AD;A252 955 DTIC @

I EA s Juffoﬂigz D _

TECHNICAL REPORT ARCCB-TR-92021

ADAPTIVE METHODS AND
PARALLEL COMPUTATION FOR
PARTIAL DIFFERENTIAL EQUATIONS

RUPAK BISWAS
MESSAOUD BENANTAR
JOSEPH E. FLAHERTY

MAY 1992

US ARMY ARMAMENT RESEARCH,

DEVELOPMENT AND ENGINEERING CENTER ————~
CLOSE COMBAT ARMAMENTS CENTER E)%
BENET LABORATORIES
WATERVLIET, N.Y. 12189-40560

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

o 92-19026
92 7 17 074 AR




DISCLAIMER

The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other authorized
documents.

The use of trade name(s) and/or manufacturer(s) does not constitute

an official indorsement or approval.

DESTRUCTION NOTICE
For classified documents, follow the procedures in DoD 5200.22-M,
Industrial Security Manual, Section II.19 or DoD 5200.1-R, Information
Security Program Regulation, Chaptér IX.
For unclassified, limited documents, destroy by any method that will
prevent disclosure of contents or reconstruction of the document.
For unclassified, unlimited documents, destroy when the report is

no longer needed. Do not return it to the originator.




REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

of infor L)

Public reportung burden for this coll

t0 average ! howr per response, mduquzhoumﬂor vi

and mantaiming the data

i

IM.

q the CO"K(IOI\ of

ded and
collection of information, .to
Davis tighway, Suite 1204, Amnqton 22102-4302 and t0 tM Office of M

and Bud

e

g Instr sesrching g data sources,

Vfor g this burd or any other aspect of this

ters Services, Damonu for information ations and Reports, 1215 Jefferson
Paperwork Reduction Project (0704-0188), Wastungton, DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE
May 1992

3. REPORT TYPE AND DATES COVERED
Final

4. TITLE AND SUBTITLE
ADAPTIVE METHODS AND PARALLEL COMPUTATION
FOR PARTIAL DIFFERENTIAL EQUATIONS

5. FUNDING NUMBERS

AMCMS: 6111.02.H610.011
PRON: 1A04Z0CANMSC

6. AUTHOR(S)

and Joseph E. Flaherty (RPI and Benet)

Rupak Biswas (RPI, Troy, NY), Messaoud Benantar (RPI),

[7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army ARDEC

Benet Laboratories, SMCAR-CCB-TL
Watervliet, NY 12189-4050

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADORESS(ES)
U.S, Army ARDEC

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARCCB-TR-92021

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

Close Combat Armaments Center
Picatinny Arsenal, NJ 07806-5000

[11. SUPPLEMENTARY NOTES
Presented at the Eighth Army Conference on Applied Mathematics and Computing,
Cornell University, Ithaca, NY, 19-22 June 1990,

Published in Proceedings of the Conference.

Tt Yy 7 S e ——————
12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words) )
Consider the adaptive solution of two-dimensional vector systems of hyperbolic

and elliptic partial differential equations on shared-memory parallel computers.
Hyperbolic systems are approximated by an explicit finite volume technique and
solved by a recursive local mesh refinement procedure on a tree-structured grid.
Local refinement of the time steps and spatial cells of a coarse base mesh is
performed in regions where a refinement indicator exceeds a prescribed tolerance,
Computational procedures that sequentially traverse the tree while processing
solutions on each grid in parallel, that process solutions at the same tree level
in parallel, and that dynamically assign processors to nodes of the tree have

been developed and applied to an example. Computational results comparing a
variety of heuristic processor load balancing techniques and refinement strategies
are presented,

TSy —yye
14, SUMECT TERMS 15. NUMBER OF PAGES

Adaptive Systems, Partial Differential Equations, Local Mesh 22
Refinement, Meshes, Refinement, Load Balancing Techniques, '16. PRICE CODE

Finite Element Analysis

OF REPORT
UNCLASSIFIED

T B T I I T T— vy v
17. SECURITY CLASSIFICATION

OF THIS PAGE
UNCLASSIFIED

Py
18. SECURITY CLASSIFICATION

19. SECURITY CLASSIFICATION

OF ABSTRACT
UNCLASSIFIED

T — S — Yy
20. LIMITATION OF ABSTRACT
UL

—:
NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prexcnnbed by ANSI Std. 239-18
298102




TABLE OF CONTENTS

Page
ABSTRACT ... i iiiiiiiinnneeensasseonesasassssseeneaeesoansoanss 1
INTRODUCTION .. ...\ iiiniiieiennreneneaseesseeasessnenseeeeesns 2
HYPERBOLIC SYSTEMS . ... .tiiiiiititttiitneeeseeeennnneensonannnns 4
ELLIPTIC SYSTEMS ... .. iiiitiiiiiiitiitite ittt eeeeennns 12
DISCUSSION ..ttt iit ittt iit ittt tsiesesossssenssnnennnsas 19
REFERENCES ... ... ittt iiitieintinnennnnnnsnnnnannens 20
LIST OF ILLUSTRATIONS
1. Solution u(x,y,t) of the Fokker-Planck equation at times
t = 4, 10, 20, and 100 obtained by Moore and Flaherty .................... 3
2. CPU time and parallel speed up for Example 1 on uniform
meshes without adaptivity using static and dynamic
loadbalancing . . ...... ittt i i i i e e, 10
3. CPU time and parallel speed up for Example 1 using
dynamic load balancing and adaptive h-refinement with
local binary refinement and M-ary followed by
2-ary TefINCMENE . . ... i ittt ittt ittt i e ittt e 11
4, Global L' error as a function of CPU time for Example 1
using non-adaptive methods and adaptive h-refinement
methods with static and dynamic load balancing ........................ 13
S. Finite quadtree mesh generation for a domain consisting
of arectangle and aquartercircle ............. ... . i i, 15
6. Planar representations of three quadtrees and their
associated quasi-binary trees . . ...... ... . i e 18
7. Parallel speed up and processor idle time for the finite
clement solution of Example 2 using piecewise linear,
quadratic, and cubic approximations as well as
adaptive p-refinement . . ... ... ... .. i i i i i e 19




