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Abstract 

Extraction of valuable data from extensive datasets is a standout amongst the most 

vital exploration issues. Association rule mining is one of the highly used methods for 

this purpose. Finding possible associations between items in large transaction based 

datasets (finding frequent itemsets) is most crucial part of the association rule min-

ing task. Many single-machine based association rule mining algorithms exist but the 

massive amount of data available these days is above the capacity of a single machine 

based algorithm. Therefore, to meet the demands of this ever-growing enormous data, 

there is a need for distributed association rule mining algorithm which can run on mul-

tiple machines. For these types of parallel/distributed applications, MapReduce is one 

of the best fault-tolerant frameworks. Hadoop is one of the most popular open-source 

software frameworks with MapReduce based approach for distributed storage and 

processing of large datasets using standalone clusters built from commodity hardware. 

But heavy disk I/O operation at each iteration of a highly iterative algorithm like Apriori 

makes Hadoop inefficient. A number of MapReduce based platforms are being devel-

oped for parallel computing in recent years. Among them, a platform, namely, Spark 

have attracted a lot of attention because of its inbuilt support to distributed computa-

tions. Therefore, we implemented a distributed association rule mining algorithm on 

Spark named as Adaptive-Miner which uses adaptive approach for finding frequent 

patterns with higher accuracy and efficiency. Adaptive-Miner uses an adaptive strategy 

based on the partial processing of datasets. Adaptive-Miner makes execution plans 

before every iteration and goes with the best suitable plan to minimize time and space 

complexity. Adpative-Miner is a dynamic association rule mining algorithm which 

change its approach based on the nature of dataset. Therefore, it is different and better 

than state-of-the-art static association rule mining algorithms. We conduct in-depth 

experiments to gain insight into the effectiveness, efficiency, and scalability of the 

Adaptive-Miner algorithm on Spark. Available: https ://githu b.com/sanja ysing hrath i/

Adapt ive-Miner 
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Introduction

Data mining techniques like classification, recommendation systems, clustering, and 

association rule mining are highly used to extract the useful or relevant information 

from large datasets. Association rule mining is one of the best techniques to mine 

relevant information from large datasets. It produces relevant or interesting relations 

between different variables in the dataset in the form of association rules. For exam-

ple, an association rule bread => butter (90%) states that nine out of ten customers 

that bought bread also bought butter. To generate such association rules, frequent 

patterns must be identified first. �erefore, frequent pattern mining forms the crux 

of any association rule mining process. To find frequent patterns, we need to get sup-

port for every itemset in the database. Itemsets with support more than minimum 

support are considered as frequent itemsets. In association rule example, 90% shows 

confidence or accuracy of the rule.

For example, I is a set of products (items). A set X = { i1, i2, ...., ik } ∈ I is called as 

k-itemset. A transaction over I is a pair T = (tid, I) where tid is transaction ID and I is 

an itemset. A transaction database is a set of transactions having itemsets ⊆ I.

�e cover of an itemset X in transaction database D contains the set of transaction 

IDs of transactions that support X.

�e total support of an itemset X in D is the total number of transactions in the cover 

of X in D:

�e total frequency of an itemset X in D is the total probability of occurance of X in a 

transaction T ∈ D:

�e accuracy or confidence of an association rule X => Y  in D is the probability 

(conditional) of having Y happening in a transaction, given that X is also exist in that 

transaction:

Association rule mining has numerous applications in different areas. Historically, 

it is used in market basket analysis to mine products which were sold together fre-

quently that in turn allowed industries to formulate better marketing plans to sell and 

manage their products and services. We illustrate with suitable examples the wide 

range of various applications that benefit from association rule mining.

  • Crime prevention/detection Frequent pattern analysis of huge criminal databases 

that contain criminal events/activities can help to predict the most crime-prone 

areas in the city or predict the criminals/thieves that are most likely to be repeat 

offenders [1, 2].

cover(X ,D) = {tid|(tid, I) ∈ D,X ⊆ I}

support(X ,D) := |cover(X ,D)|

frequency(X ,D) := P(X) = support(X ,D)/|D|

confidence(X => Y ,D) = P(Y |X) = support(X ∪ Y ,D)/support(X ,D)
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  • Cyber security Frequent pattern analysis of large network log files can help identify 

different IP addresses and ports that are highly susceptible to attacks [3]. �is infor-

mation can be used to block requests from these vulnerable ports or addresses.

  • Crowd mining Extracting useful patterns from large databases of social sites allows a 

better comprehension of crowd (large group of people) behavior which in turn can 

improve possibilities of increasing sale and monetary gains [4, 5].

