
Adaptive Middleware for Self-Configurable

Embedded Real-Time Systems

Experiences from the DySCAS Project and Remaining Challenges

N B MAGNUS PERSSON

Licentiate Thesis

Stockholm, Sweden 2009

TRITA MMK 2009-22
ISSN 1400-1179
ISRN KTH/MMK/R--09/22--SE
ISBN 978-91-7415-495-5

KTH School of Industrial
Technology and Management

SE-100 44 Stockholm
SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan fram-
lägges till offentlig granskning för avläggande av teknologie licentiatexamen i
maskinkonstruktion torsdagen den 19 nov 2009 klockan 14.00 i seminarierum
B242, Institutionen för Maskinkonstruktion, Kungl Tekniska högskolan, Brinell-
vägen 83, Stockholm.

© N B Magnus Persson, oktober 2009

Tryck: E-print

Abstract

Development of software for embedded real-time systems poses several
challenges. Hard and soft constraints on timing, and usually considerable
resource limitations, put important constraints on the development. The
traditional way of coping with these issues is to produce a fully static design,
i.e. one that is fully fixed already during design time.
Current trends in the area of embedded systems, including the emerging

openness in these types of systems, are providing new challenges for their
designers – e.g. integration of new software during runtime, software upgrade
or run-time adaptation of application behavior to facilitate better performance
combinedwithmore efficient resource usage. Oneway to reach these goals is to
build self-configurable systems, i.e. systems that can resolve such issues without
human intervention. Such mechanisms may be used to promote increased
system openness.
This thesis covers some of the challenges involved in that development.

An overview of the current situation is given, with a extensive review of
different concepts that are applicable to the problem, including adaptivity
mechanisms (incluing QoS and load balancing), middleware and relevant
design approaches (component-based, model-based and architectural design).
A middleware is a software layer that can be used in distributed systems,

with the purpose of abstracting away distribution, and possibly other aspects,
for the application developers. The DySCAS project had as a major goal
development of middleware for self-configurable systems in the automotive
sector. Such development is complicated by the special requirements that
apply to these platforms.
Work on the implementation of an adaptive middleware, DyLite, pro-

viding self-configurability to small-scale microcontrollers, is described and
covered in detail. DyLite is a partial implementation of the concepts developed
in DySCAS.
Another area given significant focus is formal modeling of QoS and

resource management. Currently, applications in these types of systems are
not given a fully formal definition, at least not one also covering real-time
aspects. Using formal modeling would extend the possibilities for verification
of not only system functionality, but also of resource usage, timing and other
extra-functional requirements. This thesis includes a proposal of a formalism
to be used for these purposes.
Several challenges in providing methodology and tools that are usable

in a production development still remain. Several key issues in this area
are described, e.g. version/configuration management, access control, and
integration between different tools, together with proposals for future work
in the other areas covered by the thesis.

Keywords: adaptivity, embedded real-time systems, DySCAS, DyLite,
quality of service (QoS), load balancing, resource constraints, model-based
design, component-based design, software architecture, adaptive middleware

iii

Sammanfattning

Utveckling av mjukvara för inbyggda realtidssystem innebär flera utma-
ningar. Hårda och mjuka tidskrav, och vanligtvis betydande resursbegräns-
ningar, innebär viktiga inskränkningar på utvecklingen. Det traditionella
sättet att hantera dessa utmaningar är att skapa en helt statisk design, d.v.s.
en som är helt fix efter utvecklingsskedet.
Dagens trender i området inbyggda system, inräknat trenden mot syste-

möppenhet, skapar nya utmaningar för systemens konstruktörer – exempelvis
integration av ny mjukvara under körskedet, uppgradering av mjukvara
eller anpassning av applikationsbeteende under körskedet för att nå bättre
prestanda kombinerat med effektivare resursutnyttjande. Ett sätt att nå dessa
mål är att bygga självkonfigurerande system, d.v.s. system som kan lösa sådana
utmaningar utanmänsklig inblandning. Sådanamekanismer kan användas för
att öka systemens öppenhet.
Denna avhandling täcker några av utmaningarna i denna utveckling. En

översikt av den nuvarande situationen ges, med en omfattande genomgång
av olika koncept som är relevanta för problemet, inklusive anpassningsmeka-
nismer (inklusive QoS och lastbalansering), mellanprogramvara och relevanta
designansatser (komponentbaserad, modellbaserad och arkitekturell design).
En mellanprogramvara är ett mjukvarulager som kan användas i distribue-

rade system, med syfte att abstrahera bort fördelning av en applikation över
ett nätverk, och möjligtvis även andra aspekter, för applikationsutvecklarna.
DySCAS-projektet hade utveckling av mellanprogramvara för självkonfigurer-
bara system i bilbranschen som ett huvudmål. Sådan utveckling försvåras av
de särskilda krav som ställs på dessa plattformar
Arbete på implementeringen av en adaptiv mellanprogramvara, DyLite,

som tillhandahåller självkonfigurerbarhet till småskaliga mikrokontroller,
beskrivs och täcks i detalj. DyLite är en delvis implementering av koncepten
som utvecklats i DySCAS.
Ett annat område som får särskild fokus är formell modellering av QoS

och resurshantering. Idag beskrivs applikationer i dessa områden inte helt
formellt, i varje fall inte i den mån att realtidsaspekter täcks in. Att använda
formell modellering skulle utöka möjligheterna för verifiering av inte bara
systemfunktionalitet, men även resursutnyttjande, tidsaspekter och andra
icke-funktionella krav. Denna avhandling innehåller ett förslag på en forma-
lism som kan användas för dessa syften.
Det återstår många utmaningar innanmetodik och verktyg som är använd-

bara i en produktionsmiljö kan erbjudas. Många nyckelproblem i området
beskrivs, t.ex. versions- och konfigurationshantering, åtkomststyrning och
integration av olika verktyg, tillsammans med förslag på framtida arbete i
övriga områden som täcks av avhandlingen.

Nyckelord: anpassningsbarhet, inbyggda realtidssystem, DySCAS, DyLite,
servicekvalitet (QoS), lastbalansering, resursbegränsningar, modellbaserad de-
sign, komponentbaserad design, mjukvaruarkitektur, adaptiv mellanprogram-
vara

iv

Preface

I’d like to send immense thanks to my coworkers in the Embedded Control
Systems Research Group at KTH - Martin Törngren and DeJiu Chen who have
been my supervisors, Tahir Naseer Qureshi who started slightly earlier than me
and with whom I have cooperated a lot with throughout the DySCAS project, as
have Lei Feng and Javier García, and all the others who have helped to provide me
with a good working environment.
Naturally, additional thanks go to the projects that have funded my research.

Themain ones are DySCAS and FRAMES, with smaller contributions fromArtist2,
ArtistDesign, ARTES and CESAR.
Further thanks go to all the partners within the DySCAS project, which has

been the basis for this research.
I would also like to thank my parents, siblings, and friends who have

supported me outside of KTH. Sincere thanks!

Stockholm, Sweden
November 6, 2009

v

Pro captu lectoris habent sua fata libelli.

vi

Contents

Preface v

Contents vii

List of Appended Papers xi

List of Other Publications xiii

Reading Guideline xv

1 Setting the Scene 1
1.1 An Example Application: Vehicle Stability Control 2
1.2 Definitions of Key Concepts . 3
1.3 Development Tools and Processes 5
1.4 Industrial Context and Scientific Challenges 5
1.5 The DySCAS Project . 7

2 Research Goal and Document Structure 9
2.1 Research Objectives . 9
2.2 Thesis Structure and Contribution 11

3 Background and Industrial Motivation 13
3.1 Conventional Design Process of Automotive Embedded Systems . 13
3.2 Modularity . 16
3.3 Dynamic Reconfigurability and Self-Configurability 18
3.4 Degree of Adaptation: a Continuum of Multiple Dimensions . . . 19

4 State of the Art in the Development of Embedded Systems 21
4.1 Architectural design . 21
4.2 Model-based Design and Engineering 23
4.3 Component-Based Design . 26
4.4 Support Tools – Gap Analysis . 30
4.5 Discussion . 31

vii

5 Middleware 33
5.1 Transparencies . 34
5.2 Taxonomy of Middlewares . 35
5.3 Adaptive Middleware . 36
5.4 A Few Middleware Examples . 37
5.5 Discussion . 45

6 Adaptivity 47
6.1 Quality of Service . 47
6.2 Load Balancing . 49
6.3 Admission Control . 50
6.4 Generalized Adaptivity . 50
6.5 Control-Theoretic View of Adaptivity 50
6.6 Metrics of Configuration Quality 52
6.7 Discussion . 52

7 Design and Implementation of an Adaptive Middleware 53
7.1 Major Design Principles behind DySCAS 53
7.2 Implementing DySCAS . 55
7.3 Discussion . 56

8 Formal Modeling of Extra-Functional Properties 57
8.1 Overview of Formal Approaches . 57
8.2 A Proposed Resource Modeling Formalism 58

9 Discussion 59
9.1 Contribution and Validity . 60
9.2 Possible Future Work . 61
9.3 End Words . 66

References 67

Appended paper A
Suitability of Dynamic Load Balancing
in Resource-Constrained Embedded Systems
A.1 Introduction . A1
A.2 Introducing Load Balancing . A1

A.2.1 Load Balancing Viewed as a Control Problem A2
A.3 Key Design and Implementation Issues A3

A.3.1 Real-Time Requirements . A3
A.3.2 Conflicts with other Mechanisms A4
A.3.3 Design Issues . A5
A.3.4 Detection and Sensing Issues A5
A.3.5 Decision and Control Issues A6

viii

A.3.6 Actuation Issues . A6
A.4 Conclusions . A6
References . A7

Appended paper B
DyLite: Design, Implementation and Experiences of a Light-Weight
Middleware for Adaptive Embedded Systems
B.1 Introduction . B1

B.1.1 Motivation and Aim . B2
B.1.2 Delimitations . B2

B.2 Background . B4
B.2.1 DySCAS . B4
B.2.2 SHAPE . B7
B.2.3 SAINT . B12

B.3 Analysis of Requirements and High-Level Design Constraints . . . B17
B.3.1 Requirements on the DyLite Experimental Platform B17
B.3.2 Evaluated General Requirements and Evaluated Aspects . B17
B.3.3 Validation Test Cases . B19
B.3.4 Hardware Constraints . B20
B.3.5 Demonstration Scenarios . B20

B.4 Architecture and detailed design B21
B.4.1 Mapping of DyLite to the DySCAS Reference Architecture B22
B.4.2 Control Structure . B23
B.4.3 Task Model . B23
B.4.4 Communication Model: Protocol and Communication Stack B25
B.4.5 Resource Model . B28
B.4.6 QoS Mechanisms . B29
B.4.7 Self-Configuration Algorithm B30
B.4.8 DyLite API . B30

B.5 Implementation . B31
B.5.1 Movimento Puma . B31
B.5.2 Freescale MCF5213 evaluation boards B32
B.5.3 GNU/Linux PC . B32

B.6 Demonstration . B33
B.6.1 Embedded Scenario: Reconfigurability and Quality of ServiceB33
B.6.2 Resource Rich Scenario: Audio Streaming and Quality of

Service . B35
B.6.3 Resource Rich Scenario: Interaction with and Control of

Legacy Hardware . B36
B.7 Conclusions . B37

B.7.1 Research Questions Revisited B38
B.7.2 Possible Implementation Variations to Consider B39
B.7.3 Future Work . B40

References . B41

ix

Appended paper C
Towards Model-Based Engineering
of Self-Configuring Embedded Systems
C.1 Introduction . C1
C.2 Capabilities . C2
C.3 Case Study . C5

C.3.1 Architecture Modelling with UML C5
C.3.2 Verification and Validation through Analysis C6
C.3.3 Run-Time Models . C7

C.4 Conclusions and future work . C7
References . C7

Appended paper D
A Timed Automata Formalism for Modeling Resource Management
and Quality of Service in Real-Time Contexts
Used Notation . D1
D.1 Introduction . D2

D.1.1 Aim of the Formalism Presented D2
D.1.2 Related Work . D3
D.1.3 Requirements Analysis . D7

D.2 Theory of Timed Automata . D9
D.2.1 Definition of Timed Automata D9
D.2.2 Operations on Timed Automata D11

D.3 An Extensible Framework for Resource Modeling D11
D.3.1 Task model . D11
D.3.2 Resource Models . D12
D.3.3 Contracts and Negotiation D14
D.3.4 Modeling of Resource Management and QoS Mechanisms . D14
D.3.5 Utility Functions . D15
D.3.6 Adaptability . D15
D.3.7 Static Adaptability . D15
D.3.8 Dynamic Adaptability . D15
D.3.9 Configuration Reasoning . D15

D.4 Instantiation of the Framework . D16
D.4.1 Example: DyLite . D16
D.4.2 Other Instantiation Scenarios D18

D.5 Discussion . D19
D.5.1 Suitable Levels of Approximation D19
D.5.2 Semantic Weaknesses . D20
D.5.3 Applying the Framework for Other Purposes D20

D.6 Future Work . D20
D.6.1 Practically Oriented Ideas D20
D.6.2 Further Extensions of the Formalism D21

References . D22

x

List of Appended Papers

Paper A

Suitability of Dynamic Load Balancing in Resource-Constrained Embedded
Systems: An Overview of Challenges and Limitations

Magnus Persson, Tahir Naseer Qureshi, and Martin Törngren, presented at Work-
shop on Adaptive and Reconfigurable Embedded Systems (APRES’08), St. Louis,
MO, USA, April 21, 2008.

The paper was mainly written in close cooperation by Magnus Persson and Tahir Naseer Qureshi.

Martin Törngren provided vital feedback, suggestions for improvements and help in planning the

structure.

Paper B

DyLite: Design, Implementation and Experiences of a Light-Weight Middleware
for Adaptive Embedded Systems

Magnus Persson, Javier García, Lei Feng, Tahir Naseer Qureshi, DeJiu Chen,
Martin Törngren, technical report, KTH, Stockholm, 2009, TRITA MMK 2009:06,
ISSN 1400-1179, ISRN/KTH/MMK/R-09/06-SE.

Magnus Persson led the work. Javier García and Magnus Persson worked on the communication

protocol and communication stack. Lei Feng provided a reconfiguration algorithm, and also worked

on the task model, resource models, and QoS mechanism design. Magnus Persson programmed the

Freescale MCF5213 evaluation boards and Javier García the Movimento Puma and integrated DyLite

through a gateway to the SAINT system. Tahir Naseer Qureshi, DeJiu Chen and Martin Törngren

provided feedback and useful advice.

xi

Paper C

Towards Model-Based Engineering of Self-Configuring Embedded Systems

DeJiu Chen, Martin Törngren, Magnus Persson, Lei Feng and Tahir Naseer
Qureshi, book chapter to appear inModel-Based Engineering of Embedded Real-Time
Systems, Holger Giese, Bernard Rumpe, Bernard Schätz (eds), Springer Verlag,
2009.

DeJiu Chen and Martin Törngren led the work on the paper. The remaining authors all contributed

equally to the general ideas. Magnus Persson specifically provided input for the section on run-time

models.

Paper D

A Timed Automata Formalism for Modeling Resource Management and Quality
of Service in Real-Time Contexts

Magnus Persson, Lei Feng, Martin Törngren, technical report, KTH, Stockholm,
2009, TRITA MMK 2009:21, ISSN 1400-1179, ISRN/KTH/MMK/R-09/21-SE

Magnus Persson was the main author of the report, and was the originator of the described ideas.

Lei Feng and Martin Törngren provided helpful feedback and help in writing the report.

xii

List of Other Publications

Using Improved Resource Interfaces to Formally Describe Adaptability in
Embedded Systems

Magnus Persson and Martin Törngren, presented at 2nd Workshop on Adaptive
and Reconfigurable Embedded Systems (APRES), October 11, 2009, part of the
Embedded Systems Week (ESWEEK), Grenoble, France.
http://www.lulu.com/items/volume_66/7676000/7676758/2/print/7676758.pdf#page=33

Context-Aware Adaptation in DySCAS

Richard Anthony, DeJiu Chen, Mariusz Pelc, Magnus Persson and Martin Törn-
gren, in Electronic Communications of the EASST, vol. 19, 2009, presented at the
Second International DisCoTec Workshop on Context-Aware Adaptation Mecha-
nisms for Pervasive and Ubiquituos Services (CAMPUS 2009), Lisbon, Portugal,
June 12, 2009.
http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/245/232

Model-Based Development of Middleware for Self-Configurable Embedded Real-
Time Systems: Experiences from the DySCAS Project

Tahir Naseer Qureshi, Magnus Persson, DeJiu Chen, Martin Törngren and Lei
Feng, presented at the Work-in-Progress session at Model-Driven Development
for Distributed Real-Time Embedded Systems Summer School (MDD4DRES),
Aussois, France, April 22, 2009.
http://www.mdd4dres.info/_media/mdd4dreswip09_submission_13.pdf

On mapping UML models to Simulink/SimEvents: A Case Study of a Dynami-
cally Self-Configuring Middleware

Tahir Naseer Qureshi, DeJiu Chen, Martin Törngren, Lei Feng and Magnus
Persson, technical report, KTH, Stockholm, 2009, report number TRITA-MMK
2009:05, ISSN 1400-1179, ISRN/KTH/MMK/R-09/05-SE
http://www.sci.kth.se/polopoly_fs/1.18215!licavhandling.pdf#page=119

xiii

http://www.lulu.com/items/volume_66/7676000/7676758/2/print/7676758.pdf#page=33
http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/245/232
http://www.mdd4dres.info/_media/mdd4dreswip09_submission_13.pdf
http://www.sci.kth.se/polopoly_fs/1.18215!licavhandling.pdf#page=119

Experiences in Simulating a Dynamically Self-Configuring Middleware: A Case
Study of DySCAS Middleware

Tahir Naseer Qureshi, DeJiu Chen, Martin Törngren, Lei Feng and Magnus
Persson, technical report, KTH, Stockholm, 2009, report number TRITA-MMK
2009:04, ISSN 1400-1179, ISRN/KTH/MMK/R-09/04-SE
http://www.sci.kth.se/polopoly_fs/1.18215!licavhandling.pdf#page=81

Autonomic Middleware for Automotive Embedded Systems

Richard Anthony, DeJiu Chen, Martin Törngren, Detlef Scholle, Martin Sanfrid-
son, Achim Rettberg, Tahir Naseer Qureshi, Magnus Persson and Lei Feng, book
chapter in Autonomic Communication, Athanassios Vasilakos, Manish Parashar,
Stamatis Karnouskos and Witold Pedrysz (editors), Springer Verlag, 2009

Dynamic Configuration andQuality of Service in Autonomic Embedded Systems

Lei Feng, DeJiu Chen, Magnus Persson, Tahir Naseer Qureshi and Martin Törn-
gren, technical report, KTH, Stockholm, 2008, TRITA-MMK 2008:12, ISSN 1400-
1179, ISRN/KTH/MMK/R-08/12-SE

Survey on Dynamic Load Balancing in Distributed Computer Systems

Magnus Persson and Tahir Naseer Qureshi, technical report, KTH,
Stockholm, 2008, report number TRITA-MMK 2008:11, ISSN 1400-1179,
ISRN/KTH/MMK/R-08/01-SE

An Architectural Approach to Autonomics and Self-management in Automotive
Embedded Electronic Systems

DeJiu Chen, Richard Anthony, Magnus Persson, Detlef Scholle, Viktor Friesen,
Gerrit deBoer, Achim Rettberg, and Cecilia Ekelin, presented at 4th European
Congress Embedded Real Time Software (ERTS 2008), Toulouse, France, January
29–February 1, 2008

Simulation Tools for Dynamically Reconfigurable Automotive Embedded Sys-
tems: An Evaluation of TrueTime

Tahir Naseer Qureshi, DeJiu Chen, Magnus Persson, and Martin Törngren,
presented at Real-Time in Sweden (RTiS’07), Västerås, Sweden, August 21–22,
2007
http://www.kth.se/polopoly_fs/1.20317!licavhandling.pdf#page=51

Konstruktion av trådlös styrning för robottransportörer

Magnus Persson, Master’s thesis, Chalmers University of Technology, Report
ISSN 99-2747920-4 EX019/2007

xiv

http://www.sci.kth.se/polopoly_fs/1.18215!licavhandling.pdf#page=81
http://www.kth.se/polopoly_fs/1.20317!licavhandling.pdf#page=51

Reading Guideline

This thesis is a rather lengthy document, and all of it may not be relevant or even
interesting to all readers. For the sake of helping you to find the most relevant
parts of the thesis to read, the following guideline is given for readers of different
types:

• Layman: If you do not have any background in computer science or related
fields, you probably read this thesis because you are a friend of the author.
Supposedly, you are not interested in all the details. To understand the
problems this thesis is trying to solve, you should read chapter 1 and 3, and
to get an idea of what types of solutions are provided, then skip to chapter 9.

• Computer engineer or similar: If you have a solid background in computers,
but are not an expert in the areas covered by this thesis, the suggestion is that
you also read chapters 5 through 6, to have an background understanding.
After this, you can continue reading based on the expert reading recommen-
dations for your main interest.

• Expert: If you are an expert, you probably have one or several areas of
interest, which are covered as listed below.

– Middleware: The implementation of DyLite, a partial DySCAS imple-
mentation, is covered in chapter 7 and paper B.

– Adaptivity: If you are an expert at adaptivity mechanisms, such as
reconfiguration, QoS or load balancing, your main interest likely lies
in chapter 6 and paper A . Further, in chapter 8 and paper D, a formal
modeling framework for QoS and resource management is presented.

– Tools and methodology: If you are an expert at developing tools for
development of software for embedded systems, you are probably
mostly interested in how adaptive middleware solutions will affect
future development practices and tool requirements. These topics are
mainly covered in sections 4.4, 9.2.2 and 9.2.3 and paper C.

– Formal methods: Skip directly to paper D.

