA-VRPTW is independent

from the stage of generating the initial population of solu-

tions, GES can be conveniently replaced by another, perhaps

more efficient, route minimization algorithm without affect-

ing the performance of AMA-VRPTW.

5.4 Comparison with other algorithms

We compare the performance of AMA-VRPTW with other

state-of-the-art techniques mentioned in Sect. 5.2. The results

are presented for each subclass (C1, C2, R1, R2, RC1, and

RC2), for both benchmark sets. Each test (i.e., for each prob-

lem instance) was repeated 5 times, and the best results were

averaged across subclasses (see Tables 4, 6). We indicate the

processor on which a given algorithm was executed (P3, P4,

Opt, Cent, and Xe stand for Pentium 3, Pentium 4, Opteron,

Centrino and Xeon, respectively), along with its execution

time τ for one problem instance, including τI [if a given

method was run (x) times for a test, then the best result out

of x executions was selected (1/x), and τ = x ×τs , where τs

is the time of a single run]. The quoted computation times are

difficult to compare directly due to different computer archi-

tectures used for experiments; however, they give a rough

overview about the algorithms’ performance and behavior.

For some techniques, the authors did not quote certain exper-

imental settings. This is indicated by the “n/a” symbol in the

appropriate column. Finally, the last rows in Tables 4 and 6

indicate the world’s best results. The results are given in a

form K |T , where K and T are the best minimum number of

routes and the best minimum total travel distance found using

the corresponding method, averaged for each subclass. Addi-

tionally, we show the best and the average AMA-VRPTW

results for each instance separately (Tables 5, 7).

For the Solomon’s tests (Table 4), a majority of the inves-

tigated state-of-the-art algorithms converged to the best-

known K B . It is worth noting that solutions in which cus-

tomers are served by a larger number of trucks are usually

characterized by a shorter total travel distance. However, the

main objective of the VRPTW is to minimize K , thus these

solutions are of a lower quality than those with a smaller

K . The most competitive results are delivered by the edge-

assembly MA (EAMA), MA with the diversity management

(MA-DM), and the proposed AMA-VRPTW. For EAMA,

two variants of the algorithm were executed, with differ-

ent population sizes (N = 20,000/M = 200, where M

denotes the number of customers, in EAMAα , and N = 100

in EAMAβ) as suggested by Nagata et al. (2010). The results

show that N significantly affects the algorithm performance.

Similarly, all MA-DM parameters are fixed and need to be

tuned before the execution. This is an important issue since

the whole optimization process must be run multiple times

to determine (i.e., to tune) adequate parameter values. Con-

trary to that, AMA-VRPTW adaptively controls its parame-

123

Adaptive memetic algorithm for minimizing distance in the VRPTW 2319

T
a
b

le
4

C
o
m

p
ar

is
o
n

o
f

th
e

re
su

lt
s

o
b
ta

in
ed

u
si

n
g

v
ar

io
u
s

m
et

h
o
d
s

o
n

S
o
lo

m
o
n
’s

V
R

P
T

W
in

st
an

ce
s

(1
0
0

cu
st

o
m

er
s)

M
et

h
o
d

↓
C

P
U

↓
S

u
b
cl

as
s
→

C
1

C
2

R
1

R
2

R
C

1
R

C
2

τ
↓

(m
in

.)
K

|T
K

|T
K

|T
K

|T
K

|T
K

|T

2
S

H
L

S
(1

/
5
)

S
U

N
U

lt
ra

5
×

1
2
0
.0

1
0
.0

|8
2
8
.3

8
3
.0

|5
8
9
.8

6
1
1
.9

2
|1

2
1
3
.2

5
2
.7

3
|9

6
6
.3

7
1
1
.5

0
|1

3
8
4
.2

2
3
.2

5
|1

1
4
1
.2

4

T
S

H
(1

/
1
)

S
P
A

R
C

II
–
4
4
0
M

2
5
.4

5
a

1
0
.0

|8
3
3
.7

6
3
.0

|5
9
2
.6

0
1
3
.5

0
|1

2
4
7
.1

7
3
.6

4
|9

6
2
.1

8
1
3
.3

8
|1

4
3
1
.9

4
4
.0

0
|1

1
4
6
.2

9

H
A

C
S

(1
/
1
)

P
3
–
1
.0

G
6
.3

a
1
0
.0

|8
2
8
.7

6
3
.0

|5
8
9
.8

6
1
2
.8

3
|1

2
0
3
.5

6
3
.0

9
|9

3
2
.2

3
1
2
.5

0
|1

3
6
3
.8

4
3
.7

5
|1

0
7
9
.8

1

2
S

H
–
E

P
(1

/
1
)

P
4
–
3
.0

G
3
8
.5

1
0
.0

|8
2
8
.3

8
3
.0

|5
8
9
.8

6
1
1
.9

2
|1

2
1
3
.6

1
2
.7

3
|9

6
1
.0

5
1
1
.5

0
|1

3
8
5
.5

6
3
.2

5
|1

1
2
1
.8

2

IL
S

(1
/
1
)

P
4
–
2
.8

G
1
6
.7

1
0
.0

|8
2
8
.3

8
3
.0

|5
8
9
.8

6
1
2
.0

0
|1

2
1
7
.9

9
2
.7

3
|9

6
7
.9

7
1
1
.6

3
|1

3
8
4
.6

7
3
.2

5
|1

1
2
8
.7

7

A
G

E
A

(1
/
3
)

P
4
–
3
.0

G
3

×
1
7
.9

1
0
.0

|8
2
8
.3

8
3
.0

|5
8
9
.8

6
1
1
.9

2
|1

2
1
0
.8

2
2
.7

3
|9

5
2
.6

7
1
1
.5

0
|1

3
8
4
.3

0
3
.2

5
|1

1
1
9
.7

2

B
P

L
N

S
(1

/
5
)

O
p
t–

2
.3

G
5

×
3
0
.0

1
0
.0

|8
2
8
.3

8
3
.0

|5
8
9
.8

6
1
1
.9

2
|1

2
1
0
.3

4
2
.7

3
|9

5
5
.7

4
1
1
.5

0
|1

3
8
4
.1

6
d

3
.2

5
|1

1
1
9
.4

4

E
A

M
A

α
(1

/
5
)

O
p
t–

2
.4

G
5

×
5
.0

1
0
.0

|8
2
8
.3

8
3
.0

|5
8
9
.8

6
1
1
.9

2
|1

2
1
0
.3

4
2
.7

3
|9

5
1
.0

3
1
1
.5

0
|1

3
8
4
.1

6
d

3
.2

5
|1

1
1
9
.2

4

E
A

M
A

β
(1

/
1
)

