
4754 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 36, NO. 5, SEPTEMBER 2021

Adaptive Methods for Short-Term Electricity Load
Forecasting During COVID-19 Lockdown in France

David Obst , Joseph de Vilmarest , and Yannig Goude

Abstract—The coronavirus disease 2019 (COVID-19) pandemic
has urged many governments in the world to enforce a strict
lockdown where all nonessential businesses are closed and citizens
are ordered to stay at home. One of the consequences of this policy
is a significant change in electricity consumption patterns. Since
load forecasting models rely on calendar or meteorological infor-
mation and are trained on historical data, they fail to capture the
significant break caused by the lockdown and have exhibited poor
performances since the beginning of the pandemic. In this paper
we introduce two methods to adapt generalized additive models,
alleviating the aforementioned issue. Using Kalman filters and
fine-tuning allows to adapt quickly to new electricity consumption
patterns without requiring exogenous information. The proposed
methods are applied to forecast the electricity demand during the
French lockdown period, where they demonstrate their ability to
significantly reduce prediction errors compared to traditional mod-
els. Finally, expert aggregation is used to leverage the specificities
of each predictions and enhance results even further.

Index Terms—COVID-19, load forecasting, model adaptation,
time series.

I. INTRODUCTION

A
CCURATE electricity load forecasting is of paramount
importance for the balancing of the electricity grid, since

they are the main inputs of the production planning at different
horizons [1] and storage capacities are still limited regarding the
consumption needs. Load forecasting is performed at different
horizons of time, ranging from intra-day (10 minutes to 24
hours ahead) to daily, weekly, monthly or even a few years
in advance for industrial needs covering production planning,
demand response, grid management, electricity trading, risk
management, optimization of production units maintenance and
commercialization.
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The field has been thoroughly studied the past decades,
especially by the time series, statistics and machine learning
communities. Time series approaches are very efficient for very-
short term forecasts (typically less than 24 hours ahead). They
rely on auto-regressive moving-average (ARIMA) models [2]
or functional approaches [3], [4] exploiting daily and weekly
patterns in the electricity load data. Machine learning models
are usually stronger at incorporating exogenous information for
short and mid-term predictions (more than 1 day ahead). They
use calendar characteristics (such as the time of the year, day of
the week...) as well as meteorological effects (temperature, wind
speed) or tariff options as inputs and are then trained on a large
set of historical data (usually 3 to 5 years). A good overview of
load forecasting practices has been given by the Global Energy
Forecasting Competitions (GEFCOM) [5]. Popular algorithms
include black box machine learning models such as gradient
boosting machines [6] and neural networks [7], [8] or statistical
models like Generalized Additive Models (GAM) [9]–[12].
Black box models are attractive due to their good forecasting per-
formances but generally suffer from their lack of interpretability.
GAMs are very attractive to electric utilities as they combine
the flexibility of fully nonparametric models, the simplicity of
multiple regression model and are computationally efficient to
scale with big data [13]. The main French electricity provider,
EDF (Électricité de France) uses GAM as their lead forecasting
tool.

However the coronavirus pandemic has significantly affected
consumption patterns all over the world. As presented in [14],
[15], the closure of nonessential businesses as well as the stay-
at-home directives have led to a significant drop of the power
demand and changes in the daily consumption patterns. Fig. 1
shows the French and Italian electricity load over time in 2020,
whose decrease due to the lockdown (which happens before in
Italy) is clearly seen. Daily profiles of the French consumption
before and after the lockdown are represented in Fig. 2. After
lockdown for both countries the daily shapes of the load have
converged towards the one of Saturdays.

Since models are trained on historical data and make the
underlying assumption that future behavior will be similar to past
one, they will fail to produce satisfactory predictions during the
lockdown period. For instance in France GAM usually achieve
around 1% MAPE (mean absolute percentage error) [9], but
were around 5% during the first few weeks of the lockdown thus
requiring manual intervention to correct the model forecasts.
Not only do these poor forecasts have a high cost for electricity
producers and system operators, but they represent a threat to the
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Fig. 1. French and Italian electricity load (in MW) at resp. half-hourly and
hourly resolution in 2020. Dashed lines are the starting and ending date of the
lockdown.

Fig. 2. French and Italian electricity Tuesday and Saturday load profiles before
and during the lockdown (Dashed lines).

proper functioning of the electrical network as well, which could
have even more consequences than usual during a pandemic.

This is why finding novel approaches to better predict the load
demand during these troubled times is of paramount importance.
However to our knowledge, up to this date only a few papers have
addressed this problem. [16] is among the first to propose an ef-
ficient strategy to improve the predictions during the COVID-19
lockdown period in France. Using an adaptive functional state-
space model and assimilating the period to non-workable days,
the author was able to achieve significantly better performance
compared to the French system operator. However these models
lack of interpretability, making other approaches preferred in
the industrial context. Furthermore the aforementioned work
requires to artificially set all days to weekends or holidays, which
may be unviable in the long-term. In [17] the integration of
mobility data is combined with multi-task learning to improve
the forecasting during the lockdown. They show that mobility
is indeed a relevant feature that should be integrated in load
demand models, and that joint training of a neural network
for multiple geographical areas yields additional benefits and
compensates for the lack of data. Nonetheless their forecasting
errors remain high compared to pre-COVID standards, neural
networks lack of interpretability as well and the introduction of
exogenous features can be problematic in the future due to the
sustainability of such data in operations.