Regardless of who you are - I hope you enjoy your reading!

xv

Chapter 1

Setting the Scene

Mechanical systems are increasingly being controlled by computers. Often, this
technology combination is called mechatronics. Mechatronics is used in many
domains; in this thesis mainly mechatronics in vehicles is under consideration.
The computers performing the control of the mechanical part of the system are
normally called embedded computers, defined by IEEE as:

“A computer system that is part of a larger system and performs some
of the requirements of that system; for example, a computer system
used in an aircraft or rapid transit system.”[63]

To develop software for computers with the purpose to control real-world ma-
chinery is significantly different from developing general-purpose software. Some
special traits include that software running in embedded system is less easy to
control and observe, compared to software on desktop computers. The reduced
observability makes it harder to monitor, upgrade and debug. As an upside, these
constraints make the incentive for a more structured system architecture larger,
and the systems also typically (but not always) have a less complex architecture
than e.g. desktop computers, as they – in contrast with PCs and other general-
purpose computers – are tailored for a certain task. Further, the physical laws
of the computer’s surrounding environment implies strict constraints on how fast
the computer performs its calculations, and the computer can hence be considered
a real-time computer system:

“Real time – pertaining to a system or mode of operation in which
computation is performed during the actual time that an external
process occurs, in order that the computation results can be used
to control, monitor, or respond in a timely manner to the external
process.”[63]

Real time constraints can be further subdivided into hard and soft real-time
properties. Hard real-time typically implies that the system’s functionality is

1

2 CHAPTER 1. SETTING THE SCENE

Mechanical systemMechanical system

Interconnecting

network

C
o

m
p

u
te

r
s
y
s
te

m
s

Sen

sor
Sen

sor

Actu

ator

Actu

ator
Sen

sor

Actu

ator

Appl. A Appl. B Appl. C Appl. D

Middleware Middleware

RTOS and HW drivers RTOS and HW drivers

Figure 1.1: An illustration of a generic distributed mechatronic system, where the
application software on each node is supported by a middleware. Two distributed
control flows are indicated with arrows.

depending on the timing constraints being met. In soft systems, some timing
violations are tolerated, as long as it normally does not happen.
The complexity of these embedded computer systems is currently increasing,

including the software deployed on them[50], a development which poses a
significant development challenge. Different types of software may be used
as a counter-measure.1 The scope of this thesis is to explore possible future
support software, specifically middleware, extensively covered in chapter 5. An
illustration of a typical, generic, setting is shown in figure 1.1.
Development of complex, distributed systems (i.e. networked computer sys-

tems) takemore andmore development resources in current development projects
in industry[130]. In addition to technical support in the form of tools, run-
time support, etc, finding a good development method for such systems is a big
research challenge for the embedded systems community. There is an obvious
improvement potential in using a more organized and efficient development
setting for the developers.

1.1 An Example Application: Vehicle Stability Control

As an example of a typical functionality affecting large parts of a distributed
computer system, vehicle stability control will be described. This is a rather in-
formal description; for detailed information about one example implementation,
see e.g. [166]. The purpose of this functionality is to improve the vehicle’s driving

1Different terms are used, depending on the nature of the software and the usage context.
Some common ones are middleware, support libraries, communication protocol, framework, virtual
machine, run-time environment, etc.

1.2. Definitions of Key Concepts 3

BC

Expected
trajectory

Actual

predicted

trajectory

VSC

Figure 1.2: Illustration of vehicle stability control functionality. If the car deviates
from its expected trajectory, the vehicle autonomously applies brakes individually at
each wheel, together with throttle reduction, to keep the car on the road. The body
cluster is marked “BC” and the vehicle stability control computer “VSC”.

characteristics in slippery road conditions. An overview image of a typical system
is given in figure 1.2.
The vehicle stability control compares the driver’s input (especially through

the steering wheel) and uses it to calculate the driver’s expectation of the vehicle’s
trajectory on the road. It then compares this trajectory with the vehicle’s actual
trajectory, calculated from accelerometric data, typically from accelerometers and
gyrometers in a node called the body cluster. If the trajectories deviate too much
from each other, the computer concludes that steering control has been lost and
the car is starting to skid. To avoid a crash, the car can then autonomously applies
brakes to each wheel, to apply a turning moment to the car in the right direction.
Although a similar corrective action could have been taken by the driver, vehicle
stability control normally is far faster. To avoid driver overreliance on the feature,
it is common to give an visual or audio warning when the function is activated.
Vehicle stability control is a function which is very indicative of future car

functionality. It includes several, different, physical systems in the car – brake
controllers at each wheel, the steering wheel, sensors in the body cluster, and a
central controller. By necessity this function has to be distributed over several
nodes (centralizing sensing, processing and actuation to a single node wouldmake
cabling excessive), and includes several traditionally separate systems (brakes,
steering, dashboard, stereo). It also has real-time requirements – its response has
to be reliable and quick to be effective.

1.2 Definitions of Key Concepts

Many of today’s embedded systems are developed to be used in a closed setting;
i.e. where the system does not change after its deployment. For example; many
traditional networked embedded systems, e.g. within industrial automation and
traditional automotive networks, have been designed with the assumption that no
changes to the system will occur after deployment.
This fact is currently being challenged by a trend towards open systems[50],

4 CHAPTER 1. SETTING THE SCENE

accessible for changes after their deployment and interoperable with other de-
vices, which maybe not even were envisioned at the system development time.
This trend is partly due to the systems being exposed to an increasing number
of potential environment changes, that are simply not possible to handle with
traditional design methods. Hence, the assumption that the system structure
is known at design time no longer holds true[76]. More and more cooperating
embedded systems will be composed in ways not foreseen at design time, with
expectations on self-configuration. We define this term by first giving the definition
for configuration:

“The physical and logical elements (of a system), their assembly or
composition, including their interconnections and admissible interac-
tions, and the settings to select the admissible operational behaviors.”
[15, 48, 136]

“System Configuration – A particular arrangement and setup of data,
functions, software components, hardware resources, as well as their
relationships and properties that allows an embedded system to oper-
ate correctly according to its architecture.”[175]

We also need to define the term component:

“One of the parts that make up a system. A component may be
hardware or software and may be subdivided into other components.”
[48, 63]

As is pointed out in this definition, components may consist of both hardware and
software. Classical examples of hardware components include mechanical (cog-
wheels, nuts, bolts), electrical (resistors, diodes, batteries), pneumatic or hydraulic
(pistons, valves), digital electronic (registers, ALUs, memories, processors) and so
on. These are commonly standardized. There is an effort to provide similar types
of system structure for software through software components. This is extensively
discussed in section 4.3.
With this definition in mind, the following definition of self-configuration will

be used in this thesis:2

“The ability of a component to change its own configuration as a result
of either internal or external influences.”[136]

Self-configurable systems are a subset of adaptive systems. Adaptivity is a term
applied to systems that are able to change themselves when their environment
changes. The term is given a more rigorous coverage in chapter 6.
One specific application area where a new approach may be beneficial is

automotive embedded software. An example application scenario not supported

2Although this definition uses the word component, we apply the definition to systems in general.

1.3. Development Tools and Processes 5

by the current software architectures is ad-hoc networking with mobile devices
such as cell phones, PDAs, music players etc.
Further, in most types of software, it is relatively common to have to make

updates to the software after deployment. The reason for this could be desire
to add new functionality, legislative changes or simply because of detected
interoperability problems with other devices. Such updates are typically difficult
to make in traditional embedded systems and require involvement of skilled
workers.

1.3 Development Tools and Processes

All these trends jointly pose significant challenges on the development envi-
ronment, specifically as many embedded computer systems also have real-time
requirements. Most development tools make real-time properties a secondary or
even disregarded property of the software, implying that it has to be handled
separately. Usually this means these issues have to be resolved manually by
engineers.
It is a common approach to build static systems, where as many aspects as

possible of the systems are fixed during development. Specifically, this usually
includes allocation of tasks to processors, applications’ run modes, scheduling
parameters (i.e. static schedules or fixed priorities), and even the exact version to
be used (i.e it is hard to perform field upgrades). There is a continuum between
fully static systems and dynamic systems. Unfortunately, building static systems
may be an inefficient approach in some cases.
This evolution also has a number of implications on future development

processes for embedded systems. As system complexity grows, humans involved
in the development of the systems need to increasingly rely on software tools to
help them build systems, including the software used on them. These tools are
traditionally used off-line, at system development time.

1.4 Industrial Context and Scientific Challenges

Several industrial requirements contribute to the complexity of the research.
Users and developers of embedded systems often have quite specific require-
ments, even though they vary from domain to domain. The automotive industry
is used as an example thereof below.
To begin with, some automotive software is part of vehicle functions that are

highly safety-critical, e.g. braking. This puts stringent requirements on the design
process, including verification and validation. One of the traditional ways to
provide less varying performance is to separate different parts of the vehicle net-
work from each other. In automotive systems, the vehicular network is normally
divided into 2–4 different domains, interconnected by gateways[101]. Common
communication protocol choices are CAN[131], LIN[82, 83] and MOST[98]. An

6 CHAPTER 1. SETTING THE SCENE

Figure 1.3: A typical vehicle electrial architecture (simplified), in this example, three
network layers are used: from left, vehicle, body and telematics/infotainment.

upcoming one is FlexRay[49]. As an example; three main networks is a common
choice:

• telematics, infotainment and other non-safety-critical functions,

• the body domain where some, typically soft, real-time requirements are
present,

• the chassis domain, which includes hard real-time requirements from e.g.
the brake controller, motor and gearbox.

By using this system structure, isolation between different systems is achieved,
so that, for example, the radio software can not impact the performance of the
engine control unit causing hazards to the passengers. A simplified example
architecture of this kind is shown in figure 1.3.
These requirements, jointly with the vision of self-configuration, put a number

of needs in focus: base technologies for dynamic reconfiguration of embedded
systems, architectural guidelines and methods/tools for development of dynam-
ically reconfigurable systems. This includes possible design patterns and trade-
offs between flexibility (including scalability, configurability and portability) on
one hand and reliability, performance etc. on the other hand.
Additionally, development of embedded software is normally limited by

a number of requirements. There is a difference to other domains, in that
requirements not only pose demands on what result is achieved, but also at what
time it is delivered, i.e. significant real-time considerations come into play.

1.5. The DySCAS Project 7

1.5 The DySCAS Project

These challenges have all extensively been explored within the DySCAS3 project
[42], focused on the automotive domain. The autonomic computing[62] ap-
proach has been one of the drivers for the work. DySCAS strives to develop
a middleware for dynamically reconfigurable automotive systems to meet these
new requirements[7]. This thesis summarizes the author’s experiences gained
during the requirements elicitation, architecture and design work, verification
and validation, and evaluation of the project results. It further points out some
research challenges still left in the area, beyond the results achieved within
DySCAS.
The DySCAS project included several industrial partners – the software devel-

opment company Enea, automotive OEM partners Daimler and Volvo Technology,
the subsupplier Bosch GmbH, and two Swedish SMEs, Systemite (a tool vendor)
and Movimento. Also, except from KTH, the University of Greenwich, University
of Paderborn, and the Carl Ossietzky University of Oldenburg have been involved
in the project. Key results from the project include an overview of state of
the art in the area[8, 68], a reference architecture for middleware supporting
self-configurable systems[175], several different partial implementations, each
focusing on a specific part of the DySCAS concepts[154], and finally, an evaluation
of the concepts[71].
At KTH, the work within the DySCAS project has focused on a number of areas:

• Developing and documenting the DySCAS reference architecture, to be
found in the project deliverable D2.3[175].

• Investigation on simulation of dynamically reconfigurable distributed sys-
tems, simulation tools and simulator requirements, documented in a parallel
licentiate thesis[129].

• Developing algorithms capable of performing configuration autonomously
during run-time, documented in [46, 47].

• Implementation of a proof-of-concept middleware based on the above
mentioned architecture and algorithms. The middleware got the name
DyLite4, and is documented in paper B.

3The acronym means “Dynamic Self-Configuring Automotive Systems”
4DyLite is short for DySCAS Lite/QoS.

Chapter 2

Research Goal and Document Structure

Below, an overview of the aim and structure of this thesis is given.

2.1 Research Objectives

The overall goal of the research leading up to this thesis has been to provide sup-
port for the development of adaptive middleware1for self-configurable embedded
systems; given constraints of both functional and extra-functional nature. The
following subgoals have been identified:

1. To gain an overview of current state of the art in the areas of middleware,
model- and component-based engineering, real-time computing, and adap-
tation mechanisms such as quality of service (QoS) and load balancing,
particularly when these areas overlap.

2. Proof-of-concept implementation of an adaptive middleware for embedded
real-time systems.

3. Develop a deeper understanding of adaptation mechanisms in the form of
a formalized description of adaptability and resource usage of components
and systems.

4. An understanding of the requirements on future tools and methodology for
development of self-configurable systems, specifically in comparison with
today’s situation.

2.1.1 Research Methodology

The research has been carried out in the following ways:

1The term adaptive middleware is further elaborated in section 5.3.

9

10 CHAPTER 2. RESEARCH GOAL AND DOCUMENT STRUCTURE

1. Survey of state of the art and state of the practice, mainly through literature
study, covering several topics:

• The current, conventional design process of automotive embedded
systems.

• Middlewares, especially for embedded systems.

• Adaptation mechanisms such as e.g. quality of service (QoS) and load
balancing.

• Component-based methodologies and different component models.

• Architectural design.

2. Design work on DySCAS:

• Participation in the design work on the DySCAS reference architecture
and conceptual evaluation of different design alternatives.

• Participation in modeling and simulation of the middleware, using
model-based tools such as UML[167], Simulink[90], Stateflow[91],
SimEvents[151] and TrueTime[115, 165].

• Implementation of a partial reference implementation of DySCAS,
focusing on adaptivity in the form of reconfiguration and QoS.

• Integration of the SAINT[134] truck as a demonstrator for the DySCAS
project.

3. Synthesis and review, based on the collected information and developed
results:

• Consolidation of thoughts concerning the description of software com-
ponents, specifically practically implementable formal descriptions
of resource usage and other extra-functional properties in real-time
component-based systems.

• Gap analysis between tools and developmentmethodologies used today
and the ones that will be required in a future with self-configurable
real-time systems.

• Proposals for additional work, reaching beyond the work performed
within the DySCAS project.

2.1.2 Delimitations

The following delimitations have been made, giving a main focus on the types of
systems typically used in the automotive industry:

2.2. Thesis Structure and Contribution 11

• The focus of this thesis is on middleware. Hence, in this thesis, the
mechanical and electronic part of the final system will be considered as an
environment; co-design of mechanics and electronics is indeed possible, but
out of scope for this thesis. Further, all application-oriented software, which
is normally not available during the development of the support software, is
also regarded as part of the middleware’s execution environment. Applica-
tion software is still relevant, but only as a mold for the requirements on the
middleware.

• All practical evaluation was performed on computer systems realistically
usable in automotive systems, i.e. microcontrollers in the lower price range,
and using typical automotive networks, such as CAN. Different variants of
control software were covered in addition to infotainment and multimedia.

• Other types of middleware than message-based ones have only been covered
in the literature study and not in practical work. Message-based middleware
are the ones that seem most interesting for embedded control systems as
they are provide more flexibility in communication patterns between appli-
cations. They have also been less well-studied by the traditional distributed
systems community, which has focused a lot of work on middleware based
on remote procedure calls (RPC), including object-based middleware.

• Security and safety aspects, although interesting and important, were out of
focus.

2.2 Thesis Structure and Contribution

The main contributions included as part of this thesis are listed below:

• Overview of state of the art and practice

– An overview of the current industrial development practice, presented
in chapter 3, with a focus on how automotive embedded systems are
developed today, and gives a business perspective on why dynamic
reconfigurability may be advantageous in future embedded real-time
systems. .

– An overview of state of the art within the areas of model-based,
component-based and architectural design presented in chapter 4.

– An overview of a selection of middleware technologies are presented in
chapter 5,

– Chapter 6 provides an overview of different approaches to make sys-
tems adaptive, including quality of service (QoS) and load balancing. A
comparison and consolidation of the different approaches is also given.

12 CHAPTER 2. RESEARCH GOAL AND DOCUMENT STRUCTURE

– A presentation of the development of adaptive middleware in DySCAS
in chapter 7.

• A modeling formalism for resource management, quality of service, and
similar issues in situations where real-time constraints apply, is briefly
introduced in chapter 8.

• Finally, a discussion on conclusions to be drawn from the work and sugges-
tions for future work are given in chapter 9.

2.2.1 Brief Introduction of the Appended Papers

to provide more detailed information in several important areas, 4 papers have
been appended to the thesis. The content of the appended papers has not been
changed, with the exception of formatting changes and minor corrections. Addi-
tionally, the appendices have been left out of paper B, due to space constraints.
The interested reader is referred to the original publication[124].

• Appended paper A is a workshop article covering the conceptual evaluation
of dynamic load balancing in resource-constrained systems. This is included
to show that dynamic reconfigurability is possible in the expected hardware
environment.

• Appended paper B is a technical report covering the design and imple-
mentation of DyLite, a partial implementation of the DySCAS architecture
developed by the DySCAS project team at KTH. Its purpose has been
to concretize, validate and demonstrate the DySCAS concepts in small
embedded systems.

• Appended paper C is a book chapter discussing tool integration andmethod-
ology in connection with DySCAS, specifically covering limitations in cur-
rent product development environments and pointing towards a future
model-based development approach for DySCAS-style systems.

• Appended paper D is a technical report containing an outline of a formal
modeling framework for resource management and QoS, providing a simple
and accessible, yet powerful, versatile and extensible, framework for formal
and quantitative modeling of resource usage and quality of service, applied
to components in systems with hard and soft real-time requirements.

Chapter 3

Background and Industrial Motivation

Embedded software development today poses significant challenges. Partly, this
has been caused by a strive to include more functionality in the systems as
their capabilities have increased[43, 50], putting an emphasis on the cost-efficient
development of electronic embedded systems as an important research area in the
automotive industry.[130] By including more functionality in essentially the same
type of systems, the scalability of the development methods to larger system sizes
has been tested. This significant challenge is proving problematic – the cost of
development has increased significantly.
To counter this development, the need for both well-functioning run-time

support in the form of e.g. middleware, suitable design-time support through
design and analysis tools, and more efficient development methods is obvious.
The purpose of this chapter is to give a brief overview of the current state of
the practice in embedded systems development, with a main perspective on the
automotive one. Shortcomings and potential improvements will be identified to-
gether with current development trends in the embedded development world, and
finally some expected changes beyond today’s practice. The problem description
provided in this chapter will be used as a background for the rest of the thesis.

3.1 Conventional Design Process of Automotive Embedded

Systems

The conventional design process of many embedded systems is typically based on
some variation of the classic V-cycle[66] development process. One example of the
V-cycle is described below in subsection 3.1.1, loosely based on input from several
different sources[2, 101, 137, 171] covering mechatronics and embedded systems
development in general or in the automotive systems specifically.
In the automotive sector, this view of the development process is further

complicated by the fact that cars are developed in a distributed fashion over
borders between both companies and countries. The vehicle manufacturers – the

13

14 CHAPTER 3. BACKGROUND AND INDUSTRIAL MOTIVATION

Figure 3.1: One variation of the typical V-cycle development model.

OEMs1 – have the overall responsibility to create new car models, but a large
part of it is in reality performed by tier one subsuppliers, which often take full
responsibility for complete subsystems, including complete ECUs2.
This leads to a further complication, as it may lead to interest conflicts

between the different partners, e.g. concerning who has the main responsibility
for a certain function. As the supply chain crosses company borders, the
process is often relatively formal, and to a large extent based on documents, e.g.
specifications.
Specifications are typically focused around the bus interfaces, describing

how an ECU is allowed to communicate (signal exchange and functionality), as
subsystems typically contain complete ECUs. For the system integrator, this
implicitly also means that the developed ECUs need to be tested – both on their
own, to validate that they have been correctly implemented, and together, to verify
that no interoperability issues between ECUs from different vendors exist.

3.1.1 V-Cycle Development Model

First developed as a replacement of the early waterfall model, the V-cycle develop-
ment model has since reached considerable utilization, especially in development
of embedded systems. Several slightly different versions on the development
model are available; one of these variations is presented in figure 3.1, explained
below:

1. Requirements Analysis. The systems scope and requirements are decided
upon, based on the needs of users and other stakeholders.

1In the automotive industry, “OEM” has a different meaning compared to most other industries.
In this context, an OEM is the company which puts the brandname on the car – i.e. Volvo or Scania.

2ECU stands for Electronic Control Unit – a term used for embedded computers used in a car.

3.1. Conventional Design Process of Automotive Embedded Systems 15

2. Architecture Design. The requirements on the system are analyzed, and the
architecture is chosen. The architecture consists of high-level structure and
other fundamental design principles the system will be based on.

3. Component Design. Each of the components in the high-level structure is
further specified.

4. Implementation. Using traditional coding and/or model-based approaches,
each component is implemented according to its specification.

5. Component testing. Testing, and possibly other V&V approaches, are used
to validate that the components have been implemented according to their
specification.

6. Integration testing. The full system is assembled and tested in different ways
for verification of the interaction between different components.

7. Validation. When the full system has been built, it is further evaluated
to verify the requirements, maybe the system works as designed but is
nonetheless not suitable due to a bad requirements analysis.

Design feedback is not only given between successive design steps, but also on
the same horizontal level, e.g. the design documents written in the requirements
analysis, architecture design and component design phases are used in integra-
tion, component testing and validation. As previously stated, several variations
of the V-cycle exist, however, they all follow the basic flow of more and more
detailed specifications on one hand, and verification of the specifications as the
implemented components are integrated thereafter. What mainly varies are the
number of steps performed, their naming and content.

3.1.2 Organizational Limitations of the Design Process

The current design process has several significant limitations. Some of these are
today not as relevant as they may become with some of the current development
towards component-based approaches to software development in the automotive
sector, described in subsection 3.2.2.

• The process is heavily based on the assumption that separate organizations
are involved in the development, however also that each of them develops
complete hardware subsystems. This makes cooperation within a single
ECU, implying significant resource sharing, problematic, as different part-
ners’ contributions may interfere with eachother in unforeseen ways.

• The workflow is to a big extent document-based, which typically means that
specifications tend to become outdated as requirements change, and may
cause erroneous or otherwise inconsistent documentation.

16 CHAPTER 3. BACKGROUND AND INDUSTRIAL MOTIVATION

• Subsystem borders are commonly defined through organizational borders,
not by technological constraints, which may lead to ineffecient architecture,
especially as many new functions in cars are networked control functions.

• Autosar[14] (see subsection 5.4.1) implies a trend towards component-
based work processes, and also makes the case for a possibility of splitting
responsibility for hardware and software development between two or
more companies. This sharing of responsibility poses several verification
challenges, as the computer systems will not be exclusively available for one
development team or even one company. This implies that strong separation
of resources between different development teams will be necessary – at
the least organizationally, through specifications and work procedures – and
possibly technically, through resource management.

• Full testing of the software will be hard or possibly even infeasible for
software providers, as they don’t have access to a complete external en-
vironment in terms of hardware, platform software such as the operating
system, nor other software that will run on the node, such as an application
being developed in parallel at another company. This, in turn, may lead to
emergent behavior3 in combination with other software placed on the same
node which has been developed at an other organization – possibly even a
competitor! In the case something along these lines goes wrong, answering
who is responsible for causing the problem is problematic.

