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Abstract

Inference methods for detecting attacks on information resources typically use signature

analysis or statistical anomaly detection methods.  The former have the advantage of

attack specificity, but may not be able to generalize.  The latter detect attacks

probabilistically, allowing for generalization potential.  However, they lack attack models

and can potentially “learn” to consider an attack normal.

Herein, we present a high-performance, adaptive, model-based technique for attack

detection, using Bayes net technology to analyze bursts of traffic.  Attack classes are

embodied as model hypotheses, which are adaptively reinforced.  This approach has the

attractive features of both signature based and statistical techniques: model specificity,

adaptability, and generalization potential.  Our initial prototype sensor examines TCP

headers and communicates in IDIP, delivering a complementary inference technique to

an IDS sensor suite.  The inference technique is itself suitable for sensor correlation.
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Introduction

To date, two principal classes of inference techniques have been used in intrusion

detection systems (IDS).  In signature analysis [1], descriptions of known attacks are

encoded in the form of rules.  Statistical systems [2, 3, 6] intend to “learn” normal

behavior from data, and then issue alerts for suspected anomalies.  Whatever inference

techniques are used in IDS, they must typically meet stringent requirements of extremely

high throughput and extremely low false alarm rate.  In this paper we describe eBayes

TCP, which applies Bayesian methods [4, 5] as an IDS inference technique.

We have developed eBayes TCP as a component of the broad EMERALD system, which

permits us to leverage from a substantial component infrastructure.  Specifically, eBayes

TCP is an analytical component that interfaces to the EMERALD ETCPGEN and

EMONTCP components [6].  ETCPGEN can process either live TCP traffic or

TCPDUMP data in batch mode.  EMONTCP extracts the TCP state for a number of

generally simultaneous TCP connections.  When we refer to “events”, we mean events

from EMONTCP, which already represents a considerable reduction from the raw TCP

data.

The innovation provided by eBayes TCP is that it captures the best features of signature-

based intrusion detection as well as anomaly detection (as in EMERALD ESTAT).  Like

signature engines, it can embody attack models, but has the capability to adapt as systems

evolve.  Like probabilistic components, it has the potential to generalize to previously

unseen classes of attacks.  In addition, the system includes an adaptive capability, which

can “grow” quite reasonable models from a random start.

EBayes TCP analyzes TCP sessions, which are temporally contiguous bursts of traffic

from a given client IP.  It is not very important for the system to demarcate sessions

exactly.  The analysis is done by Bayesian inference at periodic intervals in a session,

where the interval is measured in number of events or elapsed time (inference is always

done when the system believes that the session has ended).  Between inference intervals,

the system state is propagated according to a Markov model.  After each inference, the
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system writes text and Intrusion Detection Internet Protocol (IDIP) alerts for sufficiently

suspicious sessions.

EBayes TCP consists of two components: a TCP-specific module that interfaces to

appropriate EMERALD components and manages TCP sessions, as well as a high-

performance Bayesian inference class library.  The latter has potential not simply to

analyze a specific data stream, but also as a fusion engine considering heterogeneous

sensors.

The remainder of this paper is organized as follows.  We give a brief discussion of

Bayesian inference in trees, although the reader should refer to the bibliography for a

more in-depth treatment.  This is followed by a description of eBayes TCP itself,

including the session concept, the TCP Bayes model structure, and the important nodes

(measures) considered.  After the eBayes definition, we present our innovative

approaches to model adaptation and state transition.  We follow this with results from

using simulated data from the Lincoln Laboratory 1999 Intrusion Detection Evaluation

study [7], as well as live data monitored in real time from our LAN.

Bayesian Inference

Mathematically, we have adapted the framework for belief propagation in causal trees

from Pearl [4].  Knowledge is represented as nodes in a tree, where each node is

considered to be in one of several discrete states.  A node receives (prior, or causal

support) messages from its parent, and (likelihood, or diagnostic support) messages

from its children as events are observed.   We think of priors as propagating downward

through the tree, and likelihood as propagating upward.  These are discrete distributions,

that is, they are positive valued and sum to unity.  The prior message incorporates all

information not observed at the node.  The likelihood at terminal or “leaf” nodes

corresponds to the directly observable evidence. A conditional probability table (CPT)

links a child to a parent.  Its elements are given by

CPTij = P state = j parent _ state = i( )
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As a consequence of this definition, each row of a CPT is a discrete distribution over the

node states for a particular parent node state, that is,

CPTij ≥ 0,∀i, j,

CPTij
j

∑ = 1, ∀j

The basic operations of message propagation in the tree are most succinctly expressed in

terms of vector/matrix algebra.  We will adopt the convention that prior messages are

represented as row vectors.  Downward propagation of the prior messages is achieved by

left multiplication of the parent’s prior by the CPT, that is,

node( ) = parent _ node( )• CPT

where α is a normalizing constant to ensure that the result sums to unity.  Note that since