O
p
t–

2
.4

G
3
.2

1
0
.0

|8
2
8
.3

8
3
.0

|5
8
9
.8

6
1
1
.9

2
|1

2
1
0
.3

4
2
.7

3
|9

5
2
.0

8
1
1
.5

0
|1

3
8
4
.7

2
3
.2

5
|1

1
1
9
.4

5

G
P

–
G

A
(1

/
1
0

)
(n

/a
)–

1
.6

G
1
0
×

(n
/a

)
1
0
.0

|8
2
8
.3

8
3
.0

|5
9
1
.4

9
1
2
.9

2
|1

2
2
8
.6

0
3
.3

6
|1

0
6
3
.9

4
1
2
.7

5
|1

3
9
2
.0

9
3
.7

5
|1

1
6
2
.4

0

A
C

-I
H

(1
/
1
0

)
C

en
t–

1
.7

G
1
0

×
5
.0

1
0
.0

|8
2
8
.3

8
3
.0

|5
8
9
.8

6
1
1
.9

2
|1

2
1
0
.6

0
2
.7

3
|9

5
2
.3

0
1
1
.5

0
|1

3
8
4
.2

1
3
.2

5
|1

1
1
9
.4

1

L
N

S
(1

/
1
)

C
o
re

2
D

u
o
–
2
.4

0
G

3
.0

2
a

1
0
.0

|8
3
3
.1

0
3
.0

|5
9
0
.3

1
1
2
.2

5
|1

2
1
8
.2

8
3
.2

7
|9

6
4
.1

1
1
2
.1

3
|1

3
6
9
.5

7
3
.7

5
|1

1
3
1
.1

8

M
A

-D
M

(1
/
5
)

X
e–

2
.9

3
G

5
×

2
.6

8
1
0
.0

|8
2
8
.3

8
3
.0

|5
8
9
.8

6
1
1
.9

2
|1

2
1
0
.6

9
2
.7

3
|9

5
1
.5

1
1
1
.5

0
|1

3
8
4
.1

7
3
.2

5
|1

1
1
9
.2

4

C
P

S
O

b
(n

/a
)

A
M

D
T

u
ri

o
n
–
2
.1

G
n
/a

1
0
.0

|8
2
8
.3

8
3
.0

|5
8
9
.8

6
1
1
.9

2
|1

2
1
5
.7

8
2
.7

3
|9

5
2
.9

8
1
1
.5

0
|1

4
1
4
.2

4
3
.2

5
|1

1
3
6
.0

0

A
C

-C
H

(1
/
1
)

X
e–

1
.8

6
G

3
0
.0

1
0
.0

|8
2
9
.5

9
3
.0

|5
9
3
.8

8
1
2
.5

0
|1

2
3
4
.8

8
2
.8

2
|1

0
5
7
.4

2
1
1
.8

8
|1

4
4
1
.8

9
3
.3

8
|1

1
4
6
.5

0

A
M

A
-V

R
P

T
W

(1
/
5
)

i7
–
2
.3

G
5

×
3
.2

c
1
0
.0

|8
2
8
.3

8
3
.0

|5
8
9
.8

6
1
1
.9

2
|1

2
1
0
.3

4
2
.7

3
|9

5
1
.8

0
1
1
.5

0
|1

3
8
4
.1

7
3
.2

5
|1

1
1
9
.2

4

W
o
rl

d
’s

b
es

t
–

–
1
0
.0

|8
2
8
.3

8
3
.0

|5
8
9
.8

6
1
1
.9

2
|1

2
1
0
.3

4
2
.7

3
|9

5
1
.0

3
1
1
.5

0
|1

3
8
4
.1

7
3
.2

5
|1

1
1
9
.2

4

a
T

h
e

av
er

ag
e

ex
ec

u
ti

o
n

ti
m

e
b

T
h
e

au
th

o
rs

q
u
o
te

d
th

e
fu

ll
re

su
lt

s
o
n
ly

fo
r

th
e

in
it

ia
l

5
0
0

it
er

at
io

n
s

o
f

th
ei

r
al

g
o
ri

th
m

c
F

o
r

R
1
0
4
,

R
1
1
2
,

R
2
1
1
,

an
d

R
C

1
0
6

in
st

an
ce

s,
w

e
in

cr
ea

se
d

th
e

m
ax

im
u
m

A
M

A
-V

R
P

T
W

ti
m

e
to

τ
=

5
.0

m
in

d
N

o
te

th
at

T
<

T
B

(f
o
r

K
=

K
B

),
b
u
t

th
es

e
re

su
lt

s
h
av

e
n
o
t

b
ee

n
co

n
fi

rm
ed

b
y

S
IN

T
E

F

123

2320 J. Nalepa, M. Blocho

Table 5 The average and the minimum total travel distance (TA|T) (out of 5 runs) obtained using AMA-VRPTW on Solomon’s VRPTW instances

(100 customers) (in boldface indicated T ’s equal to the world’s best TB)

Subclass → C1 C2 R1 R2 RC1 RC2

Instance ↓ TA|T TA|T TA|T TA|T TA|T TA|T

1 828.94|828.94 591.56|591.56 1650.80|1650.80 1253.02|1252.37 1696.95|1696.95 1406.94|1406.94

2 828.94|828.94 591.56|591.56 1486.12|1486.12 1191.70|1191.70 1554.75|1554.75 1366.93|1365.64

3 828.06|828.06 591.17|591.17 1292.68|1292.68 941.88|939.50 1261.95|1261.67 1063.26|1049.62

4 824.78|824.78 590.60|590.60 1007.31|1007.31 833.09|828.78 1135.52|1135.52 798.46|798.46

5 828.94|828.94 588.88|588.88 1377.11|1377.11 995.93|994.43 1629.44|1629.44 1297.65|1297.65

6 828.94|828.94 588.49|588.49 1255.59|1252.03 910.51|906.14 1424.73|1424.73 1149.32|1146.32

7 828.94|828.94 588.29|588.29 1108.28|1104.66 895.90|890.61 1231.52|1230.48 1064.87|1061.14

8 828.94|828.94 588.32|588.32 963.48|960.88 728.02|726.82 1141.34|1139.82 829.18|828.14

9 828.94|828.94 – 1195.27|1194.73 910.37|909.16 – –

10 – – 1118.84|1118.84 944.32|939.37 – –

11 – – 1096.73|1096.73 892.61|891.11 – –

12 – – 986.83|982.14 – – –

K = K B for each problem instance

Table 6 Comparison of the results obtained using various methods on Gehring and Homberger’s large-scale VRPTW instances (200 customers)

