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Abstract - This paper presents an effective and robust
technique for compacting a large sequence of input vectors into a
much smaller input sequence so as to reduce the circuit/gate level
simulation time by orders of magnitude and maintain the accuracy
of the power estimates. In particular, this paper introduces and
characterizes a family of dynamic Markov trees that can model
complex spatiotemporal correlations which occur during power
estimation both in combinational and sequential circuits. As the
results demonstrate, large compaction ratios of 1-2 orders of
magnitude can be obtained without significant loss (less than 5%
on average) in the accuracy of power estimates.

I. INTRODUCTION
CAD tools have played a significant role in the efficient design

of the high-performance digital systems. In the past, time and
area were the primary concerns of the CAD community during
the optimization phase. With the growing need for low-power
electronic circuits and systems, power analysis and low-power
synthesis have become crucial tasks that must also be addressed.

Power estimation is in general a difficult problem; the key task
in this process is the accurate and fast estimation of average
switching activity. To date, both simulative [1]-[4] and
nonsimulative approaches [5]-[10] have been tried, each one
having its own advantages and limitations [11]. More
specifically, general simulation techniques provide sufficient
accuracy, but at high computational cost; it is simply expensive
to simulate thousands of vectors. On the other hand,
nonsimulative approaches (best represented by probabilistic
power estimation techniques) are in general faster, but less
accurate than those based on simulation; usually, the input
correlations and the reconvergent fan-out in the target circuit
make things very complicated and simplifying assumptions (like
input independence) become mandatory.

As a conclusion, a number of issues appear to be important
for power estimation and low-power synthesis. Theinput
statistics which must be properly captured and thelength of the
input sequenceswhich must be applied are two such issues.
Generating a minimal-length sequence of input vectors that
satisfies these statistics in not trivial. The reason is the elaborate
set of input statistics that must be preserved or reproduced during
sequence generation for use by power simulators. One such
attempt is [13] where authors use deterministic FSMs to model
user-specified input sequences. Since the number of states in the
FSM is equal to the length of the sequence to be modeled, the
ability to characterize anything else but short input sequences is
limited. A more elaborate and effective technique was presented
in [14] where, based on stochastic sequential machines, the
authors succeed in compacting large sequences without
significant loss in accuracy. However, in the present research, the
limitations of that approach are pointed out and overcome by the
proposed technique.

The present paper improves the-state-of the art by providing
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an original solution for vector compaction problem which
potentially reduces the gap between simulative and
nonsimulative approaches. Having an initial sequence (assumed
representative for some target circuit), we targetlossy
compression [15], that is the process of transforming an input
sequence into a smaller one, such that the new body of data
represents agood approximation as far as total power
consumption is concerned.

The foundation of our approach is probabilistic in nature; it
relies onadaptive (dynamic) modeling of binary input streams as
first-order Markov sources of information and is applicable both
to combinational and sequential circuits. The adaptive modeling
technique itself (best known as Dynamic Markov Chain or DMC
modeling) was introduced very recently in the literature on data
compression [16] as a candidate to solve various data
compression problems. However, the original model introduced
in [17] is not completely satisfactory for our purpose. In this
paper, we thus extend the initial formulation to manage not only
correlations among adjacent bits that belong to the same input
vector, but also correlations between successive input patterns.

As demonstrated and supported by practical evidence, this
new framework is extremely effective in power estimation. The
basic idea is illustrated in Fig.1. To evaluate the total power
consumption of a target circuit for a given input sequenceL0
(Fig.1a), we derive first the Markov model of the input sequence
through a one-pass traversal technique and after that, having this
compact representation, we generate a much shorter sequenceL,
equivalent with L0, which can be used with any available
simulator to derive accurate power estimates (Fig.1b).

Fig.1
The paper is organized as follows: Section II reviews the

basic concepts of DMC modeling technique. Section III
formalizes the power-oriented vector compaction problem and
discusses parameters which makes this approach effective in
practice. Section IV presents a DMC-based procedure for vector
compaction. In sections V and VI, we give some practical
considerations and experimental results, respectively. Finally, we
conclude by summarizing our main contribution.