ADAPTIVE METHODS AND PARALLEL COMPUTATION
FOR PARTIAL DIFFERENTIAL EQUATIONS*

Rupak Biswas, Messaoud Benantar DTIC QUALITY

Department of Computer Science e e

_Aossasion For
Troy, NY 12180 [ BTIS  aBdal

Rensselaer Polytechnic Institute

INSPECTED &

i PPLC TAR 0
Unacacu:eod O
and Justifieutton
Joseph E. Flaherty .
Department of Computer Science Distributien/
Rensselaer Polytechnic Institute Availability Codes
Troy, NY 12180 {Avmil amd/or
and Dist Special

!

U.S. Army Armament, Munitions, and Chemical Command @\,\ |

Armament Research, Development, and Engineering Center L
Close Combat Armaments Center )

Benét Laboratories
Watervliet, NY 12189

ABSTRACT. Consider the adaptive solution of two-dimensional vector systems of
hyperbolic and elliptic partial differential equations on shared-memory parallel comput-
ers. Hyperbolic systems are approximated by an explicit finite volume technique and
solved by a recursive local mesh refinement procedure on a tree-structured grid. Local
refinement of the time steps and spatial cells of a coarse base mesh is performed in
regions where a refinement indicator exceeds a prescribed tolerance. Computational
procedures that sequentially traverse the tree while processing solutions on each grid in
parallel, that process solutions at the same tree level in parallel, and that dynamically
assign processors to nodes of the tree have been developed and applied to an example.
Computational results comparing a variety of heuristic processor load balancing tech-
niques and refinement strategies are presented.

For elliptic problems, the spatial domain is discretized using a finite quadtree
mesh generation procedure and the differential system is discretized by a finite
element-Galerkin technique with a hierarchical piecewise polynomial basis. Adaptive
mesh refinement and order enrichment strategies are based on control of estimates of
local and global discretization errors. Resulting linear algebraic systems are solved by
a conjugate gradient technique with a symmetric successive over-relaxation

* This research was partially supported by the U. S. Air Force Office of Scientific Research, Air Force
Systems Command, USAF, under Grant Number AFOSR-90-0194; by the SDIO/IST under management
of the U. S. Army Research Office under Contract Number DAAL(03-90-G-0096; and by the National
Science Foundation under Grant Numbers CDA-8805910 and CCR-8920694.
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preconditioner. Stiffness matrix assembly and linear system solution are processed in
parallel with computations scheduled on noncontiguous quadrants of the tree in order
to minimize process synchronization. Determining noncontiguous regions by coloring
the regular finite quadtree structure is far simpler than coloring elements of the
unstructured mesh that the finite quadtree procedure generates. We describe a linear-
time complexity coloring procedure that uses a maximum of six colors.

1. INTRODUCTION. Partial differential equations that arise in scientific and
engineering applications typically feature solutions that develop, evolve, and decay on
diverse temporal and spatial scales. The FokkerPlanck equation of mathematical phy-
sics may be used to illustrate this phenomenon, Perspective renditions of its solution u
as a function of two spatial arguments x and y are shown at four times ¢ in Figure 1
[20]. As time progresses, a single ‘‘spike’’ in the probability density arising from an
initial Maxwell-Boltzmann distribution evolves into the two spikes shown. Conven-
tional fixed-step and fixed-order finite difference and finite element techniques for solv-
ing such problems would either require excessive computing resources or fail to ade-
quately resolve nonuniform behavior. As a result, they are gradually being replaced by
adaptive methods that offer greater efficiency, reliability, and robustness by automati-
cally refining, coarsening, or relocating meshes or by varying the order of numerical
accuracy.

Adaptive software for ordinary differential equations has existed for some time
and procedures that vary both mesh spacing and order of accuracy are in common use
for both initial [17] and boundary [7]} value problems. The situation is far more
difficult for partial differential equations due to the greater diversity of phenomena that
can occur; however, some production-ready adaptive software has appeared for elliptic
problems [12]. The state of the art for transient problems lags that for elliptic systems
but some projects are underway [16]. Adaptive strategies will either have to be
retrofitted into an existing software system for solving partial differential equations or
have to be coupled with pre- and post-processing software tools before widespread use
occurs.

With an adaptive procedure, an initial crude approximate solution generated on a
coarse mesh with a low-order numerical method is enriched until a prescribed accuracy
level is attained. Adaptive strategies in current practice are classified as h-, p-, or r-
refinement when, respectively, computational meshes are refined or coarsened in
regions of the problem domain that require more or less resolution [6, 12], the order of
accuracy is varied in different regions [10], or a fixed-topology mesh is redistributed
[5]. These basic enrichment methods may be used alone or in combination. The par-
ticular combination of h- and p-refinement, for example, has been shown to yield
exponential convergence rates in certain situations [9].