Method ↓ CPU↓ Subclass → C1 C2 R1 R2 RC1 RC2

τ ↓ (min.) K |T K |T K |T K |T K |T K |T

2SH–EP (1/1) P4–3.0G 93.2 18.9|2726.11 6.0|1834.24 18.2|3639.60 4.0|2950.09 18.0|3205.51 4.3|2574.10

GH (1/10) P4–3.0G 10 × 7.7 18.9|2721.52 6.0|1832.95 18.2|3631.23 4.0|2949.37 18.0|3212.28 4.3|2556.87

ILS (1/1) P4–2.8G 33.0 18.9|2732.03 6.0|1834.83 18.2|3665.77 4.0|2965.64 18.0|3287.61 4.3|2562.56

AGEA (1/3) Opt–2.3G 90.0 18.9|2721.90 6.0|1833.36 18.2|3640.11 4.0|2941.99 18.0|3224.63 4.3|2554.33

BPLNS (1/5) Opt–2.3G 5 × 53.0 18.9|2718.77 6.0|1831.59 18.2|3615.69 4.0|2937.67 18.0|3192.56 4.3|2559.32

EAMAa (1/5) Opt–2.4G 5 × 4.1 18.9|2718.41 6.0|1831.64 18.2|3612.36 4.0|2929.41 18.0|3178.68 4.3|2536.22

MA-DM (1/5) Xe–2.93G 5 × 8.4 18.9|2718.41 6.0|1831.59 18.2|3613.16 4.0|2929.41 18.0|3180.48 4.3|2536.20

AMA-VRPTW (1/5) i7–2.3G 5 × 4.5 18.9|2718.41 6.0|1831.59 18.2|3627.30 4.0|2930.06 18.0|3226.78 4.3|2537.72

World’s best – – 18.9|2718.41 6.0|1831.59 18.2|3611.86 4.0|2929.41 18.0|3176.23 4.3|2535.88

a Only one variant of EAMA is tested here since N = 20,000/200 = 100 [see Nagata et al. (2010)]

ters during the search—it starts from a very small population,

which is subsequently increased only if it is necessary. The

results show that AMA-VRPTW matched the best-known

solutions for almost all subclasses.

In Table 5, we report the detailed AMA-VRPTW results

for Solomon’s benchmark, showing the average and the best

travel distances, TA and T , respectively. For 32 (out of 56)

problem instances (57 %) TA matched T , whereas for 52

tests (93 %) AMA-VRPTW managed to find the best-known

solution within 5 runs. It indicates high convergence capa-

bilities of the algorithm, and this observation is confirmed by

the maximum relative difference between TA and T , given

as δM = max{δ(αγ)}, where δ(αγ) = (T
(αγ)

A − T (αγ))/T (αγ)

for each problem instance αγ , which is δM = 1.3 · 10−2

for RC203. The subclasses with clustered customers are not

only easy to solve with respect to the fleet size (Table 2), but

they are also very efficiently optimized by AMA-VRPTW

when the total distance is considered (see C1 and C2 in

Table 5).

The results obtained for Gehring and Homberger’s bench-

mark tests are presented in Table 6, along with the detailed

AMA-VRPTW results in Table 7. Although the search space

is significantly larger here, C1 and C2 subclasses are solved

successfully by most of the methods. However, subclasses

containing randomized customers (especially with tight time

windows) appeared to be challenging (see R1 and RC1 in

Table 6) for both minimizing K and T . Similarly, the MAs

(EAMA, MA-DM, and AMA-VRPTW) deliver the best (and

the most stable among different subclasses) results. Also,

a branch-and-price-based neighborhood search (BPLNS)

offers competitive results, yet its computation time is sig-

nificantly (at least 6.31× compared with MA-DM) larger

than the time of the mentioned evolutionary techniques. As

remarked previously, EAMA and MA-DM parameters must

123

Adaptive memetic algorithm for minimizing distance in the VRPTW 2321

Table 7 The average and the minimum total travel distance (TA|T) (out of 5 runs) obtained using AMA–VRPTW on Gehring and Homberger’s

large-scale VRPTW instances (200 customers) (in boldface indicated T ’s equal to the world’s best TB)

Subclass → C1 C2 R1 R2 RC1 RC2

Instance ↓ TA|T TA|T TA|T TA|T TA|T TA|T

1 2704.57|2704.57 1931.44|1931.44 4795.04|4795.04 4483.16|4483.16 3746.25|3636.70 3114.17|3099.53

2 2933.45|2917.89 1863.16|1863.16 4078.52|4055.95 3651.66|3621.20 3377.44|3312.89 2825.82|2825.33

3 2716.19|2707.35 1775.65|1775.08 3421.16|3388.03 2895.16|2881.15 3094.08|3034.74 2614.86|2604.09

4 2648.69|2643.31 1710.09|1703.43 3090.56|3075.22 1986.45|1981.30 2931.00|2872.10 2069.18|2048.77

5 2702.05|2702.05 1879.22|1878.85 4126.45|4111.84 3368.69|3366.79 3511.51|3419.76 2916.82|2911.46

6 2701.04|2701.04 1857.35|1857.35 3666.99|3618.34 2925.76|2914.11 3465.78|3401.36 2884.27|2873.12

7 2701.04|2701.04 1849.46|1849.46 3185.21|3171.89 2462.35|2452.66 3308.23|3273.47 2547.05|2525.83

8 2779.26|2775.48 1821.87|1820.53 2969.87|2958.19 1863.07|1849.98 3204.66|3168.96 2323.47|2297.44

9 2690.41|2687.83 1830.84|1830.05 3811.18|3792.26 3101.64|3095.27 3192.70|3121.80 2190.84|2175.98

10 2652.79|2643.51 1807.11|1806.58 3312.62|3306.21 2660.30|2654.97 3076.42|3025.99 2022.87|2015.61

K = K B for each problem instance

be set beforehand, and each configuration requires a separate

execution (e.g., for three different N ’s, EAMA would require

3 × 5 × 4.1 = 61.5 min. in this scenario). AMA-VRPTW

does not suffer from this drawback as it adapts itself on the

fly.