3.2 Modularity

Modularity has for a long time been a primary goal of both automotive engineering
and software development. These two disciplines don’t typically work jointly to
create manners to modularize systems.
With each new car model, new vehicle-wide features, such as anti-spin

systems, stability control, automatic parking assistance etc, and hence logical
coupling between widely separated mechanical systems, are introduced. Such
features are not easily implemented merely in local ECUs as they involve several
parts of the car, and as the same mechanical actuator may be used in several
vehicle functions, software integration also becomes necessary. This is exactly
the situation we are at today, where new approaches to modularity in automotive
embedded software have become necessary.

3.2.1 Configurability

Already today, there is a need to make adjustments to the settings used in vehicles’
ECUs. Virtually every known car model is available with a myriad of options and
add-on equipment, far away from Henry Ford’s one-time motto:

3Typical examples of emergent behavior are e.g. deadlock, resource contention, or timing issues.

3.2. Modularity 17

“Any customer can have a car painted any color that he wants so long
as it is black.”

A long time has gone since Ford’s days – today not only colors and materials, but
also functions are selectable. The configurability implies that ECUs have to deal
with differing amount of electrical and mechanical hardware being available in
the vehicle. Other ECUs may or may not be available, and a certain feature may
or may not be actually used in a specific version of the vehicle. There are many
approaches to this problem; in the extreme case, such a configuration would have
to be prepared specifically for each car, on special order.

3.2.2 Static Reconfigurability

Static reconfigurability is the possibility to easily change the configuration of
a system at design time, e.g. through helpful tools that help create different
configurations of similar systems. Static reconfigurability may include the
possibility to switch to a new configuration after deployment, but only with
significant efforts (e.g. turning of the entire system and reprogramming it).

3.2.2.1 Example: SAINT

The problem of static configuration in automotive systems was previously ex-
plored at the Mechatronics lab at KTH during the three consecutive SAINT
student projects[20, 26, 77, 134], which built a platform with representative
but simplified software. As a demonstrator for the projects, a scale (1:6)
truck with a trailer was developed as a demonstrator. The truck contains four
ECUs, whereof one has fixed functionality (i.e. it represents a blackbox system
from a subsupplier), and three are reconfigurable. The trailer contains three
additional reconfigurable nodes. A simple middleware and software application
for configuration were also provided.
Even though the SAINT platform was fully configurable, this feature was not

fully unproblematic. Configurations could not be fully verified to work before
runtime, basically meaning each of them needed to be individually tested. This
would normally not be a feasible approach in a real system, as new cars come off
the assembly line with only minutes’ interval, potentially each of them unique.
Even verification via simulation is potentially problematic – and even worse,
big software typically always have some bugs left in operational state. If severe
bugs are discovered, it may be relevant to update the software after delivery, and
possibly even after the vehicle model has been discontinued. This jointly makes
verification even worse, arguably totally impossible.

3.2.2.2 The Autosar Standardization Effort

The aims of Autosar[14] is to provide standardized static reconfigurability for
automotive systems in general, specifically the choice and integration of different

18 CHAPTER 3. BACKGROUND AND INDUSTRIAL MOTIVATION

software components onto different hardware after they have been built. This
means that there is a long-term trend in the automotive industry towards mod-
ularized software, enabling significant changes in the development of embedded
software in the automotive industry, specifically:

• Standardized interfaces make it, at least in theory, possible to exchange
software in a car between different alternative implementations from several
software vendors.

• Specifically, software development may be outsourced or subcontracted to
companies not actively participating in the hardware development.

• Finally, as several software development teamsmay share one hardware unit,
significant verification challenges fully come into play.

All of these approaches jointly put significant challenges on the current
development methodologies, and emphasize the need for future improvements
of both technological support and development processes.

3.3 Dynamic Reconfigurability and Self-Configurability

Dynamic reconfigurability and self-configurability are two closely related, but slightly
different, terms. Dynamic reconfigurability is reconfigurability at run-time, but
not necessarily supported by any special algorithms. Examples may include
software updates simply “pushed out” by the vehicle manufacturer, being already
confirmed to work correctly using traditional testing methods.
Self-configurability is going one step beyond – the system is expected to

autonomously perform the reconfiguration. A definition of this concept was given
in section 1.2.
Dynamically reconfigurable and self-configurable systems are an obvious, but

complex, step beyond statically reconfigurable vehicles. Statically reconfigurable
embedded systems are already today a reality, although the user friendliness,
including efficiency, of the reconfiguration process varies quite much.
There are also some relatively more PC-like embedded environments – e.g.

cellphones such as the iPhone – that are less restricted than other embedded
systems, where more flexibility is available. An example is the possibility to install
third-party software. A further example is the Mars rover[41], where software was
updated during the mission. These are however the exception; for all practical
reasoning, embedded systems are not built to be changed or otherwise adapted
after deployment easily. Still, as embedded software grows more complex, there
is an increasing push towards dependable software upgrade and maintenance.
This thesis, through DySCAS, builds on the idea that dynamic reconfiguration

in practical use, specifically in the automotive industry, may not only be beneficial,
but also increase the understanding of the problem of configuring static systems.
Today, typically a lot of testing has to follow the design of the systems, to ensure

3.4. Degree of Adaptation: a Continuum of Multiple Dimensions 19

that all extra-functional4 properties, such as e.g. performance, maintainability
and numerical exactness, are met. If performance can be guaranteed through
online run-time calculations, it would be trivial to just deploy the same approach
for a off-line design-time calculation.
Dynamic reconfigurability however also introduces several problems, both

technical and organizational:

• Performing online verification that different software components work
correctly in their respective environments, in particular in consideration of
resource constraints.

• Modeling both software components and their environment sufficiently
close to be able to do such prediction.

• Supervising and controlling resource usage, so that different components do
not inadvertently affect each other, e.g. if an application does not behave as
expected and specified.

• The development methodology in the industry will have to substantially
change, to better accommodate a radically different approach to software
development, where software is a possible end-deliverable in itself, and
where extra-functional properties are handled in amore formalmanner than
they are today.

3.4 Degree of Adaptation: a Continuum of Multiple Dimensions

As documented above, several different variants of configurability exist. Several
aspects can be used to evaluate these; as a main discussion, two can be mentioned:

• The time at which configuration can happen, e.g. development time, con-
figuration time, deployment time, and post-deployment, either when the
system is starting or shutting down, during specified safe states, or when
the system is fully active.

• The extent of the change. We use the classification from [52] for type of
adaptation. Resource adaptation means to reallocate resources depending
on availability, content adaptation to change handled data (e.g. bit-rate of
video). Parameters are numeric or on/off settings that can be changed,
functional adaptation refers to exchange of components to another one with
different functionality but the same interface, and structural adaptation
implies larger, architectural changes.

The continuum of configurability spanned by these two dimensions are illustrated
in figure 3.2. Further dimensions of adaptation, and application examples thereof,
are given in [52].

4Some people prefer the term “non-functional” or yet other variations. For this thesis, the word
“extra-functional” will consistently be used.

20 CHAPTER 3. BACKGROUND AND INDUSTRIAL MOTIVATION

Scope

Dynamic reconfigurability

Static

CBD

Appr.

Static

reconfigurability

Traditional

static

systems

Design

time

Safe

state

After

restart

Config.

time

Resources

Parameter

Functionality

Structure

Content

Runtime

Quality of Service

and

Admission Control
Dynamic load

balancing

Figure 3.2: Two dimensions of configurability: the timepoint at which adaptation
occurs, and the extent of the adaptation change. Examples of different mechanisms’
coarse mapping onto these dimensions are given.

Chapter 4

State of the Art in the Development

of Embedded Systems

There are several different approaches to reducing the development effort of
embedded systems. In this chapter, three main ones will be covered: architectural
design, model-based and component-based design..
These three approaches are partially overlapping, but partially also conflicting.

There is also considerable room for interpretation for all of these concepts, as they
are only relative loosely defined, and used differently by different scholars. As
an example, the relation between component-based and model-based design in an
automotive context, in terms of overlap, conflicts and differing goals, is extensively
explored in [163].
The scope of this chapter, in contrast to chapter 3, is not limited only to

automotive systems, but is applied to embedded systems in general. Inspiration
has also come frrom other areas, including research not explicitly targeted at a
certain application domain.

4.1 Architectural design

Architectural design[123] deals with the large-scale design of systems containing
software.1 There have been many approaches to the area, and in this thesis we
will base our description around the IEEE 1471 standard[64], which gives the
following definition of the word “architecture”:.

“The fundamental organization of a system, embodied in its compo-
nents, their relationships to each other and the environment, and the
principles governing its design and evolution”[64, 87]

1Exactly what constitutes the border between large-scale and small-scale design is a question still
open for debate, and probably doesn’t have any simple answer across domain boundaries – as the
border to a large extent is subjective.

21

22 CHAPTER 4. STATE OF THE ART IN THE DEVELOPMENT OF. . .

The work of architectural design is to find a suitable architecture for a certain
system. There are several challenges included in this: regardless of which
architecture is chosen, extra-functional properties of the system to be built will
be impacted in several ways; e.g. safety[80], performance, security, development
time, maintainability, costs and several other properties of the system to be built,
are to some degree influenced by the architectural choices made, directly or
indirectly.

4.1.1 Views

IEEE 1471 further defines an architecture as having one or several views, typically
described in an architectural description. Each view is depicting certain aspects of
the systems - in the words of Maier[87]:

“In IEEE 1471, a view is a collection of models that represent one
aspect of an entire system.”

If views are produced in the same way for several different systems, this manner
of creating views is called a viewpoint.

4.1.2 Trade-offs

Architectural design implies several trade-offs. The choice of a certain architec-
ture has implications on several different system properties, some quantitative
and measurable and some only qualitative. Depending on the choice of architec-
ture, different properties (including extra-functional properties) will be more or
less optimized. This implicitly means an important trade-off in the design process:
certain architectures will be better for some extra-functional properties, while
others will be better for others.

4.1.3 Architecture Description Languages

To describe system and software architectures, several architecture description lan-
guages (ADLs) have been created, several of them explicitly targeting embedded
and/or real-time systems.
Examples include SDL2[67] in the telecommunication area, and its real-time

extension, SDL-RT[145, 146], AADL3[1, 133] mainly in the aerospace area, EAST-
ADL[24, 25, 36] in the automotive sector, and the general-purpose SysML[114,
158]4. General-purpose software modeling languages, e.g. UML[110, 167], may
also be used as architecture description languages.

2Specification and Description Language
3Architecture Analysis & Design Language
4There are actually two versions of SysML – the proprietary OMG version and an open-source

variant, both referenced here. For practical purposes, the differences are small. (?)

4.2. Model-based Design and Engineering 23

4.2 Model-based Design and Engineering

Model-based Design and Engineering (MBD and MBE respectively)5 refer to
development practices putting one or several models as a central part of the
methodology. This is in contrast to many traditional development methodologies,
where documents instead play a similar role. Models are built and used to
represent a system for a certain purpose. Applied to traditional mechanical
engineering, a model may be e.g. a drawing of a system for printout, a 3D CAD file
used for design, a FEM model used to calculate mechanical tension or a part list
for an ERP system. Similarly, electrical engineering applies models such as Pspice
circuit simulations, cable diagrams, and breadboard prototypes. These examples
show that it is very easy to find different applications of modeling as an integral
part of classical engineering. In software engineering it is in comparison more
common to work on development without explicitly building models.6

4.2.1 Modeling Paradigms

Models are used differently by different developers and other stakeholders,
depending on for which purpose they want to use the model. These purposes are
relatively clearly visible in the various types of fundamental modeling paradigms
that have appeared. Some common examples include to use models as:

• prototypes, to create simpler versions of the eventual software system (either
with reduced functionality or a simplified environment, such as using a
more powerful execution environment or even a simulated environment),

• specification, i.e. the equivalence to a blueprint in mechanical engineering
or building construction,

• documentation of an already built system,

• reasoning about groups of systems, e.g. configuration handling,

• scratch/sketchpads, for putting down ideas,

• a common repository for documentation, instead of keeping it in a separated
document-based format, as in PLM7 systems.

5Several other terms are defined similarly, but with some other suffix – one example is model-based
verification[150]. Further, the first part of the expression is sometimes written model-driven, which is
a wording mainly used by approaches closely related to OMG’s model-driven architecture concept[104].

6One speculation is that it in software engineering is a lot easier to build the actual system – it is
at least not with a superficial look expensive to create “just one more” version of it. This may have
nurtured the today common practice of building much software by “hacking” or other less formal
development methods (e.g. Scrum, Agile) rather than by traditional engineering methods.

7product lifecycle management

24 CHAPTER 4. STATE OF THE ART IN THE DEVELOPMENT OF. . .

Information Modeling Executional Modeling Formal Modeling

Main goal Organizing
information effectively

Supporting implemen-
tation or simulation

Providing verified
guarantees

Modeling
elements

Many and relatively
weak expressiveness

Medium Few but with powerful
expressiveness

Semantics Semiformal, abstract Semiformal, concrete Formal

Main
focus

Structure Behavior (function) Verification

“Mindset” Librarians Hackers/Testers Mathematicians

Sections
in [164]

10.5.1.1 & 10.5.1.2 10.5.1.3 & 10.5.1.5 10.5.1.4 & 10.5.1.6

Examples UML, PLM Simulink, Ptolemy,
SystemC

UPPAAL, model-
checkers

Table 4.1: Comparison between the different modeling paradigms

Please note that more than a single one of these may be (and typically are) covered
by each in practice used tool; they are not mutually exclusive but complementary.
Based on these use cases, a plethora of modeling environments have been

developed. Many of them share several traits, on which the following (possibly
incomplete) broad categorization is introduced here:

• Information modeling

• Executional modeling

• Formal modeling

The three different paradigms have been characterized and compared with
each other in table 4.1. Further, a comparison with the similar classification made
in [164] has also been made.

4.2.1.1 Information Modeling

Information modeling is based around models which have as a main purpose
to organize information for one reason or another. Common examples include
documentation and communication between developers. Typically, this puts a
main emphasis on the systems’ structure, a secondary on behavior and little to
none on extra-functional properties. UML is an example of a language commonly
used in this manner. Other examples include entity-relationship diagrams[30].

4.2. Model-based Design and Engineering 25

4.2.1.2 Executional Modeling

The executional modeling approaches are further subdivided in two groups: im-
plementation and simulation. They have in common that the main purpose is
to produce a model that can be executed, either in a (possibly simplified) real
execution environment, or in a simulated one, as in Simulink[90] – a commercial
continuous-time modeling environment, SystemC[65, 117] – an open-source
language/library for simulation of digital hardware, Ptolemy[61, 128] – a multi-
MoC8 modeling and simulation platform. To sufficiently validate a system, this
means that several different tests (whether real or simulated) have to be done.

4.2.1.3 Formal Modeling

Formal modeling finally includes mainly those models that are explicitly built
for some kind of formal verification, i.e. reasoning based on mathematical
proofs. This includes different variants of automata, model checking, formal
languages, schedulability analysis[148] and similar approaches. One example
tool is UPPAAL[170], which is a toolsuit to perform analysis on timed automata.
Typically, the purpose of the analysis is to motivate a claim that a certain property
of a system always (or never) holds.

4.2.1.4 Relations between Paradigms

The three above different paradigms exist in parallel. None of them are totally
exclusive, andmodeling in practice very seldom focus on only one of these aspects.
Typically, modeling environments and languages are to a certain degree usable in
all paradigms, but many are not equally usable in all of them. The transition
is rather gradual. Many tools and languages are clearly stronger in one of the
paradigms, but it is often possible, at least partly, to use them also in others, at
least for input data. As a concrete example, UML has its core competence within
information modeling, yet a subset to be used for building executable models,
fUML (foundational UML)[105] is currently being defined, with the obvious goal
to create executable models.
Further, many tools already today support the inclusion of code within UML

models. A lot of work using UML models as a basis for formal verification has
also been done - further e.g. MARTE[103, 106] has been given a more solid
formal basis than is traditionally done in UML, and work has been done to create
model transformations between UML and Simulink[153]. Simulink has similarly
been used both for simulation and for implementation (the latter through both
special execution environments and code generation). Hence, the purpose of
the presented categorization is mostly to explain aims of different modeling

8MoC stands for model of computation, i.e. the manner in which computation is performed, for an
overview of MoCs, see e.g. [69]

26 CHAPTER 4. STATE OF THE ART IN THE DEVELOPMENT OF. . .

approaches, not primarily to explain differences betweenmodeling tools, although
they have appeared as each tool has had its dedicated user group historically.

4.2.2 Modeling Languages and Environments

Several different languages and environments have been built to supply modeling
support. A few commonly used ones are introduced below. The borderline
between a language that is mainly an architecture description language, and a
language that is a more general modeling language, is not entirely clear.

4.2.2.1 UML – Unified Modeling Language

UML[110, 167] is a very common semiformal modeling language, originally
developed within the software engineering community as a tool mainly for
communication and discussion. Much of the heritage from this area is still clearly
visible within the UML notation, even though the language today has a clearly
broader scope. The semiformality of the language makes it problematic to use as
a tool in formal modeling, many so called semantic variation points are inherent in
the specification, which may cause unclarity about the meaning of models unless
specifically clarified when used[147]. Further unclarity is added by the fact that
the same UML model has drastically different meaning depending on how it was
intended to be used when the model was built – e.g. as a specification, as an
example, or even as a general idea sketch that may be both incomplete and in
details even slightly incorrect.
It is common to base other modeling languages on UML through the use of

profiles. One example is the architecture description language EAST-ADL[36] for
automotive embedded systems, which is realised as a UML profile[25].

4.2.2.2 Simulink

Simulink is a very common simulation tool for control and signal processing
engineers, based on the Matlab[89] tool. Its simulation capabilities are very
commonly used to enable early verification of behavior of control algorithms. As
such, it has a solid focus on the system’s behavior.

4.3 Component-Based Design

Component-based design is a commonly suggested solution to several issues in the
software engineering community. The often touted vision is that software will be
as easy to build “as Lego”. Part of this vision is that previously developed software
components are to be reused in new contexts. With this introduction, we define
the term software component9:

9The term “hardware component” is, for the purposes of this thesis, left undefined.

4.3. Component-Based Design 27

“A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composi-
tion by third parties.” [159]

This definition is partially contended[34]; however, for our purposes, it is
sufficiently good. It is also abstract – however, based on the flora of approaches to
components available in the wild, it is hard to make a more concrete one.
As there are many types of components available, it is unfortunately very

obvious that all components are not composable with each other. Typically,
components that are supposed to be usable together are both based on some
common framework. Such a framework is called a component model10:

“A component model specifies the standards and conventions that
components must follow to enable proper interaction.”[27, section
10.2]

There are many types of component models, and it is not an intention of
this thesis to describe all variants thereof, only to introduce the concept. Still,
component models can be built according to quite different principles, and with
quite different goals. Some are focused mainly at providing benefits during
the development time, while others are useful even during runtime. There
are component models that are built both around source code and compiled
code. Components may have more or less formally described and standardized
interfaces.

4.3.1 Contract-Based Design

Even though more ad-hoc component models do exist, they are less interesting
in the scope of this thesis. Such models are often only focused around a
structural description and not usable to provide any kind of formal guarantees
on performance or other extra-functional properties, unless this level was found
simply through testing. This is not satisfactory for component-based real-time
systems. We instead focus mainly on component models built on the principle
of contract-based design[93]. This principle comes with the assumption that any
relevant relation between a component and its environment is fully specified. In
traditional computing this often means that all accessible interaction methods
(e.g. function calls) to the component are fully defined, as in C header files, IDL
or Autosar components.
There are also approaches to contracts that take some extra-functional proper-

ties into account. One such example is the FRESCOR project[51, 54], which also

10The exact wording is deceptive! In certain communities, most notably the UML one, this wording
would not have been used. A component model is not a model of a specific, concrete component
instance or class – with the terminology used in the UML community, a component model would
probably be called a “component meta-model” instead.

28 CHAPTER 4. STATE OF THE ART IN THE DEVELOPMENT OF. . .

relies on timing information of the contracts being explicit, and uses applications’
resource need specification as an input to a schedulability analysis used for
feasibility checking.

4.3.2 Contracts in Component-Based Design

The traditional approach to contracts in components – fully specifying the
functional interface, becomes insufficient when the software to be designed is to be
used in embedded systems. In this type of software, extra-functional properties,
such as safety, performance and timeliness play a significant role. Contracts
specifying these properties are also not as easily designed as functional contracts
in traditional software engineering, as all of these properties are tightly linked
with the hardware platform that the code is running on, and traditionally, a lot of
software development has tried to hide internal implementation details[59].
To counter this problem, rich component models have appeared, where not

only the functional interface is specified, but also at least one extra-functional
property. Examples include safety-enhanced components[22], components anno-
tated with numbers to be used for schedulability or performance analysis, as in
MARTE[103], resource usage and/or timing info in the HRC component model
from the SPEEDS project[155], the TADL11 and several others.

4.3.3 Example Component Models

The selection of component models made below includes a few recent proposals
from research and industry, but not to cover older approaches. The CORBA
Component Model is also covered as it is a commonly used component model. For
a more complete overview of component models and component-based design,
the reader is refered to other literature[34, 35, 79, 173].

4.3.3.1 Autosar

The Autosar middleware uses a standardized component model[17], which is
mainly centered around structural issues. Each component is built up of one or
several runnable entities12. Several runnables may be composed and included in
the same operating system task (thread or process). Dependencies, both on other
software and some resources, e.g. memory, are clearly stated. Other resources
are only informally handled, e.g. processing time, where the component model
basically only have special structured comments for users. Behavior is described
as black-box and assumed to be given in code or binary form. Modes, events
and external triggering is described as they form interaction points with the
environment, but the internal behavior is generally not made visible.

11Timing-Augmented Description Language
12Often informally abbreviated to “runnables”

4.3. Component-Based Design 29

4.3.3.2 Rubus Component Model

The Rubus component model[57] is based around the development chain from
Arcticus Systems[10] and their Rubus RTOS. Rubus uses hybrid scheduling –
clock-triggered tasks run at highest priority using static scheduling, and event-
triggered tasks use the remaining processing time.
Rubus components are represented by graphical entities, which can be con-

nected by data and triggering flows. Each component also has a so called run-time
profile, including execution time andmemory consumption on different platforms.
Three types of timing requirements are supported; deadlines, offsets and period
jitter.

4.3.3.3 The HRC Component Model

SPEEDS[155] is a European project into systems engineering. Its goal include
to improve the design productivity by improving and integrating model-based
developmen. The idea is that the same component model should be usable
throughout the system life-time, from early design to run-time. It is based around
the principles of design by contract using formal specification and with multiple
viewpoints.
HRC is based on the notion of assume/guarantee relations to the environment

where the component is deployed, making decoupling between different compo-
nent instances possible. The assumed and guaranteed conditions are expressed
using a variant of hybrid automata. Special pattern functionality is supplied for
common constraints and constructs. As the components are contract-based, and
hence assumptions on and promises to the component’s environment are made
explicit, formal methods are facilitated. [23, 32, 70, 156]

4.3.3.4 CCM – the CORBA Component Model

The CORBA Component Model, CCM[108], is a component model built around
the CORBA middleware. Three types of interaction are defined - through facets
and receptacles13, through event sinks and sources, and through attributes - where
the last mechanism is only intended to be used for setting up the components. For
all these mechanisms, standardized patterns are used for implementation and for
additional (implicit) reflective interfaces for each component.
Just as for CORBA, the components are described using a special language.

