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Abstract 
We introduce and analyze a mixture model for supervised learning of 
probabilistic transducers. We devise an online learning algorithm that 
efficiently infers the structure and estimates the parameters of each model 
in the mixture. Theoretical analysis and comparative simulations indicate 
that the learning algorithm tracks the best model from an arbitrarily large 
(possibly infinite) pool of models. We also present an application of the 
model for inducing a noun phrase recognizer. 

1 Introduction 

Supervised learning of a probabilistic mapping between temporal sequences is an important 
goal of natural sequences analysis and classification with a broad range of applications such 
as handwriting and speech recognition, natural language processing and DNA analysis. Re
search efforts in supervised learning of probabilistic mappings have been almost exclusively 
focused on estimating the parameters of a predefined model. For example, in [5] a second 
order recurrent neural network was used to induce a finite state automata that classifies 
input sequences and in [1] an input-output HMM architecture was used for similar tasks. 

In this paper we introduce and analyze an alternative approach based on a mixture model 
of a new subclass of probabilistic transducers, which we call suffix tree transducers. The 
mixture of experts architecture has been proved to be a powerful approach both theoretically 
and experimentally. See [4,8,6, 10,2, 7] for analyses and applications of mixture models, 
from different perspectives such as connectionism, Bayesian inference and computational 
learning theory. By combining techniques used for compression [13] and unsupervised 
learning [12], we devise an online algorithm that efficiently updates the mixture weights 
and the parameters of all the possible models from an arbitrarily large (possibly infinite) 
pool of suffix tree transducers. Moreover, we employ the mixture estimation paradigm to 
the estimation of the parameters of each model in the pool and achieve an efficient estimate 
of the free parameters of each model. We present theoretical analysis, simulations and 
experiments with real data which show that the learning algorithm indeed tracks the best 
model in a growing pool of models, yielding an accurate approximation of the source. All 
proofs are omitted due to the lack of space 

2 Mixture of Suffix Tree Transducers 

Let ~in and ~Ot.lt be two finite alphabets. A Suffix Tree Transducer T over (~in, ~Ot.lt) is a 
rooted,l~jn I-ary tree where every internal node of T has one child for each symbol in ~in. 
The nodes of the tree are labeled by pairs (s, l' ~), where s is the string associated with the path 
(sequence of symbols in ~n) that leads from the root to that node, and 1'~ : ~Ot.lt -+ [0,1] 
is the output probability function. A suffix tree transducer (stochastically) maps arbitrarily 
long input sequences over ~in to output sequences over ~Ot.lt as follows. The probability 
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that T will output a string Yl, Y2, ... ,Yn in I:~ut given an input string Xl, X2, ... , Xn in 
I:in, denoted by PT(Yl, Y2, ... , YnlXl, X2 , "" xn), is n~=li8. (Yk), where sl = Xl, and 
for 1 ::; j ::; n - 1, si is the string labeling the deepest node reached by taking the path 
corresponding to xi, xi -1, Xi -2, ... starting at the root of T. A suffix tree transducer is 
therefore a probabilistic mapping that induces a measure over the possible output strings 
given an input string. Examples of suffix tree transducers are given in Fig. 1. 

Figure 1: A suffix tree transducer (left) over (Lin, LQut) = ({O, 1} , {a , b, c}) and two ofits possible 
sub-models (subtrees). The strings labeling the nodes are the suffixes of the input string used to predict 
the output string. At each node there is an output probability function defined for each of the possible 
output symbols. For instance, using the suffix tree transducer depicted on the left, the probability of 
observing the symbol b given that the input sequence is ... ,0, 1,0, is 0.1. The probability of the 
current output, when each transducer is associated with a weight (prior), is the weighted sum of the 
predictions of each transducer. For example, assume that the weights of the trees are 0.7 (left tree), 0.2 
(middle), and 0.1. then the probability thattheoutputYn = a given that (X n -2, Xn-l, Xn) = (0,1,0) 
is 0.7· P7j (aIOl0) + 0.2· P7i(aIIO) + 0.1 . P7)(aIO) = 0.7 . 0.8 + 0.2 . 0.7 + 0.1 . 0.5 = 0.75. 