Enrichment indicators, which are frequently estimates of the local discretization
error of the numerical scheme, are used to control the adaptive process. Resources
(finer meshes, higher-order methods, etc.) are introduced in regions having large
enrichment indicators and deleted from regions where indicators are low. Using esti-
mates of the discretization error as enrichment indicators also enables the calculation




Figure 1. Solution u(x,y,) of the Fokker-Plank equation at tmes ¢ = 4
(upper left), 10 (upper right), 20 (lower left), and 100 (lower right) obtained
by Moore and Flaherty (20]. Solutions having magnitudes greater than 0.1
have been omitted in order to emphasize fine-scale structure.

of local and global accuracy measures which should become a standard part of every
scientific computation. Estimates of the local discretization error are typically obtained
by using either h- or p-refinement. Thus, one uses the difference between solutions
computed cither on two meshes or with two distinct orders of accuracy to furnish an
error estimate. Special ‘‘superconvergence’’ points where solutions converge faster
than they do globally can be used to significantly reduce computational cost (2].

Parallel procedures are becoming increasingly important both as hardware systems
become available and as problem complexity increases. Furthermore, the efficiency
afforded by adaptive strategies, cannot be ignored in a parallel computational
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environment since the demand to model nature more accurately is always beyond
hardware capabilities. Models of parallel computation are based on distributed-
memory and shared-memory architectures. Distributed-memory systems tend to have
large numbers of relatively simple processing elements connected in a network. Avail-
able memory on these fine-grained systems is distributed with the processing elements
at the nodes of the network, so data access is by message passing. Balancing com-
munication and synchronizing processing is extremely important because processing
elements are typically operating in lock-step fashion in order to improve throughput
and processor utilization. Shared-memory systems involve a more coarse-grained level
of parallelism with relatively few processors operating asynchronously and communi-
cating with a global memory, although variations are common. For example, process-
ing elements may have a local cache memory in order to reduce bus contendon and
may have vector capabilities; thus, providing a hierarchy of coarse- and fine-grained
parallelism. '

Our goal is to develop parallel adaptive methods for partial differential equations.
Fortunately, our adaptive software utilizes hierarchical (tree) data structures that have
many embedded parallel constructs. Transient hyperbolic problems may generally be
solved using explicit numerical techniques which greatly simplify processor communi-
cation. Experiments, reported in Section 2, with a variety of tree traversal strategies
on an adaptive mesh refinement finite difference scheme [6] indicate that the dynamic
load balancing scheme of assigning grid-vertex computations at a given tree level to
processors as they become available provided the best parailel performance. Static
load balancing strategies, that either traverse the tree of grids serially while processing
solutions on each grid in parallel or traverse the tree in parallel while processing solu-
tions on grids at the same tree level are also discussed. These alternatives to dynamic
processor assignment may provide better performance on hierarchical memory comput-
ers.

For elliptic problems, system assembly and solution are processed in parallel with
computations scheduled on noncontiguous tree quadrants in order to minimize process
synchronization. ‘‘Coloring’’ the elements of a mesh so as to avoid memory conten-
tion on a shared-memory computer is far simpler when an underlying tree structure is
present than for more general unstructured grids that the finite quadtree structure gen-
erates. The six-color procedure, described in Section 3, for the finite element solution
scheme on quadtree-structured grids displays a high degree of parallelism when piece-
wise linear approximations are used. Unfortunately, the same procedure does not do
as well with higher-order piecewise polynomial approximations; however, an element
edge coloring procedure may improve performance.

2. HYPERBOLIC SYSTEMS. Consider a system of two-dimensional conservation
laws in m variables on a rectangular domain Q having the form

u +f,xyru)+g,&xyru)=0 xyeQ >0, (1a)

subject to the initial conditions
ux,y,0) =u'xy), (xy)eQoQ, (1b)
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and appropriate well-posed boundary conditions. The functions u, f, g, and u® are m-
vectors, x and y are spatial coordinates, ¢ denotes time, and dQ2 is the boundary of Q.

Our research is based on a serial adaptive hr-refinement algorithm of Amey and
Flaherty [6]. We forego mesh motion at present and briefly describe an h-refinement
procedure that utilizes their strategy. The problem (1) is solved on a coarse rectangu-
lar ‘‘base’” mesh for a sequence of base-mesh time slices of duration A,
n =0,1,-- by an explicit finite difference, finite volume, or finite element scheme.
For a base-mesh time step, say from ¢, to ¢,,; =1, + Az,, a discrete solution is gen-
erated on the base mesh along with a set of local enrichment indicators which, in this
case, are refinement indicators. Cells of the mesh where refinement indicators at ¢,,,
fail to satisfy a prescribed tolerance are identified and grouped into rectangular clus-
ters. After ensuring that clusters have an adequate percentage of high-refinement-
indicator cells and subsequently enlarging the clusters by a one-element buffer to pro-
vide a wtransition between regions of high and low refinement indicators, cells of the
base mesh are bisected in space and time to create finer meshes that are associated
with each rectangular cluster. Local problems are solved on the finer meshes and the
refinement procedure is repeated until refinement indicators satisfy the prescribed unit-
step criteria. After finding an acceptable solution on the base mesh, the integration
continues with, possibly, a new base-mesh time step Az,,,;. Data management involves
the use of a tree structure with nodes of the tree corresponding to meshes at each
refinement level for the current base-mesh time step. The base mesh is the root of the
tree and finer grids are regarded as offspring of coarser ones.