  • Bioinformatics Analyzing sequence alignment results to find interesting information 

related to the human genome and motif discovery [6].

All the basic association rule mining algorithms work on sequential approach and they 

were efficient until the size of the dataset were small. As the size of datasets started 

increasing, their efficiency starts decreasing. �erefore, to handle large datasets, parallel 

algorithms were introduced [7–12]. Many cluster-based algorithms were capable of han-

dling large datasets, but they were complex and had many issues like synchronization, 

replication of data etc. Hence parallel approach is replaced by MapReduce approach. 

MapReduce approach makes association rule mining process very fast because algo-

rithms like Apriori have possibilities of high parallelism. Key-value pairs (MapRe-

duce intermediate results) can be easily generated in case of Apriori algorithm. Many 

MapReduce based implementations of Apriori algorithm [13–16] were proposed which 

shows a high-performance gain as compared to the conventional Apriori algorithm. 

Hadoop [17] is one of the best platforms to implement Apriori algorithm as a MapRe-

duce model. But still, there are some limitations in Hadoop based implementation of 

Apriori algorithm. On Hadoop platform, results are stored to HDFS after each iteration 

and input is taken from HDFS for next iteration, which decreases the performance due 

to input-output time. But Spark [18] platform tackle these problems by using its RDD 

(Resilient Distributed Datasets) architecture, which stores results at the end of an itera-

tion in the local cache and provides them for next iterations. Apriori implementation 

on spark platform gives faster and efficient results on standard datasets which makes 

spark platform best for implementation of Apriori algorithm to mine frequent patterns 

and generate association rules later. Recently, Qiu  [19] have reported nearly 18 times 

speedup on an average for various benchmarks for their yet another frequent itemset 

mining (YAFIM) algorithm. �eir results with real-world data for medical application 

are observed to be many times faster than a MapReduce framework. We proposed a new 

algorithm, called R-Apriori [20], which was faster and efficient than standard Apriori on 

Spark for 2nd iteration. We replaced conventional Apriori approach with our reduced 

approach to reduce the number of computations in 2nd iteration. Our reduced approach 

outperforms conventional Apriori approach by 4–9 times for 2nd iteration. Use of our 

approach for all iterations of Apriori algorithm did not come out to be very promising 

as we found that our reduced approach will not be much fast and efficient for any itera-

tion if a total number of the frequent itemset in the earlier iteration is less. �erefore, 

we tried to find out the threshold above which our approach will be efficient for any 

iteration.

�e paper is organized as follows. After introducing the motivation in “Introduction” 

section, earlier work about frequent itemset mining, mainly MapReduce based Apriori 

algorithm is reported in “Related work” section. “Adaptive-Miner algorithm” section has 
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detailed description of the Adaptive-Miner algorithm proposed in this paper. “Evalua-

tion” section shows performance analysis of conventional Apriori, R-Apriori, and Adap-

tive-Miner on Spark. “Conclusion” section concludes the paper.

Mapreduce and Spark

With the availability of cloud computing technologies like Amazon EC2 cloud and 

Microsoft Azure, as evolutions to accommodate computing and storage service as a util-

ity at very affordable prices, users can use these cloud services via internet from home 

or workplace by paying for resources consumed without worrying about availability, 

maintenance and flexibility issues. Cost is based on the type of service and time of ser-

vice. �erefore, cloud computing has emerged as a very promising solution for demands 

of storage and computation in research eliminating the need for powerful and high 

computing capacity server. But to achieve efficiency, performance, and scalability for 

processing huge data, a highly parallel distributed computing model is required. �ere-

fore, a parallel computing framework called MapReduce  [21] was designed by Google 

which allows using thousands of commodity machines in parallel. MapReduce frame-

work works on a basic idea of the flow of 〈key, value〉 pairs through the map and reduce 

phases. Input is split into fixed size chunks and distributed over available mappers. Every 

mapper processes its chunk of data and generates 〈key, value〉 pairs. �ese 〈key, value〉 

pairs are shuffled or sorted to group values based on keys to generate intermediate 

〈key, value〉 pairs where all values with the same key are grouped together. Reducers 

take the intermediate 〈key, value〉 pairs and combine all values for a key to generate final 

results. MapReduce framework can handle huge datasets because all map and reduce 

operations are executed concurrently on many machines. All map tasks need to finish 

to start reduce tasks. Many MapReduce framework based tools like Hadoop, Spark, and 

Flink are available to analyze huge datasets with ease. Hadoop is widely used MapRe-

duce based model in bioinformatics in recent few years. Sequence alignment tools like 

IMR-Apriori  [22], MR-Apriori  [16] and BigFIM  [23] used Hadoop for heavy analysis. 