II . BACKGROUND ON DYNAMIC MARKOV MODELS

Without loss of generality, in what follows we restrict
ourselves to finite binary strings, that is, finite sequences
consisting only of 0’s and 1’s. The set of events of interest is the
set S of all finite binary sequences onk bits. A particular
sequenceS1 in S consists of vectorsv1, v2,..., vn (which may be
distinct or not), each having a positive occurence probability.
Indices 1, 2,...,n represent the discrete time steps when a
particular vector is applied to a target circuit. Imposing a total
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ordering among bits, such a sequence may be conveniently
viewed as a binary tree (calledDMT0 from Dynamic Markov Tree
of order zero) where nodes at levelj correspond to bitj (1 ≤ j ≤ k)
in the original sequence; each edge that emerges from a node is
labelled with a positive count (and therefore with a positive
probability) that indicates how many times the substring from the
root to that particular node, occurred in the original sequence. For
clarity, let’s consider the following example.
Example 1: For the following 4-bit sequence consisting of 8 non-
distinct vectors: (v1, v2, v3, v4, v5, v6, v7, v8) = (0000, 0001, 1001,
1100, 1001, 1100, 1001, 1100) the construction of the treeDMT0
is shown step-by-step in Fig.2a. Obviously, the whole Markov
tree that models this sequence must have four levels because the
original sequence is a 4-bit sequence. Without loss of generality,
we assume a left-to-right order among bits that is, the leftmost bit
in any vectorv1 to v8 is considered as being bit number one (and
consequently represented at level one inDMT0 as shown in
Fig.2a), the next bit is considered as being bit number two and so
on. Every time a vector is completely scanned (this corresponds
to reaching the level four in the tree), we come back to the root
and start again with the next vector in the sequence. While the
input sequence is scanned, the actual counts on the edges are
dynamically updated such that, for this particular example, they
finally become those indicated in Fig.2b.

Fig.2
The Markov tree in Fig.2b contains in a compact form all the
spatial information about the original sequencev1, v2,..., v8. We
point out that this sparse structure is possible only by using the
dynamic (adaptive) fashion of growing the treeDMT0 just
illustrated. Another approach would have been to consider a static
binary tree capable to model any 4-bit sequence and just to update

the counts on the edges while scanning the original sequence. By
doing so, we would end up with the obvious disadvantage of
having 15 instead of 9 nodes in the structure for the same amount
of information; this reason alone is sufficient for considering from
now on only dynamically grown models.
Definition 1. We define theinformation source, to be the pair
<S,P>, whereP is a function fromS into [0,1] satisfying the
condition:

                                                                           (1)

for all v in S,where vx represents the event corresponding to the
joint occurence of the stringsv andx.

The above condition, simply states that the sum of the counts
attached to the immediate successors of nodev equals its own
valueP(v). As we can easily see in Fig.2, condition (1) is satisfied
at every node in this representation2. In addition, based on the
counts of the terminal edges, we may easily compute the
probability of occurence for a particular vector in the sequence.
For instance, the probability of occurence for string ‘1001’ is 3/8
(because the count on the terminal edge that corresponds to
‘1001’ is 3 and the length of the sequence is 8) while the
probability of string ‘1111’ is zero, ‘1111’ being a ‘forbidden’
vector for this particular sequence.

III . POWER-ORIENTED DATA COMPACTION

A. Problem Formulation
Input pattern dependence has a dramatic impact on power

dissipation estimates. If one ignores the input statistics (which
give the actual correlations among the primary inputs), power
estimation results can be seriously impaired.

Assuming that a gate level implementation is available, to
estimate the total power dissipation, one can sum over all the
gates in the circuit the average power dissipation due to the
capacitive switching currents, that is:

 where fclk is the clock

frequency, VDD is the supply voltage,Cn and swn are the
capacitance and the average switching activity of gaten,
respectively. From here, the average switching activity per node
(gate) is the key parameter that needs to be correctly determined,
mostly if we are interested in node-by-node power estimation.

Having these issues in mind, the vector compaction problem
can be formulated as follows: for ak-bit sequence of lengthn
(consisting of vectorsv1,v2,...,vn), find another sequence of length
m< n (consisting of the subsetu1,u2,...,um of the initial sequence),
such that the average transition probability on the primary inputs
is preservedwordwise.More formally, for any generic inputv and
u (seen as collections of bits) in the original and in the compacted
sequence, respectively, the following holds:

         (2)

In relation (2),v-, v+ (u-, u+) denote the current and the next
vector, respectively, in the original (compacted) sequence andX,
Y are any two patterns that appear in the initial sequence. This
condition simply requires that the joint transition probability for
any group of bits is preserved within a given level of error.