Given a suffix tree transducer T we are interested in the prediction of the mixture of all 
possible subtrees of T. We associate with each subtree (including T) a weight which can be 
interpreted as its prior probability. We later show how the learning algorithm of a mixture 
of suffix tree transducers adapts these weights with accordance to the performance (the 
evidence in Bayesian terms) of each subtree on past observations. Direct calculation of the 
mixture probability is infeasible since there might be exponentially many such subtrees. 
However, the technique introduced in [13] can be generalized and applied to our setting. 
Let T' be a subtree of T. Denote by nl the number of the internal nodes of T' and by 
n2 the number of leaves of T' which are not leaves of T. For example, nl = 2 and 
n2 = I, for the tree depicted on the right part of Fig. 1, assuming that T is the tree 
depicted on the left part of the figure. The prior weight of a tree T'. denoted by Po(T') is 
defined to be (1 - Q-)n\ an2 , where a E (0, 1). Denote by Sub(T) the set of all possible 
subtrees of T including T itself. It can be easily verified that this definition of the weights 
is a proper measure, i.e., LT/ESUb(T) Po(T') = 1. This distribution over trees can be 

extended to unbounded trees assuming that the largest tree is an infinite lI:in I-ary suffix tree 
transducer and using the following randomized recursive process. We start with a suffix 
tree that includes only the root node. With probability a we stop the process and with 
probability 1 - a we add all the possible lI:in I sons of the node and continue the process 
recursively for each of the sons. Using this recursive prior the suffix tree transducers, we 
can calculate the prediction of the mixture at step n in time that is linear in n, as follows, 

aie(Yn) + (1 - a) (aixn(Yn) + (1- a) (aixn_\xn(Yn) + (1 - a) ... 
Therefore, the prediction time of a single symbol is bounded by the maximal depth of T, 
or the length of the input sequence if T is infinite. Denote by 1'8 (Yn) the prediction of the 
mixture of subtrees rooted at s, and let Leaves(T) be the set of leaves of T . The above 
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sum equals to 'Ye(Yn), and can be evaluated recursively as follows,1 

'Y3(Yn) = { 13(Yn) _ S E Le~ves(T) ( ) 
a I3 (Yn) + (I - a)r(X n_I.I.3)(Yn) otherwise I 

For example, given that the input sequence is ... ,0, 1, 1,0, then the probabilities of the 
mixtures of subtrees for the tree depicted on the left part of Fig. 1, for Yn = b and given 
that a = 1/2, are, 'Yllo(b) = 0.4 , 'YlO(b) = 0.5 . 11O(b) + 0.5 . 0.4 = 0.3 , 'Yo(b) = 
0.5 . lo(b) + 0.5 ·0.3 = 0.25, 'Ye(b) = 0.5 . le(b) + 0.5 ·0.25 = 0.25. 

3 An Online Learning Algorithm 

We now describe an efficient learning algorithm for a mixture of suffix tree transducers. 
The learning algorithm uses the recursive priors and the evidence to efficiently update 
the posterior weight of each possible subtree. In this section we assume that the output 
probability functions are known. Hence, we need to evaluate the following, 

~ P(Yn IT')P(T'I(XI, YI), ... ,(Xn_l, Yn-t) 
T'ESub(T) 

def 
~ P(Yn IT')Pn (T') (2) 

T'ESub(T) 

where Pn(T') is the posterior weight of T'. Direct calculation of the above sum requires 
exponential time.. However, using the idea of recursive calculation as in Equ. (1) we 
can efficiently calculate the prediction of the mixture. Similar to the definition of the 
recursive prior a, we define qn (s) to be the posterior weight of a node S compared to the 
mixture of all nodes below s. We can compute the prediction of the mixture of suffix tree 
transducers rooted at s by simply replacing the prior weight a with the posterior weight, 
qn-l (s), as follows, 

_ ( ) _ { 13(Yn) S E Leaves(T) 
13 Yn - qn-I(S)r3(Yn) + (1 - qn-l(S»'Y(X n _I.I.3)(Yn) otherwise 

In order to update qn(s) we introduce one more variable, denoted by rn(s). 
ro(s) = 10g(a/(1 - a» for all s, rn(s) is updated as follows, 

rn(s) = rn-l(s) + log(/3(Yn» -log('YXn_I.13(Yn» . 

, (3) 

Setting 

(4) 

Therefore, rn( s) is the log-likelihood ratio between the prediction of s and the prediction 
of the mixture of all nodes below s in T. The new posterior weights qn (s) are calculated 
from rn(s), 

(5) 

In summary, for each new observation pair, we traverse the tree by following the path that 
corresponds to the input sequence x n X n -I X n _ 2 .. . The predictions of each sub-mixture are 
calculated using Equ. (3). Given these predictions the posterior weights of each sub-mixture 
are updated using Equ. (4) and Equ. (5). Finally, the probability of Yn induced by the whole 
mixture is the prediction propagated out of the root node, as stated by Lemma 3.1. 