We consider here the framework of GAM and propose two
new adaptive versions of these models. The idea of adaptive
models is to take advantage of data observed in an online fashion
to update an initial model. This will make them able to adapt
to the changes in consumption patterns spontaneously, without
exogenous variable or intervention. In every adaptive forecasting
method a trade-off has to be found between a good reactivity
to a change (whether it is a smooth drift or a break) and a
good behavior during stable periods. One of the most popular
algorithm for that is the Kalman filter [18] already applied to
electricity load forecasting in [19] and [20]. We propose here to
couple Kalman filters with GAM to obtain a forecasting proce-
dure which performs well before the lockdown, exploiting the
nice properties of GAM but also reacting quickly to the sudden
change in the data at the beginning of the lockdown. The second
approach we present leverages ideas from transfer learning to
fine-tune a GAM on the lockdown period. Transfer learning (also
referred as learning-to-learn or knowledge transfer) is a branch
of machine learning that aims at reusing knowledge from one
source task on another target one [21], [22]. It has shown great
success, particularly when the source data is plentily available
and the target one scarce. Recently it has even found applications
for electricity load forecasting to transfer information from one
set of customers to another one [23]. In our case our source data
will be the data before the lockdown and the target one the data
during the lockdown in the country of interest (France in our
study), or even a similar one where the lockdown came before
(e.g. Italy here). The contributions of our work are the following:

1) Two mathematical approaches are proposed to efficiently
adjust a historical model to consumer behavior change
over time, even in the case where data is scarce. Fur-
thermore they do not require the integration of additional
features.

2) The two methodologies have been successfully applied on
the difficult period of the COVID-19 lockdown in France,
achieving forecast accuracy close to the one observed
before the pandemic.

3) An empirical strategy is suggested to anticipate the impact
of the lockdown on the load using another country’s data,
thus enabling satisfactory predictions from the very first
day of stay-at-home order.

The rest of the paper is organized as following. In Section II we
introduce the two model adaptation methods relying on Kalman
filtering and fine-tuning. Section III presents the data and the
GAM model used for the French load and Section IV summa-
rizes the main results of our experiments. Finally Section V
concludes our study and suggests further work.

II. ADAPTATION OF ADDITIVE MODELS

We consider additive models whose assumption is that the
response variable yt is decomposed as

yt = β0 +

d
∑

j=1

fj(xt,j) + εt ,

where (εt) is an independent identically distributed (i.i.d.) ran-
dom noise, xt = (xt,1, . . ., xt,d) are the explanatory variables
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Fig. 3. Flowchart of adaptive methods.

at time t, and each nonlinear effect fj is decomposed on a spline
basis (Bj,k) with coefficients βj :

fj(x) =

mj
∑

k=1

βj,kBj,k(x) .

where mj depends on the dimension of the spline basis. The
fj’s are centered to ensure the identifiability of the model, and
more details concerning the basis are given in Subsection III-B.
The coefficients β0,β1, . . . ,βd then are estimated by penalized
least-squares. The penalty term involves the second derivatives
of the functions fj , forcing the effects to be smooth (see [24]).

The random residuals εt are supposed to be Gaussian i.i.d.
in the first place. Later in the numerical experiments we will
introduce another variant of this model, where the residuals are
supposed to be an ARIMA model optimised with classical time
series methods. We focus here on structural adaptation of the
GAM over time. We present two different levels of adaptation.
Firstly, we consider the reduced problem of adapting a linear
combination of the frozen effects f1, . . ., fd. Secondly we try
to adapt the whole model by fine-tuning. A flowchart of the
forecasting pipeline is given in Fig. 3.

A. Multiplicative Correction of the Effects

In order to reduce the dimension of the adaptation problem,
a strategy is to freeze the nonlinear effects, and to correct these
effects by a multiplicative factor. Precisely, we define f(xt) =
(1, f1(xt,1), . . ., fd(xt,d))

⊤ where f j is a normalized version of
fj obtained by subtracting the mean on the train set and dividing
by the standard deviation. Then we adaptively estimate a vector
θt such that

E[yt | xt] = θ⊤
t f(xt) .

The estimator at time twill be denoted as θ̂t in both Section II-A1
and Section II-A2. Thus we reduce the number of coefficients
from 1 +

∑d
j=1 mj to 1 + d. This is a good trade-off to obtain

a simple model which will react quickly to a break in the data

generation process but also complex enough to fit well with the
nonlinear properties of the load.

1) Exponential Least-Squares (exp-LS): An empirical
method consists in solving at each step a least-squares problem
where we specify a weight decreasing exponentially with the
time difference. Precisely we define

θ̂t ∈ arg min
θ∈Rd

t−1
∑

s=1

e−µ(t−s)
(

ys − θ⊤f(xs)
)2

,

and we predict ŷt = θ̂
⊤

t f(xt). This formalisation leads to a sin-
gle parameter, the exponential forgetting factorµ. The advantage
of this type of adaptation lies in its simplicity. The forgetting
factor µ is determined by minimizing the RMSE on a validation
set composed of the last year of the train set for a GAM trained
on the beginning of the train set, then we keep the same µ for the
GAM trained on the whole train set. Previous work has been done
on estimating this parameter online, but leads to computational
issues and potential instability of the model (see [25]).

2) Kalman Filter: We present also a state-space model ap-
proach. We assume the following equations:

yt = θ⊤
t f(xt) + εt ,

θt+1 = θt + ηt ,

where (εt) and (ηt) are gaussian white noises of respective
variance/covariance σ2 and Q. This is the setting of Kalman
filtering [18], thus we use the recursive formulae of Kalman
providing the expectation and covariance of the stateθt given the
past observations, and these estimators yield the mean and vari-
ance of yt given the past. This is described in Algorithm 1. Note
that the exp-LS method has a very similar recursive form start-
ing from t0 such that Pt0 = (

∑t0−1
s=1 e−µ(t0−s)f(xs)f(xs)

⊤)−1

exists. Indeed, the same update rule stands for θ̂t (with σ = 1)
and the update on Pt is the following:

Pt+1 = eµ
(

Pt −
Ptf(xt)f(xt)

⊤Pt

f(xt)⊤Ptf(xt) + 1

)

.
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Algorithm 1: Kalman Filter.