For CCM, this language is an extension of CORBA IDL, called CIDL – Component
Implementation Definition Language.
CCM further standardizes a number of handling mechanisms and the environ-

ment to be used for CORBA Components.

13facets are more or less equivalent to interfaces as implemented in Java

30 CHAPTER 4. STATE OF THE ART IN THE DEVELOPMENT OF. . .

4.4 Support Tools – Gap Analysis

Tools for model- and component-based development are to a large extent still
relatively immature. The field is characterized by a plethora of different, and
at least partly, incompatible tools with custom features. There are several
challenges[100, 129, 135, 149] involved in making such tools a reality.
Some of the issues related to these areas are tool integration between different,

separated tools (e.g. from different vendors). One way to achieve this would be to
write well-defined standards on interchange formats, another to couple all tools
together using a common platform, e.g. in the form of a common model database,
as in e.g. [44].
Finally, many modeling tools are still clearly to a certain extent immature.

They may lack flexibility, usability or just simply stability or proper documen-
tation. All these issues will reduce the potential for efficient modeling, both in
terms of time needs and correctness.
Some of these issues were approached by Ovaska et al[121], which built

an environment where UML and MARTE were used as a main base for a co-
development environment for hardware (e.g. FPGA) and software components.
Their report also discuss some of the issues they encountered.

4.4.1 Tool Challenges for Distributed Development Organizations

The matter of designing a development process is made worse by the organi-
zational and geographical distribution of the development chain, making the
question of responsibility distribution significant. In the case where a system
built from components from several different suppliers, the question of who
holds the responsibility of an error or fault is non-trivial, unless clearly stated
legal interfaces between the organizations are provided. However, the legal
requirements are related to technical requirements on the platform to be built.
Formally defined software interfaces would make the responsibility question
easier to solve, and hopefully also more easily avoided.
Information sharing between different developers is also a challenge, covering

issues such as version and variant management14, or more advanced configuration
management systems. These may in addition handle issues such as several differ-
ent release versions of the software, e.g. for different environments. Typically,
most traditional version management systems rely on the implicit assumption
that most of the development either occurs as edits of text files, or as fully
changed files. This assumption does not hold anymore when models are used
for development – many different ways of storing models exist, and it is not
uncommon that a whole set of models are stored in the same file, or that models
are stored in binary format.

14Common software development tools for this purpose include CVS and Subversion.

4.5. Discussion 31

Version management is a key issue when coordinating the work between sev-
eral different developers. Changes made by one developer may affect code written
by other developers – both because functional and extrafunctional properties
changed. An effective way of handling software versions and configurations hence
is important.
Further, to make matters worse, companies cooperating on one project may

also often in practice be competitors in other areas. This implies that they do
not want to provide components to each other that are fully transparent – the
implementation may build on significant trade secrets that the companies wish to
keep secret from each other, so they opt to only provide partial or approximated
component specifications. Due to this fact, it needs to be necessary for future tools
to integrate partial or deliberately imprecise specifications, and to interchange and
synchronize information in models from several disparate sources.

4.5 Discussion

In this chapter, three different approaches to simplify the development of em-
bedded systems have been introduced, and exemplified through a couple of
established concrete approaches based on them. It is clear that there is both
partial overlap between the approaches and areas which are not covered by all
of them. Additionally, neither approach fully solves all issues present in today’s
development environment. Ideally, features of all approaches would be used to
create one common approach.

Chapter 5

Middleware

In traditional computer networks, middleware has been used as an approach to
reduce development complexity. Bakken[21] has defined the term:

“Middleware is a class of software technologies designed to help
manage the complexity and heterogeneity inherent in distributed
systems.”

Although this definition gives us a short and direct definition, on its own it is too
abstract to give a concrete understanding of middleware. An alternative and more
concrete explanation is given by Sadjadi[132]:

“Middleware is connectivity software that encapsulates a set of ser-
vices residing above the network operating system layer and below
the user application layer. Middleware facilitates the communica-
tion and coordination of application components that are potentially
distributed across several networked hosts. Moreover, middleware
provides applications with high-level programming abstractions, for
example, use of remote objects instead of socket programming. In this
manner, middleware can hide interprocess communication, mask the
heterogeneity of the underlying systems (hardware devices, operating
systems, and network protocols), and facilitate the use of multiple
programming languages at the application level.”

A definition aimed specifically at the automotive sector is given by [48, 136]:

“Middleware is a software layer in between application components
and basic software modules providing a number of services an appli-
cation component or the system requires. These services summarize
and encapsulate basic software components. The MW offers a generic
platform-independent API for application components. It is the one
and only interface for an application.”

33

34 CHAPTER 5. MIDDLEWARE

Given some history, the unclarity of the definition of the termmiddleware is easily
explainable: there has been a lot of variability in the meaning of the term over
time, among different people, and depending on the context in general[28]. What
however is common, is that middleware typically refers to some type of software,
usually not an integral part of the operating system itself, which has the purpose
to simplify the programmers’ job of building applications that are distributed over
a network.
There is no formal definition on what the difference between middleware and

closely related concepts, e.g. network protocols or software platforms, are. To
some extent all of these terms have been used as buzzwords as their meaning
have changed over time, and hence it is hard to clearly put a border between the
different terms.

5.1 Transparencies

Although many different traditional middlewares exist, they all provide a number
of transparencies[21], i.e. they hide a certain development aspect from the
application developer. In practice, essentially all middlewares provide location
transparency (i.e. providing the same interface to services available locally
as to remote services). Most middlewares also additionally provide platform
transparency, e.g. to hide endianness differences and other implementation level
differences between different platforms, or hiding other aspects, such as concur-
rency, replication or failures.
Typically, middleware does not explicitly take timing and performance of

applications into account explicitly, and the ones that do, often let these issues
take a secondary role. Specifically in this thesis, we are concerned with timing and
performance issues, but the claim holds for other quantifiable extra-functional
properties, such as safety, reliability, and so on.
The main purpose of this chapter is to give an broad overview of the mid-

dleware area; and to give background information on a few interesting and/or
common middlewares to give an overview understanding of the concept, rather
than to cover novel approaches to middleware. Hence, the main focus has
been put on a selection of well-spread and commonly used middleware within
both the embedded systems and desktop computing. Less focus has been put
on describing research efforts. Further, an inclusive view has been taken, and
some technical approaches have been included although they are normally not
specifically referred to as middleware.
Due to the above mentioned reasons, the reader with a specific interest in

middleware is referred to some other survey on middleware for a more extensive
overview: e.g. the state of the art survey from the DySCAS project[8, 68] and other
related projects[88]. There are also surveys that focus specifically on adaptive

5.2. Taxonomy of Middlewares 35

(a) Emmerich[45]. (b) Schmidt[141].

Figure 5.1: Illustration of the two orthogonal middleware classifications used in this
thesis.

middleware1: [40, 60, 72, 132].

5.2 Taxonomy of Middlewares

There are several different general types of middleware. An illustration of the
different taxonomies refered to here is given in figure 5.1. An often cited one
was written by Emmerich[45], who provided a taxonomy based on four different
types2:

• Transactional middleware – support transactions3 between applications run-
ning on different hosts. Typically, the components are database systems.

• Message-oriented middleware (MOM) – focus on asynchronous message deliv-
ery over the network.

• Procedural middleware – allow applications to call functions on other hosts.
The archetypical example is remote procedure calls (RPCs).

• Object middleware4 – extends the procedural middleware concept to the
object-oriented and component-based programming paradigms. Objects
and/or components can be used despite being allocated on different nodes.

1The concept of context-aware middleware is related - in this thesis, they have been regarded as
synonyms.

2In [21], Bakken makes a similar classification, but using the terms distributed tuples, message-
oriented, remote procedure call, distributed object.

3The term “transaction” is used as defined in the database community.
4Emmerich originally also used the alternative name component middleware for some middlewares

in this group. However, he also formally claims them to technically be a subset of procedural
middleware. As component middlewares exist – Autosar is an example – which do not rely on the
traditional object pattern, only approaches based on the traditional object-oriented programming
paradigm will be covered here.

36 CHAPTER 5. MIDDLEWARE

Out of these classes of middleware types, procedural middleware can be seen
as a subset of message-oriented middleware, as an RPC call consists of two
messages – a request and a reply. Object middleware is a further specialization,
where further object-orientation principles have been applied.
Schmidt[141] proposes another classification scheme. Similar to the OSI

reference model for network communication, it is based on an assumption of a
layered software architecture, in which the layers allocated to middleware are as
follows, from the bottom up:

• Host infrastructure – encapsulates and enhance the operating system’s native
mechanisms, specifically abstracting away any incompatibilities between
different operating systems.

• Distribution – defines higher level distributed programming models, specif-
ically providing distribution transparency.

• Common services – comprise of higher level services which help the ap-
plication programmer to have less focus on “plumbing” and more on the
application itself. Typical examples include services to handle allocation,
scheduling, coordination, etc.

• Domain services – are higher-level services that are specific to some specific
domain(s) where the middleware is used.

5.3 Adaptive Middleware

For the term adaptive middleware[33], we use the following definition from Sadjadi:

“Adaptive middleware enables modifying the behavior of a distributed
application, after the application is developed, in response to some
changes in functional requirements or operating conditions”[132]

Sadjadi[132] further proposes several parallel classifications of adaptive middle-
ware. To begin with, he differs between static and dynamic adaptation, in that
the former occurs before runtime. They are further divided into customizable (in
which adaptation is performed at compile time) and configurable (ditto at startup
time), respectively tunable (adaptation performed before application startup) and
mutable (most adaptable).
As a parallel classification, he also lists three different paradigms that the

middleware may be built around, and subtypes of each of them: Qos-enabled (real-
time, stream-oriented, reflection-oriented, aspect-oriented), dependable (reliable
communication, fault-tolerant, load-balancer), and embedded (minimum, swap-
pable). The groups respectively have a main aim of, in addition of providing
traditional middleware services, also to be able to provide real-time and/or
performance requirements in terms of QoS, to increase the platform’s reliability

5.4. A Few Middleware Examples 37

and provide fault-tolerance to applications, and to be specifically targeted towards
embedded systems by having a smaller footprint than traditional middleware.

5.3.1 Key Supporting Paradigms for Adaptive Middleware

There are several architectural constructs that are usually used to make middle-
ware adaptive. Sadjadi[132] lists four main ones:

• Computational reflection – the ability of a software system to access informa-
tion about itself, and possibly change it.

• Component-based design – see section 4.3.

• Aspect-oriented programming – where different aspects of a software system
are described separately, giving separation of concerns during development
time. Through aspect weaving, different aspects are combined.

• Software design patterns – several design patterns can be used to promote
dynamic reconfigurability in middleware. One example is the virtual
component pattern, where only the core part of the middleware is loaded,
and less important add-on modules are only loaded when needed.

5.4 A Few Middleware Examples

In the following section, a number of traditional middleware examples are
presented. The list is not exhaustive; representative examples have been chosen
due to the existence of a large number of middlewares.5 Further, the focus has
mainly been put on middleware that is of commercial nature, as the focus of this
chapter mainly is to introduce the middleware concept.
An overview is given in the tables 5.1 and 5.2, where the middleware have

been classified according to Emmerich, Schmidt, and three main transparencies –
distribution, hardware and programming language.

5.4.1 Autosar

Autosar6[14, 19] is an effort towards standardization of software platforms
in the automotive domain, based on a standardized component model and a
standardized middleware software stack.
Autosar assumes a certain workflow[16], where system configuration is per-

formed hierarchically. First a functional model of how different software applica-
tions are logically connected is built, based around the so called virtual function
bus (VFB)[18]. Thereafter, the allocation of applications to ECUs is performed, and

5Some other middlewares are not discussed, not necessarily because they are irrelevant, but their
concepts are similar the described ones. Examples include HAVi[58], COM/COM+/DCOM[94].

6Automotive Open System Architecture

38 CHAPTER 5. MIDDLEWARE

Name E
m
m
er
ic
h
[4
5
]

Tr
an
sa
ct
io
n
al

M
es
sa
ge
-o
ri
en
te
d

P
ro
ce
d
u
ra
l

O
bj
ec
t

S
ch
m
id
t[
1
4
1
]

H
os
t
in
fr
as
tr
u
ct
u
re

D
is
tr
ib
u
ti
on

C
om
m
on
se
rv
ic
es

D
om
ai
n
se
rv
ic
es

T
ra
n
sp
a
re
n
ci
es

D
is
tr
ib
u
ti
on

H
ar
d
w
ar
e

P
ro
gr
am
m
in
g
L
an
gu
ag
e

Autosar X X X X X x
CORBA X X X X X X X
OMG DDS X X X X X
OSGi X X X X X -
Jini X X X X X -
UPnP X X X - - -
.NET – N/A – X X x X

Table 5.1: Characterization of the example middlewares. Marked functionality is
provided. Dashes indicate transparencies which are explicitly out of scope for the
approach. Lower case denotes partial or debatable level of support.

Name Special characteristics Specific Target Area

Autosar RTE Generation Automotive
CORBA General purpose, primarily desktop

computing
DDS Topic-based publish-subscribe, fil-

tering based on message content
Real-time systems, with a main
focus on less resource-constrained
ones, e.g. automation

OSGi Life-time management of compo-
nents

Embedded media devices

Jini Dynamically linked proxy objects –
UPnP Protocol-centric Home and small office LANs
.NET Language interoperability Desktop computing, web servers

Table 5.2: Special features of the middlewares and their intended usage areas

5.4. A Few Middleware Examples 39

finally, configuration of each node is done. When configuration has been done, the
logical mapping can be used to build the actual system. On each ECU, the VFB is
replaced with a generated run-time environment (RTE), which is adapted to each
specific system.

5.4.2 CORBA

CORBA7[111–113] is a middleware standard proposed by the Object Management
Group (OMG). It is based around the concept of an object request broker (ORB) on
every node, i.e. a software entity acting as a proxy for objects, potentially located
at other nodes. Foreign objects are accessed from the application through a stub
function on the client node, and the ORB interacts with the ORB on the other node
to provide a response. The ORB on the other node connects with the local objects
through a skeleton function. Both stub and skeleton functions are generated from
a special language called interface definition language (IDL), which is used as an
implementation-independent description of the implemented objects. Mappings
from IDL to several different implementation languages exist, e.g. C, C++ and
Java. There are also CORBA implementations for several different types of
hardware. To guarantee cross-compatibility, several communication protocols for
different types of contexts have been specified. Based on CORBA, a component
model (CCM) has also been developed, see section subsubsection 4.3.3.4.

5.4.2.1 Real-Time CORBA

Real-time CORBA[107, 142], sometimes abbreviated RT-CORBA, is an extension
to CORBA to better support real-time systems. In addition to standard CORBA
mechanisms, it adds consistent priorities across networks, special mechanisms
such as threadpools, etc. Standard scheduler types are used.8 A custom schedul-
ing server may also be used. In essence, RT-CORBA provides a middleware with
approximately the same ability for static scheduling using classical scheduling
theory for single processor systems, as it assumes the system designer takes the
responsibility to ensure that design constraints, such as timing, to be properly
met. Dynamic systems can also in principle be built, but the interfaces provided
by RT-CORBA are using too low abstractions to be directly usable without suitable
wrapper functions.

5.4.2.2 ACE, TAO, and CIAO

A commonly used implementation of Real-Time CORBA is the opensource one
built by Schmidt et al: TAO[140], a relatively small, and modular, implementation

7Common Object Request Broker Architecture
8Fixed priority, earliest deadline first (EDF), least laxity first (LLF), and maximize accrued utility

(MAU), where each deadline is coupled with a utility value.

40 CHAPTER 5. MIDDLEWARE

of the Real-time CORBA Standard. Currently the research team is also working on
a component-based version of their middleware, CIAO[139].
TAO has also been used to implement DynamicTAO[74] and 2k[75], early

attempts in making adaptive middleware based on CORBA.

5.4.3 OMG Data Distribution Service for Real-Time Systems

OMGDDS[109] is a secondmiddleware specification fromOMG. It is significantly
different from CORBA, as it is a data-oriented message-based middleware. It was
also initially designed to be used in real-time systems, rather than in desktop
computing.
Its basic communication paradigm is the publish-subscribe mechanism. The

standard includes possibilities to organize similar data, in so called topics. The
DDS standard also has some in-built abilities to handle QoS. Negotiation support
and standard types for properties such as deadlines, latency, reliability and several
others are provided.

5.4.4 OSGi

OSGi[119, 120] is a specification of an open, common, architecture for service-
based architectures. It specifies a standardized component oriented computing
environment for networked services. The target devices are consumer electronics,
PCs, cars, cellphones etc. OSGi is based on Java.
OSGi plays a complementary role to other technologies, including Jini and

UPnP. While these concentrate on device interoperability, OSGi has a focus on
delivery, deployment and remote administration of services for devices in a
distributed network. Directly supporting distributed applications is not the main
focus of OSGi.[56]

5.4.4.1 OSGi Framework and Component Model

Within OSGi, applications are distributed in bundles, as OSGi components are
called. Bundles are implemented by standard .jar files augmented with a special
description file.
OSGi has implemented specific support for lifecycle management of the

applications in the bundles, see figure 5.2. This provides the possibility to
start/stop, update and uninstall a bundle. Resolving a bundle means to prepare
starting of it by making sure that all the classes that the bundle is dependent on
already have been loaded. In case any are missing, they are automatically loaded
before the bundle is started.
Additionally, the OSGi specification includes some additional issues not

covered here – e.g. a number of standard services and a security model.

5.4. A Few Middleware Examples 41

uninstall
resolve

stop

start

install INSTALLED

UNINSTALLED RESOLVED

STARTING STOPPING

ACTIVE
explicit
automatic

update
uninstall

Figure 5.2: The lifecycle of OSGi bundles

5.4.4.2 Service Registration in OSGi

OSGi has a simple service registration mechanism. A bundle publishes a
service by registering it with the framework service registry at any moment
during the STARTING, ACTIVE or STOPPING life cycle states. A service object
registered with the framework is exposed to other bundles installed in the OSGi
environment. This is done by a simple call to the registerService() Java
function. The function returns a ServiceRegistration object, which can be used
to change or remove the service registration at a later instance.
The service registry also provides a possibility to receive notifications when

services register or unregister.[119]

5.4.5 Jini

Jini[157] is a Java-based middleware for distributed applications, with the overall
goal to make networked applications more flexible and easily administered.
This is done by using several parts together: a set of components, a specific
programming model, and finally, services that can be made part of the system.
Jini has a hierarchical structure. Several Jini groups can be joined hierarchi-

cally to form what is called a Jini federation.

5.4.5.1 Proxy Objects

In Jini, the concept of a proxy object or simply proxy is central. A proxy is a local
object that acts as a stand-in for a remote object. It presents the same interface as
the local code, but issues related to distribution, like network-related functions,
parameter and return value transmission are hidden from the user.
In Jini, unlike many other middleware architectures, the proxy object is not a

part of the middleware itself, or created statically during design time, but its code

42 CHAPTER 5. MIDDLEWARE

Figure 5.3: Jini discovery and lookup. Illustration from [174].

is dynamically transmitted over the network at runtime and then dynamically
added as part of the code of the connecting client application.

5.4.5.2 Discovery, Join and Lookup

The actual discovery and lookup mechanisms in Jini are fairly simple, as shown
in figure 5.3. A service that wants to join a Jini federation sends out a multicast
packet over the LAN. When this packet is received by a lookup server, a discovery
response is sent back to the joining service. This response contains a proxy object
to the lookup server, which thereafter is used to connect to the lookup server.
This proxy object is used to register an offered service with the lookup server

(to join), by placing a proxy object for the service itself in the lookup service(s).
Similarly, when a lookup is made, the response contains a proxy object which

is used to connect to the service. This proxy object is used by the client to establish
client-server communications directly with the server.[174]

5.4.6 UPnP – Universal Plug and Play

UPnP[168, 169] is a set of networking protocols aimed at “transparent network-
ing”. Its aim is not to implement a middleware – rather the idea is to use network
protocols in a standardized form sufficiently well for interoperation between
different types of devices.
The protocols build on standards like TCP/IP, HTTP, UDP and XML. Within

UPnP, as the aim is only to standardize network protocols, no assumption is made
on programming environment or programming language.

5.4.6.1 Brief UPnP Vocabulary

Some specific terms, as illustrated in figure 5.4, are used within the UPnP
standard. A controlled device (or simply device) functions in the role of a server
on the network and provides some kind of service. A physical device may consist
of one or several logical devices. The computer using the service is called a control
point.

5.4. A Few Middleware Examples 43

Figure 5.4: A UPnP control point invoking an action on a controlled device.

0. Advertising 1. Discovery 2. Description 4. Eventing

5. Presentation

3. Control

Figure 5.5: UPnP phases

5.4.6.2 Communication Protocol

UPnP uses a markedly different approach to service lookup compared to the two
other middlewares described in this paper. Instead of relying on one central point,
the mechanisms are totally distributed in a network of peer nodes. The UPnP
specification describes several phases as illustrated in figure 5.5, corresponding to
the different phases of the process of starting and using a UPnP device.

0. Addressing: In UPnP, addressing is done by standard mechanisms like
DHCP[38]9, and in the case that isn’t available, Auto-IP[31] is used instead.

1. Discovery: When a device is added to the network, it advertises its services
by a broadcast discovery message. Similarly, when a control point is added
to a network, the UPnP discovery protocol lets the control point search for
devices of interest on the network. The discovery messages only contain
minimal information about the device: type, identifier and a pointer to more
detailed information (in the form of a URL to an XML description file). If
possible, a device should also send discovery messages when disconnected
from a network, to advertise that it is no longer available.

9DHCP means Dynamic Host Configuration Protocol.

44 CHAPTER 5. MIDDLEWARE

2. Description: interested control points can send a description request by
downloading the XML description files from the URL supplied in the
UPnP discovery message. The UPnP description consists of two logical
parts – a device description file containing a device description and one or
several service description files containing service descriptions describing
the capabilities of the device.

A device description file includes manufacturing information as model
name and number, serial number, manufacturer name, URLs to specific web
sites etc. For each service in the device, the device description lists the
service type, name, and URLs for a XML service description file, URLs for
control and eventing, and a presentation page for the device as a whole.