�ough Hadoop provides a highly parallel computing environment but has a limitation 

of high I/O time during various iterations. Apache Spark [18] overcomes this limitation 

of Hadoop by using its in-memory computing technique with the help of RDD storage. 

I/O operations on Spark RDD [18] are very efficient and fast due to which sometimes it 

outperforms Hadoop by 100 times. �ese advantages of Apache Spark ignited an inter-

est in us to use Apache Spark for our association rule mining algorithm Adaptive-Miner.

Related work

During last three decades, a lot of association rule mining algorithms are proposed by 

researchers. �ese algorithms were fast and efficient until the evolution of Big Data in 

last decade. In an era of Big Data, data is produced at such high speed that these algo-

rithms are unable to keep track with that. �erefore, association rule mining algorithms 

based on parallel and distributed computing has evolved as a solution. Most of these 

algorithms were based on MapReduce paradigm. Apriori is one of the simplest and eas-

ily parallelizable algorithms. �erefore most researchers use Apriori approach for imple-

menting MapReduce-based association rule mining algorithms.
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In 2008, Li [24] proposed an association rule mining algorithm called as PFP (Parallel 

Frequent Pattern). �is algorithm is a parallel implementation of FP-Growth (Frequent 

Pattern-Growth) algorithm based on MapReduce paradigm. It eliminates the require-

ments of data distribution and load balancing by using MapReduce paradigm. It was 

highly scalable and quite suitable for web data mining. PFP search for top-k patterns 

instead of patterns fulfilling user specified minimum support criteria which make it 

effective for web data mining. Author apply it on query log for search recommendations. 

PFP load balancing technique was not so efficient, therefore Zhou [25] proposed a new 

algorithm called as BPFP (Balance Parallel FP-Growth). BPFP algorithm has better load 

balancing technique to make PFP faster and efficient.

In 2010, Yang [26] proposed a very simple MapReduce-based association rule mining 

algorithm. �is algorithm was the very straightforward implementation of Apriori algo-

rithm on Hadoop. It uses a single map and reduce phases to get frequent patterns. In 

2011, Li [27] proposed a new cloud computing based association rule mining algorithm 

which uses one phase MapReduce implementation of Apriori. �ey used better data dis-

tribution techniques to improve efficiency and speed. An entirely different approach is 

used by Yu  [28] for mining association rules. �ey replaced the original transactional 

database with the boolean matrix. Now many AND operations along with other logical 

operators are used on matrix to find frequent patterns. It uses Hadoop for parallel compu-

tation of matrix by dividing it into parts. �ey claim for better space and time efficiency.

Some researchers focused on using cloud computing platforms like EC2 and S3 for fast 

and efficient association rule mining.

In 2012, Li [13] proposed a MapReduce-based association rule mining algorithm and 

ran it on Amazon EC2 cluster. �is algorithm uses basic apriori approach. It provides 

faster results due to high computation power available on EC2. It uses Amazon S3 for 

data storage. Later, lin  [14] proposed three MapReduce-based association rule mining 

algorithms called as SPC (Single Pass Counting), FPC (Fixed Passes Combined-count-

ing), and DPC (Dynamic Pass Counting). SPC algorithm is simple MapReduce imple-

mentation of Apriori. FPC algorithm works same as SPC for finding up to 2-itemsets. 

It combines candidate sets for remaining passes to get results in a single phase. It 

was useful in some cases where the size of candidate set is small after two iterations 

and many machines in Hadoop cluster remain idle during afterward steps. By default, 

FPC combines candidate set of 3 iterations like candidate set of 3-itemsets, 4-itemset 

and 5-itemset. FPC also has a drawback that it combines fix number of passes and have 

the possibility of crashing if candidate set for higher iterations is large. DPC algorithm 

resolve this issue quite efficiently by combining phases depending on candidate size and 

machines computation power. It provides better load balancing for increasing efficiency. 

In the same year, Li  [15] and Yahya (MRApriori)  [16] proposed another MapReduce 

paradigm based association rule mining algorithms which are a straightforward parallel 

implementation of Apriori algorithm.