Initialization: the prior θ1 ∼ N (θ̂1, P1) where P1 ∈ R
d×d

is positive definite and θ̂1 ∈ R
d.

Recursion: at each time step t = 1, 2, . . .
1) Prediction:

E [yt | (xs, ys)s<t,xt] = θ̂
⊤

t f(xt) ,

V ar [yt | (xs, ys)s<t,xt] = σ2 + f(xt)
⊤Ptf(xt) .

2) Estimation:

θ̂t+1 = θ̂t +
Ptf(xt)

f(xt)⊤Ptf(xt) + σ2
(yt − θ̂

⊤

t f(xt)) ,

Pt+1 = Pt −
Ptf(xt)f(xt)

⊤Pt

f(xt)⊤Ptf(xt) + σ2
+Q .

The simplicity stands in a single scalar parameter eµ as mul-
tiplicative factor for the update of Pt, whereas Kalman Filter
needs a matrix parameter Q added in the recursion.

There is a wide literature concerning the setting of the hyper-
parameters θ̂1, P1, σ

2, Q on which the Kalman Filter crucially
relies, see for instance [26]–[28]. We observe that the iterates of
θ̂t depend only on θ̂1, P

∗
1 = P1/σ

2 and Q∗ = Q/σ2, reducing
the set of hyper-parameters as in [26].

An interesting degenerate covariance matrix is the static set-
ting Q∗ = 0 (the state equation becomes θt+1 = θt). Defining
θ̂1 = 0, P ∗

1 = I , the estimate θ̂t becomes a Ridge Forecaster:

θ̂t = arg min
θ∈Rd

(

t−1
∑

s=1

(ys − θ⊤f(xs))
2 + ‖θ‖2

)

.

To obtain a dynamic setting we maximize the likelihood on
the training set. The Expectation-Maximization algorithm is a
renowned algorithm allowing to find a local optimum. However
the lack of global guarantee makes it inefficient in our case,
and we applied instead some kind of grid search. Precisely we
decided to set P ∗

1 = I as in the static setting, and for a given Q∗

the optimal θ̂1 for the likelihood has a closed-form solution. Q∗

is of dimension 10× 10 and we chose to restrict ourselves to
diagonal matrices whose coefficients are in the set {2j ,−30 ≤
j ≤ 0}. This is still a set of around 8 · 1014 elements, thus we
used an iterative greedy procedure: we start from Q∗(0) = 0 and
at each step, having Q∗(k) in hand, we compute the likelihood
of each matrix where only one coefficient differ from Q∗(k), and
we define Q∗(k+1) as the one maximizing the likelihood among
those tested. This algorithm yielded less than 104 evaluations of
the likelihood.

In order to take the lockdown into account in the state-space
representation, it is natural to consider a varying state noise
covariance Qt. Indeed, we expect the model to change much
faster during and after the lockdown than before. It motivates a
dynamic estimation of Qt, however due to the amplitude of the
crisis we modelled a break in the data at the lockdown beginning.
We chose to change only the state noise covariance at the break
time T , and for t �= T we use Q∗

t = 0 in the static setting or

Q∗
t = Q∗ in the dynamic setting. We don’t want to put any a

priori on the break, therefore we defined Q∗
T = P ∗

1 = I ≫ Q∗.

B. Correction of the Full Model

In the previous methods the nonlinear effects fj(·) were
frozen and adjusted with a multiplicative factor. However it may
be insufficient on certain new types of behavior. Since learning
a new model from scratch is inadvisable considering the few
samples of target data available, we would like to start from
the model trained on historical data and adapt it on the few
instances available. This is a particular case of the framework of
transfer learning, more specifically of model fine-tuning (FT).
It consists in reusing a part of the parameters learned on the
source set (typically neural network layers) and adjust them
with a few gradient iterations on the target one for instance.
Model fine-tuning has been successful in different fields such as
computer vision [29] or even time series forecasting [30].

In our case we will fine-tune the parameters of our GAM.
Since it boils down to a penalized linear regression problem,
it consists in fine-tuning a linear model. This framework was
elaborated in [31]. Starting from the coefficients β̂0 learned on
the historical source data, for each time step we perform K
iterations of batch gradient descent with fixed step size α on
the following objective function to yield an adjusted parameter
vector β̂t:

Lt(β) =
t−1
∑

s=1

⎛

⎝ys −
d

∑

j=1

mj
∑

k=1

βj,kBj,k(xs,j)

⎞

⎠

2

Let B(xs) be the vector of the Bj,k(xs,j) and B(Xt) denote
the matrix made by the concatenation (by row) of the B(xs)
for s = 1, . . . , t− 1. Again more details concerning the basis
(Bj,k) is found in Section III-B. As discussed by the aforemen-
tioned paper, the choice of the step sizeα is not crucial, as long as
it is small enough. In practice a good step size isα = α∗/5where
α∗ = 2/(λmax(B(Xt)

⊤B(Xt)) + λmin(B(Xt)
⊤B(Xt))) with

λmax(M) and λmin(M) being respectively the maximum and
minimum eigenvalue of M . Ergo the major hyperparameter
to tune is K the number of gradient iterations to perform.
Theoretical methods are currently being investigated in the
aforementioned paper and have been used to guide our choice
here, but it was also observed empirically thatK between 50 and
100 yields good results. Therefore a number of iterations in that
range is always considered, and this choice usually coincides
with the suggested theoretical guidelines.

III. DATA AND MODEL PRESENTATION

In this section we detail the GAM model that has been used to
forecast the French electricity consumption, as well as the data
on which is has been applied.

A. Presentation of the Data

The French electricity consumption is freely available on
the website of the system operator RTE (Réseau et Transport
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d’Électricité).1 Our dataset ranges from the 1st of January 2012
to the 7th of June 2020 with a 30 minutes temporal resolution.