B. A DMC-based Approach
An attempt to solve the vector compaction problem for power

2This is actually similar to Kirchoff’s law for currents.
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estimation was recently presented in [14]. In that paper, the
authors use elements from probabilistic automata theory to
synthesize stochastic machines which can be used in a stand-
alone mode for sequence compaction.

From a practical point of view, however, this approach has
two inherent limitations:
• The values in the initial transition matrix themselves are
important in the decomposition process: some distributions of
transition probabilities tend to favor a small number of degenerate
matrices, as opposed to others which result in much longer
decompositions.
• The compaction technique on stochastic machines is a
multiple-step compaction technique. An initial pass through the
sequence is performed to extract the statistics of interest; after
that, the stochastic machine is synthesized and then the new
sequence is generated. This is especially disadvantageous for
large sequences when the on-line computer memory and time
requirements become prohibitive.

The disadvantages mentioned above can be eliminated by
using DMC modeling. To this end, in what follows we introduce
an original framework for power-oriented data compaction.

From Section III.A, it follows that not only a particular
vector vi in a given sequence is important, but also its relative
position in that sequence matters. More precisely, different
permutations of vectors belonging to the same initial set (v1,
v2,..., vn), define completely different input sequences. Coming
back to the model presented in Section II, we observe thatDMT0
alone cannot capture this property; we say thatDMT0 has no
memoryand therefore the relative order of vectors in the initial
sequence is irrelevant in the construction ofDMT0. In Fig.2b for
instance, the value of 3/8 is the probability that we find the
particular string (state) ‘1001’ in the original sequence, but this
gives us no indication at all about the sequencing of this vector
relative to another one, say ‘0001’.

To solve properly the compaction problem, we refine now the
above structure by incorporating in itfirst-order memory effects.
Specifically, we consider a more intricate structure, namely a tree
calledDMT1 (Dynamic Markov Tree of order 1).
Example 2: For the same sequence in Example 1, suppose we
want to construct its corresponding treeDMT1. We begin as in
DMT0 and for each leaf that represents a valid combination in the
original sequence, we construct a new tree (having the same depth
as DMT0) which is meant to preserve thecontext in which the
next combination occurs. For instance, the vectorv2 = 0001
follows immediately afterv1 = 0000; consequently when we
reach the node that corresponds tov1 (the leftmost path in Fig.3a),
instead of going back to the root (and therefore ‘forgetting’ the
context), we start to build a new tree (rooted at the current leave
of DMT0) as indicated in Fig.3a. Basically, we added a new path
that corresponds to ‘0001’. The newly constructed tree will
preserve the context in whichv2 = 0001 occurred that is,
immediately afterv1 = 0000 (denoted byv1 → v2). After
processing the pair (v1,v2), we come back to the root and continue
with (v2,v3) as shown in Fig.3b.

In fact, all vectors except the first and the last are processed
exactly twice, once in the upperDMT0 and next in the lower
subtree. What is important to note here, is thatall vectors in the
original sequence are processed, that is,none of them is skipped
during the construction ofDMT1. This is the theoretical basis for
accurate modeling of the input sequences as first-order Markov
sources of information.

Fig.3
Similarly, continuing this process for all leaves inDMT0 in
Fig.2b, we end up by building the whole treeDMT1 as shown in
Fig.4.

Fig.4
In Fig.4, the upper subtree (levels 1 to 4) representsDMT0,

that is, it sets up the state probabilities for the sequence; the lower
subtrees (levels 5 to 8), give the actual sequencing between any
two successive vectors. To keep the counts in these subtrees
consistent, while we traverse the lower subtrees and update the
counts on their edges, we also accordingly increment the counts
on the paths in the upper subtree. In practice the counts of these
two subtrees may differ by one, due to the finite length of the
sequences. A practical solution to this issue is to consider the
input sequence as being cyclic.

Obviously,DMT1 provides more information thanDMT0. To
give an example, string ‘1001’ can follow only after ‘0001’ or
‘1100’, information that cannot be gathered by analyzingDMT0
alone.
Proposition 1[19]. We write the probability of a vector stringv =
v1v2...vn as follows:

                   (4)

where the conditional probabilities are uniquely defined by:
P(x|v) = P(vx) / P(v).
This property, used in connection with the counts on the edges,
allows a quick calculation of the transitions probabilities that
characterize any particular sequence. For example, if we want to
calculate the transition probability ‘1001’→ ‘1100’ we have from
Proposition 1

which is exactly the count on the path ‘10011100’ in the tree
DMT1 divided by the sequence length.
Theorem 1. