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Abstract An adaptive beamforming assisted receiver is

proposed for multiple antenna aided multiuser systems

that employ bandwidth efficient quadrature amplitude

modulation (QAM). A novel minimum symbol error rate

(MSER) design is proposed for the beamforming assisted

receiver, where the system’s symbol error rate is directly

optimized. Hence the MSER approach provides a sig-

nificant symbol error ratio performance enhancement

over the classic minimum mean square error design. A

sample-by-sample adaptive algorithm, referred to as the

least symbol error rate (LBER) technique, is derived for

allowing the adaptive implementation of the system to

arrive from its initial beamforming weight solution to

MSER beamforming solution.

I. INTRODUCTION

The ever-increasing demand for mobile communication

capacity has motivated the development of adaptive antenna

array assisted spatial processing techniques [1]–[10] in or-

der to further improve the achievable spectral efficiency of

wireless systems. A particular technique that has shown real

promise in achieving substantial capacity enhancements is

the employment of adaptive beamforming with the aid of an-

tenna arrays, which create angularly selective beam maxima

towards the desired user and a null towards a limited num-

ber of dominant interferers. By appropriately combining the

signals received by the different elements of an antenna ar-

ray to form a single output, adaptive beamforming becomes

capable of separating signals transmitted on the same carrier

frequency, provided that they arrive from sufficiently differ-

ent angular directions. Thus bemaforming becomes capable

of supporting multiple users in an ’angular division multi-

ple access’ scenario. Classically, the beamforming process

is carried out by adjusting the beamforming array weights

upon minimizing the mean square error (MSE) between the

desired output of the array, which is typically the most likely

legitimate transmitted symbol and the actual array output. In

other words, we set the partial derivative of the array output

to zero with respect to the array weights.

However, in most communications systems it is the bit er-
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ror ratio (BER) or symbol error ratio (SER) that really mat-

ters. Hence adaptive beamforming based on directly mini-

mizing the system’s BER has been proposed for both binary

phase shift keying and quadrature phase shift keying modu-

lation schemes in [11],[12].

In recent years the family of high-throughput quadrature

amplitude modulation (QAM) schemes [13] has become pre-

dominant in numerous wireless local area network (WLAN)

standards, such as the IEEE 802.11 standards. Adaptive min-

imum SER (MSER) equalization has been investigated in the

context of a single-antenna single-user system, when using

either a pulse-amplitude modulation scheme [14] or a QAM

scheme [15]. Against this backcloth, in this paper, we de-

rive the MSER beamforming design for a multiple antenna

assisted multiuser system employing QAM signalling. We

show that the MSER design is capable of providing signif-

icant SER performance gains over the traditional minimum

MSE (MMSE) design. An attractive adaptive implementation

of the MSER beamforming solution is also proposed, which

step-by-step adjusts the array weights, commencing from an

adequate initial solution using the classic stochastic gradi-

ent algorithm (SGA), which we refer to as the least symbol

error rate (LSER) technique. Our proposed solution is sub-

stantially different from the method proposed in [15], since

the adaptive LSER algorithm invoked has its roots in the so-

called Parzen window based density estimation [16]-[18]. In

this sense, the proposed adaptive MSER technique is an ex-

tension of the method proposed in [14] for an interference-

limited multiuser system to a more bandwidth-efficient QAM

scheme.

II. SYSTEM MODEL

The system supports S users, and each user transmits an

M -QAM signal on the same carrier frequency ω = 2πf .

The receiver is equipped with a linear antenna array consist-

ing of L uniformly spaced elements. We assume that the

channel does not induce intersymbol interference (ISI). Then

the symbol-rate received signal samples can be expressed as

xl(k) =

S
∑

i=1

Aibi(k)ejωtl(θi) +nl(k) = x̄l(k)+nl(k), (1)

for 1 ≤ l ≤ L, where tl(θi) is the relative time delay at

element l for source i with θi being the direction of arrival
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for source i, nl(k) is the complex-valued Additive White

Gaussian Noise (AWGN) with E[|nl(k)|2] = 2σ2
n, Ai is the

complex-valued non-dispersive channel coefficient of user i,
while bi(k) is the kth M -QAM symbol of user i

B △
= {bl,q = ul + juq, 1 ≤ l, q ≤

√
M} (2)

with ul = 2l −
√

M − 1 and uq = 2q −
√

M − 1.