As explanatory variables we obtained national averaged tem-
perature on the website of the French weather forecaster Météo-
France.2 We took observed temperatures instead of forecasts in
order to use only open data and make the results reproducible.
As our goal is to compare different forecasting strategies on
the same data this choice is relevant and allows a more precise
comparison as we don’t include in the score the uncertainty due
to physical meteorological forecast.

We train the models on historical data from the beginning of
2012 to the end of August 2019. In this paper we are interested
in predicting the load during and after the COVID-19 lockdown
period in France. Since the consumer behavior changed abruptly
during the first month and stabilized during the second one, we
divide the crisis test data in two periods. The first one ranges
from March 16th to April 15th and the second one from April
16th to June 7th. Note that although the lockdown officially begun
Tuesday the 17th of March 2020 at midday in France, we consider
March 16th as the first day of our lockdown period as the behavior
had already changed. Finally, in order to assess the suitability
of the offline methods and of the ones that do not model the
break we consider the pre-lockdown period between September
1st 2019 and March 15th 2020.

B. The Additive Model

The time of day is crucial for load forecasting. It doesn’t
appear in the following definition of the additive model because
we build one model for each instant of day, i.e. we treat the 48
half-hour time series independently:

yt =

7
∑

i=1

1
∑

j=0

αi,j1DayTypet=i1DLSt=j

+

7
∑

i=1

βiLoad1Dt1DayTypet=i + γLoad1Wt

+ f1(t) + f2(ToYt) + f3(t,Tempt) + f4(Temp95t)

+ f5(Temp99t) + f6(TempMin99t,TempMax99t) + εt,
(1)

where at each day t,
� yt is the electricity load for the considered instant,
� DayTypet is a categorical variable indicating the type of

the day of the week,
� DLSt is a binary variable indicating whether t is in summer

hour or winter hour,
� Load1D and Load1W are the load of the day before and

the load of the week before,
� ToYt is the time of year whose value grows linearly from

0 on the 1st of January 00h00 to 1 on the 31st of December
23h30,

� Tempt is the national average temperature,

1https://opendata.rte-france.com
2https://donneespubliques.meteofrance.fr/

Fig. 4. Comparison of the smoothed residuals of the French and Italian GAMs
in 2020. The dashed lines represent the start of the respective lockdowns.

� Temp95t and Temp99t are exponentially smoothed tem-
peratures of factor α = 0.95 and 0.99. E.g. for α = 0.95 at
a given instant i,
Temp95i = αTemp95i−1 + (1− α)Tempi,

� TempMin99t and TempMax99t are the minimal and max-
imal value of Temp99t at the current day.

The models are trained in R using the library mgcv [32]. We
use the default thin plate spline basis to represent the fj’s, except
for the time of year effect f2 for which we choose cyclic cubic
splines (see [24] for a complete description of spline basis). The
dimensions of the bases are usually below 5, excluding f2 which
uses a basis of dimension 20.

As previously mentioned in Section II, we suppose that εt
is a Gaussian noise with 0 mean and constant variance. How-
ever this hypothesis is rarely true in practice and we observe
an auto-correlation structure in the error. We thus propose to
model it with an ARIMA model by selecting the best model
with AIC criteria [33] in the family of ARIMA(p,d,q) where
p, q ≤ 100 and d ≤ 1 (we use the R function auto.arima of
R. Hyndman). In that case the forecast are performed adding
GAM forecasts and the short term correction of the ARIMA
models exploiting recent observations.

C. Knowledge Transfer From Italy

Italy was the first country to be massively affected by the
novel coronavirus in Europe. The Italian government decreed a
total lockdown from the 9th of March 2020, hence 7 days before
the French one. Since GAM models for both countries usually
exhibit similar behavior (see Fig. 4 for a comparison of resid-
uals) and indices such as the Oxford COVID-19 Government
Response Tracker [34] show that both countries took comparable
measures during the lockdown, our idea is to use this one week
head-start and to adjust our GAM model for France accordingly
to the changes observed in Italy. We have at our disposal data
from the Italian system operator Terna3 and meteorological data
gathered through the R package Riem available from the 1st of
January 2015 to the 28th of June 2020 with a 1 hour temporal
resolution. For each instant, a model similar to (1) is constructed
on the data on the range 2015-2019, with the main differences

3https://www.terna.it

https://opendata.rte-france.com
https://donneespubliques.meteofrance.fr/
https://www.terna.it
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Algorithm 2: Transfer Learning At Time Step t.
Inputs: Step size α, number of iterations K, French and

Italian historical source parameters β̂
FR

0 , β̂
IT

0 , scale
parameter ρ.

If GAM fine-tuned:

1) Initialize β̂
FR

t ← β̂
FR

0 .
2) Repeat K times:

β̂
FR

t ← β̂
FR

t − α∇LFR
t−1(β̂

FR

t ).

3) Predict ŷt = β̂
FR

t
⊤B(xt).

If GAM-δ:

1) Initialize β̂
IT

t ← β̂
IT

0 .
2) Repeat K times:

β̂
IT

t ← β̂
IT

t − α∇LIT
t−1(β̂

IT

t ).

3) Set δ̂t = β̂
IT

t − β̂
IT

0 , β̂
FR

t = β̂
FR

0 + ρ δ̂t.

4) Predict ŷt = β̂
FR

t
⊤B(xt).

If GAM-δ fine-tuned:

1) Perform steps 1) to 3) of GAM-δ, obtaining

β̂
FR

t = β̂
FR

0 + ρ δ̂t.
2) Repeat K times:

β̂
FR

t ← β̂
FR

t − α∇LFR
t−1(β̂

FR

t ).

