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Abstract

Adaptive mesh refinement techniques can be applied to increase the efficiency

of electrical impedance tomography reconstruction algorithms by reducing

computational and storage cost as well as providing problem-dependent solution

structures. A self-adaptive refinement algorithm based on an a posteriori error

estimate has been developed and its results are shown in comparison with

uniform mesh refinement for a simple head model.
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1. Introduction

Electrical impedance tomography (EIT) can provide images with well defined characteristics

only when the full nonlinear reconstruction process is constrained by a property of the image

such as its local smoothness, applied in parallel with the requirement to fit the data to within

clearly defined statistical criteria (Blott et al 1998, 2000). The finite element forward solution

is a significant part of the computational cost of such a reconstruction (Yorkey et al 1987,

Johnson and MacLeod 1994). This cost grows quickly when the image is subdivided into

smaller and smaller elements to obtain an image whose accuracy is governed by the quality of

the input data alone and not by the choice of discretization.

To overcome the problems involved in handling high-density discretizations, sparse matrix

techniques have been applied in the past (Pinheiro and Dickin 1997) without taking into account

that a proportion of the cost could be avoided by using meshes adapted to the problem.

We have developed an algorithm which automatically adapts to the reconstructed image

by producing finer meshes in areas where there are sharp gradients in the EIT image. Typically,

refinement is required at interfaces between regions with differing conductivities. Although

adaptive meshing has not yet been applied to resistance or impedance modelling in a biomedical

context, there exists some work on applications of adaptive mesh refinement (AMR) in

modelling heart current sources (Johnson and MacLeod 1994)—a topic related to EIT.
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We apply the auto-adaptive refinement method to the forward modelling problem and

demonstrate that the method quickly reduces the number of nodes and elements so that the

calculation converges much more rapidly to the true solution. In particular, to obtain the same

accuracy as uniform refinement, the adaptive refinement reduces the number of elements by a

factor of more than three, which yields up to an order of magnitude speed-up.

2. Methods

The basic equation of electrical impedance tomography in the case of imaging conductivity σ

(or analogously for impedance imaging) is

∇ · σ∇� = 0 on � (1)

subject to the boundary conditions:

� = �0 on ŴD σ
∂�

∂n
= jn on ŴN (2)

where � and �0 represent electrostatic potentials resulting from the injected current density

jn in the direction of the surface normal n, and ŴD and ŴN are the boundaries with Dirichlet or

von Neumann conditions, respectively. To solve equation (1) numerically, the problem domain

� is subdivided into discrete finite elements. If insufficient elements are used, the choice of

discretization will affect the accuracy of the potential distribution, and also the calculation of

the Jacobian in the nonlinear reconstruction of the conductivities. It is therefore usual to refine

the mesh globally to improve the accuracy of the solution across the whole domain.

However, it is in fact only necessary to refine the mesh where the error is large: the

paradox is that the exact error is only known if the exact solution is available! We therefore

use an a posteriori error estimate, which is used to determine whether refinement of the mesh

is required. Starting with an initially rather coarse quality mesh (Shewchuk 1996), we refine

according to this estimator and adapt the mesh to give an accurate solution.

Error estimates for finite element analysis of elliptic problems have been extensively

studied. We have chosen a residual-based energy norm estimator, which is robust (Salazar-

Palma et al 1998) and physically sound. It is obtained by multiplying equation (1) by an

arbitrary weighting function and integrating by parts. We then obtain a measure for the error

e = �exact − �approx of the numerically approximated potential distribution �approx. The a

posteriori energy norm error ||e||2E is estimated based on surface and lumped edge residuals

(rsurf , redge) of the intra-element and inter-element current densities within a two-dimensional

triangular mesh. The local error estimate, εl for a single element l with area �l , longest side

hl and conductivity σl is computed as follows:

ε2
l = fsurf

h2
l

σlp

∫
�l

r2
surf d� + fedge

hl

σlp

∑
Ŵk∈Ŵ�l

Ŵk �⊂ŴD

∫
Ŵk

r2
edge dŴ (3)

where fsurf and fedge are numerically estimated factors (Salazar-Palma et al 1998) and the sum

over edges Ŵk in the second term runs over all elements (Ŵ�l
) which do not have Dirichlet

boundary conditions (ŴD). p represents the polynomial order of the basis function. The total

error for the mesh can be approximated by summing the local estimates:

||e||2E ≈

Ne∑
l=1

ε2
l . (4)

The error estimate can be used in three ways to refine the mesh:
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Create initial mesh (solution domain)

Solve forward problem

Compute local & global error estimate

Check if global error estimate lower than limit

Refine elements with large error as ‘primary’

Measured data

Mark adjacent elements as ‘secondary’

Created further secondary elements ?

Refine secondary elements

Mesh refined only 

where necessaryyes

yes
no

no

Figure 1. Steps in auto-adaptive mesh algorithm for solution of one instance of the forward

problem.

(a) h-refinement consists of subdividing elements into two or more elements; h represents the

element size (Burnett 1987).

(b) p-refinement increases the rate of convergence by using higher order interpolating basis

functions on the elements (Zienkiewicz and Craig 1986).