Some researchers use random samples of the database to find approximate association 

rules. PARMA (Parallel Randomized Algorithm for Approximate association rule min-

ing) [29] algorithm gives input of random samples of the database to various machines in 

the cluster. Every machine finds frequent patterns for its sample and reducer combines 

the results. �is algorithm does not provide accurate results, but allow the user to define 
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his choices for allowed error percentage. A random sample is fixed in size and depend on 

user-defined allowed error rate. It has a drawback of less accuracy as compared to exist-

ing MapReduce-based algorithms. In 2013, Kovacs  [30] used a different approach that 

they calculate singleton and pair frequent itemsets in the first iteration of MapReduce 

using triangular matrix. Candidate set is generated in reduce phase instead of map phase 

in all existing MapReduce-based algorithms. Later, Oruganti  [31] used parallel Apriori 

implementation using MapReduce paradigm to explore Hadoop capabilities. In the same 

year, Yong  [32] proposed an association rule mining algorithm based on MapReduce 

paradigm which uses cloud computing to run parallel implementation of FP-Growth. 

It has two major benefits over conventional parallel FP-Growth algorithm. Firstly, it 

reduces database scans, and secondly, it reduces the cost of inter-processor communi-

cation in conventional parallel FP-Growth algorithm. Later, Moens  [23] proposed two 

association rule mining algorithms called as Dist-Eclat (Distributed-Eclat) and BigFIM. 

Dist-Eclat works on the concept of Eclat algorithm. It is MapReduce paradigm based 

implementation of Eclat algorithm. It concentrated more on speed and suitable for faster 

results. BigFIM works on a hybrid approach. It uses both Apriori and Eclat algorithm 

mixed approach. It is more appropriate for handling large databases in an optimized 

way. In the same year, Farzanayar  [22] came with IMRApriori (Improved MapReduce 

based Apriori) algorithm to analyze massive social network data.

In 2014, Lin [33] came with one more MapReduce paradigm based parallel implemen-

tation of Apriori. Lin uses most outdated cluster hardware (P4) for computations. Later, 

Barkhordari [34] proposed a MapReduce-based association rule mining algorithm called 

as ScaDiBino (scalable and distributable binominal association rule mining algorithm) 

which converts every row of input transactions to a binomial format. Binomial data can 

be processed more efficiently on MapReduce. �is algorithm directly generates associa-

tion rule without finding frequent patterns. �ey used this algorithm for recommending 

value added services to customers by analyzing network traffic of a mobile operator.

Some researchers use various data structures to improve the efficiency of association 

rule mining algorithms. Singh [35] tries to use a hash table, hash trie and hash table trie 

for candidate storage in Apriori MapReduce-based implementation. �ey find that hash 

table trie is most efficient than others in MapReduce context while it is not much effi-

cient in a sequential approach.

On Hadoop platform, results are stored in HDFS (hadoop distributed file system) after 

every iteration, and these results are again sourced from HDFS as input for the next iter-

ation, which decreases the performance due to the high I/O time. But Spark [18], a new 

in-memory, distributed data-flow platform, resolves this issue by using its RDD architec-

ture. RDDs stores the results in main memory at the end of an iteration and make them 

available for the next iteration. Traditional Apriori implementation on Spark platform 

gives many times faster results on standard datasets which make Spark one of the best 

tool for implementation of Apriori. In 2014, Qiu  [19] had reported speedups of more 

than 18 times on average for various benchmarks for YAFIM (yet another frequent item-

set mining) algorithm based on Spark RDD framework. �eir results on real-world med-

ical data are observed to be many times faster than on the MapReduce framework. Later, 

Zhang [36] proposed an association rule mining algorithm called as DFIMA (Distributed 

Frequent Itemset Mining Algorithm) which is implemented on Spark. DFIMA algorithm 
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uses matrix-based pruning technique to reduce candidate size. �e author claims that 

it outperforms PFP algorithm when both are implemented on Spark. Recently, our new 

association rule mining algorithm called as R-Apriori [20] used a reduced approach for 

2nd iteration to reduce computations. R-Apriori outperformed nearly all state-of-the-art 

association rule mining algorithms for 2nd iteration in terms of accuracy and perfor-

mance. �ese results motivated us to come with innovative approaches for distributed 

association rule mining algorithms.

Adaptive-Miner algorithm

Adaptive-Miner is a MapReduce based parallel algorithm implemented on Apache 

Spark. It has two phases.

Phase I In the first Phase, all frequent singletons are mined from the dataset. �is 

phase uses a single iteration of Map and Reduce to discover all frequent singletons. All 

frequent singletons are stored in Bloom filter. Apriori uses Hash tree to store and search 

candidate itemsets which have the limitation of false negatives. �erefore, Hash tree is 

replaced with Bloom filter to improve accuracy for association rule mining.