CPT is not required to be square, the number of elements in node( )  and

parent _ node( ) may be different.  Since we limit ourselves to trees, there is at most one

parent per node.  However, there may be multiple children, so upward propagation of the

likelihood messages requires a fusion step.  For each node, the message, represented as

a column vector, is propagated upward via the following matrix computation:

_ to _ parent node( ) = CPT • node( )

Note that node( )  has number of elements equal to the number of states in the node,

while _ to _ parent node( ) has number of elements equal to the number of states in the

parent node.  These messages are fused at the parent via elementwise multiplication:

Li parent( ) = Πc∈children parent( ) _ to _ parenti c( )

i parent( ) = Li parent( ) / L j parent( )
j∑

Here, L represents the raw elementwise product, and  is obtained by normalizing this to

unit sum.  Finally, the belief over the states at a node is obtained as follows:

BELi = i i
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where β is a normalizing constant so that BEL has unit sum.  Figure 1 illustrates

propagation in a fragment of a tree.
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Figure 1: Message Propagation in a Tree Fragment

Session Model

We evaluate bursts of traffic as a means of integrating the signal (observable evidence of

an attack or anomaly).  Our simplest model considers temporally contiguous traffic from

a particular IP address as a session.  To detect distributed attacks, we also consider traffic

to a protected resource, such as a server in the protected LAN.  When we see an event,

we examine our list of active sessions and see if we have a match.  If we do, we update

the matching session with the new event.  Otherwise, we allocate a new session structure

and initialize its observables with the event data.  We manage the growth of the session

list in two ways.  First, we have a regularly scheduled “housecleaning” operation.  All

sessions are allowed to remain active for some time interval after the last event seen for

the session.  This interval is longer if the system believes the session has open (active)

connections, but exists even if all connections are believed to be closed.  The timeout

intervals for sessions with and without open connections are configuration parameters.

When housecleaning is invoked, all sessions for which the timeout is before the time of

the housecleaning operation are deallocated.  If the session table is at a maximum size set
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via system configuration and an event for a new session is observed, we invoke a

“hindmost” operation, which deallocates the session with the most distant last event time.

The inference engine is invoked periodically throughout each session, and always when a

session is deallocated.

Identification of when a burst begins or ends is itself not an assertion that can be made

with certainty.   Even in the case that all connections are closed, we must be careful not to

deallocate immediately, as some attacks (such as MAILBOMB) consist of a large number

of successful open/close events, any one of which looks normal.  Conversely, we must

not wait indefinitely (or for the timeout interval) for all open connections to close, as

many attacks work by opening connections which the attacker has no intention of

completing.  Again, a statistical determination of return to the idle state is appropriate,

from the point of view of sensitivity as well as response time.  The potential downside of

deallocating a session prematurely is slight.  At worst, we potentially report multiple

events for the same attack (although in practice this is rarely seen).

eBayes TCP Structure

Our TCP model represents the (unobservable) session class at the root node, and several

observed and derived variables from the TCPDUMP data as children.  All child nodes are

also leaf nodes (that is, considered observable).  This structure is represented Figure 2,

and is assumed to hold at each inference interval (or time slice).
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Figure 2: eBayes TCP

This structure is sometimes referred to as the naïve Bayes model, and tacitly assumes

conditional independence of the child nodes given the parent.

In this model, we apply Bayesian inference to obtain a belief over states of interest

(hypotheses) for the session under consideration (or more generally, a burst of traffic

from a given IP address).  In our TCP model, the session class hypotheses at the root

node are MAIL, HTTP, FTP, TELNET/REMOTE USAGE, OTHER NORMAL,

HTTP_F, DICTIONARY, PROCESSTABLE, MAILBOMB, PORTSWEEP, IPSWEEP,

SYNFLOOD, and OTHER ATTACK.  The first five represent normal usage modes,

while the rest are attack modes.  HTTP_F describes a pattern of long http sessions with

abnormal terminations that is frequently seen in real-world traffic.  At this point, we do

not consider these sessions to represent attacks.