Lemma3.1 LT'ESub(T) P(YnlT')Pn(T') = 'Ye(Yn). 

Let Lossn (T) be the logarithmic loss (negative log-likelihood) of a suffix tree transducer T 
after n input-output pairs. That is, Lossn(T) = L7=1 -log(P(YiIT». Similarly, the loss 

1 A similar derivation still holds even if there is a different prior 0'. at each node s of T. For the 
sake of simplicity we assume that 0' is constant. 
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of the mixture is defined to be, Lossr;:ix = 2:~=1 -log(.ye(yd). The advantage of using 
a mixture of suffix tree transducers over a single suffix tree is due to the robustness of the 
solution, in the sense that the prediction of the mixture is almost as good as the prediction 
of the best suffix tree in the mixture. 

Theorem 1 Let T be a (possibly infinite) suffix tree transducer, and let 
(Xl, yd, .. . , (xn, Yn) be any possible sequence of input-output pairs. The loss of the 
mixture is at most, Lossn(T') -log(Po(T'»,Jor each possible subtree T'. The running 
time of the algorithm is D n where D is the maximal depth ofT or n2 when T is infinite. 

The proof is based on a technique introduced in [4]. Note that the additional loss is constant, 
hence the normalized loss per observation pair is, Po(T')/n, which decreases like O(~). 

Given a long sequence of input-output pairs or many short sequences, the structure of the 
suffix tree transducer is inferred as well. This is done by updating the output functions, as 
described in the next section, while adding new branches to the tree whenever the suffix 
of the input sequence does not appear in the current tree. The update of the weights, 
the parameters, and the structure ends when the maximal depth is reached, or when the 
beginning of the input sequence is encountered. 

4 Parameter Estimation 

In this section we describe how the output probability functions are estimated. Again, we 
devise an online scheme. Denote by C;'(y) the number of times the output symbol y was 
observed out of the n times the node s was visited. A commonly used estimator smoothes 
each count by adding a constant ( as follows, 

(6) 

The special case of ( = ~ is termed Laplace's modified rule of succession or the add~ 

estimator. In [9], Krichevsky and Trofimov proved that the loss of the add~ estimator, when 
applied sequentially, has a bounded logarithmic loss compared to the best (maximum
likelihood) estimator calculated after observing the entire input-output sequence. The 
additional loss of the estimator after n observations is, 1/2(II:out l - 1) log(n) + lI:outl-l. 
When the output alphabet I:out is rather small, we approximate "y 8 (y) by 78 (y) using Equ. (6) 
and increment the count of the corresponding symbol every time the node s is visited. We 
predict by replacing "y with its estimate 7 in Equ. (3). The loss of the mixture with estimated 
output probability functions, compared to any subtree T' with known parameters, is now 
bounded as follows, 

LOSS,:ix ~ Lossn(T') -log(Po(T')) + 1/2IT'1 (Il:outl-l) log(n/IT'I) + IT'I (Il:outl-l), 

where IT'I is the number of leaves in T'. This bound is obtained by combining the bound 
on the prediction of the mixture from Thm. 1 with the loss of the smoothed estimator while 
applying Jensen's inequality [3]. 

When lI:out 1 is fairly large or the sample size if fairly small, the smoothing of the output 
probabilities is too crude. However, in many real problems, only a small subset of the 
output alphabet is observed in a given context (a node in the tree). For example, when 
mapping phonemes to phones [II], for a given sequence of input phonemes the phones that 
can be pronounced is limited to a few possibilities. Therefore, we would like to devise an 
estimation scheme that statistically depends on the effective local alphabet and not on the 
whole alphabet. Such an estimation scheme can be devised by employing again a mixture 

of models, one model for each possible subset I:~ut of I:out . Although there are 211:0 .. ,1 
subsets of I:out, we next show that if the estimators depend only on the size of each subset 
then the whole mixture can be maintained in time linear in lI:out I. 
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Denote by .y~ (YIII:~ut 1 = i) the estimate of 'Y~ (y) after n observations given that the 

alphabet I:~t is of size i. Using the add~ estimator, .y~(YIII:~utl = i) = (C~(y) + 
1/2)/(n + i/2). Let I:~ut(s) be the set of different output symbols observed at node s, i.e. 