Phase II In the second Phase, algorithm finds all frequent itemsets of length 2, 3, 4 

and so on. �is phase uses many iterations of Map and Reduce until there is no frequent 

itemset for an iteration or maximum iteration limit is reached. In phase II, it makes exe-

cution plans for every iteration, compute the cost of execution for every plan and then 

select the best plan for that iteration. �is algorithm uses a dynamic approach which 

makes it faster and gives efficient results for every iteration. �ere is some overhead of 

calculating the cost for every execution plan, but this overhead is negligible when we are 

working on large datasets.

Phase I—frequent singletone generation

Adaptive-Miner finds all frequent singletons from large transactional datasets during the 

first phase. �e transaction dataset from HDFS is loaded into Spark RDD to make good use 

of cluster memory and also provide resilience to failures in the cluster. �e detailed pro-

cess of generating a frequent singleton itemset from the dataset is outlined in Algorithm 1.
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�e input file is broadcasted to every worker node to make it available locally to each 

worker. Subsequently, a flatMap function is applied on every transaction in dataset 

(line 2). For each transaction, the mapper generates 〈key, value〉 pairs where key denotes 

every item in transaction and value is an integer 1 (lines 4–6). Subsequently, a reduce 

task combines all pairs according to the key (reduceByKey function) and filter out the 

results having value less than minimum support (lines 8–9). At last, results are stored in 

a SparkRDD. Lineage graph, showing the flow of data and control through various stages 

of phase I is presented in Fig. 1.

Example

Figure 2 shows an example of singleton frequent itemset generation step. A transactional 

database stored on HDFS is treated as the input. �e mappers in the first round receive a 

set of transactions (e.g. mapper MAP-1 receives transaction T1–T2) and they split each 

transaction into items and generate corresponding 〈key, value〉 pairs. For example, trans-

action T1 (S,  R,  M) is mapped to 〈S, 1〉 , 〈R, 1〉 , and 〈M, 1〉 . Subsequently, a reduce task 

combines all pairs according to the key (reduceByKey function) and filter out pairs hav-

ing value less than min-support. At last, results are stored in Bloom filter.

Phase II—frequent itemsets generation

Adaptive-Miner uses an adaptive approach and select conventional or reduced approach 

for every iteration based on the nature of the dataset. It iterates until all frequent item-

sets of various length are discovered. �e detailed process of finding frequent itemsets of 

I length for the transactional dataset is outlined in Algorithm 2.

Input File

flatMap(_.split(“\n”))

(Item, Count) (Item, Count)(Item, Count)(Item, Count)

flatMap(_.split(“”)) map(item=>(item,1)) reduceByKey(_+_)

Fig. 1 Lineage graph for Phase I (frequent singleton generation)

MAP-1

MAP-2

MAP-3

REDUCE-1

REDUCE-2

REDUCE-3

Hdfs.newAPIHadoopFile.flatMap RDD.reduceByKeyRDD.split RDD.collect

T1

T2

T3

T4

T5

T6

<S,4>

TID ITEMS

T1 S, R, M

T2 S, R, G, P

T3 J, R, G

T4 P, S

T5 P, S, G, T

T6 G, R, P

TID ITEMS

S 4

R 4

G 4

P 4

<R,1> <M,1>

<S,1>
<R,1>

<P,1>
<G,1>

<J,1> <R,1> <G,1>

<P,1> <S,1>

<P,1>
<S,1> <G,1>

<T,1>

<G,1> <R,1> <P,1>

<R,4>

<G,4>

<P,4>

Fig. 2 Mapreduce architecture for Phase I (frequent singleton generation)
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For Ith iteration, a basic condition (a large number of frequent itemsets in recent itera-

tion) is checked which depends on the number of items frequent in (I-1) iteration. If 

the condition is satisfied, then Reduced approach is used. Singleton frequent items are 

stored in a Bloom filter. �e input file is broadcasted to every worker node to make it 

available locally to each worker. Subsequently, a flatMap function is applied on every 

transaction in dataset (line 2). Mapper takes each transaction and prunes it so that it 

contains only items which exist in the Bloom filter. Mapper yields all possible pairs for 

the pruned transaction as 〈key, value〉 pairs where key denotes every pair in the pruned 

transaction and value is an integer 1 (lines 4–6). Subsequently, a reduce task combines 

all pairs according to the key (reduceByKey function) and filter out the results having 

value less than minimum support (lines 8–9). At last, results are stored in a SparkRDD.