(c) r-refinement relocates the existing nodes of a mesh in a more appropriate fashion without

adding any new nodes (Shepard 1985).

Efficient hybrids of these methods also exist, but can be complicated to implement. In this

article, we focus on h-refinement of linear elements, which is both fast and adds relatively

few additional elements and nodes to the mesh. p-refinement is an already commonly used

improvement but produces larger matrices with increasing polynomial order. r-refinement

requires modification of the mesh at each refinement stage but does usually not significantly

improve the solution; however, it might be useful in time-dependent problems such as

monitoring breathing, where the nodes of the mesh can follow predefined trajectories.

3. Auto-adaptive mesh algorithm

Figure 1 shows the steps in the adaptive meshing algorithm. We initialize the procedure

with a coarse mesh and with the configuration of electrodes used. For reasons of simplicity

we assume point-sized electrodes; however, the method works equally well for the complete

electrode model (Somersalo et al 1992). For each step in the forward solution of the EIT

reconstruction, we estimate the local error using (3) and compute the global error using (4).

If the global error estimate is larger than a pre-defined threshold, the refinement procedure

is started. Otherwise, the refinement is complete. The refinement algorithm then starts by

marking ‘primary’ elements, which are those with a local error estimate above a certain

percentage of the maximum occurring local error (usually 40–50% for best efficiency).

As shown in figure 2, the primary elements are then subdivided into four smaller elements.

This yields ‘floating’ nodes on the sides of adjacent secondary elements, which must be

subsequently refined to maintain the required node connectivity within the mesh.
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Primary Secondary

Figure 2. Refinement of triangular elements.

Figure 3. Example of auto-adaptive meshing for a head model showing bone, white matter and

ventricles. Left, finite element mesh. Centre, local error estimates for each element in z-direction.

Right, potential distribution in the region of interest for (a) the initial mesh, (b) after three refinement

steps and (c) after seven refinement steps.

If we are using a fully nonlinear reconstruction algorithm (Blott et al 2000), then the mesh

refinement steps form a natural part of the iterative solver.

4. Results

We have implemented the adaptive-meshing algorithm described in the previous section. Our

results demonstrate the application of the method when solving the forward problem i.e.

computing the potentials given the conductivities. Figure 3 shows a model of a transverse

slice of the head with two electrodes, where we have used typical values for the conductivities

of the tissue (0.25 S m−1), bone (0.018 S m−1) and cerebro-spinal fluid (1.79 S m−1). This

configuration could be used to monitor intra-ventricular haemorrhaging. As the mesh is refined,

the equi-potential lines tend to the true solution, which we have verified using an independent

FE solver.
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Figure 4. Material gradient-dependent mesh refinement provides higher resolution at material

boundaries (for example for smoothing constraints).
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Figure 5. Comparison of error estimates for adaptive and uniform refinement for the head example.

Figure 4 shows the method being applied where we refine the mesh at boundaries between

materials with significantly differing conductivities. In a practical application of our technique,

it would be desirable to combine both strategies to yield an accurate solution, which can give

good resolution of material boundaries.

If the image contains materials with differing conductivities, we can replace the error

estimate, which determines when elements are refined, with one which refines elements based

on the gradient of the reconstructed conductivity. This allows such boundaries to be more

sharply resolved.

In figure 5 we show the performance benefits of our approach, by comparing the

convergence of our method with a uniform refinement strategy. The adaptive algorithm requires

only a small fraction of the number of elements/nodes in the uniformly refined mesh to achieve

a given global error estimate. In particular, to attain a global error of 0.1 requires 300 elements

and 0.01 s using the adaptive technique compared to 7000 elements and 100 s of computer time

for the global refinement strategy. Since the solution of the forward problem scales with order

between N1.46 and N2, where N is the number of nodes, reducing N saves both computation

time and storage requirements for the system matrix.



96 M Molinari et al

Whilst there are many benefits of the adaptive refinement procedure, a number of numerical

issues can arise. For example, the method for subdividing the elements has to be chosen in a

way to avoid degenerate elements of high aspect ratios (small angles) and subsequent incorrect

solutions (Salazar-Palma et al 1998). In addition, non-smooth transitions between regions of

low and high mesh densities are likely to produce less accurate results (Burnett 1987).

Our results were obtained on a 500 MHz AMD Athlon PC running Windows NT 4.0; the

code is written in C++ and compiled using MS Visual C++ 6.0.

5. Conclusions and further work

We have developed an efficient adaptive mesh refinement algorithm and applied it to improve

the performance of EIT reconstruction algorithms by reducing both computational and storage

requirements. We demonstrate its application to imaging of a section through the head and show

that (i) the accuracy of the forward solution is improved using considerably fewer elements

than a global refinement strategy and (ii) the resolution of interfaces between materials with

differing conductivities is improved.

Our results indicate that it is possible to reduce the number of nodes required by at

least a factor of three to obtain an accurate image reconstruction, over a uniform refinement

strategy. This results in at least an order of magnitude improvement in the speed of the forward

problem and increases the feasibility of performing fully nonlinear reconstructions for complex

large-scale biomedical problems in real-time using standard PC technology. Future work will

integrate our method into a full nonlinear solver for 3D reconstruction.
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