The detailed results of AMA-VRPTW (Table 7) confirm

that it is very efficient in solving problems with clustered cus-

tomers, and all C1 and C2 tests were solved to the best-known

optimum within 5 algorithm runs. In total, the proposed MA

retrieved the world’s best results for 29 instances (48 %),

among which for 9 tests (15 %) the minimum total travel

distance TB was gathered in every run. For this benchmark

set, the average TA values (out of 5 AMA-VRPTW runs)

were close to the best results, what illustrate a good stabil-

ity of the algorithm. The relative differences averaged for

the subclasses (δα
A =

∑

(α_β_γ) δ(α_β_γ)/10, where δ(α_β_γ)

denotes the relative difference for each instance α_β_γ in a

given subclass α) are the largest in the case of RC1 and RC2

tests: δRC1
A = 2.0 · 10−2 and δRC2

A = 0.5 · 10−2.

AMA-VRPTW can be terminated once a solution of a

desired quality has been found. Alternatively, the search

may be finished if the best solution in the population is

not improved for a number of consecutive generations g.

It usually means that the optimization process converged

to a solution which is not likely to be improved further, if

g is sufficiently large. In Table 8, we present the average

convergence time τc (excluding τI), along with the average

number of generations gc in AMA-VRPTW, after which the

travel distance of the best solution could not be decreased

further. The results confirm that AMA-VRPTW is extremely

efficient in solving instances with clustered customers (C1

and C2). The subclasses with wide time windows and larger

truck capacities (C2, R2, and RC2) are, in general, more dif-

ficult to solve in the case of Solomon’s set, and take much

more time (compared with C1, R1, and RC1 tests). The sit-

Table 8 Average convergence time τc (in s) and generation gc

(for Solomon’s and Gehring and 200-customer Homberger’s sets—

superscripts S and GH, respectively)

Subclass τS
c gS

c τGH
c gGH

c

C1 0.77 3.53 81.77 62.93

C2 2.30 2.75 75.60 30.12

R1 50.01 43.65 244.17 134.94

R2 163.62 46.17 200.96 57.91

RC1 50.21 40.80 261.85 181.15

RC2 174.68 53.00 239.36 62.50

uation is opposite for Gehring and Homberger’s large-scale

tests. Here, instances with tight time window characteristics

(C1, R1, and RC1) appeared to be computationally intensive.

Since the converge times τGH
c are very close to the imposed

time limit τ , increasing AMA-VRPTW maximum execution

time can help improve the best individuals in the next gen-

erations. Similarly, the number of generations necessary for

converging to high-quality results increases for demanding

tests (R2 and RC2 for Solomon’s set, C1, R1, and RC1 for

Gehring and Homberger’s set).

5.5 Analysis and discussion on adaptiveness

In a majority of EAs, a fixed number of children Nc, where

Nc ≥ 1, is generated for each pair of parents. It is easy

to see that creating a larger number of child solutions may

be beneficial, especially for MAs, in which each individual

undergoes an additional education procedure. However, if the

process of generating a child is time consuming, then it may

significantly slow down the search and affect the convergence

capabilities of the algorithm. Therefore, selecting an optimal

number of children Nc is of a high importance, and is not

123

2322 J. Nalepa, M. Blocho

(a) (b)

Fig. 11 The average number of children generated for each pair of parents for: a C1, R1, and RC1, and b C2, R2, and RC2 subclasses of the

200-customer Gehring and Homberger’s set

Table 9 Abbreviations of the

investigated MA variants—MA

(N , Nc, selection scheme); A

stands for adaptive

ID Variant N Nc Selection

MA1 MA (100, 20, AB) Constant, N = 100 Constant, Nc = 20 AB-selection

MA2 MA (100, 20, A) Constant, N = 100 Constant, Nc = 20 Adaptive (AE2)

MA3 MA (100, A, AB) Constant, N = 100 Adaptive AB-selection

MA4 MA (100, A, A) Constant, N = 100 Adaptive Adaptive (AE2)

MA5 MA (A, 20, AB) Adaptive Constant, Nc = 20 AB-selection

MA6 MA (A, 1, A) Adaptive Constant, Nc = 1 Adaptive (AE2)

MA7 MA (A, 20, A) Adaptive Constant, Nc = 20 Adaptive (AE2)

MA8 MA (A, A, AB) Adaptive Adaptive AB-selection

AMA AMA-VRPTW Adaptive Adaptive Adaptive (AE2)

a trivial task. In AMA-VRPTW, we proposed to adaptively

adjust Nc (see Sect. 4 for details), so as it can change in time.

Here, we present the average number of children for Gehring

and Homberger’s subclasses generated within gc generations

(gc values are given in Table 8).

The results for all subclasses are depicted in Fig. 11. For

difficult tests (with tight time windows), Nc grows slowly

compared with the subclasses characterized by a longer

scheduling horizon. It indicates that relatively small popu-

lations are exploited for a shorter time here, and generat-

ing more children does not help improve the quality of best

individuals. Thus, the population size N adaptively grows

to explore new regions of the search space by adding new

genetic material. This increase of N is indicated by peaks in

Fig. 11a, e.g., for C1.

Once N is enlarged, the average Nc drops, since the proba-

bility of obtaining a better (i.e., with a shorter T) child than at

least one parent rapidly increases (new individuals appended

to the population are usually of a lower quality than those

already optimized). For R2 and RC2 tests, Nc continuously

grows without a fast increase of N , since there are still high-

quality neighboring solutions, and generating more children

is advantageous (see Fig. 11b). Also, it affects the number of

generations necessary to converge to the final solutions (see

Table 8). Therefore, generating a large number of children

is more exploitative and results in aggressive optimization

of small populations. On the contrary, small Nc’s and more

rapid increase of N expose an explorative behavior of AMA-

VRPTW. The appropriate search scheme (i.e., more exploita-

tive or explorative) is adaptively controlled according to the

current state of the search in the proposed algorithm.

5.6 Sensitivity analysis on method components

In AMA-VRPTW, we introduced some new adaptive compo-

nents to address the problem of setting numerous MA para-

meters dynamically. In this section, we analyze how these

procedures contribute to the AMA-VRPTW performance

and execution time for Gehring and Homberger’s tests with

200 customers. To determine the impact of each of these com-

ponents, we defined several algorithm variants in which adap-

tive techniques for setting N , Nc, and the selection scheme,

are replaced by the baseline approaches. The investigated

AMA-VRPTW variants are summarized in Table 9. Each

test was repeated 5 times, and the best results were aver-

aged across subclasses. The minimum total travel distance

T , along with the average convergence time τc and genera-

tion gc, and the average time of processing a single generation

τ
g

A, is given in Table 10 (the best T is indicated in boldface).

As previously, K = K B for each test.

