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ABSTRACT OF THE THESIS 

Adaptive Memory Power Management Techniques for HPC Workloads 

By Karthik Elangovan 

Thesis director: Manish Parashar 

 

The memory subsystem is responsible for a large fraction of the energy consumed by compute 

nodes in High Performance Computing (HPC) systems. The rapid increase in the number of cores 

has been accompanied by a proportional increase in the DRAM capacity and bandwidth. Thus, 

the memory system consumes a significant amount of the power budget available to a compute 

node. There is a broad research effort focused on power management techniques using DRAM 

low-power modes. However, memory power management still presents many challenges 

towards Exascale. In this thesis, the potential of Dynamic Voltage and Frequency memory 

Scaling (DVFS) is studied considering the ability to select different frequencies for different 

memory channels. The approach adopted is based on tuning voltage and frequency dynamically 

to maximize the energy savings while maintaining performance degradation within tolerable 

limits.  It was observed that HPC workloads rarely require maximum bandwidth, and the 

bandwidth demand placed by applications is spread over different channels. Also, HPC 

applications do not use all the bandwidth in a sustained manner, and they have phases where 

this bandwidth demand is not at its peak. Hence applications can tolerate reduction in 

bandwidth to save energy. Channel access patterns of applications are studied to determine the 

potential additional energy savings by controlling channels independently. Evaluation of 

proposed DVFS algorithm is conducted through a novel hybrid evaluation methodology that 

includes simulation and executions on real hardware. Results show the large potential of 

adaptive memory power management techniques based on DVFS for HPC workloads. 
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1. INTRODUCTION 

1.1. MOTIVATION 

High Performance Computing (HPC) evolved over the past decades into increasingly complex 

and powerful systems. After attaining Gigaflops and Teraflops performance in the mid 80’s and 

the last 90’s, respectively, the Petaflops barrier was crossed in 2008 with the IBM Roadrunner 

system. Highend HPC systems power demand is increasing eight-fold every year [1], and today 

consume several MWs of power, enough to power small towns, and are in fact, soon 

approaching the limits of the power available to them. The cost of power for this and similar 

HPC systems runs into millions per year. Therefore, more energy efficient systems can reduce 

the data centers total cost of ownership (TCO) since the reduction in energy consumption 

translates to lower energy costs and also reduced costs for cooling and other packaging 

infrastructure. Furthermore, electricity savings could lower the nation-wide carbon dioxide 

emissions. Reaching Exaflops performance by the end of the decade, and enabling the sustained 

performance scaling of smaller systems require significant research along different dimensions 

including power efficiency. Building an Exascale machine on a power budget of 20MWrequires a 

200x improvement in energy per instruction. However, only 4x is expected from improved 

technology, while the remaining 50x must come from architecture and circuits improvements. 

The memory subsystem is responsible for a large fraction of the energy consumed by compute 

nodes in HPC systems. Barrosso et al. [2] indicate that over the years CPU has evolved to an 

extent where it accounts for only 50% of energy consumption. DRAM manufacturers have 

optimized their designs for increased bandwidth to address memory wall issues. But little has 

been done to optimize design to tackle the Power Wall problem. Hence main memory has been 

a significant contributor towards total energy consumption. Therefore, reducing energy 

consumption through intelligent control of all subsystems [3] is critical. The rapid increase in the 
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number of cores has been accompanied by a proportional increase in the DRAM capacity and 

bandwidth. For these new architectures the amount of power required by the memory 

subsystem is an important percentage of the power budget that computer nodes have. 

Therefore, the design of novel memory power management techniques has become crucial 

since efficient power management techniques can allow to save power or transfer it to other 

components of the node. 

1.2. PROBLEM DESCRIPTION 

The brief survey of prior work reveals that: 

1. DRAMs provide multiple operating modes. Each mode has different power 

consumption. A very coarse level of power control is exposed to memory controller 

through these modes – picking an operating state depending upon activity of a 

particular device. For instance unused modules can be sent to idle modes reducing 

power consumption considerably. But the granularity of power control is not very fine. 

Besides DRAM cannot perform all the functions in idle mode that it can perform when 

it’s active. So memory controller has to cleverly decide the state in which devices should 

operate. 

2. As pointed out earlier there is a very coarse level of power control. Even though there 

are multiple modes (with varying degree of power consumptions) each of these modes 

have only a limited degree of operational capabilities compared to the active state. 

Hence the memory controller is able to send the devices only to shallow low-power 

states. The reason for this inability to exploit Nap or lowest power modes are due to 

penalty associated with switching states. Memory controller has to carefully select 

operating state to minimize frequent unwanted switches. 
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3. Inability to exploit these low power states is primarily because of the latency to enter 

and exit these modes. The memory controller is usually aware of these latencies. Hence 

most of the policies for choosing occupational states are based on monitoring current 

activity and selecting states for the next phase. Power is added as a constraint while 

choosing states.  

4. The application should exhibit enough idle periods for effective policies based out of 

these low-power modes. DRAM devices can transition to low power modes during these 

periods effectively reducing power consumed. But finding enough idle limits the 

possibilities of conserving power with low-power modes. 

5. A radical approach that opens up even more opportunities to reduce power is throttling 

DRAM commands in memory controller. Throttling can help reduce energy. Also as 

suggested by [23] Power Shifting can be used to change power gears of other parts of 

the computing system. But throttling can have negative effects on performance. 

6. Research efforts on DRAM architectural changes can have negative effects on yield [27]. 

Architectural changes can take time to seep into the market provided there is no 

negative impact on yield. 

Due to absence of opportunities to lower down power with current power control methods it is 

necessary to shift from the conventional methods of power control. An approach that can be 

applied across current class of DRAMs and architectural changes that are yet to come is what is 

currently needed. Energy proportional computing (DVFS) has provided considerable power 

savings to CPU hence extending the same principle to main memory should provide 

considerable savings.  

Most scientific applications are iterative which means that they apply the same algorithm 

several times to the same data set. In particular, the data is processed repeatedly until number 
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of iterations reaches a specific value or until the value of some parameters converges (for 

instance, when the error converges to certain value). Hence HPC applications exhibit good 

locality which means that the last level cache captures most of the accesses. Thus the 

bandwidth demand placed on main memory is not at its peak during the entire period of 

execution. This behavior clearly shows that main memory need not be operated at maximum 

voltage and frequency levels all the time. DVFS can be extended to main memory to reduce 

energy consumption. 

1.3. OBJECTIVES & APPROACH 

This study is based on three observations: 

1. Reducing frequency and voltage reduces power considerably. 

2. The time it takes to perform read or write operations does not vary too much when we 

change the frequency. 

3. Iterative behavior exhibited by HPC application further aids tuning voltage and 

frequency dynamically. Applications do not demand peak bandwidth all the time. Hence 

reduced stress on main memory provides opportunities to operate the channel at a 

lower voltage and frequency level. 

Dynamically scaling Voltage and Frequency of main memory to contain power can be done at 

the cost of losing a preset amount in performance. Applications can trade bandwidth and 

sustain reduction in performance for saving energy. Recent design of processors incorporates 

multiple on-chip memory controllers and multiple channels for more parallelism. Each channel 

can be observed and depending upon the activity on that channel memory devices connected 

can be operated at appropriate voltage and frequency levels. To keep the degradation within 
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limits, while evaluating potential of doing DVFS, a performance guarantee algorithm has been 

built on top so that the frequency selection process can prevent too much loss in performance. 

A novel hybrid evaluation methodology has been adopted that includes simulation as well as 

executions in real hardware. This approach is used to study the application channel access 

patterns, and to evaluate three possible frequency selection strategies and two different 

algorithms for mapping physical memory addresses to channels. The proposed control 

techniques provide around 55% energy savings on average with only around 5% degradation of 

execution time on average, using the NAS Parallel Benchmarks. It is also observed that 

controlling the channels independently provides considerable savings in comparison to 

controlling the frequency of all the channels together when applications exhibit uneven load.  

1.4. CONTRIBUTIONS 

The main contributions of this thesis are summarized as follows:  

1. Study of memory access patterns, bandwidth and channels usage for HPC workloads. 

2. Design of a control algorithm for adaptive memory power management. 

3. A novel hybrid evaluation methodology that includes simulation and executions on real 

hardware. 

4. Evaluation of the proposed strategy on DDR3 SDRAM with number of memory channels, 

frequency selection strategies, and physical address to channels mapping.  
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2. BACKGROUND 

2.1 DRAM ORGANIZATION 

Data in a DRAM device has an array structure with multiple rows and columns. The intersection 

of a row and column is a storage cell, which is periodically refreshed because of gradual data 

discharge. A row and column address can fetch only a single bit from a single device in the array. 

Usually a number of arrays are operated in parallel on each access. DRAM arrays that act in 

unison on a request belong to the same bank, for instance in a x4 DRAM four arrays act in 

parallel on each access. The notation also indicates the column width (e.g., x8, x16, x32 and x64 

devices are commercially available). Fig. 1 shows DRAM arrays grouped together.  

Commercially available DRAMs are generally distributed as memory modules (DIMM) with 

DRAM devices and all the other circuitry built-in. Our discussion pertains to class of JEDEC DDR 

SDRAMs. Fig. 1 shows DRAM and all the other components.  

Figure 1: (Left) DRAM subsystem with DRAM modules. (Right) DIMM organization with individual 

rank, bank and arrays inside each bank. 
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Due to the DRAM organization the physical addresses generated by applications cannot be used 

to directly access DRAM, instead processors interface with DRAM through memory controller 

which relieves the socket modules from directly interfacing the DRAM. The memory controller 

has to convert the physical addresses to a set of commands that DRAM device understands. 

Physical addresses are split by the memory controller to identify a bank, then a row and column 

within a bank.  

Every DRAM operation (read/write) begins with an activate command, which requires selecting 

a row with an appropriate row address. The content of the entire row is transferred to the sense 

amplifiers. Every bank has separate sense amplifiers and each bank can be activated 

independently. Once the entire row has been read it is said to be open and the bank is said to be 

active. The next step is to select a column and then the content of the column is placed on the 

data bus. DDRx SDRAMs transfer data on both edges of the clock cycle. The final step is to 

restore the data back to the cells with a precharge operation that closes a row. 

The set of commands described previously can be pipelined when accessing different banks 

subsequently. But banks contend for access to the data bus. This is usually exploited by memory 

controllers to increase the bandwidth.  

The memory controller can close the row after a read/write access with a precharge command. 

In closed page DRAMs, rows are immediately closed after a row access command, while in open 

page DRAMs, rows remain opened expecting subsequent hits to the same row. In this study we 

evaluate only closed page RAMs. 

Fig. 2 shows DDR3 device with eight separate banks. Each bank is capable of outputting 64 bits. 

The figure also shows separate registers to hold row and column address. On an activate 

command the row address is used to activate a row and read the contents to the sense 
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amplifiers. On receiving the column address the appropriate data is then read out to the data 

bus through I/O gating.  

 

 

 

 

 

 

 

The data out capacity of this DRAM is 8 bytes. But cache lines requests are for 64 bytes. DRAMs 

provide ability to read in burst on single command. The device shown in Fig. 2 can provide 8 

bytes at a time. Hence data (an entire cache line) can be sent back in 4 cycles (because DDRx can 

transfer over both the edges of the clock). 

2.2 DRAM TIMING 

The basic timing parameters for generic DRAM commands that will be used throughout this 

thesis are the following: 

 tRCD     : Time taken to move an entire row of data to sense amplifiers. 

 tCAS      : Time interval between column read command and availability of data in data bus. 

 tCWL    : Time interval between column write command and availability of data in data bus. 

 tRAS     : Time interval between row access and data restoration back to the cells 

Figure 2: DDR3 SDRAM with 64 bit data out. 16384 rows and 128 columns and 8 banks 
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 tRP       : Time taken to precharge a row 

 tRC       : Minimum time interval that has to elapse between different accesses to same row in 

a bank 

 tWR      : Time it takes to restore the write data from sense amplifiers back to the cells. 

Every read operation takes row activation (tRCD), column read (tCAS), data out (tBURST) and 

precharge (tRP).  Total time is, tRCD + tCAS + tBURST + tRP.   DDR3 devices can perform each of these 

operations in about 10ns. Timing parameters for write operation remains the same except 

column access takes tcWD and there is a tWR additional waiting period after end of last data into 

sense amplifiers. 

2.3 VOLTAGE AND FREQUENCY SCALING 

The JEDEC memory standards [4] are the specifications for semiconductor memory circuits and 

similar storage devices adopted by the JEDEC Solid State Technology Association. They allow 

changing the input memory frequency, but the transition should respect the timing parameters 

specified by the standard; however, commercially available DRAM devices do not support 

multiple voltage domains. In this thesis, we assume the DRAM to operate properly within the 

voltage levels configurable using the BIOS settings. Table 1 lists the voltage and frequency 

combinations considered in this study for DDR3 SDRAM along with the power breakup of a 2GB 

DIMM (256x64)(according to [33]. Note that the voltage range [1.575V–1.425V] is the allowable 

voltage range of the power supply. 
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Frequency 

(MHz) 

Voltage 

(V) 

Pds(PRE_STBY) 

(mW) 

Pds(ACT_STBY) 

mW 

Pds(ACT) 

mW 

Pds(WR) 

mW 

Pds(RD) 

mW 

Pdq(RD) 

mW 

Pdq(WR) 

mW 

933 1.575 252 466 226 919 793 96 620 

800 1.5375 240 420 170 660 720 91 591 

667 1.5 229 400 104 457 514 87 562 

533 1.4625 184 326 91 380 435 83 535 

400 1.4250 131 232 64 271 310 79 508 

 

  

Table 1: Voltage and frequency levels 
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3. RELATED WORK 

Over the last years, processors have evolved to become energy efficient supporting multiple 

operating modes. At a very coarse level, power management at the system level consisted on 

monitoring the system load and shutting down unused clusters or transitioning unused nodes to 

low power modes [5]. Such algorithms are based on the availability of sufficient idle periods and 

propose to batch work to increase the probability of such idle periods. Computing nodes incur 

latency only when they exit from these low-power modes. Other studies [6], [7], [8], [9] have 

proven that dynamically varying the voltage and frequency proportional to system load is 

effective in reducing energy consumption. DVFS provides power savings at the cost of a small 

increase in execution time. Other approaches conducted on power management techniques are 

focused at the processor level, for example, Cai et al. [10] propose a DVFS techniques based on 

the hardware thread runtime characterization. 

 

The previous approaches tackled the energy consumption optimizations focused in the 

computing elements. Memory devices, which were once considered to be undesirable 

candidates for power consumption, began to significantly contribute to overall system energy 

consumption. Just like processors, DRAM devices have several low power modes. Delaluz et al. 

[11] present software and hardware assisted methods for memory power management. They 

studied compiler-directed techniques [12], [11], as well as OS-based approaches [13], [14] to 

determine idle periods for transitioning devices to low power modes. Even though this approach 

is very conservative, switching to/from low-power modes during unwanted periods can be 

prevented; however it is not very effective on multi-core systems. Cho et al. [15] studied 

assigning CPU frequencies for DVFS that is memory-aware, because focus of all prior work was 

on optimal assignment of frequencies to CPU, thus ignoring memory. Huang et al. [16] proposed 
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a power-aware virtual memory implementation in the OS to reduce memory energy 

consumption. Fradj et al. [17], [18] propose multi-banking techniques that consist of setting 

individually banks in lower power modes when they are not accessed. 

 

Self-Monitoring [11] approach can be effective with a control algorithm to choose between 

power modes for memory devices. The key is to determine idle periods to transition devices to 

low-power modes; however, self-monitoring control algorithms are threshold-based, therefore, 

an algorithm that transitions into low-power modes too frequently can increase latency, while a 

very sluggish algorithm can miss out on opportunities to save power. Li et al. [19], [20], [21] 

proposed a self-tuning energy management algorithm to provide performance guarantees. The 

algorithm tunes threshold parameters at different points of execution. Diniz et al. [22] studied 

dynamic approaches for limiting the power consumption of main memory by limiting 

consumption and adjusting the power states of the memory devices, as a function of the 

memory load. Hur et al. [23] took an entire different approach towards DRAM power 

management. DRAM commands are delayed in memory controller to increase idle periods, and 

to exploit low-power modes of DRAMs. Commands are delayed in memory controller for a 

certain number of cycles which is determined by a delay estimator.  

 

Several architectural changes have also been proposed. Rank subsetting [24] and Mini-Rank [25] 

tackle energy consumption constraint by dividing a rank into subsets. This approach reduces the 

number of chips which are put to work at each memory access. Udipi et al. [26] suggested 

changes to internal organization of DRAM devices. The authors argue that an open-paged policy 

does not present any improvements for a multi-core architecture because an opened row has 

one or two hits on average. Building on that argument it is unnecessary to read all the bits to the 
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sense amplifiers, thus reducing the number of bits that are touched can decrease the energy 

consumption. 

 

Deng et al. [27] proposed dynamic frequency scaling of the main memory. The frequency of all 

memory channels is changed to provide energy savings with guaranteed performance 

degradation. Even though the work is similar, the focus of this study has been clearly on 

evaluating the potential of controlling the voltage and frequency of all channels independently. 
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4. ADAPTIVE MEMORY POWER MANAGEMENT 

This work has been primarily motivated by two behaviors of applications: (1) bandwidth 

demand, and (2) the memory access patterns. As mentioned previously, applications rarely 

demand peak bandwidth from main memory since on chip caches work efficiently for capturing 

accesses to main memory. LLC misses of an application can be used to derive bandwidth 

demand since it has positive correlation with bandwidth. Fig. 3 shows misses access, expressed 

as Misses per Kilo Instructions (MPKI) of two NAS benchmarks that were collected using CMPSim 

as described in Chapter 5, and demonstrate the time varying behavior of both applications. 

There are periods of high and low bandwidth demand, applications will not incur significant 

penalty by switching to a lower voltage and frequency during these low bandwidth demand 

periods. 

 

 

 
Figure 3: MPKI of BT (top) and FT (Bottom) 
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4.1. CHANNEL MAPPING FROM PHYSICALL ADDRESS 

As described previously the processor cannot directly access DRAM devices. The physical 

address is sent to the memory controller which splits the address to first find the physical 

channel, then the rank, and then the bank within rank. The process of identifying the channel 

number is proprietary to each memory controller design, for instance, considering the example 

shown in Figs. 4 and 5 the physical address in divided to address different parts of the device, 

and the Row ID is mapped to the most significant bits so that consequent addresses go to the 

same row.  
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Figure 5: Channel Mapping 

Figure 4: Addresses seen by different layers of hardware 
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Two different algorithms for mapping physical addresses to channels have been considered:  

• Default: Accesses are clustered to certain channels thus reducing activity on other 

channels. Allowing one to tune down the voltage and frequency of channels which are 

relatively lightly loaded. For instance, with a 4GB physical memory and 8 channels the 

first 512MB can be mapped to first channel, the next 512MB to second channel, etc.  

• Interleaving: Accesses are distributed across different channels. This helps distribute 

load equally across different channels by mapping consequent cache lines to different 

channels. Figs. 6–14 illustrate how the algorithm for mapping physical memory 

addressed to channels can significantly affect the memory access pattern, and 

presumably the application behavior. 

4.2.  MEMORY ACCESS PATTERNS 

Memory access patterns of three NAS Benchmarks were collected using mptrace and CMPSim 

(see Chapter 5). CMPSim dumps processor specific information whenever a hardware thread 

hits a billion instructions. Mptrace is used to obtain the physical addresses accessed. The data is 

then processed to obtain the channels access patterns using different channel mapping 

algorithms. Figs. 6, 7 and 8 show the memory access patterns for four, eight and sixteen 

channels. Access patterns were collected for different regions (i.e., a block of instructions) of the 

application. The exact number of application instructions for a region is not fixed, and varies 

with the CMPSim output dump frequency (i.e., when a thread hits 109 instructions). The 

memory access patterns exhibited by applications motivate the use of the adaptive techniques 

proposed in this work. Peak bandwidth is not always demanded by applications and there is 

unequal distribution of accesses across channels. This asymmetry presents opportunities to 

control the channels independently. 



17 

 

 
 

 

 

 

 

 

Figure 6: Access Pattern of BT benchmark with 4 channels. Interleaved Mapping (left) and Default 

mapping(right) 

Figure 7: Access Pattern of BT benchmark with 8 channels. Interleaved Mapping (left) and Default 

mapping(right) 
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Figure 8: Access Pattern of BT benchmark with 16 channels. Interleaved Mapping (left) and 

Default mapping(right) 

Figure 9: Access Pattern of FT benchmark with 4 channels. Interleaved Mapping (left) and Default 

mapping(right) 
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Figure 10: Access Pattern of FT benchmark with 8 channels. Interleaved Mapping (left) and 

Default mapping(right) 

Figure 11: Access Pattern of FT benchmark with 16 channels. Interleaved Mapping (left) and 

Default mapping(right) 
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Figure 12: Access Pattern of CG benchmark with 4 channels. Interleaved Mapping (left) and 

Default mapping(right) 

Figure 13: Access Pattern of CG benchmark with 8 channels. Interleaved Mapping (left) and 

Default mapping(right) 
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The figures show the applications exhibiting different characteristics with the two mapping 

algorithms. All the three applications streamline equal traffic into all channels with 4 and 8 

channels when interleaved mapping is employed. But when the number of channels is increased 

to 16, even with interleaved mapping the applications show affinity to access certain group of 

channels. Dynamically adjusting the frequency of memory channels will not affect the 

performance of the applications significantly since there are periods of high and low bandwidth 

demands. Additional observation of access patterns shows that channels can be further tuned 

independently because of unequal distribution of traffic. 

4.3.  CONTROL ALGORITHM 

The control algorithm selects the operating voltage and frequency of main memory. It is invoked 

on certain points along the execution of the program, and uses observed system parameters 

Figure 14: Access Pattern of CG benchmark with 16 channels. Interleaved Mapping (left) and 

Default mapping(right) 
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during current phase of execution to obtain possible energy savings attainable at different 

operating states. The operating state here refers to voltage and frequency levels of channels. 

The control algorithm uses the power model described in Chapter 5.3. It is possible to compute 

the input parameters of the power model from the execution time. However, to prevent the 

power control algorithm from calculating this parameter, it is advisable to use a counter. In 

addition, the hardware should also have counters for LLC misses and total instruction executed. 

The counter for LLC misses should be maintained on a per-channel basis. To calculate the power 

dissipation at other frequency settings the execution time at all the other frequencies should be 

found. Execution time in total number of cycles (TNC) is given by Eq. 1 where ICPU is the total 

non-memory instructions, Imem is the total memory instructions, CPImem is cycles per memory 

instructions that can be found using the performance model (described in Section V-C. If the 

control algorithm is invoked at fixed intervals TNC will be known for the current state. CPICPU 

can be computed using Eq. 1. CPICPU is constant at all the other states since changing frequency 

will not affect non-memory instructions. 

                          {[                             ]  [                                ]}
 {[                         ]  [                            ]} 

                       (           )  (           )  
Equation 1: Total Number of Cycles 
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The control algorithm performs the following sequence of steps when it is invoked: 

Step i: Read all the counters. 

Step ii: Use the performance model to calculate the execution time of the current phase at all 

the possible voltage and frequency levels. 

Step iii: Calculate the power consumed by the other operating states. 

Step iv: Calculate the energy savings for all the states, i.e., savings compared to operating all the 

channels at maximum frequency. 

Step v: Choose a state for the next phase that maximizes energy savings while keeping CPI 

degradation within a specified limit.  

 

With M possible operating frequencies and n channels we can have Mn possible states. The 

control algorithm should calculate energy savings and performance degradation for all possible 

states before it can select an operating state for the next phase. Execution time of the control 

algorithm primarily depends on the number of possible states for the next phase. Since this 

increases the execution time of the control algorithm exponentially with increase in number of 

channels, three possible frequency selection strategies have been considered: 

• Exhaustive Search: All the frequencies are considered in this method (Mn possible 

states). The cost of executing the control algorithm with this scheme becomes very high 

with 8 and 16 channels. 

• 3 Levels: Three frequency levels can be considered at a time, for instance, if we start 

with 933MHz then 933MHz, 800MHz and 667MHz are considered for the next phase. If 

667MHz is selected for the next phase then 800MHz, 667MHz and 533MHz are 

considered for the next phase. With such a scheme the time complexity of the algorithm 

is reduced considerably. Number of operating states is reduced to 3M.  
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• Ganged: The number of possible operating states can be greatly reduced by slaving all 

the channels together, even when all the five frequencies are considered,  there can be 

only 5 possible states. A slight variant of ganged in which instead of slaving all the 

channels together only certain subset of channels are tied together. Two variables, M 

and n, decide the number of possible states. Three level search reduces M to bring 

down the number of possible states. But if we group channels we can also reduce n. For 

instance with 16 Channels, we can have eight channels in a group effectively creating 

two virtual channels out of sixteen channels or four channels can be grouped effectively 

creating 4 virtual channels. Channels are sorted based on their respective channel 

access ratios and then grouped.  
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5. EVALUATION METHODOLOGY 

 Since the actual implementation of DVFS is not available for currently available hardware, the 

evaluation of the control algorithm is performed using simulation. However, part of input data 

of the control algorithm is obtained using tools that run on the actual execution platform for 

which the simulator is configured (see Fig. 15). The CMPSim simulator is used to capture the 

time varying behavior of the applications. The simulator was configured to produce statistics 

when any hardware thread reaches 109 instructions. 

 

 

 

 

 

 

 

 

 

 

 

CMP$im mptrace 

1. PERFORMANCE MODEL 

2.  COMPUTE TOTAL EXECUTION TIME 

3. COMPUTE DRAM ACTIVITY PARAMETERS 

4. POWER MODEL 

LLC Stats Channel access 

ratios 

Avg. Latency of 

Memory operations 

Execution time for 

all operating states 

%BNK_PRE, RD_Sch 

and WR_Sch 

5. SELECT OPERATING STATE FOR NEXT 

PHASE 

Collect Power and Execution time for 

all possible operating states 

Figure 15: Block diagram of the evaluation methodology 
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Since CMPSim can model the application behavior only till the last level cache (LLC), mptrace is 

used to collect the physical address traces of all the benchmarks. Results from both CMPSim and 

mptrace are used as input by the control algorithm along with a performance and a power 

model. The performancemodel is used together with the LLC statistics (CMPSim) and channel 

access ratios (mptrace) to find the latency of read/write operations for all operating frequencies. 

After obtaining the average latency for a given frequency (fsys) from the performance model, the 

actual execution time of the program at fsys can be computed using Eq. 2. 

         (           )   (               ) 

     -  Cycles elapsed after compensating for LLC Misses 

     - Cycles elapsed before compensating for LLC Misses. 

Equation 2: Total Execution Time 

 

In Eq. 2, Nc
′ is the total execution time (in cycles) after compensating for LLC misses, and Nc is 

the total execution time (in cycles) produced by the simulator assuming that LLC misses are 

penalized with a 350 cycle latency. The execution time is then used to find the activity 

parameters that are computed for all possible operating states. Next, the power model is used 

to obtain the power dissipation, and the last step is selecting a state that provides maximum 

energy savings within allowable CPI degradation limits.  

5.1. PERFORMANCE MODEL 

CMP$im assumes a main memory access latency of 350 cycles for both read and write 

operations. Hence CPI provided by CMP$im is far from accurate. The figure below shows two 

memory controllers independently controlling channels. 
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A memory access (read/write) missing the last level cache will incur the delays shown in Eq. 3. 

                                  

                                               

Equation 3: Delays 

 

Where tR – Time for read access 

 tW – Time for write access 

 td – Avg. Queuing delay incurred by a mem access 

Figure 16: 4-Core Processor with two memory channels 

    

L1 L1 L1 L1 

L2 L2 

MMC MMC 
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tr and tw include the time taken for complete transfer of data from a DRAM device back to (or 

from) CPU. We need a good estimate of td to calculate the total delay. Simplifying the operation 

of memory controller the queues in memory controller are shown below  

 

 

 

 

 

 

 

The memory controller maintains one queue per bank. λi is the arrival rate of requests in 

channel – i. We assume that all the banks are equally accessed. Hence the traffic bifurcates into 

all the queues equally. The request at the head of each queue is serviced on a round-robin basis. 

Time taken to service a request includes the complete access time (for read and write 

operations.). We model a closed page DRAM. A read access has row activation (tRCD), column 

access (tCL), data transfer (tBURST) and a precharge command to close the row (tRP). The timing 

parameter for a write operation is the same except that the column access takes up tCWL and 

there is a tWR interval between tBURST and tRP. Let tR (tW) denote the complete interval of time 

required to perform read (write) operation. So the memory controller has Poisson arrivals, 

generally distributed service time, single server and m traffic streams. This is an M/G/1 queue 

Figure 17: Simple model for memory controller 

Server 

Bank - 1 

Bank - 2 

Bank - 3 

Bank - m 

λ𝑖𝑚 λ𝑖𝑚 λ𝑖𝑚 

λ𝑖𝑚 
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with m users polling for the server. We can now estimate the average waiting time of a request 

in a queue (td). This can be used to calculate Latency. 

The Probability Mass Function of service time of a request is shown in Eq. 4. 

  ( )  {                 

   * +      

    *  +  
Equation 4: Probability Mass Function 

Since we assume equal bank access, the waiting time of a request in the queue is given by 

waiting time of M/G/1 queue as shown in Eq. 5. 

        (    ) 

Equation 5: Waiting Time 

Where, 

pr - Probability that an access is read 

pw – Probability that an access is write 

λ, pr and pw can be calculated from data collected from  CMP$im and mtaptrace 

CMP$im outputs instructions executed, LLC Misses on a per thread basis. This can be used to 

calculate the average interval between any two LLC misses as shown in Eq. 6.  
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                                      }  
                                          (              )(                                )           

Let us denote this by τ.  

                              
Equation 6: Gap between two LLC Misses 

Where, αkj is fraction of accesses from thread-k going to channel j. This is obtained from 

mtaptrace results. Now, λ can be used in eq() to calculate average waiting time of a request to 

channel - j. td can be used to correct the total number of cycles elapsed. 

5.2. POWER MODEL 

In our simulations we have calculated active power (PACT ), background power (PACT_STBY and 

PPRE_STBY ), read and write power (PRD and PWR) and termination power(Pterm) according to the 

model for memory power described in [33]. The specific parameters required by the DRAM 

power model are listed below. 

• BNK PRE Percentage of cycles that DRAM spent in pre-charge mode. 

• RD_Sch Percentage of DRAM cycles that were outputting read data. 

• WR_Sch Percentage of DRAM cycles that were outputting write data. 

BNK PRE is used to compute background power while RD_Sch and WR_Sch are used to compute 

read, write and termination power. These parameters are described in detail in [33], and they 

can be computed using the performance model after obtaining the average latency of read and 

write operations. Eq. 7 computes the energy consumption, where Pf
total represents the total 

power dissipation, and Texec the execution time at frequency f. 
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Equation 7: Energy Consumption 

 

5.3. CMPSim SIMULATOR 

CMPSim is a PIN [28][29] tool that intercepts memory access operations that are fed to a Chip 

Multiprocessor (CMP) cache simulator [30]. The model implements a detailed cache hierarchy 

with DL1/IL1, UL2, UL3 and memory. The simulator can be configured to model complex cache 

hierarchies, e.g., a SMP machine with 32 cores sharing the L2 and L3. In fact, the recent 

processor architectures can be modeled using CMPSim.  

CMPSim can capture cache behavior of single and multithreaded workloads. CMPSim can gather 

a wide variety of statistics for an application, which are saved to an output file periodically. The 

log file contains information about instruction profile, total number of cache accesses and 

misses at all levels, and cache sharing between multiple threads, etc. Moses et al. [31] present a 

very detailed study of CMPSim. 

5.4. MPTRACE 

The Intel PIN project aims to provide dynamic instrumentation techniques to gather information 

about the instructions that applications execute. PIN API provides mechanisms to implement 

callbacks that are called where specific events occur on the execution of the target application 

(i.e., execution of memory access operation). Other tools that profile the the applications 

memory access can be found in the PIN SDK. However, no PIN tool or similar instrumentation 

tool has been provided to profile the physical memory accesses that applications request. 

Mptrace is a PIN-based tool that allows intercepting the processes memory accesses, and 

translating the virtual addresses to physical addresses. It uses the page map file [32] system to 
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translate the virtual address to physical address. The pagemap file system was released with 

version 2.6.25 of the Linux kernel and can be accessed through the /proc/pid/pagemap file. As is 

described in the kernel source [32], this file allows a user space process to find to which physical 

frame each virtual page is mapped. It contains one 64-bit value for each virtual page, containing 

the following data (from fs/proc/task mmu.c):  

• Bits 0-54: page frame number (PFN) if present 

• Bits 0-4: swap type if swapped 

• Bits 5-54: swap offset if swapped 

• Bits 55-60: page shift (page size = 1 page shift) 

• Bit 61: reserved for future use 

• Bit 62: page swapped 

• Bit 63: page present 

Using the pagemap system, the mptrace PIN tools provides several functionalities to 

characterize how the applications access the physical memory pages. The format and 

information required is highly customizable, it provides information related to cache access (way 

and set), and memory accesses (physical page address). It also provides ways to reduce the 

amount of generated information, such as, sampling and trace disabling when the application 

loads data, or the caches are warming up. The current implementation of mptrace provides 

mechanisms to characterize the memory accesses on the flight. Thus, this PIN tool can provide 

summarized information about how an application is using the main memory. For example, it 

provides page access histograms, or clusters of memory regions accessed during an interval of 

time. 
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6. RESULTS 

NAS Parallel Benchmarks (class B) were used to evaluate the potential of adaptive DRAM power 

management. CMPSim was first used with the architecture configuration shown in Table 2 to 

obtain statistics of the benchmarks execution (the characteristics of the different benchmark are 

shown in Table 3). Then, memory access patterns were obtained by running the benchmarks 

using mptrace on actual hardware (same configuration as shown in Table 2). Result were 

obtained for 4, 8 and 16 DDR3 channels with 2GB in each channel (single rank) using the power 

model described in [33]. Discussions pertaining to Energy consumption are only those of DRAM 

and not the whole system. Energy savings reported are savings with respect to operating all the 

channels at maximum frequency.  

Feature Specification 

Cores 8 Cores, 2 HW threads per core, 2.4GHz 

L1 Cache 32KB, 8-way set associative  

L2 Cache 256KB, 16-way set associative 5cycles/hit 

L3 Cache 16MB, 4-way set associative 15 cycles/hit 

Table 2: System Specifications 

BENCHMARK DATA SET CLASS INSTRUCTIONS 

BT B 70 billion 

FT B 79 billion 

CG B 66 billion 

Table 3: Characteristics of the different NAS benchmarks 

Fig. 18 shows energy savings obtained on a 4 DDR3 Channel system. All the three frequency 

search methods can be used on a 4-channel system. Almost equal energy savings are obtained 
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with both the mapping algorithms.  Energy consumed by main memory is significantly reduced 

in case of all the three benchmarks. Average energy savings obtained with BT, FT and CG are 

43.22%, 51.58% and 52.30%. It can be also seen in Fig. 16 that the increase in execution time is 

well within limits. Results obtained for both the mapping algorithms follow the same trend. 

Average energy savings obtained by controlling the channels independently are 44.85%, 51.09% 

and 52.57% while jointly controlling the frequency of all the channels reduces the energy 

consumption by 39.95%, 52.56% and 51.75%. There is significant improvement in energy savings 

when voltage and frequency levels of channels are tuned independently 

BT has higher energy savings with 3 Level Search compared to exhaustive. The reason for this 

can be deduced by looking at Figs. 19, 20 and 21 showing operating frequency of channels. 

 

 

Figure 18: Percentage Energy Savings (left) and Percentage increase in execution time (right) of 

two mapping algorithms – Default (top) and Interleaved mapping(bottom)- 4 Channels  
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Operating frequencies are more are less the same except for the 900MHz switch which was 

avoided by three level search. Moreover looking at percentage increase in execution time 

exhaustive search gives the lowest increase while three level search’s increased energy savings 

comes with higher execution time. Figs. 22, 23 and 24 shows the channel operating frequencies 

of FT for three different frequency selection methods. Once the system transitions to the lowest 

frequency all the frequency search methods operate more or less at the same frequency. FT 

Exhaustive search itself does not perform many frequency switches. This explains the reason 

behind almost equal energy savings with Exhaustive and Ganged search. The system transitions 

to the lowest frequency level in all the three cases but three level search gives lower energy 

savings because to make the transition to 400MHz all the channels should first transition  

 

 
Figure 19: Frequency of Memory Channels of BT benchmark – Three Level Search 
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Figure 20: Frequency of Memory Channels of BT benchmark – Exhaustive Search 

Figure 21: Frequency of Memory Channels of BT benchmark – Ganged 
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Figure 22: Frequency of Memory Channels of FT benchmark – Three Level Search 

Figure 23: Frequency of Memory Channels of FT benchmark – Exhaustive Search 
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to 600MHz and then to 533MHz. Time spent in these two frequency levels increases the energy 

consumption of three level search. The same discussion can be extended to explain results 

obtained with default mapping algorithm.  

 

Fig. 25 shows the energy savings obtained with 8 Channels. Average energy savings of BT, FT and 

CG are 43.64%, 51.95% and 52.93%. Controlling the voltage and frequency of channels 

independently gives  48.55%, 51.21% and 53.75% reduction in energy consumed while slaving all 

the channels together gives 38.73%, 52.68% and 52.09% energy savings. Energy savings 

obtained with BT is higher when channels are controlled independently with three level search. 

This holds for both the mapping algorithms. But BT shows the highest difference in energy 

savings between ganged and three level search with the default mapping algorithm. This is due 

to additional imbalance in channel traffic created by default mapping. Controlling channels 

Figure 24: Frequency of Memory Channels of FT benchmark – Ganged 
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independently will present more opportunities to save power since channels which have very 

low traffic can be operated at the lowest frequency while the frequency of ones that are 

considerable loaded can be increased. This is not possible when all the channels are slaved 

together.  

  

 

Figure 25: Percentage Energy Savings (left) and Percentage increase in execution time (right) of 

two mapping algorithms – Default (top) and Interleaved mapping (bottom) - 8 Channels  

Figs. 26 and 27 shows operating frequencies of FT with Ganged and three level search. Three 

level search gives lower energy savings because all the channels have to transition to 600MHz 

and then to 533MHZ before going to the lowest operating frequency. The fraction of time spent 

in two intermediate frequencies levels contribute significantly towards total energy 

consumption thus lowering energy savings of three level search. 
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Figure 26: Frequency of Memory Channels of FT benchmark – Ganged 

Figure 27: Frequency of Memory Channels of FT benchmark – Three Levels Search 
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Fig. 28 shows energy savings with 16 channels. All the three benchmarks give increased energy 

savings with interleaved mapping. With 16 Channels all the channels must be slaved together 

since it is not feasible to use exhaustive or three level search. As show in Fig. 14 default mapping 

completely lowers down activity in some channels and the distribution of traffic is significantly 

unequal across all the channels. Distribution of traffic with interleaved mapping is much more 

suited for ganged search.  

  

 

Figure 28: Percentage Energy Savings (left) and Percentage increase in execution time (right) of 

two mapping algorithms – Default (top) and Interleaved mapping (bottom) - 16 Channels  

Two variants of ganged were also implemented for default mapping algorithm. With Ganged – 8, 

8 Channels were grouped together (out of 16) effectively creating two virtual channels. Similarly 

with Ganged – 4, 4 Channels were grouped together creating four virtual channels. Energy 

savings obtained with Ganged – 8 and Ganged – 4 are show in Fig. 29. Grouping the channels is 
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as effective as controlling the channels independently. The reason behind lower energy 

consumption can be derived by looking at memory access patterns of benchmarks. With 16 

channels all the benchmarks does not equally utilize all the channels. There are some channels 

that are almost idle. Coupling all the channels together hinders the control algorithm from 

lowering the frequency of certain channels with reduced activity. Hence grouping a subset of 

channels together provides freedom to the algorithm to operate different groups of channels at 

different frequencies which effectively reduces the energy consumption.  Average energy 

savings of Ganged – 4 and Ganged – 8 are 44.56%, 52.56%, and 54.63%. It is clearly evident that 

significant savings in energy consumption is obtained by grouping channels together. Even 

though frequency of each channel is not changed independently, which may provide even 

higher energy savings but it is infeasible with 16 channels considering the sheer number of 

possible states the control algorithm has to consider, grouping the channels is as effective as 

exhaustive frequency search.  

 

Figure 29: Percentage Energy savings (left) and Percentage Increase in Execution time (right) 

 

On an average with 4 channels the applications give 48.1% energy savings with ganged search 

and 49.1% when the channels are controlled independently. When number of channels is 
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increased to 8 with ganged search average energy savings obtained is 48% while independently 

controlling channels gives 50.5%. These figures are for interleaved mapping with default 

mapping average energy savings are 48% with ganged search and 49.8% when the channels are 

controlled independently. Increasing number of channels to 8 increases energy savings from 

47% (ganged) to 51.8% (independently controlled). Results from both the mapping algorithms 

shows that controlling channels independently becomes very effective with 8 or more channels.  
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7. CONCLUSIONS AND FUTURE WORK 

In this thesis, Dynamic Voltage and Frequency memory Scaling was proposed to reduce energy 

consumption considering the ability to select different frequencies for different memory 

channels. The analysis of HPC applications memory bandwidth demand showed that there are 

significant fluctuations in the memory bandwidth demand over time, and that the memory 

traffic is unequally distributed to all channels. The results obtained with different number of 

channels, mapping algorithms and frequency selection methods show that DVFS is an effective 

technique to significantly reduce the energy consumed by main memory while maintaining 

performance degradation within tolerable limits. The results also showed that controlling the 

channels independently provides considerable savings with respect to controlling the frequency 

of all the channels together, and controlling the channels independently is more effective when 

number of channels is larger.  

As a part of future work, the current approach will be extended with an even fine-grained 

simulations and a sophisticated performance model that incorporates complex scheduling 

strategies used by modern memory controllers. Additional benchmarks that might exhibit higher 

memory access imbalance will be considered as well as additional parameters such as different 

number of cores and different memory technologies. Finally, control algorithm will be improved 

with predictive strategies, such as those based on phase detection techniques. 

  



45 

 

 
 

8. PUBLICATIONS 

The research presented in this thesis has resulted in the following paper, which is currently 

under review. 

 K. Elangovan, I. Rodero, M. Parashar, F. Guim and I. Hernandez, “Adaptive Memory 

Power Management Techniques for HPC Workloads”, 18th International Conference on 

High Performance Computing, HiPC 2011. 
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