If the condition is not satisfied, then conventional Apriori approach is used. Initially, 

a candidate set ( Ci ) is generated for Ith iteration from last iteration frequent itemset 

( Lk−1 ). �e input file is broadcasted to every worker node to make it available locally 

to each worker. Subsequently, a flatMap function is applied on every transaction to find 

possible (k)-itemsets for that transactions in hash tree (line 2). For each transaction, the 

mapper generates 〈key, value〉 pairs where key denotes every (k)-itemset for a transac-

tion and value is an integer 1 (lines 4–6). Subsequently, a reduce task combines all pairs 

according to the key (reduceByKey function) and filter out the results having value less 

than minimum support (lines 8–9). At last, results are stored in a SparkRDD. Lineage 
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graph, showing the flow of data and control through various stages of phase I is pre-

sented in Fig. 3.

Example

Figure 4 shows an example of frequent pair itemsets generation step. For 2nd itera-

tion, the approximate cost of reduced and conventional approach is calculated using 

the size of the frequent set in the first phase and dataset size. �e reduced approach is 

used if the condition is satisfied. A transactional database stored on HDFS and single-

ton frequent itemsets stored in Bloom filter are treated as the input. �e mappers in 

the first round receive a set of transactions (e.g. mapper MAP-1 receives transaction 

T1–T2) and they prune each transaction so that it contains only items which exist in 

the Bloom filter. For example, transaction T1 (S, R, M) is mapped to pruned transac-

tion T1 (S, R).Now, mappers yield all possible 〈key, value〉 pairs for the pruned transac-

tion. For example, pruned transaction T1 (S, R) is mapped to 〈SR, 1〉 . Subsequently, a 

reduce task combines all pairs according to the key (reduceByKey function) and filter 

out pairs having value less than two. At last, results are stored on SparkRDD.

If the cost of conventional approach is less than reduced, then conventional 

approach is used for pair generation. A transactional database stored on HDFS and 

Transactions

flatMap(_.foreach)

Pair (Pair, Count)(Pair, 1)
Frequent 

Transaction

flatMap(_.makePair()) map(pair=>(pair,1)) reduceByKey(_+_)

Intersect

Itemset, count

Itemsets (Itemset, Count)(Itemset, 1)

Candidate-set

flatMap(_.getCandidateItemset) map(itemset=>(itemset,1)) reduceByKey(_+_)

Transactions

HashTree

flatMap(_.split)

Condition

?

true

false

Fig. 3 Lineage graph for Phase II (frequent K-itemset generation)

MAP-1

MAP-2

MAP-3

REDUCE-1

REDUCE-2

REDUCE-3

Hdfs.flatMap RDD.reduceByKey.collectRDD.searchBloom

T1

T2

T3

T4

T5

T6

<SG,2>

TID ITEMS

T1 S, R, M

T2 S, R, G, P

T3 J, R, G

T4 P, S

T5 P, S, G, T

T6 G, R, P

ITEM COUNT

SR 2

SG 2

SP 3

RG 3

PG 3

RP 2

<SR,1> <SM,1>
<SR,1> <RG,1>

<JR,1>

<PS,1>

<PS,1> <SG,1>

<GR,1> <RP,1> <GP,1>

<SP,3>

<RG,3>

<PG,3>

BloomFilter <S, R, G, P>

<RM,1>

MAP-1

MAP-2

MAP-3

REDUCE-1

REDUCE-2

REDUCE-3

Hdfs.flatMap RDD.reduceByKeyRDD.searchHash

T1

T2

T3

T4

T5

T6

<SG,2>

TID ITEMS

T1 S, R, M

T2 S, R, G, P

T3 J, R, G

T4 P, S

T5 P, S, G, T

T6 G, R, P

ITEM COUNT

SR 2

SG 2

SP 3

RG 3

PG 3

RP 2

<SR,1> <SM,1>
<SR,1> <RG,1>

<JR,1>

<PS,1>

<PS,1> <SG,1>

<GR,1> <RP,1> <GP,1>

<SP,3>

<RG,3>

<PG,3>

HashTree<SR, SG, SP, RG, PG, RP>

<RM,1>

If(fCI+ >= gCI * )

Yes

No

Store singleton in Bloom Filter

Store candidate set in Hash Tree

Fig. 4 Mapreduce architecture for Phase II (frequent pair generation)



Page 11 of 17Rathee and Kashyap   J Big Data  (2018) 5:6 

a hash tree having candidate set ( 〈SR〉 , 〈SG〉 , 〈SP〉 , 〈RG〉 , 〈PG〉 , 〈RP〉 ) are treated as 

the input. �e mappers in the first round receive a set of transactions (e.g. mapper 

MAP-1 receives transaction T1–T2) and they find each k-itemset for each transaction 

and generate corresponding 〈key, value〉 pairs. For example, transaction T1 (S, R, M) is 

mapped to 〈SR, 1〉 . Subsequently, a reduce task combines all pairs according to the key 

(reduceByKey function) and filter out pairs having value less than two. At last, results 

are stored in SparkRDD.