Source 1 is the desired user and the rest of the sources are

interfering users.The desired-user’s signal to noise ratio is

SNR= |A1|2σ2
b/2σ2

n and the desired signal to interferer i ra-

tio is SIRi = A2
1/A

2
i , for 2 ≤ i ≤ S, where σ2

b denotes

the M -QAM symbol’s energy. The received signal vector

x(k) = [x1(k) x2(k) · · ·xL(k)]T is given by

x(k) = Pb(k) + n(k) = x̄(k) + n(k), (3)

where n(k) = [n1(k) n2(k) · · ·nL(k)]T , the system ma-

trix P = [A1s1 A2s2 · · ·ASsS ] with the steering vector of

source i given by si = [ejωt1(θi) ejωt2(θi) · · · ejωtL(θi)]T

and that of the transmitted QAM symbol vector by b(k)
= [b1(k) b2(k) · · · bS(k)]T .

A linear beamformer’s soft output is given by

y(k) = wHx(k) = wH(x̄(k) + n(k)) = ȳ(k) + e(k) (4)

where w = [w1 w2 · · ·wL]T is the beamformer’s weight

vector and e(k) is Gaussian distributed with zero mean and

E[|e(k)|2] = 2σ2
nwHw. We define the combined impulse

response of the beamformer and the channel as wHP =
wH [p1 p2 · · ·pS ] = [c1 c2 · · · cS ]. The beamformer’s out-

put can alternatively be expressed as

y(k) = c1b1(k) +

S
∑

k=2

cibi(k) + e(k). (5)

Provided that c1 = cR1
+ jcI1

satisfies cR1
> 0 and cI1

=

0, the symbol decision b̂1(k) = b̂R1
(k) + jb̂I1

(k) can be

decoupled into

b̂R1
(k) =















u1, if yR(k) ≤ cR1
(u1 + 1)

ul, if cR1
(ul − 1) < yR(k) ≤ cR1

(ul + 1)

for 2 ≤ l ≤
√

M − 1
u√

M
, if yR(k) > cR1

(u√
M

− 1)
(6)

b̂I1
(k) =















u1, if yI(k) ≤ cR1
(u1 + 1)

uq, if cR1
(uq − 1) < yI(k) ≤ cR1

(uq + 1)

for 2 ≤ q ≤
√

M − 1
u√

M
, if yI(k) > cR1

(u√
M

− 1)
(7)

where y(k) = yR(k) + jyI(k) and b̂1(k) is the estimate of

b1(k) = bR1
(k)+jbI1

(k). Fig. 1 depicts the decision thresh-

olds associated with the decision b̂1(k) = bl,q . In general,

c1 = wHp1 is complex-valued and the rotating operation

wnew =
cold
d

∣

∣cold
d

∣

∣

wold (8)
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Fig. 1. Decision thresholds associated with point c1bl,q assuming cR1
> 0

and cI1 = 0, illustrating the symmetry of the distribution of Yl,q around

c1bl,q .

can be used to render c1 real-valued and positive. This rota-

tion is a linear transformation and does not alter the system’s

SER. Thus the desired user’s channel A1 and steering vector

s1 are required at the receiver in order to apply the decision

rules of (6) and (7).

III. MINIMUM SYMBOL ERROR RATE BEAMFORMING

The classic MMSE solution for the beamformer of (4) is

given by

wMMSE =

(

PPH +
2σ2

n

σ2
b

IL

)−1

p1, (9)

Since the SER is the ultimate performance indicator, it is de-

sirable to find the optimal MSER beamforming weight so-

lution. We denote the Nb = MS number of possible se-

quences of b(k) as bi, 1 ≤ i ≤ Nb. Then x̄(k) can

only assume values from the finite signal set defined by

X △
= {x̄i = Pbi, 1 ≤ i ≤ Nb}. The set X can be par-

titioned into M subsets, depending on the value of b1(k)

Xl,q
△
= {x̄i ∈ X : b1(k) = bl,q}, 1 ≤ l, q ≤

√
M. (10)

The noise-free component of the beamformer’s output ȳ(k)

only assumes values from the scalar set Y △
= {ȳi =

wH x̄i, 1 ≤ i ≤ Nb}, and Y can be divided into M sub-

sets conditioned on the value of b1(k)

Yl,q
△
= {ȳi ∈ Y : b1(k) = bl,q}, 1 ≤ l, q ≤

√
M. (11)

Lemma 1: The subsets Yl,q , 1 ≤ l, q ≤
√

M , satisfy the

shifting properties

Yl+1,q = Yl,q + 2c1, 1 ≤ l ≤
√

M − 1, (12)

Yl,q+1 = Yl,q + j2c1, 1 ≤ q ≤
√

M − 1, (13)



Yl+1,q+1 = Yl,q + (2 + j2)c1, 1 ≤ l, q ≤
√

M − 1. (14)

The proof of Lemma 1 is straightforward.

Lemma 2: The points of Yl,q are distributed symmetri-

cally around the symbol point c1bl,q .