EBayes-TCP is coupled with the eBayes service availability monitor, which learns valid

hosts and services in the protected network via a process of unsupervised discovery.  This
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enables detection of “stealth” port sweeps (scanning for a small, sensitive set of ports)

without a predefined model of which sets of services are to e considered sensitive.

For each session (as determined by the session model above) we accumulate a number of

observables. Inference is done periodically for each session, where the period is a

configurable number of events or elapsed time, and always when the system believes the

session has ended.  The model has three types of measures: intensity, high water marks,

and distribution.

Intensity measures are similar to the intensity measures we employed in EMERALD

ESTAT.  Specifically, an intensity measure is an exponentially decayed count.  The

intensity measures in eBayes TCP are defined as:

Event _ Intensityevent = ek∆t Event _ Intensityevent−1 +1.0

Error _ Intensityevent = ek∆t Error _ Intensityevent−1 + (event has error return)?1.0 : 0.0

∆t = Time between the present and the immediately preceding event

k = Decay constant (≤ 0)

Intensity measures have the property that as long as behavior is normal and the decay

constant is appropriately chosen, they do not grow without bound.  The range of these

measures is categorized to obtain the observed state values for the respective nodes.

High-water-mark measures track a maximum count of an underlying observable.  Our

system maintains a list of ports and unique hosts accessed by this session.  From these,

we derive the maximum number of open connections to any unique host.  As a

configuration option, this maximum may or may not be reset at each inference interval.

The total number of unique ports and hosts accessed by the session is also recorded.  As

with intensity measures, the range is categorized to obtain the respective node states.

Distribution measures track the distribution of the categories over an underlying discrete-

valued measure.  For example, for each event, we classify the service into one of MAIL,

HTTP, FTP, or OTHER.  Over an inference interval, we maintain a count of the number

of times each was observed.  The service distribution is then obtained as
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svc _ dist =

count(MAIL) count (HTTP) count(FTP) count(REMOTE) count(OTHER){ }

Strictly, we should divide by the total count to obtain a true distribution, but the

normalization in the internals of the Bayes inference handle this for us.

Setting the observables means setting the λ messages at the child nodes.  We have

overloaded the set_state function to accept either an observed integer state value (in

which case we set obs =1, i = 0 for i ≠ obs) or a distribution (in which case we set, for

example, = svc _ dist ).

Adaptive Capability
Our system can potentially adapt by reinforcing its built-in models for the current

observation (adjusting rows in the CPTs corresponding to the observed state at the

parent) or by adding a new state (hypothesis) at the parent if the current observation is not

in good agreement with any of the currently modeled hypotheses.

Adaptive CPT Adjustment

Adaptation via reinforcement proceeds as follows.  We recall that the CPT relates a child

node to its parent.  In our representation, the rows of the CPT correspond to parent states,

while the columns correspond to child states.  If a single hypothesis is dominant at the

root node, we adapt the corresponding row of the CPT matrix at each child slightly in the

direction of the λ message at the child node for the present observation.  Specifically, if

hypothesis i  “wins” at the root node, we adjust CPT as follows.  First, we decay  the

internal effective counts via a decay function:

countsi
decay = countsi + 1−( )

The decayed count is used as a “past weight” for the adjustment, and is the effective

number of times this hypothesis has been recently observed.  The CPT row is first

converted to effective counts for each child state, and the present observation is added as

an additional count distributed over the same states.  Then the row elements are divided
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by the row sum so that the adjusted row has unit sum.  This is accomplished by the

following equation:

  CPTij
adj =

countsi × CPTij + j

countsi × CPTij + j
j

∑

Finally, the internal counts are recomputed for all parent states:

countsi = countsi
decay +

, hypothesis i is the winner

0,  otherwise

 
 
 

By this procedure, the effective count never decays below 1.0 (if the hypothesis is never

observed) and never grows beyond 1
1 −( ) if the hypothesis is always observed.  We

typically choose the decay factor so that the effective count grows to between 200 and

1000 observations.  Observations for frequently seen hypotheses have a smaller CPT

adjustment than do observations for rare hypotheses.  In addition, since only “winning”

hypotheses cause a potential CPT adjustment, our system has one key advantage over

other statistical ID systems.  A large number of observations for a hypothesis

corresponding to an attack will not be considered “normal” no matter how frequently it is

observed, as its adjustment only reinforces the corresponding internal attack hypothesis

model in the system.