3. Control: The control phase is used when the control point requests the device
to invoke actions. This may change the state of the device.

4. Eventing: Eventing allows a control point to monitor state changes in
devices. Control points interested in state changes in a specific device
subscribe to a service provided by the device. The device’s service will notify
all registered control points upon state variable changes.

5. Presentation: Finally, a device can optionally supply a URL for an adminis-
trative HTML-based presentation interface to allow for administration.

5.4.7 Microsoft .NET

The .NET framework[95] from Microsoft is not normally considered a middle-
ware, still, it earns a place in this survey. This is not mainly because the .NET
library actually contains classical middleware functionality for communication
over distributed systems based on e.g. the older COMmiddleware fromMicrosoft,
but due to some of the newer features of .NET in this section.
Themain interesting feature of .NET is that it is a multi-language environment.

A common type system and the same class library is made available to all
languages that use the .NET environment, and interoperability between different
parts of code is guaranteed even if they were coded in different languages.
Regardless of which language that is used for programming, it is compiled to
the same common bytecode language, Common Intermediate Languge, CIL. This
is then run through a virtual machine, the Common Language Runtime, CLR.10

Microsoft provides a handfull language implementation with its development
tools, of which C# and VB.NET are the most used ones. Third parties have
provided numerous alternative language implementations.

10The usage of a virtual machine is very similar to how Java works – the main distinction here is
that the Java virtual machine in practice only is used together with Java.

5.5. Discussion 45

5.5 Discussion

Several established examples of middlewares have been introduced. The dis-
cussed middlewares all differ significantly in the type of functionality they
provide to applications – due to their purposes being significantly different. Still,
none of them carry all the characteristics that would be suitable for a future
automotivemiddleware. The following characteristics would be preferable to have
in a future middleware and development environment for automotive and other
embedded systems:

• Cross-language interoperability, as in CORBA or .NET.

• Distribution transparency, so local and remote communication is performed
(in principle) in the same way.

• Dynamic and automatic handling of dependencies between different appli-
cations - like in OSGi.

• Usage of the publish-subscribe communication model, in exchange for or in
addition to other communication models.

• Compact implementation – many traditional middleware implementation,
even e.g. TAO, use more memory than is available in automotive hardware.

• Dynamically linkable modules, like in Jini, is a possibly usable concept to
reduce the amount of code that needs to be statically deployed on a node
and still provide flexibility.

• Focus mainly on the interfaces, rather than the actual implementation – like
in UPnP.

It can further be noted, that extra-functional properties take somewhat of a
backseat role in all the discussed middlewares. Although e.g. CORBA and DDS
have built-in QoS support, they are still relatively limited in this sense as the QoS
mechanisms have a more or less ad-hoc basis. This makes the semantics not fully
clear. Ideally, the QoS properties would be modeled formally, a line of thought
which is further investigated in chapter 8.

Chapter 6

Adaptivity

The ArtistDesign cluster Design for Adaptivity[13] defines adaptivity as follows:

“An embedded system is adaptive if it is able to adjust its internal
strategies to meet its objectives.

Comments:

• The adjustment is made in response to a change in, or increased
knowledge about, the environment or platform.

• The objective for the change is to maintain the system perfor-
mance or service at a desired level.

• The fact that the adjustment is performed at run-time is implicit
in the definition.”

This will also be the definition to be used in this thesis. Notable is that the
definition does not imply structural changes, e.g. reconfiguration – this means that
minor changes, such as adjusting some numeric value over time, can be classified
as an adaptivemechanism. This chapter is devoted to further explain architectural
patterns and measures used to implement adaptivity in actual systems – and tries
to give a unified view of what could, in general, be considered adaptivity within
the scope of middleware.

6.1 Quality of Service

Quality of service (QoS) is a family of mechanisms to handle on-line variability,
especially concerning performance, in computer systems, by changing the ap-
plications’ settings during runtime. The term originated within the community
of networking, where it was used to describe issues such as throughput, timing
and other properties of network traffic flow, and the mechanisms applied to try
to optimize the network traffic control from the users’ perspective. The usage of

47

48 CHAPTER 6. ADAPTIVITY

the term has since spread and is also applied within several other areas, including
embedded systems.
QoS can be implemented in many different types of systems, or applied

at different levels of a system stack. The concept was first used as a way of
providing differentiated services to different types of communication streams,
e.g. low volume real-time traffic and high-volume bulk traffic without timing
requirements. It has been applied both at a lower level, as part of the networking
protocol, and at most other layers, e.g. in the network layers in routers to prioritize
traffic of different types and sources, or in the application layers in e.g. streaming
media players.

6.1.1 Definition and Terminology

There are several definitions of quality of service available, many of them
incompatible. To some extent, consensus on what the term means is still not
present. In this report, a definition inspired by Vogel[172], but slightly more
generic is used:

“QoS represents the set of quantitative characteristics of a distributed
computer system, necessary to achieve or describe performance or
other measurable extra-functional properties of an application”

This definition is quite generic and abstract, but it is so by necessity. The QoS
idea has been applied in several diverse fields, with slightly varying semantics
and application requirements, e.g. in embedded systems, the QoS concept may
include non-traditional management of resources (memory, processor time, etc).
As a summary; basically the main idea of QoS is to adapt the behavior of

software that is using hardware and software resources, in such a manner that
the resource usage optimizes total user experience. This can be done both by
switching between different discrete modes (e.g. low and high quality mode), or
by varying a certain aspect smoothly (e.g. the sampling interval in a control loop).
Further definitions of terminology for QoS are, in general, taken from the ISO

13236 standard definitions presented in e.g. [152].

• QoS Characteristic – “quantifiable aspect of QoS”.

• QoSMeasure – “one ormore observed values relating to a QoS characteristic”.

• QoS Mechanisms – “are responsible for the establishment, maintenance,
enquiry and management of QoS.

• QoS Control – “are responsible for providing conditions so that a desired set
of QoS characteristics is attained”.

There are several additional definitions given in the ISO 13236 standard, however,
they will not be applied in this thesis. We will further use an additional one:

• QoS Actuation – actions taken by the QoS control.

6.2. Load Balancing 49

6.1.2 Architectural Variations on Quality of Service

There are several different approaches to QoS control. Almeida[4] distuingishes
between two main principal approaches – voluntary cooperation and law enforce-
ment. In the former approach, the subsystems are assumed to be working
towards a common goal, and in the latter, they are potentially non-cooperative,
i.e. resource usage needs to be supervised. The first approach is not able to give
performance guarantees, while the latter has larger resource overheads.
A further important architectural variation point is how the responsibility

for the QoS functionality is divided within the system. In some systems, QoS
is mainly implemented in applications, which of course can be highly targeted
towards the application at hand. On the other hand, it is quite common to also
build different type of support software to help the developer building QoS-
enabled systems, online in the form of middleware and QoS architectures, or
offline in form of development tools. In the latter case, the mechanisms needs
to be applicable for several different types of applications.

6.1.3 Challenges and Gaps in Understanding

One of the main challenges today is that QoS typically is implemented in an
ad-hoc manner, and there is not yet a good understanding of common QoS
mechanisms, as is explained in paper D. This is needed to perform formal
analysis on platform and applications. Even though this is not a significant
problem when building a concrete system, it does have implications when the
product to-be is not the final end-product to be developed. Such scenarios
occur exactly in the distributed development environments, as exemplified e.g. by
the component-based approach to software development envisioned by Autosar,
where a component-based approach is used, so that verification of composed
systems is independent from subsystem verification. In Autosar, however, there
is a possibility to deal with the issues through testing instead, requiring manual
work. If, to some extent, automatic validation ofcomponent combinations before
deployment of two separate and independent software components is to be
possible, not only covering structural compatibility but also resource usage , better
understanding of QoS mechanisms is necessary.

6.2 Load Balancing

Load balancing is a special case of load profiling, where the task allocation is
fully or partially optimized based on one or several resource usage metrics.[126]
These metrics convey some type of evenness or fairness of resource usage at
different nodes[126]. There are several reasons that load balancing may be
applied; performance maximization and energy conservation are two common
ones. Multiple ways to implement load balancing exist. For an overview, please
refer to e.g. [125].

50 CHAPTER 6. ADAPTIVITY

Paper A[126] gives an overview of the issues related with load balancing
in resource-constrained embedded systems. Although load balancing is not
commonly deployed in this scenario, partly due to lacking hardware and software
support, there are no technical reasons stopping the adoption of the approach.

6.3 Admission Control

Admission control is a mechanism that can be applied when several jobs to
be performed are arriving (e.g. incoming requests to a web server, requests to
start applications in an operating system). Based on some suitable policy, e.g. a
maximum arrival rate, individual jobs are denied or accepted.

6.4 Generalized Adaptivity

In general, QoS, load balancing and admission control are all different examples
of mechanisms that implement some form of limited adaptivity. Based on the
above examples of adaptivity, we can judge that adaptivity mechanisms in general
performs control of variability and adaptation. This control is potentially both
external1 and internal. Typically, this is based on some form of specification
of allowed changes. Based on the gamut of adaptivity mechanisms available
through e.g. QoS and load balancing, it can be seen that most of the configuration
options available during design time could be available also during runtime, given
sufficient runtime support.
In most systems, full reconfigurability and hence full adaptivity is deliberately

disallowed, resulting in a static system design. This is understandable, as dynamic
systems brings considerable complexity – just the allocation problem is sufficient
to create an intractable problem[162]. By constraining the adaptivity to only
handle certain aspects, as is done when applying QoS mechanisms, load balancing
or admission control, the problem of system design is made simpler, but the
potential solution space is also constrained.
One approach to generalized adaptivity and reconfiguration is the algorithms

developed by Feng[46, 47]. These are all based on heuristics, as the general
problem due to its complexity is intractable.

6.5 Control-Theoretic View of Adaptivity

Adaptivity can be viewed similarly as load balancing is approached in paper A
and [92], as a control problem. This approach is illustrated in figure 6.1. With
this viewpoint, the applications to run on the network can be viewed as plants that
are controllable through certain control actions (e.g. externally controlled mode
changes). The problem to solve is to find a suitable controller maximizing the

1to the component, e.g. application, in question

6.5. Control-Theoretic View of Adaptivity 51

ApplicationsApplicationsApplicationsApplications

Controller
Resource usage,

application states,

and other data about

entire system

Control actions, e.g.

mode changes,

reallocation of

software

I/O

Distributed system

Figure 6.1: Illustration of control view of adaptivitiy. Compare with figure A.1.

applications’ performance, while not surpassing constraints such as the amount
of available resources.
There are two main types of control systems: continuous control systems,

and discrete event control systems. In the former, abstractions such as block
diagrams and differential equations are typically used, and in the latter, finite
automata and Petri nets are typical abstractions. Both of these approaches have
been applied to computer systems. Even though the latter is closer to the low-level
implementation of computers, its scalability for big systems is worse than for the
first one. Still, this implies that in many scenarios, the models used to derive the
continuous control laws for the control mechanisms are at best approximations.
Both these types of control systems are commonly divided according in three

main parts: sensing, decision, and actuation. Of these three, actuation is of special
interest due to implementation challenges.

6.5.1 Actuation

Traditional resource-constrained embedded systems typically do not support
dynamic reconfiguration at all, relying fully on design time integration. This
makes today’s embedded systems less suitable as a basis for dynamically adaptive
software systems, as the hardware and software platforms are only to a limited
extent able to perform configuration changes at runtime.
To fully support dynamic reconfiguration, support for several possible actua-

tion mechanisms are necessary. To begin with, to deploy and start applications
without restarting the node, support for dynamic loading and linking[81] is
necessary. These mechanisms are typically not available in compact operating
systems used in embedded computer systems. However, in principle nothing
stops them from being so, and it has even been demonstrated to be possible[39].
Dynamic software upgrades, i.e. upgrading a piece of software while it is still
running, has also been demonstrated.[102].
To support reconfiguration, where changes would imply some type of support

52 CHAPTER 6. ADAPTIVITY

for online function migration, support for function migration during run-time
becomes necessary. This could be built in a manner that is more or less transparent
to applications. If less transparent, the application designers will have to
actively supply the support necessary to implement migration. The migration
can also be made completely transparent (with the exception of performance)
to the application developers, e.g. through the use of process migration[37, 96],
implemented in traditional computing in environments such as MOSIX[97] and
its open-source successor OpenMosix[118], where applications are migrated to
another node during run-time, based on heuristic utility functions approximating
the utility of migrating or staying at the same node. Such more transparent
scenarios have also been demonstrated in an automotive context, even with
temporal guarantees[73]. Less transparent approaches build on the concepts of
weak migration[116] and checkpointing[55], where the application developer has
to adapt the application during development, for it to be able to migrate.

6.6 Metrics of Configuration Quality

Similarly like in the area of architectural designs, many adaptivity measures
results in several different types of system being possible choices. As an example,
we take an example from the audio domain; using compressed audio transfers over
the network would use less network bandwidth, but more CPU time, compared to
sending the audio uncompressed. As it depends on the run-time state of all other
applications, it is not clear which of these scenarios would be best in a real-world
scenario, and it might also vary over time. For all such cases where an optimum
configuration or QoS setting can not be found easily, it becomes necessary to define
some type of metric that can be used to evaluate which of them is preferable.

6.7 Discussion

In this chapter, several different families of adaptivity mechanisms have been
introduced, including QoS and load balancing. There are further ones not men-
tioned here. Many of these are not well understood, as an example, there is not
a single, exact definition of quality of service, and in practice the understanding
of these concepts is quite diverse. At least partly, it is the author’s belief that this
is caused by many developers in the area working with ad-hoc mental models
of their systems, building concrete systems instead of trying to gain a thorough
understanding of the area of adaptivity mechanisms as a whole. Also, these
areas are to a large extent studied separately, even though e.g. the load balancing
community and the quality of service community share many common challenges.

Chapter 7

Design and Implementation

of an Adaptive Middleware

As a part of the research work performed within the DySCAS project, several
partial implementations of the reference architecture framework[175] have been
implemented, including one called DyLite. The DyLite implementation is
documented in [124], which is also appended to this thesis as paper B.

7.1 Major Design Principles behind DySCAS

The reference architecture framework in DySCAS[175] is not a concrete, tradi-
tional, standard on a computing system. As an example, only four high-level
compliance criteria covering the architectural style have been defined, yet it is still
expected that implementers generally will only build partial implementations.
Instead, it can be seen as a collection of suggested design patterns for middleware
implementers. The core principles that the reference architecture includes as
compliancy criteria are[6, 9, 29, 175]:

• usage of meta-data about the target system, e.g. variability models, moni-
tored system status, or expected behavior of applications.

• hierchical (layered) control, where the software is built in several layers, and
each layer performs succesively higher-level control tasks. This is illustrated
in figures B.3 and B.2. DySCAS reuses the terminology suggested in [3],

• usage of the publish-subscribe communication model, which is widely used
within the automotive area, and

• componentization of the middleware and of the applications. Also, a
behavioral specification for the middleware is given.

53

54 CHAPTER 7. DESIGN AND IMPLEMENTATION OF AN ADAPTIVE. . .

7.1.1 Resource Management and Quality of Service

One of the key focus areas of DySCAS is resource management. Resource
management can be concretely implemented as one of several different adaptivity
mechanisms; examples include quality of service and load balancing, which both
have been extensively explored within the DySCAS project.
The design of DySCAS, with division of responsibilities between different

software levels, gives a structure of control paths, as shown in figure B.3, giving
division of responsibility between different components.

7.1.1.1 Contracts and Negotiation

To enable formal reasoning about performance and other extra-functional proper-
ties, DySCAS specifies the use of contracts1 and negotiation based on component
specifications2. Component specifications in different forms need to be provided
for all parts of the system – including both hardware and software entities.
As system specifications often can be integrated into the development environ-

ment, less focus has been put into the work how to optimally write specifications
for hardware elements. Below, only specifications for software components will be
covered.

7.1.1.2 Delivery Notes – Software Component Specifications

Specifications of software components can be expected to play a vital role in
future development flows, especially in environments where development is
distributed geographically and between companies. In such scenarios, it is not
only necessary to make sure that the final system works, but also, in case one or
several components are incompatible, to clearly be able to pinpoint what caused
the failure, and find out who is guilty to remedy the situation. In DySCAS, the
focus of such analysis has been resource usage. A suited information model is
provided as part of the DySCAS reference architecture.
The content of a software component specification can be classified in different

ways. The information necessary to convey the component’s properties are several,
and can broadly be broken down into four main categories:

• Structure – meta-information typically supplied within most component
models, such as available interfaces, types, return values etc.

• Dependencies – a component’s expectations on its surrounding applications
in the environment, e.g. if a certain signal or support library is available at
runtime.

1E.g. in the form of QoS contracts.
2Component specifications are popularly also called delivery notes, as they contain meta-data that

is necessary to use the component in a real context.

7.2. Implementing DySCAS 55

• Extra-functional constraints – typically formulated early on in the develop-
ment phase as requirements. All constraints are to be independent from
the way the component is actually implemented, or which hardware it runs
on. If the development is subcontracted, this may act as the resource budget
given to the supplier.

• Extra-functional properties – are the equivalent to the previous category,
except that here, the properties are the properties of a specific realisation
of the system – e.g. an implementation of a standardized component from a
certain supplier, run on a specific well-defined hardware setup.

Out of these four categories, the first three can be formulated completely inde-
pendently of the hardware the software will run on. For the last one, some kind
of performance analysis3 needs to be performed on the actual hardware platform
to be used, for it to be possible to formulate the needed data. Together, these
four parts (although they in practice may be intertwined with each other), form
a sufficient specification of the component, both structure and behavior in terms
of resource usage. It is however also important to note that the specification need
not necessarily be complete – as long as it is sufficiently detailed to be used in the
design process. Online support, e.g. execution time measurement, may be used to
further characterize the likely behavior of the component.

7.2 Implementing DySCAS

Several different practical implementations[144] and demonstrators[154] were
built during the project. Below, two of the implementations are described.

7.2.1 DyLite

One of the implementations, called DyLite4, was developed at KTH. A technical
report covering the DyLite implementation has been appended as paper B[124].
Further information is available in [71, 143, 144, 154].
The implementation is significantly simplified compared to the whole DySCAS

framework. As a type of design exploration, it was explicitly decided to build
a compact implementation. To achieve this goal, it was decided to use a fixed
network structure, and make several delimitations to the work as covered in
subsection B.1.1. One such delimitation was that all applications were pre-
deployed to all nodes, as Rubus RTOS is not capable of dynamic loading and
linking of applications. Another delimitation was that delivery notes were not
written for applications and then distributed during run-time, instead, they were
included directly into the systems together with the applications.

3E.g. formal WCET analysis, performance testing or similar.
4DyLite is short for DySCAS Lite/QoS.

56 CHAPTER 7. DESIGN AND IMPLEMENTATION OF AN ADAPTIVE. . .

The system has a hierarchical structure, with one master node built around
a Movimento Puma[99], a powerful customizable standard ECU with its own
programming environment, Pantera, and its own programming language, E-
script. Several slave nodes were also used, which were based on an evaluation
board for the Freescale MCF5213 microcontroller, using the Rubus RTOS[11, 12]
and the C programming language.
Based on this, a centralised reconfiguration algorithm[46, 47] was imple-

mented on the master node, controlling the mode choices of the applications, all
running on the slave nodes. With this basis, limits on resource utilization, such as
the classical one supplied by Liu and Layland[85], were used to supply constraints
for the self-configuration algorithm.
The implementation was further integrated with legacy technology, in the form

of the truck developed within the SAINT project[134] through a gateway[53].

7.2.2 SHAPE

Before and in parallel to the work on DyLite, an additional reference implementa-
tion of DySCAS, SHAPE, was built at Enea. The two implementations share many
traits (as they are both based on the DySCAS design principles), however, they
are also in many sense dissimilar. This is natural, as they were both developed
based to a big extent based on the same principles, yet the delimitations and base
assumptions were slightly different. This is exemplified by the fact that SHAPE
does not have a network topology which is as fixed as the one used in DyLite,
instead, multiple masters may be present, electing which is currently active among
themselves. The design of certain aspects of SHAPE[78, 84, 86, 154, 176] also
directly and indirectly influenced the work on DyLite.

7.3 Discussion

DySCAS can be characterized in the same manner as other middleware were in
table 5.1, classifying it as a message-orientedmiddleware according to Emmerich’s
taxonomy[45]. According to Schmidt’s classification[141], DySCAS mainly pro-
vides distributiona and common service, but also partial host infrastructure.
Finally, it mainly provides distribution transparency. Hardware transparency and
programming language transparency are not explicitly excluded, but were not
actively covered either.
Although some limitations to the DySCAS approach were seen during de-

velopment (one example is that it is hard to concretely interpret the reference
architecture, which is quite abstract), it builds a good foundation for further
research. Some of the goals were only met separately in each of the used
implementations, not in the framework as a whole. As an example, the vision
of “plug-and-play” is not feasible without fully specifying also lower layers in the
system stack.

Chapter 8

Formal Modeling of

Extra-Functional Properties

One of the main experiences of the DySCAS project, has been that to support
self-configuration, it is necessary to enable formal reasoning around the software
system’s behavior. The reason is that in self-configurable systems, the reasoning is
performed by computer processors instead of human brains.
Unfortunately, many of the established modeling approaches do not enable

such analysis, either because their main focus is on structure, their semantics with
regards to behavior is only informal or semi-formal, or possibly, both of these
conditions apply. One example is UML, which although providing several well-
founded approaches to behavioral modeling, is only a semi-formal language and
does not have unambiguous semantics.
Not only does the behavior of the system need to be fully defined – so does its

resource consumption. Unfortunately, even less focus has been put on this issue
in common approaches to the problem. Most software engineers see performance
as an emergent property of the system.

8.1 Overview of Formal Approaches

A number of formal approaches would be applicable to use on the problem
of predicting performance, including resource usage, in distributed real-time
systems. Some examples include automata and Petri nets (incl. timed variants[5])
temporal logic, e.g. [127] schedulability analysis in several variants – ranging
from the classical Liu-Layland analysis[85] to e.g. critical instant analysis[148]
and resource bound analysis[122].
Several of the traditional scheduling approaches, including testing, and ad-

ditionally also timed automata, were evaluated by Perathoner et al[122]. The
conclusion can be summarized as timed automata always being exact, but also
often proving to be infeasibly computationally complex. Some of the schedula-

57

58 CHAPTER 8. FORMAL MODELING OF EXTRA-FUNCTIONAL. . .

bility analysis methods, most notably resource bound analysis, proved to be a
better compromise between computational overhead and exactness. Still, there
is a significant engineering effort in determining which one of all these models
to use, and if it’s an approximative model, often several different variants of
approximation can be applied to the same system.

