
i

i

Adaptive Memory Power Management Techniques for HPC Workloads

By

Karthik Elangovan

A thesis submitted to the

Graduate School – New Brunswick

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree

Master of Science

Graduate program in Electrical and Computer Engineering

Written under the direction of

Manish Parashar

And approved by

New Brunswick, New Jersey

JANUARY 2012

ii

ii

ABSTRACT OF THE THESIS

Adaptive Memory Power Management Techniques for HPC Workloads

By Karthik Elangovan

Thesis director: Manish Parashar

The memory subsystem is responsible for a large fraction of the energy consumed by compute

nodes in High Performance Computing (HPC) systems. The rapid increase in the number of cores

has been accompanied by a proportional increase in the DRAM capacity and bandwidth. Thus,

the memory system consumes a significant amount of the power budget available to a compute

node. There is a broad research effort focused on power management techniques using DRAM

low-power modes. However, memory power management still presents many challenges

towards Exascale. In this thesis, the potential of Dynamic Voltage and Frequency memory

Scaling (DVFS) is studied considering the ability to select different frequencies for different

memory channels. The approach adopted is based on tuning voltage and frequency dynamically

to maximize the energy savings while maintaining performance degradation within tolerable

limits. It was observed that HPC workloads rarely require maximum bandwidth, and the

bandwidth demand placed by applications is spread over different channels. Also, HPC

applications do not use all the bandwidth in a sustained manner, and they have phases where

this bandwidth demand is not at its peak. Hence applications can tolerate reduction in

bandwidth to save energy. Channel access patterns of applications are studied to determine the

potential additional energy savings by controlling channels independently. Evaluation of

proposed DVFS algorithm is conducted through a novel hybrid evaluation methodology that

includes simulation and executions on real hardware. Results show the large potential of

adaptive memory power management techniques based on DVFS for HPC workloads.

iii

iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to all the people who have made this work possible.

Especially, I would like to take this opportunity to extend my deepest gratitude to my

advisor, Dr. Manish Parashar, for his orientation, advice and support.

I am especially grateful to Dr. Ivan Rodero, for giving me the chance to do this master

thesis by introducing me to work related to DRAM Power Management, and providing a

great environment to make it possible. I am also grateful to Dr. Yanyong Zhang for

taking time off her busy schedule to review my thesis

Many thanks to Dr. Francesc Guim, who has helped me in the development of this

project. I really want to thank him for all his help and feedback. I would also like to

thank all the members of TASSL research group for their invaluable discussion and help

whenever I needed it. My deepest gratitude goes to my Mom and Dad for their

unflagging love and support right from the beginning of my education to this day; I could

never have come so far without their encouragement. I would also like to thank my

uncle and his family, especially my favorite nephews for their love and support over the

last 2 years. I would like to thank my roommates and friends in and around cedar lane

for keeping my spirits lifted during the period of my study here. I thank God for enabling

me achieve what I have achieved and also for keeping an eye on me these last few

years.

iv

iv

TABLE OF CONTENTS

ABSTRACT ... ii

ACKNOWLEDGEMENTS ... iii

1. INTRODUCTION .. 1

1.1. MOTIVATION .. 1

1.2. PROBLEM DESCRIPTION ... 2

1.3. OBJECTIVES & APPROACH .. 4

1.4. CONTRIBUTIONS ... 5

2. BACKGROUND .. 6

2.1 DRAM ORGANIZATION ... 6

2.2 DRAM TIMING .. 8

2.3 VOLTAGE AND FREQUENCY SCALING ... 9

3. RELATED WORK .. 11

4. ADAPTIVE MEMORY POWER MANAGEMENT .. 14

4.1. CHANNEL MAPPING FROM PHYSICALL ADDRESS ... 15

4.2. MEMORY ACCESS PATTERNS .. 16

4.3. CONTROL ALGORITHM ... 21

5. EVALUATION METHODOLOGY .. 25

5.1. PERFORMANCE MODEL .. 26

5.2. POWER MODEL ... 30

5.3. CMPSim SIMULATOR .. 31

5.4. MPTRACE .. 31

6. RESULTS .. 33

7. CONCLUSIONS AND FUTURE WORK ... 44

8. PUBLICATIONS .. 45

v

v

REFERENCES ... 46

vi

vi

LIST OF FIGURES

Figure 1: DRAM subsystem with DRAM modules .. 6

Figure 2: DDR3 SDRAM with 64 bit data out. 16384 rows and 128 columns and 8 banks 6

Figure 3: MPKI of BT (top) and FT (Bottom) ... 14

Figure 4: Address seen by different layers of hardware .. 15

Figure 5: Channel Mapping .. 15

Figure 6: Access Pattern of BT benchmark with 4 channels. Interleaved Mapping (left) and

Default mapping(right) .. 17

Figure 7: Access Pattern of BT benchmark with 8 channels. Interleaved Mapping (left) and

Default mapping(right) .. 17

Figure 8: Access Pattern of BT benchmark with 16 channels. Interleaved Mapping (left) and

Default mapping(right) .. 18

Figure 9: Access Pattern of FT benchmark with 4 channels. Interleaved Mapping (left) and

Default mapping(right) .. 18

Figure 10: Access Pattern of FT benchmark with 8 channels. Interleaved Mapping (left) and

Default mapping(right) .. 19

Figure 11: Access Pattern of FT benchmark with 16 channels. Interleaved Mapping (left) and

Default mapping(right) .. 19

Figure 12: Access Pattern of FT benchmark with 16 channels. Interleaved Mapping (left) and

Default mapping(right) .. 20

Figure 13: Access Pattern of CG benchmark with 8 channels. Interleaved Mapping (left) and

Default mapping(right) .. 20

Figure 14: Access Pattern of CG benchmark with 16 channels. Interleaved Mapping (left) and

Default mapping(right) .. 21

Figure 15:Block diagram of the evaluation methodology ... 25

Figure 16: 4-Core Processor with two memory channels .. 27

Figure 17: 4-Core Processor with two memory channels .. 28

Figure 18: Percentage Energy Savings (left) and Percentage increase in execution time (right) of

two mapping algorithms – Default (top) and Interleaved mapping(bottom)- 4 Channels 34

vii

vii

Figure 19: Frequency of Memory Channels of BT benchmark – Three Level Search 35

Figure 20: Frequency of Memory Channels of BT benchmark – Exhaustive Search 36

Figure 21: Frequency of Memory Channels of BT benchmark – Ganged .. 37

Figure 22: Frequency of Memory Channels of FT benchmark – Three Level Search 37

Figure 23: Frequency of Memory Channels of FT benchmark – Exhaustive Search 37

Figure 24: Frequency of Memory Channels of FT benchmark – Ganged .. 38

Figure 25: Percentage Energy Savings (left) and Percentage increase in execution time (right) of

two mapping algorithms – Default (top) and Interleaved mapping (bottom) - 8 Channels 39