Dynamic Hypothesis Generation

Another form of adaptation is the potential ability to add a state.  Naïve Bayes models

such as the one described above work well in practice as classifiers, and are typically

trained with observations for which the true class is known.  Dynamic hypothesis

generation as described here takes on a more difficult problem, namely, the situation

where the data cases are unlabeled and even the underlying number of hypothesis states is

unknown.  In this situation, it is legitimate to ask if a system can self-organize to a

number of hypotheses that adequately separate the important data classes.  In this respect,

the ability to separate attack classes A and B from each other is less important than the

ability to separate both A and B from the set of nonattack classes.
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To build this capability, we need to enable the system to add hypotheses at the root node

(the reader will recall that the root node state value is not directly observable).  As a

configuration option, the system will create a “dummy state” at the root node (or more

generally, at any node that is not directly observable), with an effective count of 1.  If this

node has children, a new CPT row is added at each child. We use a uniform distribution

over the child state (each element has value 1
nstatechild

) for this CPT at present.

Adding a state then proceeds as follows.  The inference mechanism is applied to an

observation, and a posterior belief is obtained for the dummy state as if it were a normal

state.  If this state “wins”, it is promoted to the valid state class and the CPT rows for all

children are modified via the CPT adjustment procedure described above.  Note that since

the effective count of the dummy state is 1, the adjustment makes the CPT rows look

50% like the observation.  Then a new dummy state is added, allowing the system to

grow to the number of root node states that adequately describe the data.  This dummy

state is not to be confused with the OTHER ATTACK hypothesis, for which there is an

initial model of nonspecific anomalous behavior (e.g., moderate error intensity).

There are two ways to exploit the hypothesis generation capability.  In the first, we

initialize the system with the normal and attack hypotheses described above, using CPTs

derived from our own domain expertise.  We observe that the system does adjust the

CPTs somewhat, but does not choose to add more hypotheses when running in this

fashion.  From this, we tentatively conclude that no more than 12 hypotheses are needed

to classify these data.

Our next experiment examined the other extreme.  We initialized the system with a single

valid hypothesis and a dummy hypothesis at the root node.  We then presented a week of

normal (attack-free) data, and the system generated two valid states.  As these states were

generated, the CPTs were adjusted according to the procedure previously outlined.  We

then arbitrarily decided that any new states learned would be reported as potential attacks,

and presented data known to contain attacks.  The system added 2 new states, which

captured the attacks seen previously by the 11-state expert-specified model.  There were a

few false alarms, but well under the Lincoln Laboratory guideline of 10 per day for
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operational usefulness.  Therefore, with the capabilities of adaptation via reinforcement

as well as state space expansion described above, it is in fact possible to start the system

with essentially no initial knowledge.  It then organizes to an appropriate number of

hypotheses and CPT values.  Interestingly, this system does nearly as well at separating

the important classes (here, attack versus nonattack) as the expert-specified model with

only 4 root node hypothesis states.  Normal data is adequately represented by two states,

and the variety of attack data by two abnormal states.  While this does tend to separate

important normal and attack classes into separate hypotheses, explaining the result is

more difficult.  Nonetheless, this minimal knowledge approach does remarkably well,

and is a very favorable indicator of the generalization potential of our methodology.

In between inference steps, the belief state over session class passes through a Markov

transition model, so as to yield a pre-observation belief state immediately before the next

inference step.  The following sections provide more detailed discussion of the

observables used, the state transition, and the Bayes update mechanism.