123

Adaptive memetic algorithm for minimizing distance in the VRPTW 2323

Table 10 Comparison of the results (the minimum total travel distance T , the average convergence time τc (in s), the average convergence generation

gc, and the average time of a single generation τ
g

A (in s)) obtained using different algorithm variants

Variant ↓ C1 C2 R1 R2 RC1 RC2

MA1

T 2720.07 1837.44 3721.14 2969.83 3432.39 2575.97

τc 111.59 102.56 277.82 322.29 301.88 315.53

gc 20.05 6.77 16.82 6.34 24.44 7.52

τ
g

A 3.46 12.43 14.65 58.58 12.83 46.57

MA2

T 2720.04 1836.72 3714.25 2957.70 3419.78 2570.76

τc 141.01 144.87 277.72 318.26 302.16 319.72

gc 14.30 5.57 15.65 5.82 23.06 7.10

τ
g

A 7.12 22.10 16.48 64.63 13.60 51.47

MA3

T 2718.62 1832.08 3680.48 2937.46 3340.50 2549.92

τc 129.26 92.56 267.71 275.71 297.73 280.03

gc 23.64 10.46 35.54 17.75 46.23 19.30

τ
g

A 3.98 10.15 7.34 17.17 6.62 15.82

MA4

T 2718.56 1833.37 3681.78 2938.51 3355.82 2554.39

τc 127.36 87.87 274.11 272.78 297.65 293.83

gc 23.73 9.85 37.71 17.64 48.65 17.96

τ
g

A 2.99 9.08 6.67 17.08 6.32 17.66

MA5

T 2719.64 1832.59 3649.20 2937.43 3272.49 2546.71

τc 66.64 81.75 205.27 194.64 261.24 216.58

gc 49.94 28.70 108.02 42.56 176.44 55.22

τ
g

A 1.95 3.96 2.19 5.14 1.56 4.25

MA6

T 2720.10 1833.65 3661.09 2939.35 3294.61 2555.52

τc 99.62 90.10 242.04 229.13 253.29 242.80

gc 130.66 60.22 274.40 110.36 325.05 125.63

τ
g

A 0.81 1.74 0.94 2.28 0.85 2.11

MA7

T 2718.87 1831.95 3647.68 2936.61 3270.71 2545.80

τc 62.86 63.07 195.50 211.73 240.76 206.80

gc 46.72 22.86 116.75 44.42 168.66 55.92

τ
g

A 1.94 3.94 2.02 5.24 1.56 4.16

MA8

T 2718.56 1831.91 3637.91 2934.32 3243.53 2542.16

τc 69.99 67.03 210.46 154.68 256.71 209.76

gc 41.98 22.39 104.76 43.50 162.62 56.06

τ
g

A 3.00 6.23 2.53 5.40 1.75 4.61

AMA

T 2718.41 1831.59 3627.30 2930.06 3226.78 2537.72

τc 81.77 75.60 244.17 200.96 261.85 239.36

gc 62.93 30.12 134.94 57.91 181.15 62.50

τ
g

A 2.14 4.29 2.13 4.39 2.18 4.81

123

2324 J. Nalepa, M. Blocho

Table 11 The level of statistical significance obtained using the two-tailed Wilcoxon test for each pair of the MA variants: p ≤ x , where x is the

value given in the table, p denotes the p value, and no indicates that p > 0.05.

MA1 MA2 MA3 MA4 MA5 MA6 MA7 MA8 AMA

MA1 – no 0.01 0.01 0.01 0.01 0.01 0.01 0.01

MA2 – 0.01 0.01 0.01 0.01 0.01 0.01 0.01

MA3 – 0.01 no 0.01 no no 0.05

MA4 – 0.05 0.05 0.01 0.01 0.01

MA5 – 0.01 no 0.01 0.01

MA6 – 0.01 0.01 0.01

MA7 – 0.01 0.01

MA8 – 0.05

Each adaptive component applied separately in the MA

significantly improves the results (see variants MA2, MA3

and MA5, compared with the baseline MA1 in Table 10). The

adaptive number of children Nc and the population size N

affect the convergence speed of the original MA by utilizing

the incremental exploration of the solution space. Combining

these two variants into MA8 helps further decrease the execu-

tion time and obtain higher-quality results. Also, the adaptive

selection scheme (AE2) offers better exploitation behavior

when combined with the mentioned variants (MA4, MA6

and MA7). Due to a small value of Nc (Nc = 1) which was

set a priori, small populations were not sufficiently exploited

during the search (MA6 resulted in larger T ’s). It confirms the

necessity of setting Nc on the fly to handle the current search

state efficiently. Finally, AMA-VRPTW in which all the dis-

cussed adaptive techniques are applied resulted in the best

travel distances for each subclass. It proves a good stability

of AMA-VRPTW, and shows that it delivers best asymptotic

results within the assumed execution time.

The algorithm variants with constant N = 100 and

Nc = 20 require significantly larger amount of time to

process a single generation (see τ
g

A for MA1 and MA2). Since

the adaptive selection is more exploitative, MA2 handles a

single generation slower, but allows for an intensive search

resulting in better solutions (see Table 10). Incorporating the

adaptive techniques for Nc and N significantly decreases the

computation time. It is easy to see that generating a single

child for each pair of parents (MA6) is very fast, but the

quality of solutions obtained by this algorithm variant dras-

tically drops. Finally, the proposed AMA-VRPTW not only

can deliver very high-quality solutions, but also it is very

efficient in terms of the computation time (e.g., it is more

than 13.3× faster compared with the static MA, in which

the parameters are fixed during the optimization—see AMA-

VRPTW and MA1 for R2).

To verify the null hypothesis saying that “two variants

of the MA (with adaptive and static parameters) lead to the

same quality of final solutions”, we performed the two-tailed

Wilcoxon test for each pair of the algorithm variants (see

Table 11).3 It is easy to see that it can be rejected with a

high probability for AMA-VRPTW compared with other MA

variants. This means that the increase of the solutions quality

is statistically significant for the proposed adaptive MA. It is

worth noting that the difference between MA3 (the MA with

an adaptive scheme for determining the number of children),

and some other adaptive MAs (MA7 and MA8) is not nec-

essarily statistically significant. However, the latter variants

outperformed MA3 in terms of the execution time, and con-

verged to high-quality solutions much faster (see Table 8 for

more details). Also, the population size does not need to be

specified for the adaptive algorithms prior to the optimiza-

tion. This was a significant drawback of the MA3 variant

leading to a very time-consuming tuning.