Figure 26: Frequency of Memory Channels of FT benchmark – Ganged .. 40

Figure 27: Frequency of Memory Channels of FT benchmark – Three Levels Search 40

Figure 28: Percentage Energy Savings (left) and Percentage increase in execution time (right) of

two mapping algorithms – Default (top) and Interleaved mapping (bottom) - 16 Channels 41

Figure 29: Percentage Energy savings (left) and Percentage Increase in Execution time (right) 42

1

1. INTRODUCTION

1.1. MOTIVATION

High Performance Computing (HPC) evolved over the past decades into increasingly complex

and powerful systems. After attaining Gigaflops and Teraflops performance in the mid 80’s and

the last 90’s, respectively, the Petaflops barrier was crossed in 2008 with the IBM Roadrunner

system. Highend HPC systems power demand is increasing eight-fold every year [1], and today

consume several MWs of power, enough to power small towns, and are in fact, soon

approaching the limits of the power available to them. The cost of power for this and similar

HPC systems runs into millions per year. Therefore, more energy efficient systems can reduce

the data centers total cost of ownership (TCO) since the reduction in energy consumption

translates to lower energy costs and also reduced costs for cooling and other packaging

infrastructure. Furthermore, electricity savings could lower the nation-wide carbon dioxide

emissions. Reaching Exaflops performance by the end of the decade, and enabling the sustained

performance scaling of smaller systems require significant research along different dimensions

including power efficiency. Building an Exascale machine on a power budget of 20MWrequires a

200x improvement in energy per instruction. However, only 4x is expected from improved

technology, while the remaining 50x must come from architecture and circuits improvements.

The memory subsystem is responsible for a large fraction of the energy consumed by compute

nodes in HPC systems. Barrosso et al. [2] indicate that over the years CPU has evolved to an

extent where it accounts for only 50% of energy consumption. DRAM manufacturers have

optimized their designs for increased bandwidth to address memory wall issues. But little has

been done to optimize design to tackle the Power Wall problem. Hence main memory has been

a significant contributor towards total energy consumption. Therefore, reducing energy

consumption through intelligent control of all subsystems [3] is critical. The rapid increase in the

2

number of cores has been accompanied by a proportional increase in the DRAM capacity and

bandwidth. For these new architectures the amount of power required by the memory

subsystem is an important percentage of the power budget that computer nodes have.

Therefore, the design of novel memory power management techniques has become crucial

since efficient power management techniques can allow to save power or transfer it to other

components of the node.

1.2. PROBLEM DESCRIPTION

The brief survey of prior work reveals that:

1. DRAMs provide multiple operating modes. Each mode has different power

consumption. A very coarse level of power control is exposed to memory controller

through these modes – picking an operating state depending upon activity of a

particular device. For instance unused modules can be sent to idle modes reducing

power consumption considerably. But the granularity of power control is not very fine.

Besides DRAM cannot perform all the functions in idle mode that it can perform when

it’s active. So memory controller has to cleverly decide the state in which devices should

operate.

2. As pointed out earlier there is a very coarse level of power control. Even though there

are multiple modes (with varying degree of power consumptions) each of these modes

have only a limited degree of operational capabilities compared to the active state.

Hence the memory controller is able to send the devices only to shallow low-power

states. The reason for this inability to exploit Nap or lowest power modes are due to

penalty associated with switching states. Memory controller has to carefully select

operating state to minimize frequent unwanted switches.

3

3. Inability to exploit these low power states is primarily because of the latency to enter

and exit these modes. The memory controller is usually aware of these latencies. Hence

most of the policies for choosing occupational states are based on monitoring current

activity and selecting states for the next phase. Power is added as a constraint while

choosing states.

4. The application should exhibit enough idle periods for effective policies based out of

these low-power modes. DRAM devices can transition to low power modes during these

periods effectively reducing power consumed. But finding enough idle limits the

possibilities of conserving power with low-power modes.

5. A radical approach that opens up even more opportunities to reduce power is throttling

DRAM commands in memory controller. Throttling can help reduce energy. Also as

suggested by [23] Power Shifting can be used to change power gears of other parts of

the computing system. But throttling can have negative effects on performance.

6. Research efforts on DRAM architectural changes can have negative effects on yield [27].

Architectural changes can take time to seep into the market provided there is no

negative impact on yield.

Due to absence of opportunities to lower down power with current power control methods it is

necessary to shift from the conventional methods of power control. An approach that can be

applied across current class of DRAMs and architectural changes that are yet to come is what is

currently needed. Energy proportional computing (DVFS) has provided considerable power

savings to CPU hence extending the same principle to main memory should provide

considerable savings.

Most scientific applications are iterative which means that they apply the same algorithm

several times to the same data set. In particular, the data is processed repeatedly until number

4

of iterations reaches a specific value or until the value of some parameters converges (for

instance, when the error converges to certain value). Hence HPC applications exhibit good

locality which means that the last level cache captures most of the accesses. Thus the

bandwidth demand placed on main memory is not at its peak during the entire period of

execution. This behavior clearly shows that main memory need not be operated at maximum

voltage and frequency levels all the time. DVFS can be extended to main memory to reduce

energy consumption.

1.3. OBJECTIVES & APPROACH

This study is based on three observations:

1. Reducing frequency and voltage reduces power considerably.

2. The time it takes to perform read or write operations does not vary too much when we

change the frequency.

3. Iterative behavior exhibited by HPC application further aids tuning voltage and

frequency dynamically. Applications do not demand peak bandwidth all the time. Hence

reduced stress on main memory provides opportunities to operate the channel at a

lower voltage and frequency level.

Dynamically scaling Voltage and Frequency of main memory to contain power can be done at

the cost of losing a preset amount in performance. Applications can trade bandwidth and

sustain reduction in performance for saving energy. Recent design of processors incorporates

multiple on-chip memory controllers and multiple channels for more parallelism. Each channel

can be observed and depending upon the activity on that channel memory devices connected

can be operated at appropriate voltage and frequency levels. To keep the degradation within

5

limits, while evaluating potential of doing DVFS, a performance guarantee algorithm has been

built on top so that the frequency selection process can prevent too much loss in performance.

A novel hybrid evaluation methodology has been adopted that includes simulation as well as

executions in real hardware. This approach is used to study the application channel access

patterns, and to evaluate three possible frequency selection strategies and two different

algorithms for mapping physical memory addresses to channels. The proposed control

techniques provide around 55% energy savings on average with only around 5% degradation of

execution time on average, using the NAS Parallel Benchmarks. It is also observed that

controlling the channels independently provides considerable savings in comparison to

controlling the frequency of all the channels together when applications exhibit uneven load.

1.4. CONTRIBUTIONS

The main contributions of this thesis are summarized as follows:

1. Study of memory access patterns, bandwidth and channels usage for HPC workloads.

2. Design of a control algorithm for adaptive memory power management.

3. A novel hybrid evaluation methodology that includes simulation and executions on real

hardware.