Lemma 2 is a direct consequence of the symmetry of the

symbol constellation (2). This symmetric property is also

illustrated in Fig. 1. Note that the distribution of Yl,q is sym-

metric with respect to the two vertical decision thresholds

cR1
(ul ± 1) and with respect to the two horizontal decision

threshold cR1
(uq ± 1).

For the beamformer having a weight vector w we intro-

duce the notation

PE(w) = Prob{b̂1(k) �= b1(k)}, (15)

PER
(w) = Prob{b̂R1

(k) �= bR1
(k)}, (16)

PEI
(w) = Prob{b̂I1

(k) �= bI1
(k)}. (17)

It is then readily seen that the SER is given by

PE(w) = PER
(w) + PEI

(w) − PER
(w)PEI

(w). (18)

The conditional probability density function (PDF) of y(k)
given b1(k) = bl,q is a Gaussian mixture defined by

p(y|bl,q) =
1

Nsb2πσ2
nwHw

Nsb
∑

i=1

e
−

|y−ȳ
(l,q)
i

|2

2σ2
nw

H
w , (19)

where Nsb = Nb/M is the size of Yl,q , ȳ
(l,q)
i = ȳ

(l,q)
Ri

+

jȳ
(l,q)
Ii

∈ Yl,q , and y = yR + jyI . Noting that c1 is real-

valued and positive, as well as taking into account the sym-

mety of the distribution of Yl,q (lemma 2), for 2 ≤ l ≤√
M − 1, the conditional error probability of b̂R1

(k) �= ul

given bR1
(k) = ul can be shown to be

PER,l(w) =
2

Nsb

Nsb
∑

i=1

Q(g
(l,q)
Ri

(w)), (20)

where

Q(u) =
1√
2π

∫ ∞

u

e−
z2

2 dz, (21)

g
(l,q)
Ri

(w) =
ȳ
(l,q)
Ri

− cR1
(ul − 1)

σn

√
wHw

. (22)

Furthermore, taking into account the shifting property

(lemma 1), it is straightforward to show that we have

PER
(w) = γ

1

Nsb

Nsb
∑

i=1

Q(g
(l,q)
Ri

(w)), (23)

where γ = 2
√

M−2√
M

. It is seen that PER
can be evaluated

using (the real part of) any single subset Yl,q . Similarly, PEI

can be evaluated using (the imaginary part of) any single sub-

set Yl,q as

PEI
(w) = γ

1

Nsb

Nsb
∑

i=1

Q(g
(l,q)
Ii

(w)) (24)

with

g
(l,q)
Ii

(w) =
ȳ
(l,q)
Ii

− cR1
(uq − 1)

σn

√
wHw

. (25)

Note that the SER is invariant to a positive scaling of w.

The MSER solution wMSER is defined as the one that min-

imizes the upper bound of the SER given by

PEB
(w) = PER

(w) + PEI
(w), (26)

that is,

wMSER = arg min
w

PEB
(w). (27)

The upper bound PEB
(w) is very tight, i.e. very close to the

true SER PE(w). The gradients of PER
(w) and PEI

(w)
with respect to w can be shown to be

∇PER
(w) =

γ

2Nsb

√
2πσn

√
wHw

Nsb
∑

i=1

e
−

(

ȳ
(l,q)

Ri
−cR1

(ul−1)

)2

2σ2
nw

H
w

×
(

ȳ
(l,q)
Ri

− cR1
(ul − 1)

wHw
w − x̄

(l,q)
i + (ul − 1)p1

)

, (28)

∇PEI
(w) =

γ

2Nsb

√
2πσn

√
wHw

Nsb
∑

i=1

e
−

(

ȳ
(l,q)

Ii
−cR1

(uq−1)

)2

2σ2
nw

H
w

×
(

ȳ
(l,q)
Ii

− cR1
(uq − 1)

wHw
w + jx̄

(l,q)
i + (uq − 1)p1

)

,

(29)

where x̄
(l,q)
i ∈ Xl,q . With the gradient ∇PEB

(w) =
∇PER

(w) + ∇PEI
(w), the optimization problem (27) can

be solved iteratively using a gradient optimization algorithm,

such as the simplified conjugate gradient algorithm [11]. The

rotating operation (8) should be applied after each iteration,

to ensure that we have a real and positive c1 value.

The PDF p(y) of y(k) can be estimated using the Parzen

window estimate based on a block of training data. This leads

to an estimated SER for the beamformer. Minimizing this es-

timated SER based on a gradient optimization yields an ap-

proximated MSER solution. To derive a sample-by-sample

adaptive algorithm, consider a single-sample “estimate” of

p(y)

p̃(y, k) =
1

2πρ2
n

e
− |y−y(k)|2

2ρ2
n (30)



and the corresponding one-sample SER “estimate” P̃EB
(w, k).