8.1.1 Current Efforts

There are significant efforts going on to rectify the problem with resource and
performance modeling. This is true even if non-formal analysis methods, e.g.
simulation, are excluded. An overview of approaches is given in subsection D.1.2.
Specifically for automotive systems, the TIMMO project[138, 160, 161] can be

mentioned, a project aiming to provide a timing model to Autosar, by providing
the ability to write down timing requirements based on events, timing chains and
timing constraints. Still, this does not reach the full goal of also being able to
model the resources that need to be used by each component.

8.2 A Proposed Resource Modeling Formalism

In paper D, a formalism for modeling of resource management, including quality
of service, is introduced. It is based on timed automata annotated with resource
usage, based on a specified resource algebra. The DyLite implementation is used
as an example instantiation, providing a special case of modeling conformant to
the formalism.
Despite the computational intractability of timed automata, they were chosen

as a modeling basis. They can be used to derive both an exact analysis, but also
be used in an approximative analysis. Hence, this means that timed automata are
promising to be able to provide a formalism that is both exact, and approximative,
depending on the needs of the developers.
Timed automata additionally form a natural extension to a formalism well-

known to most developers of software in embedded systems: state machines and
automata. Hopefully, this means that the semantics of the modeling formalisms
are relatively easily learned and intuitive to the modelers and other developers.
Full formal modeling of behavior, including extra-functional properties such

as performance, is still a significant challenge. The framework presented in paper
D is just a first step towards building such models. The framework needs to be
instantiated, e.g. by developing suitable formal resource models compatible with
the requirements of the formalism.
Further, to be useful in a real-life scenario, the formalism needs to be

supported by efficient tools. These tools will probably, in the long run, need to
be able to integrate different analysis methods, e.g. timed automata theory and
schedulability analysis, as each individual system will put different requirements
on the analysis tools.

Chapter 9

Discussion

This thesis has covered a broad area – model-based and component-based design,
middleware, adaptivity mechanisms such as QoS, among others. It can not be
claimed that this thesis has reached a full understanding of all these concepts,
and it has also not been the aim.
Based on the material in this thesis, the following conclusions can still been

drawn:

• Adaptivity mechanisms such as load balancing are possible also in resource-
constrained systems, making very compact adaptive middleware imple-
mentations feasible (as shown in paper A and paper B), and can use less
resources, especially memory, than traditional middleware implemented for
desktop computing (at least an order of magnitude if not two).

• Model-based engineering is a term with several meanings, having many
possible interpretations. In this thesis, model-based design has been
classified into three main modeling paradigms; information modeling,
executional modeling, and formal modeling. These are partly disjunct,
although they can all be claimed to put the model in center, they are not
fully interoperable as their design goals are quite different.

All these paradigms are in different contexts relevant in the development
of embedded systems, and it would probably be good if tools efficient in
all three paradigms would be developed, instead of today’s situation, where
tools best suited for one of them are adapted to additionally be used in the
others. Current development methodologies tend to have a focus on one of
them, not giving satisfactory support for the others.

• Formal modeling, so far, has not had very much focus on extra-functional
properties, such as resource usage. When formal approaches have been
applied, they have typically had specific assumptions about the modeled
systems. Generic formalisms, that are general enough to describe different

59

60 CHAPTER 9. DISCUSSION

types of resource management problems, are uncommon. This is despite
that in real-time systems, extra-functional properties may be the key differ-
ence between a correct system and an incorrect one.

• Tool support for modeling, development, verification and validation of
adaptive systems is a significant challenge. There is both a lack of features
in individual tools, as well as integration between different tools. To really
take advantage of all the ideas about adaptive middleware, much better
development environments will be necessary.

9.1 Contribution and Validity

The main contributions included as part of this thesis are listed below:

• An overview of the current industrial development practice, presented in
chapter 3.

• An overview of state of the art within the areas of model-based, component-
based and architectural design, middleware, and adaptivity, presented in
chapters 4, 5, and 6. Load balancing was given a specific suitability study in
paper A.

• A presentation of the development of adaptive middleware in DySCAS in
chapter 7, exemplified by the DyLite implementation, which is covered in
detail by paper B.

• An outline of challenges encountered during the work on DySCAS, that
would need to be properly handled in a real-life development process,
mainly covered in sections 9.2.2 and 9.2.3. These issues were further
investigated in paper C.

• Finally, a modeling formalism for resource management, quality of service,
and similar issues in situations where real-time constraints apply, was
introduced in chapter 8 and elaborated in paper D.

The validity of the above presented results has been corroborated in several ways.
The principles discussed in this thesis have been explored both conceptually
and practically through implementation in real systems. In parallel to the work
presented here, substantial work has also been done on simulation of DySCAS-
type systems[129].
Although the practical work which lays the foundation for this thesis mainly

focuses on automotive systems, most of the results should still be valid in other
embedded control system domains, at least under the assumption of a message-
based messaging paradigm.

9.2. Possible Future Work 61

9.1.1 Applicability in Other Types of Systems

Many of the presented results do not explicitly require a middleware implemen-
tation to be used in some type of implementation platform; they should still be
reusable in other types of distributed platforms or even single processor systems,
e.g. communication protocols and operating systems aiming to provide real-time
or other reliability guarantees to applications, or even in adaptive hardware
systems.
Further, the results presented in this thesis are not believed only to be useful

for dynamically configurable systems; parts of them can be applied to static
systems already at design time. Hence, the research presented in this thesis
may also lead to a better understanding of statically configured systems with or
without adaptation mechanisms such as QoS.

9.2 Possible Future Work

Even though this thesis has given an overview of the area of adaptive middleware
and self-configurability in resource-constrained embedded systems, much work
still remains. Many problems still needing solutions to be found are possible
approaches for future work.

9.2.1 Theoretical Base

Further improved task models, resource models and time models need to be
developed. Today, these are typically used in formal modeling (e.g. model
checking, schedulability theory), and a suitable one is chosen in each individual
case. In an environment where many different task and resource types are
potentially possible, there is a need for more flexible task models, able of
providing more exact models of several different types of real tasks and resources.
Significant understanding still lacks in the area; this is exemplified by QoS, where
several different more or less ad-hoc mechanisms are typically used, but a full
understanding of the used mechanisms is not yet present.

9.2.2 Methodology

There are several different approaches to improve the development process of
software in adaptive embedded systems. These approaches are not in all cases
fully compatible with each other, yet they all provide significant advantages to
prospective users of the technique. Further, some of these approaches, most
notablymodel-based design, are quite abstract and adaptable to certain situations,
which has caused them to be interpreted in significantly different ways. The
three different modeling paradigms described in subsection 4.2.1 are a very good
example of this. Since the paradigms have evolved in parallel and have different
goals, separate tools are often used, and transparently and efficiently integrating

62 CHAPTER 9. DISCUSSION

Implementation

of Component

Behavior

Definition of

Component

Structure

Performance

Analysis

Software

Component

Structure

Hardware

Description

SW Component

Rich Description

(HW agnostic)

Extrafunctional

Properties

SW Component

Description

(HW dependant)

Software

Component

Structure

Software

Component

Dependencies

Software

Component

Constraints

Component

Packaging

Packaged SW

Component

Runtime

System

Autonomic

Configuration

Off-the-shelf parts

to be reused
System

Description

Figure 9.1: Envisioned possible future development process for software components

all three paradigms in a single tool is hard and, as far as is known to the author, has
not yet been satisfactorily accomplished. Still – to avoid duplicating information
by building multiple models – such integration would prove necessary to create
an efficient development environment.

9.2.2.1 Envisioned development process

In figure C.1, a proposed development process for DySCAS-like systems is
described, trying to deal with the challenges described in the previous section. Its
focus is however on the development of the support systems (e.g. middleware, or
in the case of statically configured systems, development environments), and less
on the process that will be necessary for the application developers. Therefore, an
illustration focusing on a development process for adaptive software components,
covering the artefacts produced by developers of software components, is given in
figure 9.1.

9.2.3 Tools

Today, tool support for integrated modeling, simulation and development for
adaptive embedded systems is limited. Even though usage of model-based
methodologies are gaining in industry for traditional systems, it is still also
common to use traditional development practices based on editors, compilers,
or possibly integrated development environments. Model-based approaches
typically focus on statically designed systems. Both for static and dynamic
systems, using an integrated model database concept (e.g. like in [44]) would be
an amenable approach. Today’s environment is characterized by many different

9.2. Possible Future Work 63

tools, providing better support of special scenarios, but without good integration
into a larger development chain.
Most modeling tools are primarily suited for onemodeling paradigm out of the

threementioned in subsection 4.2.1. The vision would be to have a fully integrated
toolchain for MBESE – model-based embedded systems engineering, stretching
over all design stages from architectural design through implementation to
verification and validation, both through simulation and formal techniques. Such
a tool would also need to as seamlessly as possible, span all three modeling
paradigms described in section 4.2, so that the same models can be used in
information modeling, executional modeling and formal modeling.
Using some variant of components, as described in chapter 4, is crucial if

efficient reuse of code, and hence minimization of work effort, is to be achieved.
Similarly, the architectural design approach provides promising perspectives in
evaluation and comparison of different designs. Further challenges include
well-functioning support for version management, information management and
access control.

9.2.4 Online Configuration Algorithms

Feng[46, 47] has presented a collection of simple self-configuration algorithms
that can be used for online reconfiguration. There is significant room for further
evaluation and improvement of these – both in terms of more expressive and
usable task and resource models, as well as making the configuration resolution
less computationally intensive. This could include e.g. support for more advanced
schedulability tests than the classical Liu-Layland algorithm.

9.2.5 Improvement of the DyLite Implementation

The DyLite implementation (described in paper B) is an early prototype validating
many of the reconfiguration concepts envisioned within DySCAS. Yet, it is today
not ripe for usage in real systems. The implementation needs further work to
be made more stable and robust, and the implementation can be substantially
improved by making the interface between middleware and applications clearer.
For example, it would be possible to change the implementation of the session
objects, such that there is no, or just a small, overhead within the middleware as
additional sessions are added.
Further, the reconfiguration mechanisms should be enhanced. It is currently

only possible to change the communication characteristics (e.g. message priority,
settings for leaky buckets) by explicitly doing so from the applications. These
should be automatically set by the configuration algorithm. Further, task models
able of more closely modeling task behavior could be used.
Finally, it would be advisable to try to fully standardize the functions within

the API, the network protocol, and other interaction points between different
middleware instances, such that several parallel implementations would be

64 CHAPTER 9. DISCUSSION

implementable. This would make design exploration simpler, and would also
allow several parallel, but compatible implementations to exist, each optimized
for slightly different types of systems.

9.2.6 Component Models for Real-Time Systems

One further venue of continued research building on the DySCAS concepts is
the issue of component models specifically built for real-time systems. Such a
componentmodel would ideally be suitable in all three of themodeling paradigms
(many used today focus only on one or two of them), as to allow all types of
development practices used in the different types of model-based development.
Work on modeling different kinds of resources, e.g. as defined in the formalism
described in paper D, would be needed.

9.2.6.1 Component Packaging

When applications have been built, the software they consist of need to be
packaged for deployment – either as part of the continued development at a
downstream company, or onto a runtime platform at the end user. For this to be
possible, the software and any necessary support data, together with specifications
(delivery notes) need to be packaged in a suitable, standardized way, e.g. using a
standardized file format or similarly. The DySCAS component model does not
include such standardization on component packaging even though it provides
an information model that can be used as a basis.

9.2.7 Computational Reflection

Many applications are hard to describe during design time. One typical example
is video playback – the necessary resources for playback depend a lot more on the
video clip to be played (framerate, resolution, encoding), than the software used
to do so. In these cases, it would not be advisable to constantly reserve resources
based on a worst-case scenario, as this would make systems too pessimistically
designed. It would also not be a good approach to design several discrete levels.
The best thing to do would be to implement reflective interfaces where the actual
resource requirements or even the behavioral structure provided in a delivery note
can be updated during runtime, and possibly also new running modes for the
applications could be added during runtime – providing the necessary support
for e.g. useful implementation of scripting languages and virtual machines that
take advantage of the adaptivity mechanisms available in the lower levels.
Computational reflection has been applied in many areas, including e.g.

middleware and programming language. By implementing reflective interfaces
to the middleware from the component it would be possible for the component
to change its component definition at runtime to adapt it to a certain execution
context. For example, depending on the resolution, framerate and encoding of

9.2. Possible Future Work 65

a video file, the video player’s resource demands will vary much, and it can
not reasonably be expected that they can be fixed before runtime without some
compromise in exactness. Such interfaces have been foreseen in the DySCAS
architecture, but not implemented in any of the reference implementations. .

9.2.7.1 Middleware-Internal Adaptivity and Reflection

The DySCAS architecture specifies a middleware, which is itself statically de-
signed. Except for hardware connectivity, the used platform will not change
during runtime. Even though this is a significant delimitation of the scope of
DySCAS, it is a good one: it significantly simplified the work.
Yet, if the middleware itself to some degree was constructed and built around

adaptivity concepts, the middleware design space and flexibility would be far
larger. This is hard to achieve in a pure C environment using a traditional RTOS
(which typically does not support dynamic loading or linking due to memory
constraints). Two of the example middlewares described in subsection 5.4.4 and
5.4.5, OSGi and Jini, have been built on top of the Java platform. As the Java
platform incorporates well-working support for dynamic linking and loading,
both of them are using significantly different, and interesting, architectures,
compared to traditional middleware implementations built in C.
There are also adaptive middlewares implemented in C with similar capabil-

ities (e.g. [74, 75]), but not for resource-constrained systems, as are used in the
automotive industry. Still, as dynamic loading and linking is possible also in
compact platforms[39], it would be possible to implement such features also in
smaller systems, leading to new design possibilities.

9.2.8 Verification

Verification of embedded systems is a significant challenge. Today, the devel-
opment process typically involves extensive testing effort, costing valuable time
and money. Also, even though testing is often done in multiple stages (software-
in-loop, processor-in-loop, hardware-in-loop), errors are still not found as early
as they could be. Even though there can always be a mismatch between the
specifications of the embedded system and the physical world, other such errors
should, at least in principle, be possible to find earlier.
The formalism in paper D is a step towards making automated verification

at early stages possible. By being able of stating the requirements on the system
– in this case resource utilization and timing – verification is easier in the sense
that it does not require engineers to verify e.g. timing constraints manually – it
can be automated, either by using formal methods or through automated testing
environments (physical or emulated).

66 CHAPTER 9. DISCUSSION

9.3 End Words

Much work still remains in the areas of adaptive middleware, modeling, and tool
support for self-configurable resource-constrained real-time systems. The topic is
split over several different subareas of computer science, which are typically not
very well connected, but need to be integrated in order to fully reach the vision of
fully autonomously configurable computer networks.
This thesis has presented some of the challenges and also given an overview of

a number of possible solutions, providing a pathway of problems to be approached
to get closer to that ultimate goal.

References

[1] AADL, http://www.aadl.info.

[2] Karl-Erik Årzén, Anton Cervin, Tarek Abdelzahler, HåkanHjalmarsson, and Anders Robertsson,
Roadmap on control of realtime computing systems, Tech. Rep., EU/IST FP6 Artist2 NoE, Control
for Embedded Systems Cluster, 2006, http://www.artist-embedded.org/artist/IMG/pdf/
18b_Control_Roadmap.pdf.

[3] James S. Albus and Fred G. Proctor, A reference model architecture for intelligent hybrid control
systems, in Proceedings of the International Federation of Automatic Control (IFAC), San Fransisco,
CA, USA, 1996.

[4] Luis Almeida, Challenges of flexible real-time communication, 2008, http://www.

artist-embedded.org/docs/Events/2008/Autrans/Videos/Luis_Almeida, presentation
at the ARTIST2 Summer School in Europe, Autrans, France, September 8-12.

[5] Rajeev Alur and David L. Dill, A theory of timed automata, in Theoretical Computer Science, vol.
126 (1994), no. 2, pp. 183–235.

[6] Richard J. Anthony and Cecilia Ekelin, Policy-driven self-management for an automotive
middleware, in Proceedings of First International Workshop on Policy-Based Autonomic Computing
(PBAC 2007), at the Fourth IEEE International Conference on Autonomic Computing,
Jacksonville, Florida, USA, June 11 – 15 2007.

[7] Richard J. Anthony, Alexander Leonhardi, Cecilia Ekelin, DeJiu Chen, Martin Törngren, Gerrit
de Boer, Isabell Jahnich1, Simon Burton, Ola Redell, Alexander Weber, and Vasco Vollmer,
A future dynamically reconfigurable automotive software system, in Proceedings of Elektronik im
Kraftfahrzeug, Dresden, Germany, June 27–28 2006.

[8] Richard J. Anthony, Martin Törngren, DeJiu Chen, Tahir Naseer Qureshi, Walter Franz, Gerrit
de Boer, Alexander Weber, Florian Wildschütte, Isabell Jahnich, Achim Rettberg, Hans Blom,
Claes Pihl, Viktor Friesen, Cecilia Ekelin, and Martin Sanfridson, D1.1A Existing technologies,
Dyscas project deliverable, 2007, http://www.dyscas.org/doc/DySCAS_D1.1A.pdf, project no.
FP6-IST-2006-034904.

[9] Richard J. Anthony, Paul Ward, DeJiu Chen, James Hawthorne, Mariusz Pelc, Achim Rettberg,
and Martin Törngren, A middleware approach to dynamically configurable automotive embedded
systems, in Proceedings of The First Annual International Symposium on Vehicular Computing
Systems, Dublin, Ireland, July 22 – 24 2008.

[10] Arcticus Systems, http://www.arcticus-systems.com.

[11] Arcticus Systems, Rubus OS reference manual: API services, version 3.4, Järfälla, Sweden, 2007.

[12] Arcticus Systems, Rubus OS reference manual: General concepts, version 3.4, Järfälla, Sweden,
2007.

[13] ArtistDesign Network, "Design for Adaptivity" activity, ArtistAdapt wiki: Main page/definitions,
http://www2.control.lth.se/ArtistAdapt/index.php/Main_Page/Definitions.

1Isabell is now known under the name Isabell Drüke.

67

http://www.aadl.info
http://www.artist-embedded.org/artist/IMG/pdf/18b_Control_Roadmap.pdf
http://www.artist-embedded.org/artist/IMG/pdf/18b_Control_Roadmap.pdf
http://www.artist-embedded.org/docs/Events/2008/Autrans/Videos/Luis_Almeida
http://www.artist-embedded.org/docs/Events/2008/Autrans/Videos/Luis_Almeida
http://www.dyscas.org/doc/DySCAS_D1.1A.pdf
http://www.arcticus-systems.com
http://www2.control.lth.se/ArtistAdapt/index.php/Main_Page/Definitions

68 REFERENCES

[14] AUTOSAR Consortium, http://www.autosar.org.

[15] AUTOSAR Consortium, AUTOSAR glossary, version 2.1.4, project report, 2008, http://www.
autosar.org/download/specs_aktuell/AUTOSAR_Glossary.pdf.

[16] AUTOSAR Consortium, AUTOSAR methodology, Tech. Rep., 2008, http://www.autosar.org/
download/specs_aktuell/AUTOSAR_Methodology.pdf, document version 1.2.2, part of release
3.1.

[17] AUTOSAR Consortium, Software component template, Tech. Rep., 2008, http://www.autosar.
org/download/specs_aktuell/AUTOSAR_SoftwareComponentTemplate.pdf, document ver-
sion 3.1.0, part of release 3.1.

[18] AUTOSAR Consortium, Specification of the virtual functional bus, Tech. Rep., 2008, http://www.
autosar.org/download/specs_aktuell/AUTOSAR_SWS_VFB.pdf, document version 1.0.2, part
of release 3.1.

[19] AUTOSAR Consortium, Technical overview, Tech. Rep., 2008, http://www.autosar.org/
download/specs_aktuell/AUTOSAR_TechnicalOverview.pdf, document version 2.2.2, part of
release 3.1.

[20] Martin Axelsson, Magnus Eriksson, Thomas Francke, Felix Hammarstrand, Andreas Lindell,
Oskar Nyqvist, Erik Persson, Christoffer Strömberg, Martin Svensson, and Niklas Thörnqvist,
An automotive embedded systems demonstrator; the Saint truck - Saint3: mechanics and EE
platform enhancements, intelligent model supported configuration and reverse steering, Tech. Rep.
TRITAMMK 2008:01, ISSN 1400-1179, ISRN/KTH/MMK/R-08/01-SE, Department of Machine
Design, Royal Institute of Technology (KTH), Stockholm, Sweden, 2008, http://www.md.kth.
se/saint/publications/Saint3/SAINT_3_FinalReport_MMK_KTH.pdf.

[21] David E. Bakken, Middleware, 2001, http://www.eecs.wsu.edu/~bakken/

middleware-article-bakken.pdf.

[22] Iain Bate, Richard Hawkins, and John McDermid, A contract-based approach to designing safe
systems, in Proceedings of the 8th Australian workshop on Safety critical systems and software (SCS
’03), Australian Computer Society, Inc., Darlinghurst, Australia, ISBN 1-920-68215-5, 2003, pp.
25–36.

[23] Albert Benveniste, Benoît Caillaud, Alberto Ferrari, Leonardo Mangeruca, Roberto Passerone,
and Christos Sofronis, Multiple viewpoint contract-based specification and design, in Formal
Methods for Components and Objects, Lecture Notes in Computer Science (LNCS) no. 5382,
2008, pp. 200–225, revised paper, presented at 6th International Symposium FMCO 2007,
Amsterdam, Netherlands, October 24–26.

[24] Lars-Olof Berntsson, Hans Blom, DeJiu Chen, Phillipe Cuenot, Jörg Donandt, Ulrik Eklund,
Ulrich Freund, Patrick Frey, Sébastien Gérard, Pontus Jansson, Rolf Johansson, Henrik
Lönn, Mark-Oliver Reiser, Dennis Selin, David Servat, Carl-Johan Sjöstedt, Patrick Tessier,
Ramin Tavakoli, Fredrik Törner, Martin Törngren, Matthias Weber, Charles Andre, Michael
van der Beeck, Denis Bugnot, Vincent Debruyn, , Jonas Edén, Ulrich Freund, Bruno
Godard, Orazio Gurrieri, Alice Halter, Jens Herman, Andreas Kuhn, Mikael Nolin, Françoise
Simonot, Jochen Kuster, Jörn Migge, Massimo Pratesi, Yvon Trinquet, and Thomas Wierczoch,
EAST-ADL2 language specification, Atesst project deliverable, 2008, http://www.atesst.org/
home/liblocal/docs/EAST-ADL-2.0-Specification_2008-02-29.pdf, project number 2004-
026976.

[25] Lars-Olof Berntsson, Hans Blom, DeJiu Chen, Phillipe Cuenot, Ulrich Freund, Patrick Frey,
Sébastien Gérard, Rolf Johansson, Henrik Lönn, Mark-Oliver Reiser, David Servat, Patrick
Tessier, Ramin Tavakoli, Martin Törngren, and Matthias Weber, EAST-ADL2 UML2 profile
specification, Atesst project deliverable, 2008, http://www.atesst.org/home/liblocal/docs/
EAST-ADL-2.0-ProfileSpecification_2008-01-31.pdf, project number 2004-026976.

[26] Daniel Blixt, Samuel Brikho, Erik Bråkenhielm, Ulf Cedergren, Örjan Cornebäck, Lisa
Edvinsson, Tuomo Eloranta, Staffan Forséll, Mikael Hallberg, Niclas Karlsson, Anders Olsson,
Mattias Rödén, Anders Steiner, Johan Wängdahl, Dan Öhlund, and Mikael Öhrvall, Project

http://www.autosar.org
http://www.autosar.org/download/specs_aktuell/AUTOSAR_Glossary.pdf
http://www.autosar.org/download/specs_aktuell/AUTOSAR_Glossary.pdf
http://www.autosar.org/download/specs_aktuell/AUTOSAR_Methodology.pdf
http://www.autosar.org/download/specs_aktuell/AUTOSAR_Methodology.pdf
http://www.autosar.org/download/specs_aktuell/AUTOSAR_SoftwareComponentTemplate.pdf
http://www.autosar.org/download/specs_aktuell/AUTOSAR_SoftwareComponentTemplate.pdf
http://www.autosar.org/download/specs_aktuell/AUTOSAR_SWS_VFB.pdf
http://www.autosar.org/download/specs_aktuell/AUTOSAR_SWS_VFB.pdf
http://www.autosar.org/download/specs_aktuell/AUTOSAR_TechnicalOverview.pdf
http://www.autosar.org/download/specs_aktuell/AUTOSAR_TechnicalOverview.pdf
http://www.md.kth.se/saint/publications/Saint3/SAINT_3_FinalReport_MMK_KTH.pdf
http://www.md.kth.se/saint/publications/Saint3/SAINT_3_FinalReport_MMK_KTH.pdf
http://www.eecs.wsu.edu/~bakken/middleware-article-bakken.pdf
http://www.eecs.wsu.edu/~bakken/middleware-article-bakken.pdf
http://www.atesst.org/home/liblocal/docs/EAST-ADL-2.0-Specification_2008-02-29.pdf
http://www.atesst.org/home/liblocal/docs/EAST-ADL-2.0-Specification_2008-02-29.pdf
http://www.atesst.org/home/liblocal/docs/EAST-ADL-2.0-ProfileSpecification_2008-01-31.pdf
http://www.atesst.org/home/liblocal/docs/EAST-ADL-2.0-ProfileSpecification_2008-01-31.pdf

69

SAINT, Tech. Rep. TRITA MMK 2005:26, ISSN 1400-1179, ISRN/KTH/MMK/R-05/26-SE,
Mechatronics Lab, Department of Machine Design, Royal Institute of Technology (KTH), 2005,
http://www.md.kth.se/saint/publications/Saint1/Trita-MMK200526.pdf.

[27] Bruno Bouyssounouse and Joseph Sifakis (eds.), Embedded systems design: The ARTIST roadmap
for research and development, Lecture Notes in Computer Science (LNCS) no. 3436, Springer
Verlag, 2005.

[28] Andrew T. Campbell, GeoffCoulson, andMichael E. Kounavis,Managing complexity: Middleware
explained, in IT Professional, vol. 1 (1999), no. 5, pp. 22–28, ISSN 1520-9202.

[29] DeJiu Chen, Richard J. Anthony, Magnus Persson, Detlef Scholle, Viktor Friesen, Gerrit de Boer,
Achim Rettberg, and Cecilia Ekelin, An architectural approach to autonomics and self-management
of automotive embedded electronic systems, in Proceedings of the 4th European Congress Embedded
Real-Time Software (ERTS2008), Toulouse, France, January 29 – February 2008.

[30] Peter Pin-Shan Chen, The entity-relationship model—toward a unified view of data, in ACM
Transactions on Database Systems, vol. 1 (1976), no. 1, pp. 9–36, ISSN 0362-5915.

[31] Stuart Cheshire, Bernard Aboba, and Erik Guttman, Dynamic configuration of IPv4 link-local
adresses, The Internet Engineering Taskforce (IETF) Request for Comment RFC 3927, 2005,
http://www.ietf.org/rfc/rfc3927.txt.

[32] Olivier Constant, Qin Ma, Lionel Morel, Mark Skipper, and Christos Sofronis, D2.1 SPEEDS L-1
meta-model: First version, Speeds project deliverable, 2007, project no. FP6-IST-2005-033471.

[33] Diane Crawford (ed.), Communications of the ACM, vol. 45, ACM, June 2002, special issue on
adaptive middleware.

[34] Ivica Crnkovic, Michel Chaudron, Séverine Sentilles, and Aneta Vulgarakis, A classification
framework for component models, in Proceedings of 7th Conference on Software Engineering and
Practice in Sweden, Gothenburg, Sweden, October 2007.

[35] Ivica Crnkovic and Magnus Larsson (eds.), Building reliable component-based software systems,
Artech House, Norwood, MA, USA, 2002.

[36] Phillipe Cuenot, DeJiu Chen, Sébastien Gérard, Henrik Lönn, Mark-Oliver Reiser, David Servat,
Ramin Tavakoli Kolagari, Martin Törngren, andMatthiasWeber, Towards improving dependability
of automotive systems by using the EAST-ADL architecture description language, in Architecting
Dependable Systems IV (Rogério de Lemos, Cristina Gacek, and Alexander Romanovsky, eds.),
Lecture Notes in Computer Science (LNCS) no. 4615, pp. 39–65, Springer Verlag, 2007.

[37] Fred Douglis and John Ousterhout, Transparent process migration: Design alternatives and
the Sprite implementation, in Software - Practice and Experience, vol. 21 (1991), no. 8,
pp. 757–785, http://www.cs.ubc.ca/local/reading/proceedings/spe91-95/spe/vol21/
issue8/spe041fd.pdf.

[38] Ralph Droms, Dynamic host configuration protocol, The Internet Engineering Taskforce (IETF)
Request for Comment RFC 2131, 1997, http://www.ietf.org/rfc/rfc2131.txt.

[39] Adam Dunkels, Niclas Finne, Joakim Eriksson, and Thiemo Voigt, Run-time dynamic linking
for reprogramming wireless sensor networks, in Proceedings of the 4th international conference on
Embedded networked sensor systems, Boulder, Colorado, USA, 2006, pp. 15–28.

[40] Hector A. Duran-Limon, Gordon S. Blair, and Geoff Coulson, Adaptive resource management in
middleware: A survey, in IEEE Distributed Systems Online, vol. 5 (2004), no. 7, pp. 1–13.

[41] Tom Durkin, The Vx-files: What the media couldn’t tell you about Mars Pathfinder, in Robot Science
& Technology, (1998), no. 1, http://www.cyberbound.com/docs/1mars.pdf.

[42] DySCAS Consortium, DySCAS project website, http://www.dyscas.org.

[43] Christof Ebert and Capers Jones, Embedded software: Facts, figures and future, in IEEE Computer,
vol. 42 (2009), no. 4, pp. 42–52.

[44] Jad El-khory, A model management and integration platform for mechatronics product development,
Ph.D. thesis, Mechatronics Lab, Department of Machine Design, Royal Institute of Technology
(KTH), Stockholm, Sweden, 2006, report no TRITA MMK 2006:03 ISSN 1400-1179 ISRN

http://www.md.kth.se/saint/publications/Saint1/Trita-MMK200526.pdf
http://www.ietf.org/rfc/rfc3927.txt
http://www.cs.ubc.ca/local/reading/proceedings/spe91-95/spe/vol21/issue8/spe041fd.pdf
http://www.cs.ubc.ca/local/reading/proceedings/spe91-95/spe/vol21/issue8/spe041fd.pdf
http://www.ietf.org/rfc/rfc2131.txt
http://www.cyberbound.com/docs/1mars.pdf
http://www.dyscas.org

70 REFERENCES

KTH/MMK/R–06/03–SE.

[45] Wolfgang Emmerich, Software engineering and middleware: a roadmap, in Proceedings of the
Conference on The Future of Software Engineering (ICSE ’00), ACM, New York, NY, USA, ISBN
1-58113-253-0, 2000, pp. 117–129.

[46] Lei Feng, DeJiu Chen, Magnus Persson, Tahir Naseer Qureshi, and Martin Törngren, Dynamic
configuration and quality of service in automotive embedded systems, Tech. Rep. TRITA MMK
2008:12, ISSN 1400-1179, ISRN/KTH/MMK/R-08/12-SE, Mechatronics Lab, Department of
Machine Design, Royal Institute of Technology (KTH), Stockholm, Sweden, 2008.

[47] Lei Feng, DeJiu Chen, and Martin Törngren, Self configuration of dependent tasks for dynamically
reconfigurable automotive embedded systems, in Proceedings of 47th IEEE Conference on Decision
and Control (CDC), Cancún, Mexico, December 9 – 11 2008, pp. 3737–3742.

[48] Eric Fitterer, Malte Jacobs, and Vera Lauer, D0.1.1 EASIS project glosssary, version 1.4, project
report, 2006, http://www.easis-online.org/wEnglish/download/Deliverables/20070730%
20EASIS%20Glossary_final.

[49] FlexRay, http://www.flexray.com.

[50] Foresight Vehicle, Foresight vehicle technology roadmap, technology and research directions for future
road vehicles, version 1.0, Tech. Rep., 2004, http://www.foresightvehicle.org.uk/info_/FV/
init01_trm.pdf.

[51] FRESCOR Project, http://www.frescor.org.

[52] Serena Fritsch, Aline Senart, Douglas C. Schmidt, and Siobhán Clarke, Time-bounded adaptation
for automotive system software, in ICSE ’08: Proceedings of the 30th international conference on
Software engineering, ACM, New York, NY, USA, ISBN 978-1-60558-079-1, 2008, pp. 571–580.

[53] Javier García, Integration of static and dynamic middleware-based subsystems using an intermediate
gateway, Master’s thesis, Department of Machine Design, Royal Institute of Technology (KTH),
Stockholm, Sweden, 2008, report number MMK 2008:76 (MDA 330).

[54] Michael González Harbour, Adaptive resource management in FRESCOR, presentation at Artist-
Design meeting in Pisa, Italy, April 2–3 2009, http://www2.control.lth.se/ArtistAdapt/
images/4/4a/FRESCOR.pdf.

[55] Joakim Hägglund, Analysis and design of application policies and checkpointing in a distributed
automotive middleware, Master’s thesis, Uppsala University, Sweden, 2008.

[56] Richard S. Hall and Humberto Cervantes, Challenges in building service-oriented applications for
OSGi, in Communications Magazine, vol. 42 (2004), no. 5, pp. 144–149.

[57] Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin, Mats Lindberg, John Lundbäck, and Kurt-
Lennart Lundbäck, The Rubus component model for resource constrained real-time systems, in
Proceedings of International Symposium on Industrial Embedded Systems (SIES’2008), La Grande
Motte, France, June 2008, pp. 177–183.

[58] HAVi, Home audio video interoperability, http://www.havi.org.

[59] Thomas A. Henzinger and Joseph Sifakis, The embedded systems design challenge, in Proceedings
from 14th International Symposium on Formal Methods (FM 2006) (Jayadev Misra, Tobias Nipkow,
and Emil Sekerinski, eds.), Lecture Notes in Computer Science (LNCS) no. 4085, Springer
Verlag, Hamilton, Canada, August 21–27 2006, pp. 1–15.

[60] Ngo Quoc Hung, Nguyen Chi Ngoc, Le Xuan Hung, Shu Lei, and Sungyoung Lee, A survey
on middleware for context-awareness in ubiquitous computing environments, in Korean Information
Processing Society Review, (2003), pp. 97–121, iSSN 1226-9182.

[61] Christopher Hylands, Edward Lee, Jie Liu, Xiaojun Liu, Stephen Neuendorffer, Yuhong Xiong,
Yang Zhao, and Haiyang Zheng, Overview of the Ptolemy project, technical memorandum
UCB/ERL M03/25, University of California, Berkely, CA, USA, July 2 2003, http://ptolemy.
eecs.berkeley.edu/publications/papers/03/overview/overview03.pdf.

[62] IBM, An architectural blueprint for autonomic computing, Tech. Rep., June 2006, http://www-01.
ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf.

http://www.easis-online.org/wEnglish/download/Deliverables/20070730%20EASIS%20Glossary_final
http://www.easis-online.org/wEnglish/download/Deliverables/20070730%20EASIS%20Glossary_final
http://www.flexray.com
http://www.foresightvehicle.org.uk/info_/FV/init01_trm.pdf
http://www.foresightvehicle.org.uk/info_/FV/init01_trm.pdf
http://www.frescor.org
http://www2.control.lth.se/ArtistAdapt/images/4/4a/FRESCOR.pdf
http://www2.control.lth.se/ArtistAdapt/images/4/4a/FRESCOR.pdf
http://www.havi.org
http://ptolemy.eecs.berkeley.edu/publications/papers/03/overview/overview03.pdf
http://ptolemy.eecs.berkeley.edu/publications/papers/03/overview/overview03.pdf
http://www-01.ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf
http://www-01.ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf

71

[63] IEEE, Standard glossary of software engineering terminology, IEEE Std 610.12-1990, December
1990.

[64] IEEE recommended practice for architectural description of software-intensive systems-description,
IEEE Standard 1471-2000, 2000.

[65] IEEE standard SystemC lanugage reference manual, IEEE Standard 1666-2005, 2005.

[66] Industrieanlagen-Betriebsgesellschft (IABG), Das V-Modell, http://www.v-modell.iabg.de/.

[67] International Telecommunication Union Standardization Sector (ITU-T), Specification and
description lanugage (SDL), 2007, http://www.itu.int/rec/dologin_pub.asp?lang=e&id=
T-REC-Z.100-200711-I!!PDF-E&type=items.

[68] Isabell Jahnich, Richard J. Anthony, Martin Törngren, Florian, DeJiu Chen, Hans Blom, Viktor
Friesen, Achim Rettberg, and Walter Franz, D1.1B Evaluation of existing technologies, Dyscas
project deliverable, 2007, http://www.dyscas.org/doc/DySCAS_D1.1B.pdf, project no. FP6-
IST-2006-034904.

[69] Axel Jantsch,Modeling embedded systems and SoC’s: Concurrency in time in models of computation,
Morgan-Kauffman, 2004.

[70] Bernhard Josko, QinMa, and AlexanderMetzner,Designing embedded systems using heterogeneous
rich components, in Proceedings of the INCOSE International Symposium, Utrecht, Netherlands,
June 2008.

[71] Daniel Karlsson, Florian Wildschütte, Detlef Scholle, Stefan Poon, Lei Feng, Magnus Persson,
Javier García, Richard J. Anthony, Tahir Naseer Qureshi, Claes Pihl, Thomas Söderqvist, Cecilia
Ekelin, Viktor Friesen, Achim Rettberg, Jan Söderberg, and Martin Törngren, D4.3 Evaluation
report, project deliverable, 2009, http://www.dyscas.org/doc/DySCAS_D4.3.pdf, project no.
FP6-IST-2006-034904.

[72] Kristian Ellebæk Kjær, A survey of context-aware middleware, in Proceedings of the 25th conference
on IASTED International Multi-Conference (SE’07), ACTA Press, Anaheim, CA, USA, 2007, pp.
148–155.

[73] Florian Kluge, Jörg Mische, Sascha Uhrig, and Theo Ungerer, Building adaptive embedded
systems by monitoring and dynamic loading of application modules, in Workshop on Adaptive and
Reconfigurable Embedded Systems (APRES’08), at the Cyber-Physical Systems Week (CPSWeek),
St. Louis, MO, USA, April 21 2008, pp. 23–26.

[74] Fabio Kon, Binny Gill, et al., 2K: a component-based network-centric operating system for the next
millenium, http://srg.cs.uiuc.edu/2k.

[75] Fabio Kon et al., The dynamicTAO reflective ORB, http://srg.cs.uiuc.edu/2k/dynamicTAO.

[76] Geihs Kurt,Middleware challenges ahead, in IEEE Computer, vol. 34 (2001), no. 6, pp. 24–31.

[77] Ola Larses, Carl-Johan Sjöstedt, Martin Törngren, and Ola Redell, Experiences from model sup-
ported configuration management and production of automotive embedded software, in Proceedings
of SAE World Congress, In-Vehicle Software session, Detroit, MI, USA, April 16 – 19 2007.

[78] Björn Larsson, Middleware for self-managing automotive systems, Master’s thesis, Mechatronics
Lab, Department of Machine Design, Royal Institute of Technology (KTH), Stockholm, Sweden,
2007, report number MMK 2007:3 MDA301.

[79] Kung-Kiu Lau and Zheng Wang, Software component models, in IEEE Transactions on Software
Engineering, vol. 33 (2007), no. 10, pp. 709–724, ISSN 0098-5589.

[80] Nancy G. Leveson, Safeware: System safety and computers, Addison-Wesley Publishing Company,
1995.

[81] John R. Levine, Linkers and loaders, Morgan-Kauffman, 1999.

[82] LIN Consortium, Local interconnect network, http://www.lin-subbus.org.

[83] LIN Consortium, LIN specification package, 2006.

[84] Andreas Lindell,Analysis and design of a policy based approach to software download in a distributed
automotive middleware, Master’s thesis, Department of Machine Design, Royal Institute of

http://www.v-modell.iabg.de/
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-Z.100-200711-I!!PDF-E&type=items
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-Z.100-200711-I!!PDF-E&type=items
http://www.dyscas.org/doc/DySCAS_D1.1B.pdf
http://www.dyscas.org/doc/DySCAS_D4.3.pdf
http://srg.cs.uiuc.edu/2k
http://srg.cs.uiuc.edu/2k/dynamicTAO
http://www.lin-subbus.org

72 REFERENCES

Technology (KTH), Stockholm, Sweden, 2007, report number MMK 2007:76 (MDA 308).

[85] Chung L. Liu and James W. Layland, Scheduling algorithms for multiprogramming in a hard-
real-time environment, in Journal of the ACM, vol. 20 (1973), pp. 46–61, http://www.cs.ru.nl/
~hooman/DES/liu-layland.pdf.

[86] Joakim Lövqvist, Analysis and design of embedded GPS applications for automotive environment,
Master’s thesis, Department of Machine Design, Royal Institute of Technology (KTH),
Stockholm, Sweden, 2007, report number MMK 2007:77 (MDA 309).

[87] Mark W. Maier, David Emery, and Rich Hilliard, Software architecture: Introducing IEEE standard
1471, in IEEE Computer, vol. 34 (2001), no. 4, pp. 107–109.

[88] Cecilia Mascolo, Stephen Hailes, Leonidas Lymberopoulous, Gian Pietro Picco, Paolo Costa,
Gordon Blair, Paul Okanda, Thirunavukkarasu Sivaharan, Wolfgang Fritsche, Mayer Karl,
Miklós Aurél Rónai, Kristóf Fodor, and Athanassios Boulis, D5.1 Survey of middleware for
networked embedded systems, project deliverable, 2005, http://www.ist-runes.org/docs/
deliverables/D5_01.pdf, project no. FP6-IST-004536-RUNES.

[89] MathWorks, MATLAB – the language of technical computing, http://www.mathworks.com/
products/matlab.

[90] MathWorks, Simulink - simulation and model-based design, http://www.mathworks.com/
products/simulink.

[91] MathWorks, Stateflow 7.3, http://www.mathworks.com/products/stateflow.

[92] Alex C. Meng, On evaluating self-adaptive software, in Proceedings of the first international
workshop on Self-adaptive software (IWSAS 2000), Springer-Verlag New York, Inc., Secaucus, NJ,
USA, ISBN 3-540-41655-2, 2000, pp. 65–74.

[93] Bertrand Meyer, Applying "design by contract", in IEEE Computer, vol. 25 (1992), no. 10, pp.
40–51, http://se.ethz.ch/~meyer/publications/computer/contract.pdf.

[94] Microsoft, COM: Component object model technologies, http://www.microsoft.com/com.

[95] Microsoft, .NET framework, http://www.microsoft.com/net.

[96] Dejan S. Milojičić, Fred Douglis, Yves Paindaveine, Richard Wheeler, and Songnian Zhou,
Process migration, in ACM Computing Surveys, vol. 32 (2000), no. 3, pp. 241–299, ISSN 0360-
0300.

[97] Mosix Project Webpage, http://www.mosix.org.

[98] MOST,Media oriented systems transport, www.mostcooperation.com.

[99] Movimento Automotive, Movimento Puma: Reference manual, version 1.0, http://www.
movingtek.com/file/2008821161832128.pdf.

[100] Tahir Naseer Qureshi, DeJiu Chen, Magnus Persson, and Martin Törngren, Simulation tools for
dynamically reconfigurable automotive embedded systems - an evaluation of TrueTime, in Proceedings
of Real-Time in Sweden (RTiS’07), Västerås, Sweden, August 21 – 22 2007.

[101] Nicolas Navet and Françoise Simonot-Lion (eds.), Automotive embedded systems handbook,
Industrial Information Technology, Taylor and Francis, CRC Press, 2008.

[102] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol, Practical dynamic software
updating for C, in Proceedings of the ACM Conference on Programming Language Design and
Implementation (PLDI), June 2006, pp. 72–83.

[103] Object Management Group (OMG), Official OMG MARTE web site: Modeling and analysis of real-
time and embedded systems, http://www.omgmarte.org.

[104] Object Management Group (OMG), OMG model driven architecture, http://www.omg.org/mda.

[105] Object Management Group (OMG), Semantics of a foundational subset of executable UML models,
OMG document no ptc/2008-11-03, http://www.omg.org/spec/FUML/1.0/Beta1/PDF/.

[106] Object Management Group (OMG), A UML profile for MARTE: Modeling and analysis of real-time
embedded systems, OMG document no ptc/2008-06-09, http://www.omgmarte.org/Documents/
Specifications/08-06-09.pdf.

http://www.cs.ru.nl/~hooman/DES/liu-layland.pdf
http://www.cs.ru.nl/~hooman/DES/liu-layland.pdf
http://www.ist-runes.org/docs/deliverables/D5_01.pdf
http://www.ist-runes.org/docs/deliverables/D5_01.pdf
http://www.mathworks.com/products/matlab
http://www.mathworks.com/products/matlab
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/stateflow
http://se.ethz.ch/~meyer/publications/computer/contract.pdf
http://www.microsoft.com/com
http://www.microsoft.com/net
http://www.mosix.org
www.mostcooperation.com
http://www.movingtek.com/file/2008821161832128.pdf
http://www.movingtek.com/file/2008821161832128.pdf
http://www.omgmarte.org
http://www.omg.org/mda
http://www.omg.org/spec/FUML/1.0/Beta1/PDF/
http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf
http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf

73

[107] Object Management Group (OMG), Real-time CORBA specification, version 1.2 formal/05-01-04,
OMG document orbos/99-02-12 ed., March 2005, http://www.omg.org/cgi-bin/apps/doc?
formal/05-01-04.pdf.