4. Evaluation of the proposed strategy on DDR3 SDRAM with number of memory channels,

frequency selection strategies, and physical address to channels mapping.

6

2. BACKGROUND

2.1 DRAM ORGANIZATION

Data in a DRAM device has an array structure with multiple rows and columns. The intersection

of a row and column is a storage cell, which is periodically refreshed because of gradual data

discharge. A row and column address can fetch only a single bit from a single device in the array.

Usually a number of arrays are operated in parallel on each access. DRAM arrays that act in

unison on a request belong to the same bank, for instance in a x4 DRAM four arrays act in

parallel on each access. The notation also indicates the column width (e.g., x8, x16, x32 and x64

devices are commercially available). Fig. 1 shows DRAM arrays grouped together.

Commercially available DRAMs are generally distributed as memory modules (DIMM) with

DRAM devices and all the other circuitry built-in. Our discussion pertains to class of JEDEC DDR

SDRAMs. Fig. 1 shows DRAM and all the other components.

Figure 1: (Left) DRAM subsystem with DRAM modules. (Right) DIMM organization with individual

rank, bank and arrays inside each bank.

On chip

Memory

Controller

Bank

DIMM

Rank

Device

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

…

7

Due to the DRAM organization the physical addresses generated by applications cannot be used

to directly access DRAM, instead processors interface with DRAM through memory controller

which relieves the socket modules from directly interfacing the DRAM. The memory controller

has to convert the physical addresses to a set of commands that DRAM device understands.

Physical addresses are split by the memory controller to identify a bank, then a row and column

within a bank.

Every DRAM operation (read/write) begins with an activate command, which requires selecting

a row with an appropriate row address. The content of the entire row is transferred to the sense

amplifiers. Every bank has separate sense amplifiers and each bank can be activated

independently. Once the entire row has been read it is said to be open and the bank is said to be

active. The next step is to select a column and then the content of the column is placed on the

data bus. DDRx SDRAMs transfer data on both edges of the clock cycle. The final step is to

restore the data back to the cells with a precharge operation that closes a row.

The set of commands described previously can be pipelined when accessing different banks

subsequently. But banks contend for access to the data bus. This is usually exploited by memory

controllers to increase the bandwidth.

The memory controller can close the row after a read/write access with a precharge command.

In closed page DRAMs, rows are immediately closed after a row access command, while in open

page DRAMs, rows remain opened expecting subsequent hits to the same row. In this study we

evaluate only closed page RAMs.

Fig. 2 shows DDR3 device with eight separate banks. Each bank is capable of outputting 64 bits.

The figure also shows separate registers to hold row and column address. On an activate

command the row address is used to activate a row and read the contents to the sense

8

amplifiers. On receiving the column address the appropriate data is then read out to the data

bus through I/O gating.

The data out capacity of this DRAM is 8 bytes. But cache lines requests are for 64 bytes. DRAMs

provide ability to read in burst on single command. The device shown in Fig. 2 can provide 8

bytes at a time. Hence data (an entire cache line) can be sent back in 4 cycles (because DDRx can

transfer over both the edges of the clock).

2.2 DRAM TIMING

The basic timing parameters for generic DRAM commands that will be used throughout this

thesis are the following:

 tRCD : Time taken to move an entire row of data to sense amplifiers.

 tCAS : Time interval between column read command and availability of data in data bus.

 tCWL : Time interval between column write command and availability of data in data bus.

 tRAS : Time interval between row access and data restoration back to the cells

Figure 2: DDR3 SDRAM with 64 bit data out. 16384 rows and 128 columns and 8 banks

64 I/O gating

Row

Address

Sense Amplifiers

Bank - 1

16384 x 128 x 64

Column Address

9

 tRP : Time taken to precharge a row

 tRC : Minimum time interval that has to elapse between different accesses to same row in

a bank

 tWR : Time it takes to restore the write data from sense amplifiers back to the cells.

Every read operation takes row activation (tRCD), column read (tCAS), data out (tBURST) and

precharge (tRP). Total time is, tRCD + tCAS + tBURST + tRP. DDR3 devices can perform each of these

operations in about 10ns. Timing parameters for write operation remains the same except

column access takes tcWD and there is a tWR additional waiting period after end of last data into

sense amplifiers.

2.3 VOLTAGE AND FREQUENCY SCALING

The JEDEC memory standards [4] are the specifications for semiconductor memory circuits and

similar storage devices adopted by the JEDEC Solid State Technology Association. They allow

changing the input memory frequency, but the transition should respect the timing parameters

specified by the standard; however, commercially available DRAM devices do not support

multiple voltage domains. In this thesis, we assume the DRAM to operate properly within the

voltage levels configurable using the BIOS settings. Table 1 lists the voltage and frequency

combinations considered in this study for DDR3 SDRAM along with the power breakup of a 2GB

DIMM (256x64)(according to [33]. Note that the voltage range [1.575V–1.425V] is the allowable

voltage range of the power supply.

10

Frequency

(MHz)

Voltage

(V)

Pds(PRE_STBY)

(mW)

Pds(ACT_STBY)

mW

Pds(ACT)

mW

Pds(WR)

mW

Pds(RD)

mW

Pdq(RD)

mW

Pdq(WR)

mW

933 1.575 252 466 226 919 793 96 620

800 1.5375 240 420 170 660 720 91 591

667 1.5 229 400 104 457 514 87 562

533 1.4625 184 326 91 380 435 83 535

400 1.4250 131 232 64 271 310 79 508

Table 1: Voltage and frequency levels

11

3. RELATED WORK

Over the last years, processors have evolved to become energy efficient supporting multiple

operating modes. At a very coarse level, power management at the system level consisted on

monitoring the system load and shutting down unused clusters or transitioning unused nodes to

low power modes [5]. Such algorithms are based on the availability of sufficient idle periods and

propose to batch work to increase the probability of such idle periods. Computing nodes incur

latency only when they exit from these low-power modes. Other studies [6], [7], [8], [9] have

proven that dynamically varying the voltage and frequency proportional to system load is

effective in reducing energy consumption. DVFS provides power savings at the cost of a small

increase in execution time. Other approaches conducted on power management techniques are

focused at the processor level, for example, Cai et al. [10] propose a DVFS techniques based on

the hardware thread runtime characterization.

The previous approaches tackled the energy consumption optimizations focused in the

computing elements. Memory devices, which were once considered to be undesirable

candidates for power consumption, began to significantly contribute to overall system energy

consumption. Just like processors, DRAM devices have several low power modes. Delaluz et al.