With an aim of maintaining generality at the possible expense of accuracy and
performance, we discretize (1) using the Richtmyer two-step version of the Lax-
Wendroff method [23], which we describe for a one-dimensional problem as follows.
Introduce a mesh on Q having spacing Ax; = x;,1 = X; and let the discrete approxima-
tion of u(x;,f,) be denoted as U}‘. Predicted solutions at cell centers are generated by
the Lax-Friedrichs scheme, i.e.,

n+h 1 n n At
URSH = (UL + U - = - . (22)

This provisional solution is then corrected by the leapfrog scheme

2At,
1 _ Y _ en+th
U]’-"’ = U}' ————+ (f"fx,, t"‘+ ). (2b)

Following Amey et al. [4, 6], refinement indicators are selected as estimates of the
local discretization error obtained by Richardson’s extrapolation (h-refinement) on a
mesh having half the spatial and temporal spacing of the mesh used to generate the
solution. Fine-mesh solutions generated as part of this error estimation process may
subsequently be used on finer meshes when refinement is necessary. Initial and boun-
dary data for refined meshes is determined by piecewise bilinear polynomial interpola-
tion from acceptable solutions on the finest available meshes.
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Parallel procedures are developed for the adaptive h-refinement solution scheme
described above using a P -processor concurrent read exclusive wtite (CREW) shared-
memory MIMD computer. We consider both static and dynamic strategies for balanc-
ing processor loading. As the names imply, with static load balancing, processors are
assigned tasks a priori with the goal of having them all terminate at approximately the
same time, whereas, with dynamic load balancing, available processors are assigned
tasks from a task queue. Two possible static load balancing techniques come to mind:
(1) serial depth-first traversal of the tree of grids with solutions on each grid being gen-
erated in parallel and (ii) parallel generation of solutions on all grids that are at the
same tree level. With the depth-first traversal procedure, each grid is statically divided
into P subregions and a processor is assigned to each subregion. With the parallel
tree traversal procedure, the P processors are distributed among all grids at a particular
tree level so as to balance loading. Thus, parallelism occurs both within a grid and
across the breadth of the tree with this strategy. In both cases, the parallel solution
process proceeds from one base-mesh time step to the next.

Serial depth-first traversal of the tree leads to a highly structured algorithm that
has a straight-forward design because the same procedure is used on all grids. Balanc-
ing processor loading on rectangular grids is nearly perfect with an explicit finite
difference scheme like (2) and similar behavior could be expected for geometrically
complex regions. Load imbalance occurs due to differences in the time required to
compute initial data. Other than at ¢ =0, initial data is determined by interpolating
solutdons from the finest grid at the end of the previous base-mesh time step to the
present grid. Tree traversal, required to determine the correct solution vertices for the
interpolation, would generaily take different times in different regions due to variations
in tree depth. This defect might be remedied by using either a more sophisticated
domain decomposition technique or a more complex data structure to store the tree of
grids.

The serial depth-first traversal procedure becomes inefficient when P is of the
order of the number of elements in a grid. This situation can be avoided by refining
grids by more than a binary factor; thus, maintaining a shallow tree depth. Lowering
the efficiency of clusters by including a greater percentage of low-refinement-indicator
cells will also increase grid size but diminish optimal grid usage. The inefficiency
cited here should not be a factor on data-parallel computers and the serial tree traversal
procedure might also be viable there.

The parallel tree-traversal procedure requires complex dynamic scheduling to
assign processors to grids. One possibility is to estimate the work remaining to reduce
error estimates to prescribed tolerances and to assign processors to subgrids so as to
balance this load. Were such a heuristic technique successful, the parallel wee traver-
sal procedure would not degrade in efficiency when the number of elements on a grid
is O(P).

Consider a situation where Q processors are used to obtain a solution on a grid at
tree level / — 1 and suppose that refinement indicators dictate the creation of L grids
Gii,i=1,2,:L,atlevel [. Further assume that
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i.  the prescribed local refinement tolerance at level [ - 1 is t;_;
u. theareasof G;; are M, ;,i =12, L;

iii. estimates E;; of the discretization error are available for G,;, i = 1,2, L;
and

iv. the convergence rate of the numerical scheme is known as a function of the local
mesh spacing.

The Richtmyer two-step scheme (2) has a quadratic convergence rate which we use to
illustrate the load balancing technique; however, the approach easily extends to other
convergence rates.

In order to satisfy the prescribed accuracy criterion, G;; should be refined by a
factor of (E;; /%)% The time step on G, ; must be reduced by a factor of £; ;/t;_; in
order to satisfy the Courant condition. Hence, the expected work W, to find an
acceptable solution on Gy ; is

(3)

The Q available processors should be allocated so as to balance the time required to
complete the expected work on each of the L grids at level /. Thus, assign Q; proces-
sorsto grid Gy ;,i =1,2, -, L, so that

Wi, W Wi, L
—'=—-'—=---=——, Qi =Q. (4a,b)
Q, Q2 QL Ei

The quality of load balancing using this approach will depend on the accuracy of
the discretization error estimate. Previous investigations [4, 6] revealed that error esti-
mates were generally better than 80 percent of the actual error for a wide range of
mesh spacings and problems. Equation (3) can be used to select refinement factors
other than binary and, indeed, to select different refinement levels for different meshes
at a given tree level. This consideration combined with over-refinement to a tolerance
somewhat less than the prescribed tolerance should maintain a shallow tree depth and
enhance parallelism at the expense of grid optimality.