Using the instantaneous stochastic gradient of ∇P̃EB
(w, k) =

∇P̃ER
(w, k) + ∇P̃EI

(w, k) with

∇P̃ER
(w, k) =

γ

2
√

2πρn

e
− (yR(k)−ĉR1

(k)(bR1
(k)−1))

2

2ρ2
n

× (−x(k) + (bR1
(k) − 1)p̂1) (31)

and

∇P̃EI
(w, k) =

γ

2
√

2πρn

e
− (yI (k)−ĉR1

(k)(bI1
(k)−1))

2

2ρ2
n

× (jx(k) + (bI1
(k) − 1)p̂1) (32)

gives rise to the following stochastic gradient adaptive algo-

rithm, which we refer to as the LSER algorithm

w(k + 1) = w(k) + µ
(

−∇P̃EB
(w(k), k)

)

, (33)

ĉ1(k + 1) = wH(k + 1)p̂1, (34)

w(k + 1) =
ĉ1(k + 1)

|ĉ1(k + 1)|w(k + 1), (35)

where p̂1 is an estimate of p1. The step size µ and the kernel

width ρn are the two algorithmic parameters that should be

set appropriately in order to attain an adequate performance

in terms of both the convergence rate and steady-state SER

misadjustment.

IV. SIMULATION STUDY

Stationary system. Our prototype system supported four

users with the aid of a three-element antenna array. Fig. 2

shows the locations of both the desired source and the inter-

fering sources. The channel coefficients were Ai = 1 + j0,

1 ≤ i ≤ 4. Thus we had SIRi = 0 dB for 2 ≤ i ≤ 4.

The modulation scheme was 16-QAM. Fig. 3 compares the

SER performance of the MSER solution to that of the MMSE

solution under three different conditions: (a) the minimum

spatial separation between the desired user 1 and the inter-

fering user 4 was θ = 32◦ (b) θ = 30◦, and (c) θ = 28◦. For

λ/2λ /2

1

interferer

interferer

4

source 

2
−θ

65

(desired)

interferer3

−70
o

o

Fig. 2. Locations of the desired source and the interfering sources with

respect to the three-element linear array with λ/2 element spacing, λ
being the wavelength.

-6

-5

-4

-3

-2

-1

 0

 10  15  20  25  30  35  40

lo
g

1
0

(S
y
m

b
o

l 
E

rr
o

r 
R

a
te

)

SNR (dB)

MMSE
MSER

(a) θ = 32◦

-6

-5

-4

-3

-2

-1

 0

 10  15  20  25  30  35  40

lo
g

1
0

(S
y
m

b
o

l 
E

rr
o

r 
R

a
te

)

SNR (dB)

MMSE
MSER

(b) θ = 30◦
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Fig. 3. SER performance over non-fading channels.
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(a) w(0) = wMMSE
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(b) w(0) = [0.1 + j0.1 0.1 − j0.01 0.1 − j0.1]T

Fig. 4. Learning curves of the stochastic gradient adaptive LSER algo-

rithm for the stationary system averaged over 20 runs, given θ = 30◦

and SNR= 26 dB, where DD denotes decision-directed adaptation with

b̂1(k) substituting for b1(k). The step size µ = 0.001 and kernel width

ρn = σn.

this example, the MSER beamformer achieved a significantly

better performance than the MMSE beamformer.

The erformance of the adaptive LSER algorithm was in-

vestigated using the system associated with θ = 30◦ and

SNR= 26 dB. Given w(0) = wMMSE, the step size of

µ = 0.001 and the kernel width ρn = σn, Fig. 4 (a) de-

picts the learning curves of the LSER algorithm, where DD

denotes the decision-directed adaptation with b̂1(k) substi-

tuting for b1(k). Fig. 4 (b) portrays the associated learning

curves of the LSER algorithm under the same conditions, ex-

cept for w(0) = [0.1+j0.1 0.1−j0.01 0.1−j0.1]T . It can be

seen from Fig. 4 that the LSER beamformer had a reasonable

convergence speed. It can also be seen that the initial condi-

tion w(0) had some influence on the achievable convergence

rate.

V. CONCLUSIONS

An adaptive MSER beamforming technique has been pro-

posed for multiple antenna aided multiuser wireless com-

munication systems using 16QAM signalling. It has been

demonstrated that the MSER beamforming design is capa-

ble of providing significant SER performance improvements

over the standard MMSE beamforming design. An adap-

tive implementation of the MSER beamforming solution has

been proposed, namely the stocastic gradient adaptive algo-

rithm, which was referred to here as the LSER technique.

Our future research will consider similar schemes employ-

ing error correction codecs and iterative receivers.
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