Adaptiveness of the algorithm comes from the test for the condition as follows. Let 

us assume that there are X transactions, M mappers, g average number of elements 

in every transaction and f number of items frequent after the last iteration. Further, t 

is time to search an element in HashTree, and b is time taken to search an element in 

bloom filter.

For conventional approach, total time complexity of Ith Iteration is sum of time to 

generate candidate set ( Tg ), time to store candidate set in HashTree ( Th ) and time 

taken by mapper ( Tm ). Here, time complexity to generate candidate set is the sum of 

total time for join and prune task.

  • Time complexity to generate candidate set = (I + 1)C
f
I

  • Time complexity to store candidate set in HashTree = I ∗ C
f
I

  • Time complexity to search and yield pairs = XM ∗ tg

  • Total time complexity for conventional approach = (2I + 1)(C
f
I ) +

X
M ∗ tg .

For Adaptive approach, time complexity of Ith iteration is sum of time complexity to 

store singleton frequent items in Bloom filter ( Tbf  ), time complexity to make pruned 

transaction ( Tpr ) and time complexity to generate pairs ( Tmr).

  • Time complexity to store singleton frequent items in Bloom filter = f

  • Time complexity to make pruned transaction = XM ∗ g

  • Time complexity to generate pairs in worst case = XM ∗ C
g
I

  • Total time complexity for reduced approach = f +
X
M ∗ (C

g
I + g).

Adaptive-Miner will select reduced approach if time complexity of conventional 

approach will be greater than Reduced approach (time complexity of conventional 

approach − time complexity of reduced approach > 0)

I,  t and b are constant values mainly less than 10 and number of transactions are in 

millions for large datasets. �erefore, they are nearly negligible in term of complexity. 

After removing these final term will be (C
f
I +

Xg
M ) >= ( X

M ∗ C
g
I )

Number of frequent itemsets in last iteration (f) or candidate set size (candidate set 

size = 
f (f −1)

2
 ) and average number of items (g) in a transaction are main attributes in 

above condition. Reduced approach will be more useful if either f is high or g is small.

For an iteration I, to use reduced approach the condition (C
f
I +

Xg
M ) >= ( X

M ∗ C
g
I ) 

must be satisfied. If the given condition is satisfied then complexity of conventional 

(2I + 1)(C
f
I ) +

X

M
∗ tgf +

X

M
∗ (C

g
I + g) > 0
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approach will be greater than reduced approach. �erefore, Adaptive-Miner will make 

decision to choose the reduced approach instead of conventional approach.

Evaluation

In this section, Adaptive-Miner’s performance is evaluated in comparison to YAFIM and 

R-Apriori on spark. 1st iteration of all algorithms is same so computation time depends 

on the platform used. Remaining iterations are the main concern in perspective of per-

formance. All experiments were executed four times, and average results were taken as a 

final result.

Cluster and dataset

�e performance of Adaptive-Miner is evaluated on a cluster having 5 nodes where each 

node has 24 cores and 64 GB RAM. All computing nodes are running on Ubuntu 14.04 

LTS operating system. Oracle Java 8 is used to build the project. Spark 1.5.2 and Hadoop 

2.6 are used to run Adaptive-Miner.

Experiments were done with six large datasets having different characteristics. Proper-

ties of these datasets are as shown in Table 1.

  • T10I4D100K (artificial datasets generated by IBM’s data generator)  [37] have 105 

transactions with 870 items in it.

  • Retail dataset [37] was used for the market-basket model. It contains various transac-

tions done by the customer in a shopping mall.

  • Musroom dataset [37] is publically available musroom data.

  • Kosarak dataset  [37] was donated by Ferenc Bodon and contains the click-stream 

data of a hungarian on-line news portal.

  • BMSWebView2 [38] is a dataset used for KDD cup 2000 competition. It has average 

length 4.62 and 6.07 standard deviation.

  • T25I10D10K [38] is a synthetic dataset generated by random transaction database 

generator.

Performance evaluation

Adaptive-Miner is evaluated in terms of scalability and efficiency.