[11] present software and hardware assisted methods for memory power management. They

studied compiler-directed techniques [12], [11], as well as OS-based approaches [13], [14] to

determine idle periods for transitioning devices to low power modes. Even though this approach

is very conservative, switching to/from low-power modes during unwanted periods can be

prevented; however it is not very effective on multi-core systems. Cho et al. [15] studied

assigning CPU frequencies for DVFS that is memory-aware, because focus of all prior work was

on optimal assignment of frequencies to CPU, thus ignoring memory. Huang et al. [16] proposed

12

a power-aware virtual memory implementation in the OS to reduce memory energy

consumption. Fradj et al. [17], [18] propose multi-banking techniques that consist of setting

individually banks in lower power modes when they are not accessed.

Self-Monitoring [11] approach can be effective with a control algorithm to choose between

power modes for memory devices. The key is to determine idle periods to transition devices to

low-power modes; however, self-monitoring control algorithms are threshold-based, therefore,

an algorithm that transitions into low-power modes too frequently can increase latency, while a

very sluggish algorithm can miss out on opportunities to save power. Li et al. [19], [20], [21]

proposed a self-tuning energy management algorithm to provide performance guarantees. The

algorithm tunes threshold parameters at different points of execution. Diniz et al. [22] studied

dynamic approaches for limiting the power consumption of main memory by limiting

consumption and adjusting the power states of the memory devices, as a function of the

memory load. Hur et al. [23] took an entire different approach towards DRAM power

management. DRAM commands are delayed in memory controller to increase idle periods, and

to exploit low-power modes of DRAMs. Commands are delayed in memory controller for a

certain number of cycles which is determined by a delay estimator.

Several architectural changes have also been proposed. Rank subsetting [24] and Mini-Rank [25]

tackle energy consumption constraint by dividing a rank into subsets. This approach reduces the

number of chips which are put to work at each memory access. Udipi et al. [26] suggested

changes to internal organization of DRAM devices. The authors argue that an open-paged policy

does not present any improvements for a multi-core architecture because an opened row has

one or two hits on average. Building on that argument it is unnecessary to read all the bits to the

13

sense amplifiers, thus reducing the number of bits that are touched can decrease the energy

consumption.

Deng et al. [27] proposed dynamic frequency scaling of the main memory. The frequency of all

memory channels is changed to provide energy savings with guaranteed performance

degradation. Even though the work is similar, the focus of this study has been clearly on

evaluating the potential of controlling the voltage and frequency of all channels independently.

14

4. ADAPTIVE MEMORY POWER MANAGEMENT

This work has been primarily motivated by two behaviors of applications: (1) bandwidth

demand, and (2) the memory access patterns. As mentioned previously, applications rarely

demand peak bandwidth from main memory since on chip caches work efficiently for capturing

accesses to main memory. LLC misses of an application can be used to derive bandwidth

demand since it has positive correlation with bandwidth. Fig. 3 shows misses access, expressed

as Misses per Kilo Instructions (MPKI) of two NAS benchmarks that were collected using CMPSim

as described in Chapter 5, and demonstrate the time varying behavior of both applications.

There are periods of high and low bandwidth demand, applications will not incur significant

penalty by switching to a lower voltage and frequency during these low bandwidth demand

periods.

Figure 3: MPKI of BT (top) and FT (Bottom)

15

4.1. CHANNEL MAPPING FROM PHYSICALL ADDRESS

As described previously the processor cannot directly access DRAM devices. The physical

address is sent to the memory controller which splits the address to first find the physical

channel, then the rank, and then the bank within rank. The process of identifying the channel

number is proprietary to each memory controller design, for instance, considering the example

shown in Figs. 4 and 5 the physical address in divided to address different parts of the device,

and the Row ID is mapped to the most significant bits so that consequent addresses go to the

same row.

Processor

Translation Look-aside Buffer

Memory

Controller

DRAM Device DRAM Device
DRAM Device DRAM Device

Virtual Address

Physical Address

DRAM Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Row ID

Bank ID

Col ID

Chan ID

Physical Address

Figure 5: Channel Mapping

Figure 4: Addresses seen by different layers of hardware

16

Two different algorithms for mapping physical addresses to channels have been considered:

• Default: Accesses are clustered to certain channels thus reducing activity on other

channels. Allowing one to tune down the voltage and frequency of channels which are

relatively lightly loaded. For instance, with a 4GB physical memory and 8 channels the

first 512MB can be mapped to first channel, the next 512MB to second channel, etc.

• Interleaving: Accesses are distributed across different channels. This helps distribute

load equally across different channels by mapping consequent cache lines to different

channels. Figs. 6–14 illustrate how the algorithm for mapping physical memory

addressed to channels can significantly affect the memory access pattern, and

presumably the application behavior.

4.2. MEMORY ACCESS PATTERNS

Memory access patterns of three NAS Benchmarks were collected using mptrace and CMPSim

(see Chapter 5). CMPSim dumps processor specific information whenever a hardware thread

hits a billion instructions. Mptrace is used to obtain the physical addresses accessed. The data is

then processed to obtain the channels access patterns using different channel mapping

algorithms. Figs. 6, 7 and 8 show the memory access patterns for four, eight and sixteen

channels. Access patterns were collected for different regions (i.e., a block of instructions) of the

application. The exact number of application instructions for a region is not fixed, and varies

with the CMPSim output dump frequency (i.e., when a thread hits 109 instructions). The

memory access patterns exhibited by applications motivate the use of the adaptive techniques

proposed in this work. Peak bandwidth is not always demanded by applications and there is

unequal distribution of accesses across channels. This asymmetry presents opportunities to

control the channels independently.

17

Figure 6: Access Pattern of BT benchmark with 4 channels. Interleaved Mapping (left) and Default

mapping(right)

Figure 7: Access Pattern of BT benchmark with 8 channels. Interleaved Mapping (left) and Default

mapping(right)

18

Figure 8: Access Pattern of BT benchmark with 16 channels. Interleaved Mapping (left) and

Default mapping(right)

Figure 9: Access Pattern of FT benchmark with 4 channels. Interleaved Mapping (left) and Default

mapping(right)

19

Figure 10: Access Pattern of FT benchmark with 8 channels. Interleaved Mapping (left) and

Default mapping(right)

Figure 11: Access Pattern of FT benchmark with 16 channels. Interleaved Mapping (left) and

Default mapping(right)

20

Figure 12: Access Pattern of CG benchmark with 4 channels. Interleaved Mapping (left) and

Default mapping(right)

Figure 13: Access Pattern of CG benchmark with 8 channels. Interleaved Mapping (left) and

Default mapping(right)

21

The figures show the applications exhibiting different characteristics with the two mapping

algorithms. All the three applications streamline equal traffic into all channels with 4 and 8

channels when interleaved mapping is employed. But when the number of channels is increased

to 16, even with interleaved mapping the applications show affinity to access certain group of

channels. Dynamically adjusting the frequency of memory channels will not affect the

performance of the applications significantly since there are periods of high and low bandwidth

demands. Additional observation of access patterns shows that channels can be further tuned

independently because of unequal distribution of traffic.