Simple dynamic load balancing can take full advantage of the CREW shared-
memory MIMD environment. One just maintains a queue of mesh points at a given
tree level and computes solutions at these points as processors become available. Load
balancing is perfect except for any inherent system hardware anomalies. Balancing
processor loads on geometrically complex regions is as simple as on rectangular
regions because mesh points are processed on a first-come-first-serve basis indepen-
dently of the grid to which they belong. Nonuniformities in initial data also introduce
no problems and neither does the relationship of P to the number of cells in a grid.
Finally, complex processor scheduling based on accurate error estimates is avoided.
This strategy, however, might not be appropriate for hierarchical or distributed-memory
computers.
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Binary refinement of space-time grids may be optimal in using the fewest mesh
points; however, tree depth tends to be large and this introduces serial overhead into a
parallel procedure. As previously suggested, serial overhead can be reduced by keep-
ing tree depth shallow and to do this we perform M -ary instead of binary refinement.
The value of M is chosen adaptively for different clusters so that the prescribed toler-
ance is satisfied after a single refinement step. Thus, if T, is the prescribed local
discretization error tolerance, then choose M for grid G ; as the first even integer
greater than E, ;/t;. Having a good a priori knowledge of the work required on each
cluster, processors can be distributed among the grids according to (4) to effectively
balance loading. Of course, the refinement tolerance may not be satisfied after per-
forming one level of M -ary refinement. Should this occur, we perform additional lev-
els of 2-ary refinement until accuracy requirements are satisfied. The terms ‘‘binary’’
and ‘‘2-ary’’ refinement have been used to distinguish differences in our methods of
checking the refinement condition. With binary refinement, the refinement condition is
checked after each of the two finer time steps but with 2-ary refinement, the condition
is only checked after the second time step. As a result, the fine grids remain
unchanged for both of the two tiner time steps with 2-ary refinement.

The efficiency of this mesh refinement strategy and of the serial depth-first traver-
sal and dynamic balancing techniques are appraised in an example. Performance of
the parallel traversal procedure was not as good as either of these schemes and results
are not presented for it. Computer codes based on these algorithms have been imple-
mented on a 16-processor Sequent Balance 21000 shared-memory parallel computer.
Parallelism on this system is supported through the use of a parallel programming
library that permits the creation of parallel processes and enforces synchronization and
communication using barriers and hardware locks. CPU time and parallel speed up are
used as performance measures.

Example 1. Consider the linear scalar differential equation
U +2uy +2u, =0, 0<x,y<1, >0, (5a)

with initial and Dirichlet boundary data specified so that the exact solution is
u(x,y.t)="%[1-tanh(100x ~ 10y - 180z + 10)]. (5b)

The solution (5b) is a relatively steep but smooth wave that moves at an angle of 45
degrees across the square domain as time progresses.

Adaptive refinement is controlled by using an approximation of the local discreti-
zation error in the L! norm as a refinement indicator. Exact errors for this scalar prob-
lem are also measured in L! as

ey = [[IPux,y.0) ~ Ux,y £)l dxdy, ©6)
Q

where U(x,y,t) is a piecewise constant representation of the discrete solution and
Pu(x,y,t) is a projection onto the space of piecewise constant functions obtained by
using values at cell centers.
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Our first experiment involves the solution of (5) for 0 < €0.35 on 10x10,
25x 25, and 45 x45 uniform grids having initial time steps of 0.017, 0.007, and 0.004,
respectively. No spatial refinement was performed and the static and dynamic load
balancing stategies were used. CPU times and parallel speed ups for each base mesh
for the two load balancing techniques are shown in Figure 2. Speed up with 15 proces-
sors and the static load balancing technique (shown in the upper portion of Figure 2)
are in excess of 51, 75, and 87 percent of ideal with the 10x 10, 25x 25, and 45x45
base meshes, respectively. Speed up increases dramatically as the mesh is made finer
due to smaller data granularity. Similar speed up data for the three base meshes with
the dynamic load balancing technique (shown in the lower portion of Figure 2) are 53,
77, and 90 percent of ideal. The static load balancing strategy takes slightly more time
than the dynamic technique, except in the uniprocessor case where they are identical,
because of load imbalances on the P subdomains due to differences in the times
required to generate initial and boundary data.