6 Conclusions and future work

In this paper, a new adaptive memetic algorithm (AMA-

VRPTW) for solving the VRPTW has been proposed. AMA-

VRPTW adaptively adjusts its various parameters, includ-

ing the population size, the number of children generated

for each pair of parents during the recombination process,

and the selection scheme, according to the current state of

the optimization. The problem of determining proper algo-

rithm parameters before the execution is very difficult in

practice, and requires a large computational effort to vali-

date each set of parameters. This is a significant drawback

of other state-of-the-art algorithms. A noteworthy feature of

AMA-VRPTW is its capability of balancing the exploration

and exploitation of the search space. In AMA-VRPTW, the

exploration of N individuals is followed by their intensive

exploitation.

The extensive experimental study conducted for two stan-

dard benchmark sets proves the high convergence capabil-

ities of AMA-VRPTW, and shows that it not only offers

high-quality results but also executes very fast. Since AMA-

3 Here, we analyze the best results (out of 5 runs) obtained for all 200-

customer tests.

123

Adaptive memetic algorithm for minimizing distance in the VRPTW 2325

VRPTW converges to high-quality solutions extremely fast,

it can be applied to commercial (real-time) applications in

which travel costs are dynamic—they are updated accord-

ing to the traffic information. We performed the sensitivity

analysis, and demonstrated how various algorithm compo-

nents influence the final results and the optimization process.

The two-tailed Wilcoxon test showed the statistical signifi-

cance of the results obtained using the considered variants of

AMA-VRPTW with certain adaptive components switched

off and on.

Our ongoing research is focused on incorporating the

proposed adaptive algorithm into our parallel framework

(Nalepa and Blocho 2014). We aim at conducting the exper-

iments for full Gehring and Homberger’s benchmark set

(i.e., for each number of customers) using the adaptive par-

allel MA. Also, we work on new adaptive co-operation

schemes of parallel processes to guide the search more effi-

ciently. Finally, we plan to enhance local refinement pro-

cedures applied for optimizing the already-found solutions

during the education process to improve the performance

of AMA-VRPTW for instances with tight time windows.

Another direction of our future work encompasses design-

ing a self-adaptive MA which will evolve its parameters

with time. Finally, we plan to apply AMA-VRPTW to other

complex vehicle routing problems, especially the pickup and

delivery problem with time windows.

Acknowledgments This research was supported by the National Sci-

ence Centre under research Grant No. DEC-2013/09/N/ST6/03461.

The work was performed using the infrastructure supported by the

POIG.02.03.01-24-099/13 grant: “GeCONiI—Upper Silesian Center

for Computational Science and Engineering”. Also, we thank Acad-

emic Computer Centre in Gdańsk (CI TASK), where the computations

of our project were carried out.

Open Access This article is distributed under the terms of the Creative

Commons Attribution License which permits any use, distribution, and

reproduction in any medium, provided the original author(s) and the

source are credited.

References

Abdallah KS, Jang J (2014) An exact solution for vehicle routing

problems with semi-hard resource constraints. Comput Ind Eng

76(0):366–377. doi:10.1016/j.cie.2014.08.011

Baldacci R, Mingozzi A, Roberti R (2011) New route relaxation

and pricing strategies for the vehicle routing problem. Oper Res

59(5):1269–1283

Baldacci R, Mingozzi A, Roberti R (2012) Recent exact algorithms

for solving the vehicle routing problem under capacity and time

window constraints. Eur J Oper Res 218(1):1–6

Balseiro S, Loiseau I, Ramonet J (2011) An ant colony algorithm

hybridized with insertion heuristics for the time dependent vehicle

routing problem with time windows. Comput Oper Res 38(6):954–

966

Banos R, Ortega J, Gil C, Márquez AL, de Toro F (2013) A hybrid

meta-heuristic for multi-objective vehicle routing problems with

time windows. Comput Ind Eng 65(2):286–296

Bard JF, Kontoravdis G, Yu G (2002) A branch-and-cut procedure

for the vehicle routing problem with time windows. Transp Sci

36(2):250–269

Bektas T (2006) The multiple traveling salesman problem: an overview

of formulations and solution procedures. Omega 34(3):209–

219

Bent R, Van Hentenryck P (2004) A two-stage hybrid local search for the

vehicle routing problem with time windows. Transp Sci 38(4):515–

530

Blocho M (2013) A parallel memetic algorithm for solving the vehicle

routing problem with time windows. PhD thesis, Silesian Univer-

sity of Technology, Gliwice

Blocho M, Czech Z (2012a) A parallel algorithm for minimizing the

number of routes in the vehicle routing problem with time win-

dows. In: Wyrzykowski R, Dongarra J, Karczewski K, Waniewski

J (eds) Parallel Processing and applied mathematics, vol 7203.

Lecture Notes in Computer ScienceSpringer, Berlin, Heidelberg,

pp 255–265

Blocho M, Czech Z (2012b) A parallel EAX-based algorithm for min-

imizing the number of routes in the vehicle routing problem with

time windows. In: High performance computing and communica-

tion 2012 IEEE 9th international conference on embedded soft-

ware and systems (HPCC-ICESS), 2012 IEEE 14th International

Conference on, pp 1239–1246

Blocho M, Czech ZJ (2013) A parallel memetic algorithm for the vehicle

routing problem with time windows. In: Proceedings of the 2013

eighth international conference on P2P, parallel, grid, cloud and

internet computing, 3PGCIC ’13, pp 144–151

Bräysy O, Gendreau M (2005) Vehicle routing problem with time win-

dows, part II: metaheuristics. Transp Sci 39(1):119–139

Chabrier A (2006) Vehicle routing problem with elementary shortest

path based column generation. Comput Oper Res 33(10):2972–

2990 (part Special Issue: Constraint Programming)