4.3. CONTROL ALGORITHM

The control algorithm selects the operating voltage and frequency of main memory. It is invoked

on certain points along the execution of the program, and uses observed system parameters

Figure 14: Access Pattern of CG benchmark with 16 channels. Interleaved Mapping (left) and

Default mapping(right)

22

during current phase of execution to obtain possible energy savings attainable at different

operating states. The operating state here refers to voltage and frequency levels of channels.

The control algorithm uses the power model described in Chapter 5.3. It is possible to compute

the input parameters of the power model from the execution time. However, to prevent the

power control algorithm from calculating this parameter, it is advisable to use a counter. In

addition, the hardware should also have counters for LLC misses and total instruction executed.

The counter for LLC misses should be maintained on a per-channel basis. To calculate the power

dissipation at other frequency settings the execution time at all the other frequencies should be

found. Execution time in total number of cycles (TNC) is given by Eq. 1 where ICPU is the total

non-memory instructions, Imem is the total memory instructions, CPImem is cycles per memory

instructions that can be found using the performance model (described in Section V-C. If the

control algorithm is invoked at fixed intervals TNC will be known for the current state. CPICPU

can be computed using Eq. 1. CPICPU is constant at all the other states since changing frequency

will not affect non-memory instructions.

 {[] []}
 {[] []}

 () ()
Equation 1: Total Number of Cycles

23

The control algorithm performs the following sequence of steps when it is invoked:

Step i: Read all the counters.

Step ii: Use the performance model to calculate the execution time of the current phase at all

the possible voltage and frequency levels.

Step iii: Calculate the power consumed by the other operating states.

Step iv: Calculate the energy savings for all the states, i.e., savings compared to operating all the

channels at maximum frequency.

Step v: Choose a state for the next phase that maximizes energy savings while keeping CPI

degradation within a specified limit.

With M possible operating frequencies and n channels we can have Mn possible states. The

control algorithm should calculate energy savings and performance degradation for all possible

states before it can select an operating state for the next phase. Execution time of the control

algorithm primarily depends on the number of possible states for the next phase. Since this

increases the execution time of the control algorithm exponentially with increase in number of

channels, three possible frequency selection strategies have been considered:

• Exhaustive Search: All the frequencies are considered in this method (Mn possible

states). The cost of executing the control algorithm with this scheme becomes very high

with 8 and 16 channels.

• 3 Levels: Three frequency levels can be considered at a time, for instance, if we start

with 933MHz then 933MHz, 800MHz and 667MHz are considered for the next phase. If

667MHz is selected for the next phase then 800MHz, 667MHz and 533MHz are

considered for the next phase. With such a scheme the time complexity of the algorithm

is reduced considerably. Number of operating states is reduced to 3M.

24

• Ganged: The number of possible operating states can be greatly reduced by slaving all

the channels together, even when all the five frequencies are considered, there can be

only 5 possible states. A slight variant of ganged in which instead of slaving all the

channels together only certain subset of channels are tied together. Two variables, M

and n, decide the number of possible states. Three level search reduces M to bring

down the number of possible states. But if we group channels we can also reduce n. For

instance with 16 Channels, we can have eight channels in a group effectively creating

two virtual channels out of sixteen channels or four channels can be grouped effectively

creating 4 virtual channels. Channels are sorted based on their respective channel

access ratios and then grouped.

25

5. EVALUATION METHODOLOGY

 Since the actual implementation of DVFS is not available for currently available hardware, the

evaluation of the control algorithm is performed using simulation. However, part of input data

of the control algorithm is obtained using tools that run on the actual execution platform for

which the simulator is configured (see Fig. 15). The CMPSim simulator is used to capture the

time varying behavior of the applications. The simulator was configured to produce statistics

when any hardware thread reaches 109 instructions.

CMP$im mptrace

1. PERFORMANCE MODEL

2. COMPUTE TOTAL EXECUTION TIME

3. COMPUTE DRAM ACTIVITY PARAMETERS

4. POWER MODEL

LLC Stats Channel access

ratios

Avg. Latency of

Memory operations

Execution time for

all operating states

%BNK_PRE, RD_Sch

and WR_Sch

5. SELECT OPERATING STATE FOR NEXT

PHASE

Collect Power and Execution time for

all possible operating states

Figure 15: Block diagram of the evaluation methodology

26

Since CMPSim can model the application behavior only till the last level cache (LLC), mptrace is

used to collect the physical address traces of all the benchmarks. Results from both CMPSim and

mptrace are used as input by the control algorithm along with a performance and a power

model. The performancemodel is used together with the LLC statistics (CMPSim) and channel

access ratios (mptrace) to find the latency of read/write operations for all operating frequencies.

After obtaining the average latency for a given frequency (fsys) from the performance model, the

actual execution time of the program at fsys can be computed using Eq. 2.

 () ()

 - Cycles elapsed after compensating for LLC Misses

 - Cycles elapsed before compensating for LLC Misses.

Equation 2: Total Execution Time

In Eq. 2, Nc
′ is the total execution time (in cycles) after compensating for LLC misses, and Nc is

the total execution time (in cycles) produced by the simulator assuming that LLC misses are

penalized with a 350 cycle latency. The execution time is then used to find the activity

parameters that are computed for all possible operating states. Next, the power model is used

to obtain the power dissipation, and the last step is selecting a state that provides maximum

energy savings within allowable CPI degradation limits.

5.1. PERFORMANCE MODEL

CMP$im assumes a main memory access latency of 350 cycles for both read and write

operations. Hence CPI provided by CMP$im is far from accurate. The figure below shows two

memory controllers independently controlling channels.

27

A memory access (read/write) missing the last level cache will incur the delays shown in Eq. 3.

Equation 3: Delays

Where tR – Time for read access

 tW – Time for write access

 td – Avg. Queuing delay incurred by a mem access

Figure 16: 4-Core Processor with two memory channels

L1 L1 L1 L1

L2 L2

MMC MMC

28

tr and tw include the time taken for complete transfer of data from a DRAM device back to (or

from) CPU. We need a good estimate of td to calculate the total delay. Simplifying the operation

of memory controller the queues in memory controller are shown below

The memory controller maintains one queue per bank. λi is the arrival rate of requests in

channel – i. We assume that all the banks are equally accessed. Hence the traffic bifurcates into

all the queues equally. The request at the head of each queue is serviced on a round-robin basis.

Time taken to service a request includes the complete access time (for read and write

operations.). We model a closed page DRAM. A read access has row activation (tRCD), column

access (tCL), data transfer (tBURST) and a precharge command to close the row (tRP). The timing

parameter for a write operation is the same except that the column access takes up tCWL and

there is a tWR interval between tBURST and tRP. Let tR (tW) denote the complete interval of time

required to perform read (write) operation. So the memory controller has Poisson arrivals,

generally distributed service time, single server and m traffic streams. This is an M/G/1 queue

Figure 17: Simple model for memory controller

Server

Bank - 1

Bank - 2

Bank - 3

Bank - m

λ𝑖𝑚 λ𝑖𝑚 λ𝑖𝑚

λ𝑖𝑚

λ

29

with m users polling for the server. We can now estimate the average waiting time of a request

in a queue (td). This can be used to calculate Latency.