[108] Object Management Group (OMG), CORBA component model specification, OMG document
formal/06-04-01, 2006, http://www.omg.org/docs/formal/06-04-01.pdf.

[109] Object Management Group (OMG), Data distribution service for real-time systems, OMG
document formal/2007-01-01, January 2007, http://www.omg.org/docs/formal/07-01-01.
pdf.

[110] Object Management Group (OMG), Unified modeling language: Superstructure, version 2.1.1
formal/2007-02-03, OMG document formal/2007-02-03, February 2007, http://www.omg.org/
docs/formal/07-02-03.pdf.

[111] Object Management Group (OMG), Common object request broker architecture (CORBA)
specification, part 1: CORBA interfaces, OMG document formal/2008-01-04, 2008, http://www.
omg.org/docs/formal/08-01-04.pdf.

[112] Object Management Group (OMG), Common object request broker architecture (CORBA)
specification, part 2: CORBA interoperability, OMG document formal/2008-01-06, 2008, http:
//www.omg.org/docs/formal/08-01-07.pdf.

[113] Object Management Group (OMG), Common object request broker architecture (CORBA)
specification, part 3: CORBA component model, OMG document formal/2008-01-08, 2008, http:
//www.omg.org/docs/formal/08-01-08.pdf.

[114] Object Management Group (OMG), OMG systems modeling lanugage (OMG SysML), OMG
document formal/2008-11-02, 2008, http://www.omg.org/docs/formal/08-11-02.pdf.

[115] Martin Ohlin, Dan Henriksson, and Anton Cervin, Truetime 1.5 – reference manual, Department
of Automatic Control, Lund University, Sweden, http://www.control.lth.se/documents/
2007/ohl+07tt.pdf.

[116] Axel Olsson, Application migration using Java in a distributed automotive system, Master’s thesis,
Royal Institute of Technology (KTH), Stockholm, Sweden, 2008.

[117] Open SystemC Initiative (OSCI), SystemC, http://www.systemc.org.

[118] openMosix project, http://www.openmosix.org.

[119] OSGi service platform core specification, July 2006.

[120] OSGi Alliance, About the OSGi service platform, technical whitepaper, November 11 2005.

[121] Eila Ovaska, András Balogh, Sergio Campos, Adrian Noguero, András Pataricza, Kari Tiensyrjä,
and Josetxo Vicedo, Model and quality driven embedded systems engineering, Tech. Rep. 705, VTT
Technical Research Centre of Finland, 2009, http://www.vtt.fi/inf/pdf/publications/
2009/P705.pdf.

[122] Simon Perathoner, Ernesto Wandeler, Lothar Thiele, Arne Hamann, Simon Schliecker, Rafik
Henia, Razvan Racu, Rolf Ernst, and Michael González Harbour, Influence of different system
abstractions on the performance analysis of distributed real-time systems, in Proceedings of the 7th
ACM & IEEE international conference on Embedded software (EMSOFT ’07), ACM, New York, NY,
USA, ISBN 978-1-59593-825-1, 2007, pp. 193–202.

[123] Dewayne E. Perry and Alexander L. Wolf, Foundations for the study of software architecture, in
ACM SIGSOFT Software Engineering Notes, vol. 17 (1992), no. 4, pp. 40–52.

[124] Magnus Persson, Javier García, Lei Feng, DeJiu Chen, Tahir Naseer Qureshi, and Martin
Törngren,DyLite: Design, implementation and experiences, Tech. Rep. TRITAMMK 2009:06, ISSN
1400-1179, ISRN/KTH/MMK/R-09/06-SE, Mechatronics Lab, Department of Machine Design,
Royal Institute of Technology (KTH), Stockholm, Sweden, 2009.

[125] Magnus Persson and Tahir Naseer Qureshi, Survey on dynamic load balancing in distributed
computer systems, Tech. Rep. TRITA MMK 2008:11, ISSN 1400-1179, ISRN/KTH/MMK/R-
08/11-SE, Mechatronics Lab, Department of Machine Design, Royal Institute of Technology
(KTH), Stockholm, Sweden, 2008.

http://www.omg.org/cgi-bin/apps/doc?formal/05-01-04.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/05-01-04.pdf
http://www.omg.org/docs/formal/06-04-01.pdf
http://www.omg.org/docs/formal/07-01-01.pdf
http://www.omg.org/docs/formal/07-01-01.pdf
http://www.omg.org/docs/formal/07-02-03.pdf
http://www.omg.org/docs/formal/07-02-03.pdf
http://www.omg.org/docs/formal/08-01-04.pdf
http://www.omg.org/docs/formal/08-01-04.pdf
http://www.omg.org/docs/formal/08-01-07.pdf
http://www.omg.org/docs/formal/08-01-07.pdf
http://www.omg.org/docs/formal/08-01-08.pdf
http://www.omg.org/docs/formal/08-01-08.pdf
http://www.omg.org/docs/formal/08-11-02.pdf
http://www.control.lth.se/documents/2007/ohl+07tt.pdf
http://www.control.lth.se/documents/2007/ohl+07tt.pdf
http://www.systemc.org
http://www.openmosix.org
http://www.vtt.fi/inf/pdf/publications/2009/P705.pdf
http://www.vtt.fi/inf/pdf/publications/2009/P705.pdf

74 REFERENCES

[126] Magnus Persson, Tahir Naseer Qureshi, and Martin Törngren, Suitability of dynamic load
balancing in resource-constrained embedded systems: An overview of challenges and limitations, in
Proceedings of Workshop on Adaptive and Reconfigurable Embedded Systems (APRES), at the Cyber-
Physical Systems Week (CPSWeek), St. Louis, MO, USA, April 21 2008, pp. 55–58.

[127] Amir Pnueli, The temporal logic of programs, in Proceedings of the 18th Annual Symposium on
Foundations of Computer Science (SFCS ’77), IEEE Computer Society, Washington, DC, USA, 1977,
pp. 46–57.

[128] The Ptolemy project, http://ptolemy.eecs.berkeley.edu.

[129] Tahir Naseer Qureshi, Towards model-based development of self-managing automotive systems –
modeling simulation, model transformations and algorithms: Supporting the development of the
dyscas middleware, Licentiate thesis, Mechatronics Lab, Department of Machine Design, Royal
Institute of Technology (KTH), Stockholm, Sweden, 2009, report no TRITA MMK 2009:12 ISSN
1400-1179 ISRN KTH/MMK/R–09/12–SE.

[130] Sanjay Rishi, Benjamin Stanley, and Kalman Gyimesi, Automotive 2020: Clarity beyond the chaos,
Tech. Rep., IBM Global Business Services, Somers, NY, USA, 2008, http://www-935.ibm.com/
services/us/gbs/bus/pdf/gbe03079-usen-auto2020.pdf.

[131] Robert Bosch GmbH, CAN specification, version 2, 1991, http://www.semiconductors.bosch.
de/pdf/can2spec.pdf.

[132] S. Masoud Sadjadi and Philip K. McKinley, A survey of adaptive middleware, Tech. Rep.
MSU-CSE-03-35, Computer Science and Engineering, Michigan State University, East
Lansing, Michigan, December 2003, http://users.cs.fiu.edu/~sadjadi/Publications/
AdaptiveMiddlewareSurvey.pdf.

[133] SAE Aerospace, Architecture analysis & design language (AADL), AS5506, 2004.

[134] SAINT Project, http://www.md.kth.se/saint.

[135] Jonas Sandberg, Autosar today: A roadmap to an Autosar implementation, Master’s thesis,
Chalmers University of Technology, Gothenburg, Sweden, 2006.

[136] Martin Sanfridson, Cecilia Ekelin, Detlef Scholle, Gerrit de Boer, Peter Engel, Jacob Olsson,
Magnus Persson, Martin Sanfridson, and Richard J. Anthony, D5.4 Glossary, Dyscas project
deliverable, 2008, http://www.dyscas.org/doc/DySCAS_D5.4.pdf, project no. FP6-IST-2006-
034904.

[137] Alberto Sangiovanni-Vincentelli and Marco Di Natale, Embedded system design for automotive
applications, in IEEE Computer, vol. 40 (2007), no. 10, pp. 42–51, ISSN 0018-9162.

[138] Oliver Scheickl andMichael Rudorfer, Automotive real time development using a timing-augmented
AUTOSAR specification, in Proceedings of the 4th European Congress Embedded Real-Time Software
(ERTS2008), Toulouse, France, January 29 – February 2008.

[139] Douglas C. Schmidt, Component integrated Ace ORB, http://www.cs.wustl.edu/~schmidt/
CIAO.html.

[140] Douglas C. Schmidt, Real-time CORBA with TAO (the ACE ORB), http://www.cs.wustl.edu/
~schmidt/TAO.html.

[141] Douglas C. Schmidt, Middleware for real-time and embedded systems, in Communications of the
ACM, vol. 45 (2002), no. 6, pp. 43–48.

[142] Douglas C. Schmidt and Fred Kuhns, An overview of the real-time corba specification, in IEEE
Computer, vol. 33 (2000), pp. 56–63.

[143] Detlef Scholle, Björn Berggren, Joakim Hägglund, Andreas Lindell, Andreas Ziethén, Jacob
Ideskog, Yiran Li, Axel Olsson, DeJiu Chen, Lei Feng, Javier García, Magnus Persson,
Tahir Naseer Qureshi, Martin Törngren, Peter Engel, Florian Wildschütte, Richard J. Anthony,
Paul Ward, Mariusz Pelc, James Hawthorne, Hans Blom, Otto Emanuelsson, Daniel Karlsson,
Johan Granath, Jonas Sandberg, Isabell Jahnich, and Achim Rettberg, D3.1 Specification of
reference implementation and validation applications, project deliverable, 2009, http://www.
dyscas.org/doc/DySCAS_D3.1.pdf, project no. FP6-IST-2006-034904.

http://ptolemy.eecs.berkeley.edu
http://www-935.ibm.com/services/us/gbs/bus/pdf/gbe03079-usen-auto2020.pdf
http://www-935.ibm.com/services/us/gbs/bus/pdf/gbe03079-usen-auto2020.pdf
http://www.semiconductors.bosch.de/pdf/can2spec.pdf
http://www.semiconductors.bosch.de/pdf/can2spec.pdf
http://users.cs.fiu.edu/~sadjadi/Publications/AdaptiveMiddlewareSurvey.pdf
http://users.cs.fiu.edu/~sadjadi/Publications/AdaptiveMiddlewareSurvey.pdf
http://www.md.kth.se/saint
http://www.dyscas.org/doc/DySCAS_D5.4.pdf
http://www.cs.wustl.edu/~schmidt/CIAO.html
http://www.cs.wustl.edu/~schmidt/CIAO.html
http://www.cs.wustl.edu/~schmidt/TAO.html
http://www.cs.wustl.edu/~schmidt/TAO.html
http://www.dyscas.org/doc/DySCAS_D3.1.pdf
http://www.dyscas.org/doc/DySCAS_D3.1.pdf

75

[144] Detlef Scholle, Björn Berglund, Rasmuss Graaf, Oskar Hermansson, Yiran Li, Andreas Lindell,
Jacob Ideskog, Axel Olsson, Stefan Poon, Mikael Wånggren, Andreas Ziethén, Peter Engel,
Florian Wildschütte, Richard J. Anthony, Magnus Persson, Javier García, Lei Feng, Martin
Törngren, Claes Pihl, and Martin Sanfridson, D3.2 Reference platform and validation applications,
project deliverable, 2009, project no. FP6-IST-2006-034904.

[145] SDL-RT, http://www.sdl-rt.org.

[146] SDL-RT: Specification & description language - real time, 2006, http://www.sdl-rt.org/
standard/V2.2/pdf/SDL-RT.pdf.

[147] Branislav V. Selic, On the semantic foundations of UML 2.0, in Formal Methods for the Design
of Real-Time Systems: 4th International School on Formal Methods for the Design of Computer,
Communication and Software Systems (SFM-RT 2004) (Marco Bernardo and Flavio Corradini,
eds.), Lecture Notes in Computer Science (LNCS) no. 3185, Springer Verlag, Bertinora, Italy,
September 13–18 2004, pp. 181–199.

[148] Lui Sha, Tarek Abdelzaher, Karl-Erik Årzén, Anton Cervin, Theodore Baker, Alan Burns, Giorgio
Buttazzo, Marco Caccamo, John Lehoczky, and Aloysius K. Mok, Real time scheduling theory: A
historical perspective, in Real-Time Systems, vol. 28 (2004), no. 2-3, pp. 101–155, ISSN 0922-6443.

[149] Jianlin Shi, Model and tool integration in high level design of embedded systems, Licentiate
thesis, Mechatronics Lab, Department of Machine Design, Royal Institute of Technology
(KTH), Stockholm, Sweden, December 2007, http://www.md.kth.se/~jianlin/LicThesis.
pdf, report no TRITA MMK 2007:10, ISSN 1400-1179, ISRN/KTH/MMK/R–07/10–SE.

[150] Hesham Shokry and Mike Hinchey, Model-based verification of embedded software, in IEEE
Computer, vol. 42 (2009), no. 4, pp. 53–59.

[151] SimEvents, www.mathworks.com/products/simevents.

[152] Frank Siqueira, Quartz: A QoS architecture for open systems, Ph.D. thesis, Trinity College,
University of Dublin, Ireland, 1999, http://www.inf.ufsc.br/~frank/papers/PhD-Thesis.
pdf.

[153] Carl-Johan Sjöstedt, Jianlin Shi, Martin Törngren, David Servat, DeJiu Chen, Viktor Ahlsten,
and Henrik Lönn, Mapping Simulink to UML in the design of embedded systems: Investigating
scenarios and structural and behavioral mapping, in Proceedings of the 4th Workshop on Object-
Oriented Modeling of Embedded Real-Time systems (OMER4 Post-proceedings), 2008.

[154] Jan Söderberg, Detlef Scholle, Joakim Lövqvist, Lina Krantz, Magnus Persson, Javier García,
Claes Pihl, Johan Granath, Jing Tang, Isabell Drüke, Viktor Friesen, and Martin Törngren, D3.3
DySCAS demonstrator application and specification, Dyscas project deliverable, 2008, http://
www.dyscas.org/doc/DySCAS_D3.3.pdf, project no. FP6-IST-2006-034904.

[155] SPEEDS Project, http://www.speeds.eu.com.

[156] SPEEDS Project, SPEEDS methodology – a white paper, Tech. Rep., 2008, http://www.speeds.
eu.com/downloads/SPEEDS_WhitePaper.pdf, project no. FP6-IST-2005-033471.

[157] Sun Microsystems, Jini™ architectural overview, technical whitepaper, January 1999.

[158] SysML – open source specification project, http://www.sysml.org.

[159] Clemens Szyperski, Dominik Gruntz, and Stephan Murer, Component software: Beyond object-
oriented programming, 2nd edn., Addison-Wesley Publishing Company, 2002.

[160] TIMMO Consortium, Timing model: Mastering in-vehicle timing constraints, 2009, https://www.
timmo.org/pdf/TIMMO_Brochure_V10b.pdf.

[161] TIMMO Project, http://www.timmo.org.

[162] Ken Tindell, Alan Burns, and Andy Wellings, Allocating hard real time tasks. an NP-hard problem
made easy, in Journal of Real-Time Systems, vol. 4 (1992), pp. 145–165.

[163] Martin Törngren, DeJiu Chen, and Ivica Crnkovic, Component-based vs. model-based development:
A comparison in the context of vehicular embedded systems, in Proceedings of 31st EUROMICRO
Conference on Software Engineering and Advanced Applications, IEEE, Porto, Portugal, August 30
– September 3 2005.

http://www.sdl-rt.org
http://www.sdl-rt.org/standard/V2.2/pdf/SDL-RT.pdf
http://www.sdl-rt.org/standard/V2.2/pdf/SDL-RT.pdf
http://www.md.kth.se/~jianlin/LicThesis.pdf
http://www.md.kth.se/~jianlin/LicThesis.pdf
www.mathworks.com/products/simevents
http://www.inf.ufsc.br/~frank/papers/PhD-Thesis.pdf
http://www.inf.ufsc.br/~frank/papers/PhD-Thesis.pdf
http://www.dyscas.org/doc/DySCAS_D3.3.pdf
http://www.dyscas.org/doc/DySCAS_D3.3.pdf
http://www.speeds.eu.com
http://www.speeds.eu.com/downloads/SPEEDS_WhitePaper.pdf
http://www.speeds.eu.com/downloads/SPEEDS_WhitePaper.pdf
http://www.sysml.org
https://www.timmo.org/pdf/TIMMO_Brochure_V10b.pdf
https://www.timmo.org/pdf/TIMMO_Brochure_V10b.pdf
http://www.timmo.org

76 REFERENCES

[164] Martin Törngren, DeJiu Chen, Diana Malvius, and Jakob Axelsson, Model based development
of automotive embedded systems, in Automotive Embedded Systems Handbook (Nicolas Navet and
Françoise Simonot-Lion, eds.), Industrial Information Technology, Taylor and Francis, CRC
Press, 2008.

[165] TrueTime, http://www.control.lth.se/truetime.

[166] Hongtei Eric Tseng, Behrouz Ashrafi, Dinu Madau, Todd Allen Brown, and Darrel Recker, The
development of vehicle stability control at Ford, in IEEE/ASME Transactions on Mechatronics, vol. 4
(1999), no. 3, pp. 223–234.

[167] Unified Modeling Language, http://www.uml.org.

[168] UPnP device architecture 1.0, July 20 2006, http://www.upnp.org/specs/arch/

UPnP-arch-DeviceArchitecture-v1.0.pdf.

[169] UPnP Forum, http://www.upnp.org.

[170] UPPAAL, http://www.uppaal.com.

[171] Verein Deutscher Ingenieure, Entwicklungsmethodik für mechatronische Systeme, VDI 2206.

[172] Andreas Vogel, Brigitte Kerhervé, Gregor v. Bochmann, and Jan Gecsei, Distributed multimedia
applications and quality of service: a survey, in CASCON ’94: Proceedings of the 1994 conference of
the Centre for Advanced Studies on Collaborative research, IBM Press, 1994, pp. 10–19.

[173] Markus Völter, A taxonomy of components, in Journal of Object Technology, vol. 2 (2003), no. 4, pp.
119–125, http://www.jot.fm/issues/issue_2003_07/article3.pdf.

[174] Jim Waldo, The Jini architecture for network-centric computing, in Communications of the ACM,
vol. 42 (1999), no. 7, pp. 76–82.

[175] Florian Wildschütte, DeJiu Chen, Martin Törngren, Magnus Persson, Tahir Naseer Qureshi, Lei
Feng, Detlef Scholle, Ola Redell, Barbro Claesson, Richard J. Anthony, Mariusz Pelc, James
Hawthorne, Paul Ward, Gerrit de Boer, Peter Engel, Erik Walossek, Alexander Wever, Isabell
Jahnich, Achim Rettberg, Mats Larsson, Jonas Sandberg, Martin Sanfridson, Otto Emanuelsson,
Thomas Söderqvist, Hans Blom, Cecilia Ekelin, Daniel Karlsson, Viktor Friesen, Walter Franz,
and Johan Granath, D2.3 DySCAS system specification (final drop), Dyscas project deliverable,
2009, http://www.dyscas.org/downloads.htm, project no. FP6-IST-2006-034904.

[176] Andreas Ziethén, Analysis of QoS in the Meteor MW, Master’s thesis, Mechatronics Lab,
Department of Machine Design, Royal Institute of Technology (KTH), Stockholm, Sweden, 2008,
report number MMK2008:49 MDA 329.

http://www.control.lth.se/truetime
http://www.uml.org
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf
http://www.upnp.org
http://www.uppaal.com
http://www.jot.fm/issues/issue_2003_07/article3.pdf
http://www.dyscas.org/downloads.htm

	Preface
	Contents
	List of Appended Papers
	List of Other Publications
	Reading Guideline
	Setting the Scene
	An Example Application: Vehicle Stability Control
	Definitions of Key Concepts
	Development Tools and Processes
	Industrial Context and Scientific Challenges
	The DySCAS Project

	Research Goal and Document Structure
	Research Objectives
	Research Methodology
	Delimitations

	Thesis Structure and Contribution
	Brief Introduction of the Appended Papers

	Background and Industrial Motivation
	Conventional Design Process of Automotive Embedded Systems
	V-Cycle Development Model
	Organizational Limitations of the Design Process

	Modularity
	Configurability
	Static Reconfigurability

	Dynamic Reconfigurability and Self-Configurability
	Degree of Adaptation: a Continuum of Multiple Dimensions

	State of the Art in the Development of Embedded Systems
	Architectural design
	Views
	Trade-offs
	Architecture Description Languages

	Model-based Design and Engineering
	Modeling Paradigms
	Modeling Languages and Environments

	Component-Based Design
	Contract-Based Design
	Contracts in Component-Based Design
	Example Component Models

	Support Tools -- Gap Analysis
	Tool Challenges for Distributed Development Organizations

	Discussion

	Middleware
	Transparencies
	Taxonomy of Middlewares
	Adaptive Middleware
	Key Supporting Paradigms for Adaptive Middleware

	A Few Middleware Examples
	Autosar
	CORBA
	OMG Data Distribution Service for Real-Time Systems
	OSGi
	Jini
	UPnP -- Universal Plug and Play
	Microsoft .NET

	Discussion

	Adaptivity
	Quality of Service
	Definition and Terminology
	Architectural Variations on Quality of Service
	Challenges and Gaps in Understanding

	Load Balancing
	Admission Control
	Generalized Adaptivity
	Control-Theoretic View of Adaptivity
	Actuation

	Metrics of Configuration Quality
	Discussion

	Design and Implementation of an Adaptive Middleware
	Major Design Principles behind DySCAS
	Resource Management and Quality of Service

	Implementing DySCAS
	DyLite
	SHAPE

	Discussion

	Formal Modeling of Extra-Functional Properties
	Overview of Formal Approaches
	Current Efforts

	A Proposed Resource Modeling Formalism

	Discussion
	Contribution and Validity
	Applicability in Other Types of Systems

	Possible Future Work
	Theoretical Base
	Methodology
	Tools
	Online Configuration Algorithms
	Improvement of the DyLite Implementation
	Component Models for Real-Time Systems
	Computational Reflection
	Verification

	End Words

	References