State Transition

As a simplifying assumption, the states observed for the respective variables are

considered to be independent of what was observed for these variables in past inference

intervals, given the session class.  In addition, given the value of the session class in the

current interval, X is independent of any other observable variable Y.  In other words, for

all observable variables X, Y and inference intervals 0 to k, we have

P Xk = x Sess_ classk = s,Xk−1...X0 ,Yk−1...Y0( ) = P Xk = x Sess_ classk = s( )

The evolution of session class over inference intervals is modeled as a discrete time-and-

state Markov process.  The transition matrix is a convex combination of an identity

matrix (to express state persistence) and a matrix whose rows are all equal to some prior

distribution over the possible values of session class (to express the tendency of the

process to decay to some prior state).  In other words, for some0 ≤ ≤ 1, the transition

matrix M is given by
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M = I + 1−( )P

where I is an identity matrix and each row of P is given by

Pi,. = PRIOR

and PRIOR is a prior distribution over possible values j for session class, that is,

PRIOR j = Prior probability (Sess_ class = j)

Mij is the probability that if the process is currently in state i  it will be in state jat the

next event.  More generally, if POST_BEL is our current belief state (a distribution over

the possible state values, given the evidence up to and including this time interval), left

multiplication with M redistributes our belief to obtain the prior belief before the next

observation:

PRE_BELk = POST_BELk−1M

We manipulate the parameter γ to capture, albeit imperfectly, the continuous nature of the

underlying process.  We typically invoke the inference function every 100 events within a

session, and always when the session enters the idle state.  Some sessions are less than

100 events in total, while others (particularly many denial-of-service attacks) consist of

tens of thousands of events in a very short time interval.  In the latter case, even though

many inference steps are invoked, we prefer to have a moderately high persistence

parameter (about 0.75) because very little time has elapsed.  If the parameter is 0, the

belief reverts to the prior at each event.

It can be shown that, unless  is unity, iteratively multiplying M by itself results in a

matrix that approaches P, that is,

limn→∞ Mn = P
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In practice, this limit is nearly reached for fairly small values of n.  The result of this

observation is attractive from the intuitive standpoint: in the absence of reinforcing

evidence from subsequent events, the belief distribution tends to revert to the prior.

The inference operation at interval k begins by setting the Bayes  message to

PRE_BELk .  Then the observables over the interval are presented to the leaf nodes, and

the belief state at the root node is extracted.  If this is deemed sufficiently suspicious,

alert messages are written both to an alert log and in IDIP format.

Results

Lincoln Laboratory 1999 Evaluation Study

We have run our model against the TCP dump data from the 1999 Lincoln Laboratory

IDEVAL data sets [7].  It is highly effective against floods and nonstealthy probe attacks,

and moderately effective against stealthy probe attacks.

This data simulates activity at a medium-size LAN with typical firewalls and gateways.

Traffic generators simulate typical volume and variety of background traffic, both intra-

LAN and across the gateway.  Attack scripts of known types are executed at known

times, and the traffic (a mix of normal background as well as attack) is collected by

standard utilities, such as TCPDUMP.

For this prototype we examined external to internal traffic using the TCP/IP protocol.

This means that console attacks, insider attacks, and attacks exploiting other protocols

such as IDP and UDP are invisible.  These are not theoretical limitations of eBayes, and

we intend to include the UDP protocol in the near future.  However, this did limit attacks

that were visible to the system.  The fourth week of the data set was considered the most

difficult, as it contained the most stealthy attacks.  We detected three visible portsweeps

and missed one that accessed 3 ports over 4 minutes with no errors.  All of the

portsweeps in this data set are stealthy by the standards of the Lincoln training data and

the week 5 data (we detect 100% of visible, nonstealthy sweeps).  A Satan attack and a

TCPRESET attack are also detected as portsweeps.  This particular Satan attack was run
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in a mode where it in fact is characteristic of a portsweep.  For the TCPRESET, the

portsweep hypothesis slightly edges out the OTHER hypothesis.  Other detected attacks

in this data include MAILBOMB and PROCESS TABLE (both 100% detected) as well

as three password-guessing attacks (one detected as OTHER, two as DICTIONARY).

The latter three detections demonstrate the power of the approach.  They were not in the

set of attacks that Lincoln thought should be detected by this sensor, so we initially

considered them false alarms.  Further review of the full attack list indicated that they

were in fact good detections, even though at that time we had no DICTIONARY

hypothesis and they were called OTHER.  By elucidating characteristics of these attacks,

we added the DICTIONARY hypothesis (indicative of password guessing), which now

captures two of these attacks and is a close second to OTHER as a classification for the

third.  Also, one of these attacks was detected first by probabilistic methods (eStat and

later eBayes) because the eXpert sensors had no signature for it.  This signature has now

been added, but the generalization potential of  probabilistic detection is nonetheless

clear.