�e scalability of the Adaptive-Miner is evaluated by increasing the number of com-

pute cores and replicating the original datasets. Figure  5a shows that the execution 

Table 1 Query datasets description

S. no. Dataset Number of items Number 
of transactions

1 T10I4D100K 870 100,000

2 Retail 16,470 88,163

3 Musroom 119 8124

4 T25I10D10K 990 4900

5 Kosarak 41,270 9,90,002

6 BMSWebView2 3340 77,512



Page 13 of 17Rathee and Kashyap   J Big Data  (2018) 5:6 

time decreases nearly linearly with increasing compute cores. Figure  5b shows that 

execution time increases nearly linearly with increasing dataset size. �erefore, we 

can say that Adaptive-Miner is a scalable algorithm.

Performances for all algorithms with different datasets were evaluated using two 

worker nodes. For all six datasets, the comparison is made between conventional 

Apriori, R-Apriori, and Adaptive-Miner on Spark.

  • For T10I4D100K dataset, Adaptive-Miner performs better than Apriori and same 

as R-Apriori for 2nd iteration, but it performs same as both Apriori and R-Apriori 

for 3rd and 4th iterations (Fig. 6a).

  • For T25I10D10K dataset, Adaptive-Miner performs better than Apriori and same 

as R-Apriori for 2nd iteration, but it outperforms R-Apriori also for 3rd iteration. 

For 4th iteration again all use same candidate set approach due to less number of 

frequent items in 3rd iteration (Fig. 6b).

  • For Retail, Adaptive-Miner is better than Apriori but same as R-Apriori for all itera-

tions because number of items after 2nd iteration is less and it uses candidate set 

approach when the number of frequent items in the last iteration is small (Fig. 7a).

  • For Musroom dataset, Adaptive-Miner performs better than R-Apriori and same as 

conventional Apriori for 2nd iteration because number of singleton frequent item-

sets are very less so Adaptive-Miner uses candidate set approach for 2nd iteration. 

Fig. 5 a Adaptive-Miner execution time for different datasets with increasing computing nodes. b 

Adaptive-Miner execution time for datasets with increasing sizes by replication

Fig. 6 Comparision of conventional Apriori, R-Apriori and Adaptive-Miner performance. a T10I4D100K 

dataset min sup = 0.15%. b T25I10D10K dataset min sup = 0.10%
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Hence Adaptive-Miner is always performing better or same as Apriori and R-Apriori 

(Fig. 7b).

  • For Kosarak dataset, Adaptive-Miner performs better than Apriori and same as 

R-Apriori for 2nd iteration, but it outperforms R-Apriori also for 3rd and 4th itera-

tion (Fig. 8a).

  • For BMSWebView2 dataset, Adaptive-Miner performs better than Apriori and same 

as R-Apriori for 2nd iteration, but it performs same as both Apriori and R-Apriori for 

3rd and 4th iterations (Fig. 8b).

Conclusions

A Spark based distributed algorithm Adaptive-Miner is implemented to mine frequent 

patterns from large datasets. It uses a new modified approach (Adaptive) as well as basic 

Apriori theorem that an itemset is frequent only if all its non-empty subsets are fre-

quent. �e reduced approach will be used when number of frequent itemsets in last iter-

ations are large, otherwise basic Apriori approach will be used. Adaptive-Miner makes 

execution plans before every iteration and computes the cost for every execution plan. 

Execution plan with minimum cost is used to get results for that iteration. �is dynamic 

approach of taking decision for every iteration during runtime makes Adaptive-Miner 

very fast and efficient. It is implemented on Apache Spark platform which provides it 

highly parallel and distributed computing environment. Spark is best suited for Adap-

tive-Miner because it has support for in-memory distributed computation. Results on 

Fig. 7 Comparision of conventional Apriori, R-Apriori and Adaptive-Miner performance. a Retail dataset min 

sup = 0.15%. b Musroom dataset min sup = 30%

Fig. 8 Comparision of conventional Apriori, R-Apriori and Adaptive-Miner performance. a Kosarak dataset 

min sup = 0.60%. b BMSWebView2 dataset min sup = 0.10%
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various standard datasets show that Adaptive-Miner outperforms existing MapReduce 

based distributed algorithms. Adaptive-Miner performs better or same as conventional 

Apriori and R-Apriori for every iteration for every large dataset. Adaptive-Miner is avail-

able on GitHub for download and use.

Future work

Apache Flink has shown great performance for iterative computations in recent few 

years. It provides native support for iterative computations. Adaptive-Miner is an itera-

tive algorithm. �erefore, we will implement Adaptive-Miner on Flink to check perfor-

mance in comparison to Spark implementation in future.
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