The Probability Mass Function of service time of a request is shown in Eq. 4.

 () {

 * +

 * +
Equation 4: Probability Mass Function

Since we assume equal bank access, the waiting time of a request in the queue is given by

waiting time of M/G/1 queue as shown in Eq. 5.

 ()

Equation 5: Waiting Time

Where,

pr - Probability that an access is read

pw – Probability that an access is write

λ, pr and pw can be calculated from data collected from CMP$im and mtaptrace

CMP$im outputs instructions executed, LLC Misses on a per thread basis. This can be used to

calculate the average interval between any two LLC misses as shown in Eq. 6.

30

 }
 ()()

Let us denote this by τ.

Equation 6: Gap between two LLC Misses

Where, αkj is fraction of accesses from thread-k going to channel j. This is obtained from

mtaptrace results. Now, λ can be used in eq() to calculate average waiting time of a request to

channel - j. td can be used to correct the total number of cycles elapsed.

5.2. POWER MODEL

In our simulations we have calculated active power (PACT), background power (PACT_STBY and

PPRE_STBY), read and write power (PRD and PWR) and termination power(Pterm) according to the

model for memory power described in [33]. The specific parameters required by the DRAM

power model are listed below.

• BNK PRE Percentage of cycles that DRAM spent in pre-charge mode.

• RD_Sch Percentage of DRAM cycles that were outputting read data.

• WR_Sch Percentage of DRAM cycles that were outputting write data.

BNK PRE is used to compute background power while RD_Sch and WR_Sch are used to compute

read, write and termination power. These parameters are described in detail in [33], and they

can be computed using the performance model after obtaining the average latency of read and

write operations. Eq. 7 computes the energy consumption, where Pf
total represents the total

power dissipation, and Texec the execution time at frequency f.

31

Equation 7: Energy Consumption

5.3. CMPSim SIMULATOR

CMPSim is a PIN [28][29] tool that intercepts memory access operations that are fed to a Chip

Multiprocessor (CMP) cache simulator [30]. The model implements a detailed cache hierarchy

with DL1/IL1, UL2, UL3 and memory. The simulator can be configured to model complex cache

hierarchies, e.g., a SMP machine with 32 cores sharing the L2 and L3. In fact, the recent

processor architectures can be modeled using CMPSim.

CMPSim can capture cache behavior of single and multithreaded workloads. CMPSim can gather

a wide variety of statistics for an application, which are saved to an output file periodically. The

log file contains information about instruction profile, total number of cache accesses and

misses at all levels, and cache sharing between multiple threads, etc. Moses et al. [31] present a

very detailed study of CMPSim.

5.4. MPTRACE

The Intel PIN project aims to provide dynamic instrumentation techniques to gather information

about the instructions that applications execute. PIN API provides mechanisms to implement

callbacks that are called where specific events occur on the execution of the target application

(i.e., execution of memory access operation). Other tools that profile the the applications

memory access can be found in the PIN SDK. However, no PIN tool or similar instrumentation

tool has been provided to profile the physical memory accesses that applications request.

Mptrace is a PIN-based tool that allows intercepting the processes memory accesses, and

translating the virtual addresses to physical addresses. It uses the page map file [32] system to

32

translate the virtual address to physical address. The pagemap file system was released with

version 2.6.25 of the Linux kernel and can be accessed through the /proc/pid/pagemap file. As is

described in the kernel source [32], this file allows a user space process to find to which physical

frame each virtual page is mapped. It contains one 64-bit value for each virtual page, containing

the following data (from fs/proc/task mmu.c):

• Bits 0-54: page frame number (PFN) if present

• Bits 0-4: swap type if swapped

• Bits 5-54: swap offset if swapped

• Bits 55-60: page shift (page size = 1 page shift)

• Bit 61: reserved for future use

• Bit 62: page swapped

• Bit 63: page present

Using the pagemap system, the mptrace PIN tools provides several functionalities to

characterize how the applications access the physical memory pages. The format and

information required is highly customizable, it provides information related to cache access (way

and set), and memory accesses (physical page address). It also provides ways to reduce the

amount of generated information, such as, sampling and trace disabling when the application

loads data, or the caches are warming up. The current implementation of mptrace provides

mechanisms to characterize the memory accesses on the flight. Thus, this PIN tool can provide

summarized information about how an application is using the main memory. For example, it

provides page access histograms, or clusters of memory regions accessed during an interval of

time.

33

6. RESULTS

NAS Parallel Benchmarks (class B) were used to evaluate the potential of adaptive DRAM power

management. CMPSim was first used with the architecture configuration shown in Table 2 to

obtain statistics of the benchmarks execution (the characteristics of the different benchmark are

shown in Table 3). Then, memory access patterns were obtained by running the benchmarks

using mptrace on actual hardware (same configuration as shown in Table 2). Result were

obtained for 4, 8 and 16 DDR3 channels with 2GB in each channel (single rank) using the power

model described in [33]. Discussions pertaining to Energy consumption are only those of DRAM

and not the whole system. Energy savings reported are savings with respect to operating all the

channels at maximum frequency.

Feature Specification

Cores 8 Cores, 2 HW threads per core, 2.4GHz

L1 Cache 32KB, 8-way set associative

L2 Cache 256KB, 16-way set associative 5cycles/hit

L3 Cache 16MB, 4-way set associative 15 cycles/hit

Table 2: System Specifications

BENCHMARK DATA SET CLASS INSTRUCTIONS

BT B 70 billion

FT B 79 billion

CG B 66 billion

Table 3: Characteristics of the different NAS benchmarks

Fig. 18 shows energy savings obtained on a 4 DDR3 Channel system. All the three frequency

search methods can be used on a 4-channel system. Almost equal energy savings are obtained

34

with both the mapping algorithms. Energy consumed by main memory is significantly reduced

in case of all the three benchmarks. Average energy savings obtained with BT, FT and CG are

43.22%, 51.58% and 52.30%. It can be also seen in Fig. 16 that the increase in execution time is

well within limits. Results obtained for both the mapping algorithms follow the same trend.

Average energy savings obtained by controlling the channels independently are 44.85%, 51.09%

and 52.57% while jointly controlling the frequency of all the channels reduces the energy

consumption by 39.95%, 52.56% and 51.75%. There is significant improvement in energy savings

when voltage and frequency levels of channels are tuned independently

BT has higher energy savings with 3 Level Search compared to exhaustive. The reason for this

can be deduced by looking at Figs. 19, 20 and 21 showing operating frequency of channels.