Our second experiment involves solving (5) for 0 <z £0.35 on a 10x 10 base
mesh having an initial time step of 0.017 using dynamic load balancing and adaptive
h-refinement with either binary refinement or M-ary followed by 2-ary refinement.
Refinement tolerances of 0.012, 0.006, and 0.003 were selected. The resulting CPU
times and parallel speed ups for each adaptive strategy are presented in Figure 3.
Maximum speed ups shown in the upper portion of Figure 3 for the binary refinement
strategy are in excess of 82, 86, and 72 percent of ideal for tolerances of 0.012, 0.006,
and 0.003, respectively. Initiaily, parallel performance improves as the tolerance is
decreased due to the finer data granularity; however, the performance ultimately
degrades due to the serial overhead incurred when managing a more complex data
structure. Maximum speed ups for the more sophisticated M -ary followed by 2-ary
refinement strategy shown in the lower portion of Figure 3 are in excess of 88, 82, and
73 percent of ideal for the three decreasing tolerances. Speed ups for this refinement
strategy are only marginally better than those for the binary refinement technique, but
the CPU times for the M-ary strategy are much less than those for the binary
refinement strategy. For example, CPU times with 15 processors and a tolerance of
0.003 were 226.11 and 182.73 for the binary and M-ary strategies, respectively.
Maintaining a shallow tree has clearly increased performance by reducing the serial
overhead associated with its management.

Speed up is not an appropriate measure of the complexity required to solve a
problem to a prescribed level of accuracy. Tradeoffs occur between the higher degree
of parallelism possible with a uniform mesh solution and the greater sequential
efficiency of an adaptive procedure. In order to gage the differential, we generated
uniform mesh and adaptive mesh solutions of (5) on various processor configurations
and to varying levels of accuracy for both static serial tree traversal and dynamic load
balancing strategies. Computations on uniform grids ranged from a 5x5 mesh to a
45x45 mesh. All adaptive computations used a 10x 10 base mesh, M -ary followed
by 2-ary refinement, and tolerances ranging from 0.012 to 0.003.

Results for the global L! error as a function of CPU time are presented in Figure
4 for computations performed on 1, 4, 8, and 15 processor systems. Static and
dynamic load balancing strategies are shown in the upper and lower portions of the
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Figure 3. CPU time (left) and parallel speed up (right) for Example 1 using
dynamic load balancing and adaptive h-refinement with local binary
refinement (top) and M -ary followed by 2-ary refinement (bottom).
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figure, respectively. For each strategy, the upper set of curves, displaying non-adaptive
results, are much less efficient and converging at a much slower rate than the adaptive
solutions shown in the lower set of curves. The adaptive solutions are converging at a
rate of approximately 1.4 relative to CPU time while the non-adaptive solutions are
converging at a rate of approximately 0.4. These results demonstrate a strong prefer-
ence for adaptive methods for all but the largest tolerances. Note that the CPU times
are identical for the two load balancing strategies when only one processor is used for
both non-adaptive and adaptive solutions because the configuration reduces to that of a
uniprocessor system. Also note that the global L' error for a particular choice of base
mesh (for non-adaptive methods) or local refinement tolerance (for adaptive methods)
is independent of the number of processors used.

3. ELLIPTIC SYSTEMS. With the goal of describing a strategy for solving linear
algebraic systems resulting from the finite element discretization of elliptic systems, let
us consider a two-dimensional linear elliptic problem in m variables having the form

-[D(x.y)u ]y - [D(x.y)u, ], + Qx.ylu=1fxy), x.,y)eQ, (Ta)

u = C,'E(X,y), (x’y)e anE, (D“v)i = C,N(x,)’), (xoy)e anN’
i=12 -,m (7Tb,c)

The diffusion D and source Q are positive definite and positive semi-definite m xm
matrices, respectively, 0Q = 9QF(_aQN, i = 1,2, -, m, and v is a unit outer nor-
mal to 0Q.

The Galerkin form of (7) consists of determining ue Hg satisfying

m
Avw+ D=3 [ vcNds, forall veH{, (8a)
i=1 Q¥
where

A(vu) = [ [vJDu, + vIDu, + v Quldxdy, (vu)= [ v udxay. (8b,c)
Q Q

As usual, the Sobolev space H! consists of functions having first partial derivatives in
L2 The subscripts E and O further restrict functions to satisfy the essential boundary
conditions (7b) and trivial versions of (7b), respectively. Finite element solutions of
(8) are constructed by approximating H! by a finite-dimensional subspace S¥* and
determining Ue S&? such that

AVD+ (VD=3 [ VicNds, forall Ve sY¥. ©)
i=1 QY

Selecting SV as a space of continuous piecewise p th-degree hierarchical polynomi-
als [24] with respect to the partition of Q into triangular finite elements, substituting
these approximations into (9), and evaluating the integrals by quadrature rules yields a
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sparse, symmetric, positive definite, & -dimensional linear system of the form
KX =b, (10)

where X is an N -vector of Galerkin coordinates.

Meshes of triangular or quadrilateral elements are created automatically on Q by
using the finite quadtree procedure [11]. This structure is somewhat different than the
tree of grids described in Section 2. With this technique, Q is embedded in a square
‘‘universe’’ that may be recursively quartered to create a set of disjoint squares called
quadrants. Data associated with these quadrants is managed by using a hierarchical
tree structure with the original square universe regarded as the root and with smaller
quadrants created by subdivision regarded as offspring of larger ones. Quadrants inter-
secting dQ are recursively quartered until a prescribed spatial resolution of Q has been
obtained. At this stage, quadrants that are leaf nodes of the tree and intersect Q(_joQ
are further divided into small sets of triangular or quadrilateral elements. Severe mesh
gradation is avoided by imposing a maximal one-level difference between quadrants
sharing a common edge. This implies a maximal two-level difference between qua-
drants sharing a common vertex. A final ‘“‘smoothing’’ of the triangular or quadrila-
teral mesh improves element shapes and further reduces mesh gradation near dQ.