3) Predict ŷt = β̂
FR

t
⊤B(xt).

being that the effects f3(·) and f6(·) are removed, and that
f2(·) is replaced by a sum of 7 effects, one for each day of the
week. Then the same procedure as described in Section II-B

is applied. Let β̂
IT

0 be the coefficient learned on the Italian

source data, and β̂
IT

t be the coefficients obtained by performing
the aforementioned fine-tuning on Italian data ranging from the
28th of February up to date t (typically t could correspond to
the 15th of March, the day before the stay-at-home order begun

in France). We thus obtain δ̂t = β̂
IT

t − β̂
IT

0 the adjustment of
the model on the beginning of the lockdown period. We then

use β̂
FR

t = β̂
FR

0 + ρ δ̂t to perform the predictions for France,
where ρ is a scale parameter accounting for the difference of
load levels between the two countries. We refer to this model as
GAM-δ. Since the ToY effect is modelized differently for the
Italian model (one function per day of the week), we will not
adjust the corresponding coefficients in the French model. This
is further justified by the fact that in general the ToY effect is very
specific to a country, and it should be learned on a whole year
at least. As for the choice of ρ, making the assumption that the
consumption in France and Italy are proportional with a factor
ρ allows us to use the simple estimate ρ̂ =

∑

t y
FR
t /

∑

t y
IT
t

summed over a year for instance. The advantage of GAM-δ is
that it can be applied to reduce the prediction error starting at
the very first day of lockdown. One can afterwards combine this
procedure with fine-tuning on the eventually available French
data. The procedures for both regular fine-tuning and GAM-δ
are summarized in Algorithm 2.

Fig. 5. Moving average of the error of the different models at 8-8:30 PM.

IV. EXPERIMENTS

We present the application of our methods to the French
dataset. While accuracy metrics are of paramount importance,
we also focus on the interpretation of our results and on model
behavior.

A. Model Dynamics

The moving average of the error of the different models are
represented in Fig. 5. At the beginning of the lockdown all
the models will tend to overpredict the load. However most
of our adaptive methods quickly accommodate to the lower
demand and progressively reduce their bias, notably Kalman
with Dynamic Break and GAM fine-tuned. On the contrary
regular GAM does not succeed in reducing the error (even with
the help of an ARIMA) as it keeps overpredicting the demand.
GAM-δ on the other hand is very good during the first couple
of days, efficiently taking advantage of the change in patterns
observed in Italy. However it quickly drifts away over time
because the Italian consumption recovers faster than the French
one during the second month of lockdown (see Fig. 1). However
since the objective of GAM-δ is to provide an initial boost of
performance during the first couple of weeks while the other
models adjust, this is only a minor issue (see Section IV-B).

We test the Kalman filter in a static and a dynamic setting as
described in Section II-A2. For both we assess the introduction of
a break state noise covariance matrix at lockdown. The evolution
of the state estimate θ̂t is displayed in Fig. 6 for different settings.

In the static setting the Kalman filter optimizes a state which
is assumed to be constant, hence explaining a slow evolution
compared to the faster changes of the dynamic one. However
both variants change faster during lockdown than they did be-
fore. As expected the introduction of a break covariance matrix
at the beginning of the lockdown allows the model to adapt much
faster.
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Fig. 6. Evolution of the state coefficients for different Kalman variants at 8-8:30 PM (subtracting the coefficients on September 1st 2019).

Fig. 7. Value of δ̂t fine-tuned on the period 16/03-15/04 at 8-8:30 PM.

The model dynamics can be analysed for the fine-tuning
too. For GAM-δ the only coefficients of δ̂t with a significant
evolution after fine-tuning are the ones pertaining to the lagged
load (γ for Load1W and βi, i = 1..7 for Load1D) and have
been represented in Fig. 7. The other ones are zero and have
been omitted for clarity. The coefficients of the working days
drop, especially the Monday, whereas the ones of the weekend
increase, notably Saturday. It can be interpreted as follows:
the historical model learned a certain transition between the
different days of the week. With the lockdown now all the days
are similar and close to a Saturday, which has a lower demand
than Monday and thus the associated coefficient plummets. The
coefficient of Saturday soars because the demand on Fridays
is now much lower than it used to be and that daily profiles
are similar. Finally since during the first weeks the electricity
demand progressively decreases (see Fig. 1) the coefficient of γ
drops as well.

B. Aggregation

We proposed 2 load forecasting models (ARIMA, GAM)
and different variants to adapt them to the lockdown period
(exp-LS, Kalman adaptation, transfer learning) leading to 11

candidates which we call experts in the following. A natural
approach is then to aggregate them in a single forecast which
will take benefit of the best one in function of time. This is
the main idea behind online aggregation methods which have
already demonstrated their benefits in the field of electricity load
forecasting (see [35], [36]). Since Fig. 2 shows the convergence
of the daily profiles towards the Saturday shape, this as well
as [16] motivates adding another expert named GAM Saturday,
whose prediction is made by the regular GAM as if every day
was a Saturday.

We recall briefly the main principles of the online aggregation
approach and refer the interested reader to [37] for a complete
presentation. A bounded sequence of observations (here half-
hourly French electricity consumption) y1, . . . , yn ∈ [0, B] is
observed (B being an unknown constant). We have access to
a set of N experts producing forecasts of the sequence at each
instant t based on past values of y. After that, aggregation is
computed step by step: ŷt =

∑N
j=1 p̂j,tŷ

j
t where the weights

are updated according to past performances of each experts
which are measured with a convex loss function. In accordance
to the RMSE criterion used in our case study we consider the
square loss ℓt(x) = (yt − x)2. At time t expert e suffers loss
ℓt(ŷ

e
t ) = (yt − ŷet )

2 and the aggregation ℓt(ŷt) = (yt − ŷt)
2.