I:~ut(s) = {u 1 u = Yi", s = (xi"-I~I+1' .. . ,Xi,,), 1 $ k $ n} , 

and define I:0 (s) to be the empty set There are (IIo.'I-II~.,(~)I) possible alphabets of out . i-II:.,(~)I 

size i. Thus, the prediction of the mixture of all possible subsets of I:out is, 

An( ) = I~I (lI:outl- 1I:~ut(s)l) ':l An( I·) 
i~ Y L...J . _ lI:n (s)1 w1 'Y~ Y J , 

j=II:.,(~)1 J out 

(7) 

where wi is the posterior probability of an alphabet of size i. Evaluation of this sum 

requires O(II:01.lt I) operations (and not 0(2IIo.,1 ». We can compute Equ. (7) in an online 
fashion as follows. Let, 

( lI:01.l tl- 1I:~ut(s)l) 0 TIn Ak-l( . 10) 
0_ lI:n ()I W, 'Y8 y,,, ~ 
2 out s k=l 

(8) 

Without loss of generality, let us assume a uniform prior for the possible alphabet sizes. 
Then, 

Po(I:~ut) = Po(II:~1.Itl = i) ~ w? = 1/ (I I:01.l t1 (lI::utl)) 0 

Thus, for all i ~(i) = 1/II:01.ltl. ~+1 (i) is updated from ~(i) as follows, 

m+l (0) _ m ( 0) {~:(';'j;' )+'/2 
1 ~ 2 - 1 ~ 2 X n+I/2 

i-II~y,(~)1 ~ 

IIo.,I-II:.,(8)1 n+i/2 

if 1I:~ti/(s)1 > i 

if 1I:~titl(s)1 $ i and Yi,,+1 E I:~1.It(s) 

if 1I:~titl(s)1 $ i and Yi,,+1 ¢ I:~ut(s) 

Informally: If the number of different symbols observed so far exceeds a given size then all 
alphabets of this size are eliminated from the mixture by slashing their posterior probability 
to zero. Otherwise, if the next symbol was observed before, the output probability is the 
prediction of the addi estimator. Lastly, if the next symbol is entirely new, we need to sum 
the predictions of all the alphabets of size i which agree on the first 1I:~1.It(s)1 and Yi,,+1 is 
one of their i - 1I:~1.It(s)1 (yet) unobserved symbols. Funhermore, we need to multiply by 
the apriori probability of observing Yi ,,+10 Assuming a uniform prior over the unobserved 
symbols this probability equals to 1/(II:01.lt 1 - 1I:~1.It( s)l). Applying Bayes rule again, the 
prediction of the mixture of all possible subsets of the output alphabet is, 

IIo." IIo.,1 

.y~(Yin+l) = 2: ~+l(i) / 2: ~(i) ° (9) 
i=l i=l 

Applying twice the online mixture estimation technique, first for the structure and then 
for the parameters, yields an efficient and robust online algorithm. For a sample of size 
n, the time complexity of the algorithm is DII:01.ltln (or lI:01.ltln2 if 7 is infinite). The 
predictions of the adaptive mixture is almost as good as any suffix tree transducer with any 

set of parameters. The logarithmic loss of the mixture depends on the number of non-zero 
parameters as follows, 

Lossr;:ix $ Lossn (7') -log(Po(7'» + 1/21Nz log(n) + 0(17'III:01.ltl) , 

where lNz is the number of non-zero parameters of the transducer 7'0 If lNz ~ 17'III:out l 
then the performance of the above scheme, when employing a mixture model for the 
parameters as well, is significantly better than using the add~ rule with the full alphabet. 
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5 Evaluation and Applications 

In this section we briefly present evaluation results of the model and its learning algorithm. 
We also discuss and present results obtained from learning syntactic structure of noun 
phrases. We start with an evaluation of the estimation scheme for a multinomial source. 

In order to check the convergence of a mixture model for a multinomial source, we simulated 
a source whose output symbols belong to an alphabet of size 10 and set the probabilities of 
observing any of the last five symbols to zero. Therefore, the actual alphabet is of size 5. 
The posterior probabilities for the sum of all possible subsets of I:out of size i (1 :::; i :::; 10) 
were calculated after each iteration. The results are plotted on the left part of Fig. 2. The 
very first observations rule out alphabets of size lower than 5 by slashing their posterior 
probability to zero. After few observations, the posterior probability is concentrated around 
the actual size, yielding an accurate online estimate of the multinomial source. 