A simple example involving a domain consisting of a rectangle and a quarter cir-
cle, as shown in Figure 5, will illustrate the finite quadtree process. In the upper left
portion of the figure, the square universe containing the problem domain is quartered
creating the one-level tree structure shown at the upper right. Were this deemed to be
a satisfactory geometrical resolution, a mesh of five triangles could be created. As
shown, the triangular elements are associated with quadrants of the tree structure. In
the lower portion of Figure 5, the quadrant containing the circular arc is quartered and
the resulting quadrant that intersects the circular arc is quartered again to create the
three-level tree shown in the lower right portion of the figure. A triangular mesh gen-
erated on this tree structure is also shown.

Arbitrarily complex two-dimensional domains may be discretized in this manner
and generally produce unstructured grids; however, the underlying tree of quadrants
remains regular. Adaptive mesh refinement is easily accomplished by subdividing
appropriate leaf-node quadrants and generating a new mesh of triangular or quadrila-
teral elements locally; thus, unifying the mesh generation and adaptive solution phases
of the problem under a common tree data structure.

Preconditioned conjugate gradient (PCG) iteration is an efficient means of solving
the linear algebraic systems (10) that result from the finite element discretization of
self-adjoint elliptic partial differential systems [8]. The key steps in the PCG pro-
cedure [22] involve (i) matrix-vector multiplication of the form

q=Kp (11a)

and (ii) solving linear systems of the form
Kd=r, (11b)
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Figure 5. Finite quadtree mesh generation for a domain consisting of a rec-
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their associated meshes of triangular elements are shown at the top and bot-
tom of the figure, respectively.

where r and p are the residual vector and conjugate search direction, respectively. The
preconditioning matrix K may be selected to reduce computational cost. The
clement-by-element (EBE) and symmetric successive over-relaxation (SSOR) precondi-
tionings are in common use and seem appropriate for use with quadtree-stuctured
grids. The EBE preconditioning is an approximate factorization of the stiffness matrix
K into a product of elemental matrices. If the grid has been ‘‘colored’’ so as to
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segregate non-contiguous elements, then (11b) can be solved in parallel on elements
having the same color. Since the matrix-vector multiplication (11a) can also be per-
formed in an element-by-element fashion, the entire PCG solution can be done in
parallel on non-contiguous elements. While this simple approach has been used in
several applications [18, 19, 21], we found the SSOR preconditioning to be more
efficient in every instance [13] and, therefore, shall not discuss EBE preconditionings
any further.

SOR and SSOR iteration have been used for the parallel solution of the five-point
difference approximation of Poisson’s equation on rectangular meshes by numbering
the discrete equations and unknowns in ‘‘checkerboard’ order [1]. With this ordering,
unknowns at ‘‘red’’ mesh points are only coupled to those at ‘‘black’’ mesh points and
vice versa; thus, solutions at all red points can proceed in parallel that may be fol-
lowed by a similar solution at all black points. Preserving symmetry, as with the
SSOR iteration, will make the SOR method a suitable preconditioning for the PCG
method. Adams and Ortega [1] describe multicolor orderings on rectangular grids
using several finite element and finite difference stencils. However, multicolor order-
ings for unstructured meshes are more difficult since nodal connectivity and difference
stencils for high-degree polynomial approximations can be quite complex. The com-
putational effort can be reduced when using quadtree-structured grids by considering
multicolor orderings for block SSOR preconditionings at the quadrant level. To be
specific, partition the stiffness matrix K by quadrants as

K=D-L-LT (12a)
where
K1 [0 ]
K, K;; O
D= , L=~ . (12b,c)
Koo | | Ko1 Koo O]

Nontrivial entries in a diagonal block K;; arise from Galerkin coordinates that are
connected through the finite element basis to other unknowns in quadrant i. Nontrivial
contributions to block K; ; of the lower triangular matrix L arise when the support of
the basis associated with a Galerkin coordinate in quadrant i intersects quadrant ;.

Using an SSOR preconditioning, the solution of (11b) would be computed accord-
ing to the two-step procedure

X*+% = LX*% + LTX" +1) + (1 - X", (132)

X" = oLTX*! + LX"™ + )+ (1 -0X™™, n=12-.M (13b)

Thus, each block SSOR iteration consists of two block SOR steps; one having the
reverse ordering of the other. Typically, M =3 SSOR steps are performed between
each PCG step.
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Suppose that the Q quadrants of a finite quadtree structure are separated into y
disjoint sets. Then, using the symmetric y-color block SSOR ordering, we would
sweep the quadrants in the order Cy, Cy, **+, Cy C, Cyp g, -+, Cy, where C; is the set
of quadrants having color i. Because quadrants rather than nodes are colored, a node
can be connected to other nodes having the same color. Thus, the forward and back-
ward SOR sweeps may differ for a color C;, i =1, 2, ---, . During an SOR sweep,
unknowns lying on quadrant boundaries are updated as many times as the number of
quadrants containing them.