Figure 18: Percentage Energy Savings (left) and Percentage increase in execution time (right) of

two mapping algorithms – Default (top) and Interleaved mapping(bottom)- 4 Channels

35

Operating frequencies are more are less the same except for the 900MHz switch which was

avoided by three level search. Moreover looking at percentage increase in execution time

exhaustive search gives the lowest increase while three level search’s increased energy savings

comes with higher execution time. Figs. 22, 23 and 24 shows the channel operating frequencies

of FT for three different frequency selection methods. Once the system transitions to the lowest

frequency all the frequency search methods operate more or less at the same frequency. FT

Exhaustive search itself does not perform many frequency switches. This explains the reason

behind almost equal energy savings with Exhaustive and Ganged search. The system transitions

to the lowest frequency level in all the three cases but three level search gives lower energy

savings because to make the transition to 400MHz all the channels should first transition

Figure 19: Frequency of Memory Channels of BT benchmark – Three Level Search

36

Figure 20: Frequency of Memory Channels of BT benchmark – Exhaustive Search

Figure 21: Frequency of Memory Channels of BT benchmark – Ganged

37

Figure 22: Frequency of Memory Channels of FT benchmark – Three Level Search

Figure 23: Frequency of Memory Channels of FT benchmark – Exhaustive Search

38

to 600MHz and then to 533MHz. Time spent in these two frequency levels increases the energy

consumption of three level search. The same discussion can be extended to explain results

obtained with default mapping algorithm.

Fig. 25 shows the energy savings obtained with 8 Channels. Average energy savings of BT, FT and

CG are 43.64%, 51.95% and 52.93%. Controlling the voltage and frequency of channels

independently gives 48.55%, 51.21% and 53.75% reduction in energy consumed while slaving all

the channels together gives 38.73%, 52.68% and 52.09% energy savings. Energy savings

obtained with BT is higher when channels are controlled independently with three level search.

This holds for both the mapping algorithms. But BT shows the highest difference in energy

savings between ganged and three level search with the default mapping algorithm. This is due

to additional imbalance in channel traffic created by default mapping. Controlling channels

Figure 24: Frequency of Memory Channels of FT benchmark – Ganged

39

independently will present more opportunities to save power since channels which have very

low traffic can be operated at the lowest frequency while the frequency of ones that are

considerable loaded can be increased. This is not possible when all the channels are slaved

together.

Figure 25: Percentage Energy Savings (left) and Percentage increase in execution time (right) of

two mapping algorithms – Default (top) and Interleaved mapping (bottom) - 8 Channels

Figs. 26 and 27 shows operating frequencies of FT with Ganged and three level search. Three

level search gives lower energy savings because all the channels have to transition to 600MHz

and then to 533MHZ before going to the lowest operating frequency. The fraction of time spent

in two intermediate frequencies levels contribute significantly towards total energy

consumption thus lowering energy savings of three level search.

40

Figure 26: Frequency of Memory Channels of FT benchmark – Ganged

Figure 27: Frequency of Memory Channels of FT benchmark – Three Levels Search

41

Fig. 28 shows energy savings with 16 channels. All the three benchmarks give increased energy

savings with interleaved mapping. With 16 Channels all the channels must be slaved together

since it is not feasible to use exhaustive or three level search. As show in Fig. 14 default mapping

completely lowers down activity in some channels and the distribution of traffic is significantly

unequal across all the channels. Distribution of traffic with interleaved mapping is much more

suited for ganged search.

Figure 28: Percentage Energy Savings (left) and Percentage increase in execution time (right) of

two mapping algorithms – Default (top) and Interleaved mapping (bottom) - 16 Channels

Two variants of ganged were also implemented for default mapping algorithm. With Ganged – 8,

8 Channels were grouped together (out of 16) effectively creating two virtual channels. Similarly

with Ganged – 4, 4 Channels were grouped together creating four virtual channels. Energy

savings obtained with Ganged – 8 and Ganged – 4 are show in Fig. 29. Grouping the channels is

42

as effective as controlling the channels independently. The reason behind lower energy

consumption can be derived by looking at memory access patterns of benchmarks. With 16

channels all the benchmarks does not equally utilize all the channels. There are some channels

that are almost idle. Coupling all the channels together hinders the control algorithm from

lowering the frequency of certain channels with reduced activity. Hence grouping a subset of

channels together provides freedom to the algorithm to operate different groups of channels at

different frequencies which effectively reduces the energy consumption. Average energy

savings of Ganged – 4 and Ganged – 8 are 44.56%, 52.56%, and 54.63%. It is clearly evident that

significant savings in energy consumption is obtained by grouping channels together. Even

though frequency of each channel is not changed independently, which may provide even

higher energy savings but it is infeasible with 16 channels considering the sheer number of

possible states the control algorithm has to consider, grouping the channels is as effective as

exhaustive frequency search.

Figure 29: Percentage Energy savings (left) and Percentage Increase in Execution time (right)

On an average with 4 channels the applications give 48.1% energy savings with ganged search

and 49.1% when the channels are controlled independently. When number of channels is

43

increased to 8 with ganged search average energy savings obtained is 48% while independently

controlling channels gives 50.5%. These figures are for interleaved mapping with default

mapping average energy savings are 48% with ganged search and 49.8% when the channels are

controlled independently. Increasing number of channels to 8 increases energy savings from

47% (ganged) to 51.8% (independently controlled). Results from both the mapping algorithms

shows that controlling channels independently becomes very effective with 8 or more channels.

44

7. CONCLUSIONS AND FUTURE WORK

In this thesis, Dynamic Voltage and Frequency memory Scaling was proposed to reduce energy

consumption considering the ability to select different frequencies for different memory

channels. The analysis of HPC applications memory bandwidth demand showed that there are

significant fluctuations in the memory bandwidth demand over time, and that the memory

traffic is unequally distributed to all channels. The results obtained with different number of

channels, mapping algorithms and frequency selection methods show that DVFS is an effective

technique to significantly reduce the energy consumed by main memory while maintaining

performance degradation within tolerable limits. The results also showed that controlling the

channels independently provides considerable savings with respect to controlling the frequency

of all the channels together, and controlling the channels independently is more effective when

number of channels is larger.

As a part of future work, the current approach will be extended with an even fine-grained

simulations and a sophisticated performance model that incorporates complex scheduling

strategies used by modern memory controllers. Additional benchmarks that might exhibit higher

memory access imbalance will be considered as well as additional parameters such as different

number of cores and different memory technologies. Finally, control algorithm will be improved

with predictive strategies, such as those based on phase detection techniques.

45

8. PUBLICATIONS

The research presented in this thesis has resulted in the following paper, which is currently

under review.

 K. Elangovan, I. Rodero, M. Parashar, F. Guim and I. Hernandez, “Adaptive Memory

Power Management Techniques for HPC Workloads”, 18th International Conference on

High Performance Computing, HiPC 2011.