Chen CH, Ting CJ (2005) A hybrid ant colony system for vehicle routing

problem with time windows. J East Asia Soc Transp Stud 6:2822–

2836

Chiang WC, Russell R (1996) Simulated annealing metaheuristics for

the vehicle routing problem with time windows. Ann Oper Res

63(1):3–27

Coltorti D, Rizzoli AE (2007) Ant colony optimization for real-world

vehicle routing problems. SIGEVOlution 2(2):2–9

Cordeau JF, Desaulniers G, Desrosiers J, Solomon MM, Soumis F

(2002) VRP with Time Windows. In: Toth P, Vigo D (eds) The

vehicle routing problem, SIAM monographs on discrete mathe-

matics and applications, vol 9. Philadelphia, PA, pp 157–193

Creput JC, Koukam A (2008) The memetic self-organizing map

approach to the vehicle routing problem. Soft Computing

12(11):1125–1141. doi:10.1007/s00500-008-0281-4

Dantzig GB, Ramser JH (1959) The truck dispatching problem. Manag

Sci 6(1):80–91

Eiben A, Hinterding R, Michalewicz Z (1999) Parameter control in

evolutionary algorithms. Evol Comput IEEE Trans 3(2):124–141

El-Sherbeny NA (2010) Vehicle routing with time windows: an

overview of exact, heuristic and metaheuristic methods. J King

Saud Univ Sci 22(3):123–131

Feillet D, Dejax P, Gendreau M, Gueguen C (2004) An exact algo-

rithm for the elementary shortest path problem with resource con-

straints: application to some vehicle routing problems. Networks

44(3):216–229

Gambardella LM, Taillard E, Agazzi G (1999) MACS-VRPTW: a

multiple ant colony system for vehicle routing problems with

time windows. In: New Ideas in optimization, McGraw-Hill,

pp 63–76

Garey MR, Johnson DS (1990) Computers and intractability: a guide to

the theory of NP-completeness. W. H. Freeman & Co., New York

123

http://dx.doi.org/10.1016/j.cie.2014.08.011
http://dx.doi.org/10.1007/s00500-008-0281-4

2326 J. Nalepa, M. Blocho

Gehring H, Homberger J (1999) A parallel hybrid evolutionary

metaheuristic for the vehicle routing problem with time win-

dows. In: Proceedings of EUROGEN99-Short course on evo-

lutionary algorithms in engineering and computer science,

pp 57–64

Ghoseiri K, Ghannadpour SF (2010) Multi-objective vehicle routing

problem with time windows using goal programming and genetic

algorithm. Appl Soft Comput 10(4):1096–1107

Gomez C, Cruz-Reyes L, González JJ, Fraire HJ, Pazos RA, Martinez JJ

(2014) Ant colony system with characterization-based heuristics

for a bottled-products distribution logistics system. J Comput Appl

Math B 259:965–977

Guan X, Zhang X, Han D, Zhu Y, Lv J, Su J (2014) A strategic flight

conflict avoidance approach based on a memetic algorithm. Chin

J Aeronaut 27(1):93–101

Ho S, Haugland D (2004) A tabu search heuristic for the vehicle routing

problem with time windows and split deliveries. Comput Oper Res

31(12):1947–1964

Hong L (2012) An improved LNS algorithm for real-time vehicle rout-

ing problem with time windows. Comput Oper Res 39(2):151–

163

Hosny MI, Mumford CL (2010) The single vehicle pickup and delivery

problem with time windows: intelligent operators for heuristic and

metaheuristic algorithms. J Heuristics 16(3):417–439

Hu W, Liang H, Peng C, Du B, Hu Q (2013) A hybrid chaos-particle

swarm optimization algorithm for the vehicle routing problem with

time window. Entropy 15(4):1247–1270

Ibaraki T, Imahori S, Nonobe K, Sobue K, Uno T, Yagiura M (2008) An

iterated local search algorithm for the vehicle routing problem with

convex time penalty functions. Discrete Appl Math 156(11):2050–

2069

Irnich S, Villeneuve D (2006) The shortest-path problem with resource

constraints and k-cycle elimination for k ≤ 3. INFORMS J Com-

put 18(3):391–406

Jin Y, Hao JK, Hamiez JP (2014) A memetic algorithm for the minimum

sum coloring problem. Comput Oper Res 43:318–327

Kallehauge B (2008) Formulations and exact algorithms for the vehi-

cle routing problem with time windows. Comput Oper Res

35(7):2307–2330

Kawulok M, Nalepa J (2012) Support vector machines training data

selection using a genetic algorithm. In: Gimelfarb G, Hancock E,

Imiya A, Kuijper A, Kudo M, Omachi S, Windeatt T, Yamada

K (eds) Structural, Syntactic, and statistical pattern recognition,

Lecture Notes in Computer Science, vol 7626, Springer, Berlin

Heidelberg, pp 557–565. doi:10.1007/978-3-642-34166-3_61

Kindervater G, Savelsbergh M (1997) Vehicle routing: handling edge

exchanges. In: Aarts E, Lenstra J (eds) Local Search in combina-

torial optimization, Wiley, pp 337–360

Kolen AWJ, Kan AHGR, Trienekens HWJM (1987) Vehicle routing

with time windows. Oper Res 35(2):266–273

Larsen J (2004) Refinements of the column generation process for the

vehicle routing problem with time windows. J Syst Sci Syst Eng

13(3):326–341

Li Y, Li P, Wu B, Jiao L, Shang R (2013) Kernel clustering using a

hybrid memetic algorithm. Nat Comput 12(4):605–615

Li Y, Jiao L, Li P, Wu B (2014) A hybrid memetic algorithm for global

optimization. Neurocomputing 134:132–139

Lim A, Zhang X (2007) A two-stage heuristic with ejection pools and

generalized ejection chains for the vehicle routing problem with

time windows. INFORMS J Comput 19(3):443–457

Liu R, Xie X, Garaix T (2014) Hybridization of tabu search with fea-

sible and infeasible local searches for periodic home health care

logistics. Omega 47(0):17–32. doi:10.1016/j.omega.2014.03.003

Marinaki M, Marinakis Y (2014) An island memetic differential evolu-

tion algorithm for the feature selection problem. In: Proc. NICSO,

SCI, vol 512, Springer, pp 29–42

Marinakis Y, Marinaki M (2014) A bumble bees mating optimization

algorithm for the open vehicle routing problem. Swarm Evol Com-

put 15(0):80–94. doi:10.1016/j.swevo.2013.12.003

Masson R, Ropke S, Lehud F, Pton O (2014) A branch-and-cut-and-

price approach for the pickup and delivery problem with shuttle

routes. Eur J Oper Res 236(3):849–862. doi:10.1016/j.ejor.2013.

08.042 (vehicle Routing and Distribution Logistics)

Nagata Y (2006) New EAX crossover for large TSP instances. In:

Runarsson T, Beyer HG, Burke E, Merelo-Guervs J, Whitley L,

Yao X (eds) Parallel problem solving from nature—PPSN IX, vol

4193. Lecture Notes in Computer ScienceSpringer, Berlin Heidel-

berg, pp 372–381

Nagata Y (2007) Edge assembly crossover for the capacitated vehi-

cle routing problem. In: Cotta C, Hemert J (eds) Evolution-

ary computation in combinatorial optimization, vol 4446. Lec-

ture Notes in Computer Science, Springer, Berlin Heidelberg,

pp 142–153

Nagata Y, Bräysy O (2009) A powerful route minimization heuristic

for the vehicle routing problem with time windows. Oper Res Lett

37(5):333–338

Nagata Y, Bräysy O, Dullaert W (2010) A penalty-based edge assem-

bly memetic algorithm for the vehicle routing problem with time

windows. Comput Oper Res 37(4):724–737

Nalepa J (2014) Adaptive memetic algorithm for the vehicle routing

problem with time windows. In: Proceedings of the 2014 confer-

ence companion on genetic and evolutionary computation compan-

ion, ACM, New York, GECCO Comp ’14, pp 1467–1468. doi:10.