We call Oracle an optimal forecast which is unknown in ad-
vance and usually hard to beat in terms of forecasting accuracy
(see [37]). We denote it by ŷ∗t . For example, it could be the
best fixed convex aggregation or the best expert (best w.r.t the
entire time interval performance, of course unknown a priori).
The goal of aggregation algorithms is to minimise the total loss
∑T

t=1(yt − ŷt)
2 that can be expressed:

1

T

T
∑

t=1

(yt − ŷt)
2 �

1

T

T
∑

t=1

(yt − ŷ∗t )
2 +RT ,

where RT is the so-called regret term, it is the error suffered by
our algorithm relatively to the error of the oracle (see again [37]).
The aim is thus to propose algorithms that, regarding competitive
oracles, achieve low regrets. In our study we use the ML-Poly
algorithm of [38], implemented in the R package opera [39]
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Fig. 8. Weights attributed to each expert by the aggregation method at 8-8:30
PM. Dashed lines split the test sets.

Algorithm 3: ML-Poly.

Initialization: p̂1 = (1/N, . . . , 1/N) and R0 = (0, . . . , 0);
Recursion: at each time step t = 1, 2, . . .
� Pick the learning rates:
ηe,t−1 = 1/(1 +

∑t−1
s=1

(

ℓs(ŷs)− ℓs(y
e
s)
)2
).

� Compute the weights p̂t :
p̂e,t = ηe,t−1(Re,t−1)+ / ηt−1 · (Rt−1)+
where R+ is the non-negative parts of R.

� Output prediction ŷt =
∑N

e=1 p̂e,tŷ
e
t .

� For each expert e update the regret:
Re,t = Re,t−1 + ℓt(ŷt)− ℓt(y

e
t ),

Rt = (R1,t, . . . , RN,t).

and successfully used for load and price forecasting in [35], [40].
It is described in Algorithm 3. An expert who has a high regret,
which means that he suffers a higher loss than the aggregation,
will receive less weight for the next round. The time varying
learning rate ηe,t could be seen as a vector step size parameter
of gradient descent varying with time so that no parameter tuning
is needed.

Finally a few experts are introduced in the aggregation only at
lockdown. Indeed before lockdown the transfer learning experts
don’t make sense (there is no target data), the Kalman experts
modelling the break coincide with the other ones, and the expert
GAM Saturday was only introduced for the lockdown period.
These specialized experts are added to the aggregation at the
lockdown period with a uniform weight (1/12), and the experts
present before share the rest of the weight proportionally to their
previous weight [41].

The evolution of the weights of the experts over time is given
in Fig. 8. It gives insight on which predictions are the most
useful in the aggregation at a given time. The lockdown acts as
a break and causes a significant shift in the weights distribution.
As such, GAM Saturday immediately takes a large weight: this

is due to the aforementioned resemblance between the daily
profiles during the lockdown with Saturdays. Moreover, this
expert predicts a lower consumption than reality, compensating
for the overestimation of the other experts at the beginning of the
lockdown. GAM-δ also has high importance, as it has knowledge
of what happened in Italy and thus suits the new patterns of load
demand in France. For instance on the two first days of lockdown
(16 and 17th of March) GAM-δ yields 1984 MW of RMSE,
compared to 2674 and 3005 for Kalman Dynamic Break and
regular GAM respectively. However their importance dwindle
with time as the adaptive Kalman and fine-tuning methods have
seen enough data and have become more competitive.

C. Numerical Results

As usual in electricity load forecasting, the performance met-
rics are the root mean squared error (in MW) and the mean
absolute percentage error (in %):

RMSE =

√

1

n

∑n

t=1
(yt − ŷt)

2 ,

MAPE =
100

n

n
∑

t=1

∣

∣

yt − ŷt
yt

∣

∣ ,

where n is the number of instances in the test set.
We display the numerical performance of our methods in

Table I. We observe that any of our methods have lower RMSE
or MAPE than GAM + ARIMA on both post-COVID test sets.
As expected, the Kalman Dynamic with break yields the best
results for the two error metrics during the first part of the
lockdown period but the fine-tuned methods are very close to it.
Similarly, the two break approaches are the best ones after the
lockdown. The additional benefits brought by expert aggregation
is emphasized by the two last rows. The algorithm manages to
take advantage of the individual specificities of the different
predictions, leading to further error reduction. While individu-
ally poor, the inclusion of GAM Saturday in the mixture brings
significant improvement for the first testing period (see end of
Section IV-B) because it compensates for the overestimation of
the demand at the beginning of the lockdown.

The significativity of our results was assessed with two sta-
tistical tests: a Diebold-Mariano (DM) test [42] and a Wilcoxon
test as proposed in [43], both on the absolute error. For two
methods A and B it allows to test the null hypothesis that
method B outperforms or is equivalent to method A, against
the alternative hypothesis that method A outperforms method
B. In Table II we display the results of the tests for the most
relevant forecasting models at the significance level 0.01. At
each row i and column j we display the p-values of Wilcoxon
test in blue and of the Diebold-Mariano test in purple, the
alternative hypothesis is “method i outperforms j”. We use the
symbol ε when the p-value is below 0.01 and otherwise we
give a 0.01 approximation. For clarity we consider only the best
non-adaptive method and selected adaptive ones, and we order
them according to the performance on the last test set. These tests
confirm that on both post-COVID test sets, the improvement
brought by our adaptive procedures on an ARIMA correction of
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TABLE I
NUMERICAL PERFORMANCE IN MAPE (%) AND RMSE (MW)

TABLE II
WILCOXON TEST AND DIEBOLD-MARIANO TEST ON THE ABSOLUTE ERROR ON THE LAST TWO TEST SETS. ε FOR P-VALUE BELOW 0.01

the GAM is statistically significant, and so is the improvement of
the aggregation compared to any of our method. Results coincide
for the two tests, ergo consolidating our results even further.

V. CONCLUSION

In this paper, we proposed two novel approaches of adaptive
generalized additive models to improve load forecast during the
COVID-19 pandemic, one relying on Kalman filtering and the
other on transfer learning with GAM fine-tuning. We showed
that Kalman filtering approaches can be significantly improved
by re-initalizing the online update at the beginning of the lock-
down period (Break approach). This helps the Kalman filter to
adapt quickly to a change in the data and update the forecasts
taking advantage of recent observations. Transfer learning was
successfully adapted to this problem in two ways: we fine-tuned
a GAM learned before the COVID-19 crisis on the lockdown
period, and we transferred information from Italian data to
French data. We illustrated the benefits of the transfer from
Italy at the beginning of the lockdown, as well as the efficiency
of adaptive methods to significantly improve predictions, all
without relying on the inclusion of new exogenous features. As
all these new approaches have time varying performances (the
best forecasts vary with time), we proposed to use online expert
aggregation to enhance results ever further.

While in this paper we focused on adapting GAM, the pro-
posed framework can be applied to other approaches. The use of
neural networks for instance will soon be investigated. We also

plan to include exogenous information as mobility data proposed
in [17], macro-economic indicators or data from social media
such as Twitter. Regarding load data, exploiting regional data
could be relevant as the propagation of the pandemic and its
impact on consumption was different depending on the region
in France and Italy. The inclusion of more countries could be
useful as well. For these next steps, transfer approaches will be
of fundamental importance but also adaptive ones, as the effects
of exogenous variables are likely to vary with time or even be
added at some point.

REFERENCES

[1] D. Bunn and E. D. Farmer, Comparative Models for Electrical Load

Forecasting. New York, NY,USA: Wiley, 1985.
[2] S.-J. Huang and K.-R. Shih, “Short-term load forecasting via arma

model identification including non-Gaussian process considerations,”
IEEE Trans. Power Syst., vol. 18, no. 2, pp. 673–679, May 2003.

[3] A. Antoniadis, X. Brossat, J. Cugliari, and J.-M. Poggi, “A prediction inter-
val for a function-valued forecast model: Application to load forecasting,”
Int. J. Forecasting, vol. 32, no. 3, pp. 939–947, 2016.

[4] H. Cho, Y. Goude, X. Brossat, and Q. Yao, “Modeling and forecasting
daily electricity load curves: A hybrid approach,” J. Amer. Stat. Assoc.,
vol. 108, no. 501, pp. 7–21, 2013.

[5] T. Hong, P. Pinson, and S. Fan, “Global energy forecasting competition
2012,” Int. J. Forecasting, vol. 30, no. 2, pp. 357–363, 2014.

[6] J. R. Lloyd, “Gefcom2012 hierarchical load forecasting: Gradient boosting
machines and Gaussian processes,” Int. J. Forecasting, vol. 30, no. 2,
pp. 369–374, 2014.

[7] D. C. Park, M. El-Sharkawi, R. Marks, L. Atlas, and M. Damborg, “Electric
load forecasting using an artificial neural network,” IEEE Trans. Power

Syst., vol. 6, no. 2, pp. 442–449, 1991.



OBST et al.: ADAPTIVE METHODS FOR SHORT-TERM ELECTRICITY LOAD FORECASTING DURING COVID-19 LOCKDOWN IN FRANCE 4763

[8] S. Ryu, J. Noh, and H. Kim, “Deep neural network based demand side
short term load forecasting,” Energies, vol. 10, no. 1, 2017, Art. no. 3.

[9] A. Pierrot and Y. Goude, “Short-term electricity load forecasting with
generalized additive models,” in Proc. IEEE Intell. Syst. Appl. Power Syst.

Conf., 2011, pp. 410–415.
[10] S. Fan and R. J. Hyndman, “Forecasting electricity demand in australian

national electricity market,” in Proc. IEEE Power Energy Soc. Gen. Meet-

ing, 2012, pp. 1–4.
[11] Y. Goude, R. Nedellec, and N. Kong, “Local short and middle term

electricity load forecasting with semi-parametric additive models,” IEEE

Trans. Smart Grid, vol. 5, no. 1, pp. 440–446, Jan. 2014.
[12] M. Fasiolo, S. N. Wood, M. Zaffran, R. Nedellec, and Y. Goude, “Fast

calibrated additive quantile regression,” J. Amer. Stat. Assoc., pp. 1–11,
2020.

[13] S. N. Wood, Y. Goude, and S. Shaw, “Generalized additive models for large
data sets,” J. Roy. Stat. Soc.: Ser. C: Appl. Statist., vol. 64, pp. 139–155,
2015.

[14] M. Narajewski and F. Ziel, “Changes in electricity demand pattern in
europe due to covid-19 shutdowns,” 2020, arXiv:2004.14864.

[15] IEA, “Year-on-year change in weekly electricity demand, weather
corrected, in selected countries,” 2020. [Online]. Available:
https://www.iea.org/data-and-statistics/charts/year-on-year-change-
in-weekly-electricity-demand-weather-corrected-in-selected-countries-
january-december-2020

[16] K. Nagbe, “France short-term load demand forecasting using a functional
state space adaptative model: Case of covid-19 lockdown period,” 2020.

[17] Y. Chen, W. Yang, and B. Zhang, “Using mobility for electrical load
forecasting during the covid-19 pandemic,” 2020, arXiv:2006.08826.

[18] R. E. Kalman, “A new approach to linear filtering and prediction prob-
lems,” Trans. ASME - J. Basic Eng., vol. 82, pp. 35–45, 1960.

[19] A. Harvey and S. J. Koopman, “Forecasting hourly electricity demand
using time-varying splines,” J. Amer. Stat. Assoc., vol. 88, no. 424,
pp. 1228–1236, 1993.