Real-World Experience

We have eBayes-TCP active on our own TCP gateway, and it has proved to be stable for

indefinite periods of time.  The TCP event generator, EMONTCP, and Bayes inference

components require about 15M on a Free BSD platform, and never use more than a few

percent of the CPU.  For real-world traffic, we of course have no ground truth, but the

results have nonetheless proved interesting to us in the sense of scientific

experimentation, as well as being of practical interest to our system administrators.

Our initial observation was that, not surprisingly, real-world data contains many failure

modes not seen in a set such as the IDEVAL data described above.  For example, we

regularly observe a pattern of http sessions of moderate or long duration in which a

significant number of connections terminate abnormally, but on such a time scale and in

such modes that we are fairly certain they are not malicious.  To capture these sessions,

we decided to add the HTTP_F hypothesis (for failed http).  This reduced the alert

volume to a manageable 15 or so per day.  A representative two-week period comprised
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about 470,000 connection events, grouped by the session model into about 60,000

sessions of which 222 produced alerts.  It is important to point out that many of these are

almost certainly attacks, consisting of IP and probe sweeps and some attempted denials of

service.  Some of the false alert mechanisms are understood and we are actively working

to improve system response to these without being too specific (for example, ignoring

alerts involving port 113 requests, which are screened in our environment but will be

seen from normal mail clients).

The Utility of Learning

The learning procedures described above have proven useful in our experimentation,

guiding us both in refinement of existing hypotheses as well as developing new

hypotheses for both normal and attack modalities.  However, we have observed better

operation if the adaptive capability is disabled, for several reasons.  First, attacks and

alert-worthy events are a very small fraction of total traffic in a real-world setting, so that

learning an attack modality that may only be seen once is problematic.  Second, we found

that the normal hypotheses become “hardened” so as to be relatively intolerant of

erroneous outcomes.  The fraction of such outcomes for non-malicious reasons is too

high to be tolerable from an alert standpoint, but is too low to permit sufficient “breathing

room” if adaptation is permitted indefinitely.  For the present, therefore, we run the

system in adaptive mode to identify un-anticipated modalities and large CPT deviations

from what is observed in true traffic.  We then take the results of this phase and moderate

it with our judgement (sanding the corners off very hardened hypotheses, so to speak)

and arrive at a batch specification of the CPT.  We then verify that this new encoding

remains sensitive against simulated datasets (such as the Lincoln data).  At present, we

detect the most attacks we have ever detected in the Lincoln data, and detect alert-worthy

events in our real-world data with an acceptable level of apparent false alerts.

Summary
We have described the eBayes monitoring capability, which employs Bayesian inference

steps with transition models between inference to assess whether a particular burst of
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traffic contains an attack.  A coupled component monitors availability of valid services,

which are themselves learned via unsupervised discovery.

The efficacy of this system was demonstrated by results from the Lincoln Laboratory

Intrusion Detection Evaluation data, and also by a live operation on a real-world site for

weeks at a time.

This provides us with several important new capabilities:

• Probabilistic encoding of attack models provides a complementary capability to

anomaly detection and signature analysis, retaining the generalization potential of the

former and the sensitivity and specificity of the latter.

• We now potentially detect distributed attacks in which none of the attack sessions are

individually suspicious enough to generate an alert.  This comprises correlation by

aggregation.

• Once a successful denial of service has taken place, we are much less likely to

generate false alerts for nonmalicious clients requesting the service during the attack

(we refer to these clients as “collateral damage”).  This form of correlation fuses the

belief that an attack is in progress with the symptom of the attack (the service is

disabled when the attack achieves its objectives) to explain away subsequent alerts

from “collateral damage” sessions.  As such, the system correlating symptoms and

attacks provides effective false alarm reduction, while still providing the

administrator with an alert for the original attack as well as an indication of the status

of the victim host/port.

We continuously run this system along with our TCP session monitor on our own TCP

gateway. While we do not have ground truth for this traffic, we regularly identify probe

attacks and “spidering” activity, as well as the occasional DOS attempt.  We also detect

service outages and recovery for what appear to be nonmalicious faults.
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