46

REFERENCES

[1] “Report to congress on server and data center energy efficiency,” U.S. Environmental

Protection Agency, Tech. Rep., August 2007.

[2] L. A. Barroso and U. Holzle, “The case for energy-proportional computing,” Computer,

vol. 40, pp. 33–37, 2007.

[3] I. Rodero, S. Chandra, M. Parashar, R. Muralidhar, H. Seshadri, and S. Poole,

“Investigating the potential of application-centric aggressive power management for

hpc workloads,” in International Conference on High Performance Computing (HiPC),

2010, pp. 1 –10.

[4] “Jedec. ddr3 sdram standard,” 2009.

[5] E. N. Elnozahy, M. Kistler, and R. Rajamony, “Energy-efficient server clusters,” in

Proceedings of the 2nd international conference on Power-aware computer systems,

2003, pp. 179–197.

[6] N. Kappiah, V. W. Freeh, and D. K. Lowenthal, “Just in time dynamic voltage scaling:

exploiting inter-node slack to save energy in MPI programs,” in ACM/IEEE conference on

Supercomputing (SC), 2005, p. 33.

[7] R. Ge, X. Feng, and K. W. Cameron, “Performance-constrained distributed dvs

scheduling for scientific applications on power-aware clusters,” in Proceedings of the

2005 ACM/IEEE conference on Supercomputing, 2005, p. 34.

[8] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced cpu energy,” in 36th

Annual Symposium on Foundations of Computer Science, 1995, p. 374.

[9] D. Zhu, R. Melhem, and B. R. Childers, “Scheduling with dynamic voltage/speed

adjustment using slack reclamation in multiprocessor real time systems,” IEEE Trans.

Parallel Distrib. Syst., vol. 14, July 2003.

47

[10] Q. Cai, J. Gonzalez, R. Rakvic, G. Magklis, P. Chaparro, and A. Gonz´alez, “Meeting

points: using thread criticality to adapt multicore hardware to parallel regions,” in

International Conference on Parallel Architectures and Compilation Techniques, 2008,

pp. 240–249.

[11] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and M. J. Irwin,

“Hardware and Software Techniques for Controlling DRAM Power Modes,” IEEE Trans.

Comput., vol. 50, no. 11, pp. 1154–1173, 2001.

[12] V. Delaluz, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, “Energy-oriented compiler

optimizations for partitioned memory architectures,” in International conference on

Compilers, Architecture, and Synthesis for Embedded Systems (CASES’00), 2000, pp. 138–

147.

[13] V. Delaluz, M. Kandemir, and I. Kolcu, “Automatic data migration for reducing energy

consumption in multi-bank memory systems,” in 39th Design Automation Conference

(DAC’02), 2002, pp. 213–218.

[14] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin,

“Scheduler-based DRAM energy management,” in 39th Design Automation Conference

(DAC’02), 2002, pp. 697–702.

[15] Y. Cho and N. Chang, “Memory-aware energy-optimal frequency assignment for

dynamic supply voltage scaling,” in International Symposium on Low Power Electronics

and Design (ISLPED’04), 2004, pp. 387–392.

[16] M. C. Huang, J. Renau, and J. Torrellas, “Positional adaptation of processors: application

to energy reduction,” in 30th International Symposium on Computer Architecture

(ISCA’03), 2003, pp. 157–168.

48

[17] H. B. Fradj, C. Belleudy, and M. Auguin, “System level multi-bank main memory

configuration for energy reduction,” in International Workshop on Power and Timing

Modeling, Optimization and Simulation (PATMOS), 2006, pp. 84–94.

[18] H. B. Fradj, C. Belleudy, and M. Auguin, “Multi-bank main memory architecture with

dynamic voltage frequency scaling for system energy optimization,” in Euromicro

Conference on Digital System Design (DSD), 2006, pp. 89–96.

[19] X. Li, Z. Li, F. David, P. Zhou, Y. Zhou, S. Adve, and S. Kumar, “Performance directed

energy management for main memory and disks,” in 11
th

 International conference on

Architectural support for programming languages and operating systems, 2004, pp.

271–283.

[20] X. Li, Z. Li, Y. Zhou, and S. Adve, “Performance directed energy management for main

memory and disks,” ACM Transactions on Storage, vol. 1, no. 3, pp. 346–380, 2005.

[21] X. Li, R. Gupta, S. V. Adve, and Y. Zhou, “Cross-component energy management: joint

adaptation of processor and memory,” ACM Trans. Archit. Code Optim., vol. 4, no. 3, p.

14, 2007.

[22] B. Diniz, D. Guedes, W. Meira, Jr., and R. Bianchini, “Limiting the power consumption of

main memory,” in 34th International Symposium on Computer Architecture (ISCA’07),

2007, pp. 290–301.

[23] I. Hur and C. Lin, “A comprehensive approach to DRAM power management,” in 14th

International Conference on High-Performance Computer Architecture (HPCA), 2008, pp.

305–316.

[24] H. Zheng, J. Lin, Z. Zhang, and Z. Zhu, “Decoupled dimm: building high-bandwidth

memory system using low-speed dram devices,” in 36th International symposium on

Computer architecture, 2009, pp. 255–266.

49

[25] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu, “Mini-rank: Adaptive dram

architecture for improving memory power efficiency,” in 41st IEEE/ACM International

Symposium on Microarchitecture, 2008, pp. 210–221.

[26] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian, A. Davis, and N. P.

Jouppi, “Rethinking dram design and organization for energyconstrained multi-cores,” in

37th International symposium on Computer architecture, 2010, pp. 175–186.

[27] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini, “Memscale: active low-

power modes for main memory,” in 6
th

 International conference on Architectural

support for programming languages and operating systems, 2011, pp. 225–238.

[28] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, , and K.

Hazelwood, “Pin: building customized program analysis tools with dynamic

instrumentation.” ACM SIGPLAN Conference on Programming Language Design and

Implementation, 2005.

[29] K. Hazelwood, G. Lueck, and R. Cohn, “Scalable support for multithreaded applications

on dynamic binary instrumentation systems,” in 2009 International Symposium on

Memory Management (ISMM), Dublin, Ireland, June 2009, pp. 20–29.

[30] A. Jaleel, R. S. Cohn, C. keung Luk, and B. Jacob, “Cmpsim: A pin-based on-the-fly multi-

core cache simulator,” in Fourth Annual Workshop on Modeling, Benchmarking and

Simulation (MoBS), 2008.

[31] J. Moses, K. Aisopos, A. Jaleel, R. Iyer, R. Illikkal, D. Newell, and S. Makineni,

“Cmpschedsim: Evaluating os/cmp interaction on shared cache management,” in IEEE

International Symposium on Performance Analysis of Systems and Software (ISPASS),

2009, pp. 113 –122.

[32] “Pagemap - Linux Kernel - Documentation / vm / pagemap.txt,” January 2011.

50

[33] Micron, “Calculating memory system power for ddr3,” July 2007.