[20] V. Dordonnat, S. J. Koopman, and M. Ooms, “Dynamic factors in state-
space models for hourly electricity load signal decomposition and fore-
casting,” in Proc. IEEE Power Energy Soc. Gen. Meeting, 2009, pp. 1–8.

[21] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl.

Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.
[22] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer

learning,” J. Big data, vol. 3, no. 1, 2016, Art. no. 9.
[23] L. Cai, H. Wen, J. Gu, J. Ma, and Z. Jin, “Forecasting customers’ response

to incentives during peak periods: A transfer learning approach,” Int. Trans.

Elect. Energy Syst., vol. 30, no. 7, 2020, Art. no. e 12251.
[24] S. N. Wood, Generalized Additive Models: An Introduction With R. Boca

Raton, FL, USA: CRC Press, 2017.
[25] A. Ba, M. Sinn, Y. Goude, and P. Pompey, “Adaptive learning of smoothing

functions: Application to electricity load forecasting,” in Adv. Neural Inf.

Process. Syst., 2012, pp. 2510–2518.
[26] P. J. Brockwell, R. A. Davis, and M. V. Calder, Introduction to Time Series

and Forecasting. Berlin, Germany: Springer, vol. 2, 2002.
[27] J. Durbin and S. J. Koopman, Time Series Analysis by State Space Methods.

London, U.K.: Oxford Univ. Press, 2012.
[28] L. Fahrmeir and G. Tutz, Multivariate Statistical Modelling Based on

Generalized Linear Models. NewYork, NY, USA: Springer Science &
Business Media, 2013.

[29] H.-C. Shin et al., “Deep convolutional neural networks for computer-aided
detection: CNN architectures, dataset characteristics and transfer learn-
ing,” IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1285–1298, May 2016.

[30] N. Laptev, J. Yu, and R. Rajagopal, “Reconstruction and regression loss
for time-series transfer learning,” in Proc. Special Interest Group Knowl.

Discov. Data Mining 4th Workshop Mining Learn. Time Ser., London,
U.K., vol. 20, 2018.

[31] D. Obst, B. Ghattas, J. Cugliari, G. Oppenheim, S. Claudel, and Y. Goude,
“Transfer learning for linear regression: A statistical test of gain,” 2021,
arXiv:2102.09504.

[32] S. Wood and M. S. Wood, “Package ‘MGCV’,” R package version, vol. 1, p.
29, 2015.

[33] H. Akaike, “Time series analysis and control through parametric models,”
in Appl. Time Ser. Anal. I, 1978, pp. 1–23.

[34] T. Hale et al., “A global panel database of pandemic policies (Oxford
COVID-19 Government Response Tracker),” Nature Human Behaviour,
pp. 1–10, 2021.

[35] P. Gaillard and Y. Goude, “Forecasting electricity consumption by aggre-
gating experts; How to design a good set of experts,” in Proc. Model.

Stochastic Learn. Forecasting High Dimens., 2015, pp. 95–115.
[36] B. Goehry, Y. Goude, P. Massart, and J.-M. Poggi, “Aggregation of multi-

scale experts for bottom-up load forecasting,” IEEE Trans. Smart Grid,
vol. 11, no. 3, pp. 1895–1904, May 2019.

[37] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games. New
York, NY, USA: Cambridge Univ. Press, 2006.

[38] P. Gaillard, G. Stoltz, and T. Van Erven, “A second-order bound with
excess losses,” in Proc. Conf. Learn. Theory, 2014, pp. 176–196.

[39] P. Gaillard and Y. Goude, “opera: Online prediction by expert aggregation,”
vol. 1, 2016. [Online]. Available: https://CRAN. R-project. org/package=
opera. r package version

[40] P. Gaillard, Y. Goude, and R. Nedellec, “Additive models and robust
aggregation for gefcom2014 probabilistic electric load and electricity price
forecasting,” Int. J. Forecasting, vol. 32, no. 3, pp. 1038–1050, 2016.

[41] M. Devaine, P. Gaillard, Y. Goude, and G. Stoltz, “Forecasting electricity
consumption by aggregating specialized experts,” Mach. Learn., vol. 90,
no. 2, pp. 231–260, 2013.

[42] F. X. Diebold and R. S. Mariano, “Comparing predictive accuracy,” J. Bus.

Econ. Statist., vol. 20, no. 1, pp. 134–144, 2002.
[43] Z. Zhang, S. Ding, and Y. Sun, “A support vector regression model

hybridized with chaotic Krill herd algorithm and empirical mode decompo-
sition for regression task,” Neurocomputing, vol. 410, pp. 185–201, 2020.

David Obst is currently working toward the Ph.D.
degree with EDF R&D in conjunction, Aix-Marseille
Université, Marseille, France. His research interests
focuses on the use of transfer learning and textual data
for time series forecasting.

Joseph de Vilmarest is currently working toward the
Ph.D. degree with LPSM, Sorbonne Université, Paris,
France and with EDF R&D. His research interests
include state space models, Bayesian methods, and
time series forecasting.

Yannig Goude received the Ph.D. degree in statis-
tics and probability from Université Paris-Sud Orsay,
Orsay, France, in 2008. He is currently a Senior Re-
searcher in the field of Data Science with EDF R&D
and an Associate Professor with Université Paris-Sud
Orsay, France. His research interests include time
series forecasting for electricity markets, time series
analysis, nonparametric models, and aggregation of
experts.

https://www.iea.org/data-and-statistics/charts/year-on-year-change-in-weekly-electricity-demand-weather-corrected-in-selected-countries-january-december-2020
https://CRAN. ignorespaces R-project. ignorespaces org/package$=$ ignorespaces opera. ignorespaces r ignorespaces package ignorespaces version