The simplicity of the learning algorithm and the online update scheme enable evaluation of 
the algorithm on millions of input-output pairs in few minutes. For example, the average 
update time for a suffix tree transducer of a maximal depth 10 when the output alphabet 
is of size 4 is about 0.2 millisecond on a Silicon Graphics workstation. A typical result is 
shown in Fig. 2 on the right. In the example, I:out = I:in = {I, 2, 3,4}. The description 
of the source is as follows. If Xn ~ 3 then Yn is uniformly distributed over I:out. otherwise 
(xn :::; 2) Yn = Xn-S with probability 0.9 and Yn-S = 4 - Xn-S with probability 0.1. The 
input sequence Xl, X2, .•• was created entirely at random. This source can be implemented 
by a sparse suffix tree transducer of maximal depth 5. Note that the actual size of the 
alphabet is only 2 at half of the leaves of the tree. We used a suffix tree transducer of 
maximal depth 20 to learn the source. The negative of the logarithm of the predictions 
(normalized per symbol) are shown for (a) the true source, (b) a mixture of suffix tree 
transducers and their parameters, (c) a mixture of only the possible suffix tree transducers 
(the parameters are estimated using the addl scheme), and (d) a single (overestimated) 
model of depth 8. Clearly, the mixture mode? converge to the entropy of the source much 
faster than the single model. Moreover, employing twice the mixture estimation technique 
results in an even faster convergence. 

UbUI "b'~1 - "I - "I .. .. : .:~.: ......... ~.:~.:~ 
.,. • ,. I ,. • 1. I" I,. 

0.1 ..... t ..... t ..... t .... It .... II •••• "~' · ·b"b"'b"b'·b .. .. .. .. .. -. 
• • • • • 0 

I" I" I" I" I " • " 

'b'·L' · ·LUL"~'·~ . . . .. .. .. 
... •• " •• II •• I" • II • " • ... . . . . . 

•• • I 
• tI I 1. I" I,. I " I" 

"I ... "I -. "I -_ ':1 -. "I .. _ "I .. _ 
,:~,:~,:~,~,:~,:~ 

I" I 10 I to .,. I " 5 ,. 

1.B 

.g 1.6 
Ii: 

- (d) Single Overestimated Model 
- - (e) Mixture 01 Models 
.--- (bl MiX1ure 01 Models and Parameters 
.. ...... (a Source 

50 100 150 200 250 300 350 400 450 500 
Number 01 Examples 

Figure 2: Left: Example of the convergence of the posterior probability of a mixture model for 
a multinomial source with large number of possible outcomes when the actual number of observed 
symbols is small. Right: performance comparison of the predictions of a single model, two mixture 
models and the true underlying transducer. 

We are currently exploring the applicative possibilities of the algorithm. Here we briefly 
discuss and demonstrate how to induce an English noun phrase recognizer. Recognizing 
noun phrases is an important task in automatic natural text processing, for applications 
such as information retrieval, translation tools and data extraction from texts. A common 
practice is to recognize noun phrases by first analyzing the text with a part-of-speech tagger, 
which assigns the appropriate part-of-speech (verb, noun, adjective etc.) for each word in 
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context. Then, noun phrases are identified by manually defined regular expression patterns 
that are matched against the part-of-speech sequences. We took an alternative route by 
building a suffix tree transducer based on a labeled data set from the UPENN tree-bank 
corpus. We defined I:in to be the set of possible part-of-speech tags and set I:out = {O, I}, 
where the output symbol given its corresponding input symbol (the part-of-speech tag of 
the current word) is 1 iff the word is part of a noun phrase. We used over 250, 000 marked 
tags and tested the performance on more than 37 , 000 tags. The test phase was performed 
by freezing the model structure, the mixture weights and the estimated parameters. The 
suffix tree transducer was of maximal depth 15 hence very long phrases can be statistically 
identified. By tresholding the output probability we classified the tags in the test data 
and found that less than 2.4% of the words were misclassified. A typical result is given 
in Table 1. We are currently investigating methods to incorporate linguistic knowledge 
into the model and its learning algorithm and compare the performance of the model with 
traditional techniques. 

Scmrmc:e Tcm Smith group cru..f cxcc:utiYe of U.K. metal. 
pos tag PNP PNP NN NN NN IN PNP NNS 
Class 1 1 0 1 1 1 0 1 1 
Predi ction 0.99 0.99 0.01 0.98 0.98 0.98 0.02 0.99 0.99 
Sentence ODd industrial material. mabr will bo:cune chainnon 

P~S tag CC JJ NNS NN MD VB NN 
Class 1 1 1 1 0 0 0 1 0 
Prediction 0.67 0.96 0.99 0.96 0.03 0.03 0.01 0.81 0.01 

Table 1: Extraction of noun phrases using a suffix tree transducer. In this typical example, two long 
noun phrases were identified correctly with high confidence. 
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