1145/2598394.2602273

Nalepa J, Blocho M (2014) Co-operation in the parallel memetic

algorithm. Int J Parallel Program pp 1–28. doi:10.1007/

s10766-014-0343-4

Nalepa J, Czech ZJ (2012) A parallel heuristic algorithm to solve the

vehicle routing problem with time windows. Studia Informatica

33(1):91–106

Nalepa J, Czech ZJ (2013) New selection schemes in a memetic algo-

rithm for the vehicle routing problem with time windows. In:

Tomassini M, Antonioni A, Daolio F, Buesser P (eds) Adaptive and

natural computing algorithms, vol 7824. Lecture Notes in Com-

puter Science, Springer, Berlin Heidelberg, pp 396–405

Nalepa J, Kawulok M (2014) A memetic algorithm to select training data

for support vector machines. In: Proceedings of the 2014 Confer-

ence on genetic and evolutionary computation, ACM, New York,

GECCO ’14, pp 573–580. doi:10.1145/2576768.2598370

Nalepa J, Blocho M, Czech Z (2014) Co-operation schemes for the

parallel memetic algorithm. In: Wyrzykowski R, Dongarra J, Kar-

czewski K, Waniewski J (eds) Parallel processing and applied

mathematics. Lecture Notes in Computer Science, Springer, Berlin

Heidelberg, pp 191–201

Niu Y, Wang S, He J, Xiao J (2014) A novel membrane algorithm

for capacitated vehicle routing problem. Soft Comput, pp 1–12.

doi:10.1007/s00500-014-1266-0

Ombuki B, Ross BJ, Hanshar F (2006) Multi-objective genetic algo-

rithms for vehicle routing problem with time windows. Appl Intell

24:17–30

Pang KW (2011) An adaptive parallel route construction heuristic for

the vehicle routing problem with time windows constraints. Expert

Syst Appl 38(9):11,939–11,946

Petch R, Salhi S (2003) A multi-phase constructive heuristic for the

vehicle routing problem with multiple trips. Discrete Appl Math

133(13):69–92

Pisinger D, Ropke S (2007) A general heuristic for vehicle routing

problems. Comput Oper Res 34(8):2403–2435

Potvin JY, Rousseau JM (1993) A parallel route building algorithm for

the vehicle routing and scheduling problem with time windows.

Eur J Oper Res 66(3):331–340

123

http://dx.doi.org/10.1007/978-3-642-34166-3_61
http://dx.doi.org/10.1016/j.omega.2014.03.003
http://dx.doi.org/10.1016/j.swevo.2013.12.003
http://dx.doi.org/10.1016/j.ejor.2013.08.042
http://dx.doi.org/10.1016/j.ejor.2013.08.042
http://dx.doi.org/10.1145/2598394.2602273
http://dx.doi.org/10.1145/2598394.2602273
http://dx.doi.org/10.1007/s10766-014-0343-4
http://dx.doi.org/10.1007/s10766-014-0343-4
http://dx.doi.org/10.1145/2576768.2598370
http://dx.doi.org/10.1007/s00500-014-1266-0

Adaptive memetic algorithm for minimizing distance in the VRPTW 2327

Potvin JY, Rousseau JM (1995) An exchange heuristic for route-

ing problems with time windows. J Oper Res Soc 46(12):1433–

1446

Prescott-Gagnon E, Desaulniers G, Rousseau LM (2009) A branch-and-

price-based large neighborhood search algorithm for the vehicle

routing problem with time windows. Networks 54(4):190–204

Repoussis P, Tarantilis C, Ioannou G (2009) Arc-guided evolutionary

algorithm for the vehicle routing problem with time windows. Evol

Comput IEEE Trans 13(3):624–647

Righini G, Salani M (2006) Symmetry helps: bounded bi-directional

dynamic programming for the elementary shortest path problem

with resource constraints. Discrete Optim 3(3):255–273 (graphs

and Combinatorial Optimization The Cologne/Twente Workshop

on Graphs and Combinatorial Optimization)

Solomon MM (1987) Algorithms for the vehicle routing and scheduling

problems with time window constraints. Oper Res 35(2):254–265

Tavares L, Lopes H, Lima C (2009) Construction and improvement

heuristics applied to the capacitated vehicle routing problem. In:

Nature biologically inspired computing, 2009. NaBIC 2009. World

Congress on, pp 690–695

Thangiah S, Nygard K, Juell P (1991) Gideon: a genetic algorithm

system for vehicle routing with time windows. In: Artificial intel-

ligence applications, proceedings., Seventh IEEE Conference on,

vol i, pp 322–328. doi:10.1109/CAIA.1991.120888

Vidal T, Crainic TG, Gendreau M, Prins C (2013) A hybrid genetic

algorithm with adaptive diversity management for a large class of

vehicle routing problems with time-windows. Comput Oper Res

40(1):475–489

Zhong Y, Pan X (2007) A hybrid optimization solution to VRPTW

based on simulated annealing. In: Automation and logistics, 2007

IEEE International Conference on, pp 3113–3117

Zhu KQ (2000) A new genetic algorithm for VRPTW. In: Proceedings

of the international conference on artificial intelligence, p 311264

123

http://dx.doi.org/10.1109/CAIA.1991.120888

	Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows
	Abstract
	1 Introduction
	1.1 Contribution
	1.2 Paper outline

	2 Problem formulation
	2.1 Objectives
	2.2 Constraints

	3 Related literature
	3.1 Vehicle routing problem with time windows
	3.2 Adaptive evolutionary algorithms

	4 Adaptive memetic algorithm
	4.1 Chromosomes
	4.2 Selection
	4.3 Crossover
	4.4 Repair, education and mutation
	4.5 Adaptive number of children
	4.6 Adaptation

	5 Experimental results
	5.1 Setup
	5.2 Datasets
	5.3 Creating the initial population
	5.4 Comparison with other algorithms
	5.5 Analysis and discussion on adaptiveness
	5.6 Sensitivity analysis on method components

	6 Conclusions and future work
	Acknowledgments
	References