Coloring the regular quadrants of a finite quadtree is far simpler than coloring the
elements of a mesh. Differences in the small number of elements within quadrants
having the same color may cause some load imbalance and this effect will have to be
investigated. Naturally, coloring procedures that use the fewest colors increase data
granularity and reduce the need for process synchronization. At the same time, the
cost of the coloring algorithm should not be the dominant computational cost. With
these views in mind, we developed an eight-color procedure that has linear time com-
plexity [13]. This procedure only required a simple breadth-first traversal of the quad-
tree, but performance never exceeded that of the six-color procedure which is
described in the following paragraphs. Four-color procedures are undoubtedly possi-
ble, but we have not formulated any. Their complexity, unlike the eight- and six-color
procedures, may be nonlinear.

With the aim of constructing a quadtree coloring procedure using a maximum of
six colors, let us define a binary directed graph called a ‘‘quasi-binary tree’’ from the
finite quadtree by using the following recursive assertive algorithm.

i.  The root of the quadtree corresponds to the root of the quasi-binary tree.

ii. Every terminal quadrant is associated with a node in the quasi-binary tree; how-
ever, not every quasi-binary tree node must correspond to a quadrant.

ili. In the planar representation of the quadtree, nodes across a common horizontal
edge are connected in the quasi-binary tree.

iv. When a quadrant is divided, its parent node in the quasi-binary tree becomes the
root of a subtree.

Planar representations of simple quadtrees and their quasi-binary tree representa-
tons are illustrated in Figure 6. The leftmost quadtree illustrates root-node and
offspring construction of the quasi-binary tree. Connection of nodes across horizontal
edges is shown with and without quadrant division in all three illustrations. Subtree
definitions according to assertion (iv) are shown in the center and rightmost quadtrees.

From Figure 6, we see that the column-order traversal of a finite quadtree is the
depth-first traversal of its associated quasi-binary tree. Let us define six colors divided
into three sets a, b, and ¢ of two disjoint colors that alternate through the columns in
a column-order traversal of the quadtree. Whenever left and right quasi-binary tree
branches merge, column-order traversal continues using the color set associated with
the left branch. Two of the three color streams, say a and b, are passed to a node of
the quasi-binary tree. At each branching, the color stream g and the third color stream
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Figure 6. Planar representations of three quadtrees and their associated
quasi-binary trees.

c are passed to the left offspring while the streams a and b are passed in reverse
order to the right offspring. Additional details and a correctness proof of this algo-
rithm will appear [15].

Computational experiments of Benantar et al. [13] demonstrate the excellent
parallelism that may be obtained by the six-color SSOR PCG procedure with piecewise
linear finite element approximations. However, higher-order polynomial bases create
additional possibilities for processor load imbalance with coloring at the quadrant
level. Let us illustrate this with a simple problem. As in Section 2, a 16-processor
Sequent Balance 21000 computer was used for the experiment.

Example 2. Consider the Dirichlet problem
U +uy, =fxy), (xy)eQ, (14a)

u=0 (x,y)eoQ, (14b)

with Q = {(x,y)|-3<x,y <3). We solved this problem on a 400-element mesh
using piecewise linear, quadratic, and cubic approximations. Adaptive p-refinement
with the polynomial degree p restricted to be 1, 2, or 3 was also performed. Parallel
speed up and processor idle time resulting from the need to synchronize at the comple-
tion of each color are shown in Figure 7.

Parallel performance degrades as polynomial degree increases, with the adaptive
strategy having the poorest performance. Adaptive algorithms typicaily have serial
logic which limits speed up. Of course, speed up is not the only measure of complex-
ity and an adaptive solution strategy could require less CPU time to solve the problem
to a given level of accuracy. Nevertheless, additional research is necessary to improve
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Figure 7. Parallel speed up (left) and processor idle time (right) for the
finite element solution of Example 2 using piecewise linear, quadratic, and
cubic approximations as well as adaptive p-refinement.

performance with high-order and adaptive strategies.

Using a hierarchical basis, all Galerkin coordinates for polynomial degrees higher
than one are associated with mesh points that are either along element edges or within
elements. Thus, the Galerkin coordinates for continuous piecewise linear approxima-
tions are the only ones associated with element vertices. Parallel performance could,
therefore, be improved by coloring element edges rather than quadrants and we have
designed a three-color procedure having linear time complexity to do this [15]. Since
hierarchical bases add incremental corrections as the polynomial degree is increased,
one could conceive an algorithm where quadrant coloring is used with the piecewise
linear portion of the approximation and edge coloring is used for higher-degree
approximations.

4. DISCUSSION. High-order and hp-refinement strategies have the highest conver-
gence rates on serial processors. Successful use of adaptive strategies in parallel
environments depends heavily on the efficient implementation of these procedures on
shared- and distributed-memory computers. The edge coloring procedure alluded to in
Section 3 should provide some improvement over existing strategies on shared-memory
systems, but no procedure is available for using hp-refinement on data-parallel comput-
ers. High-order and hp-refinement techniques are being added to our collection of
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methods for solving hyperbolic systems using the finite element methods of Cockburm
and Shu [14]. The p-hierarchical Legendre polynomial basis embedded in these
methods should also furnish error estimates similar to those that we have developed for
parabolic systems [3]. These techniques are far more efficient than Richardson’s extra-
polation.

Our h-refinement procedure for hyperbolic systems could be improved by begin-
ning each base-mesh time step with an adaptively chosen mesh that utilizes known
nonuniformities in the solution discovered during the previous base-mesh time step.
Processors would still have to be scheduled to balance loads in this case and pro-
cedures for doing this are unavailable. Finally, parallel procedures for distributed
memory systems and procedures for three-dimensional problems are of great interest.
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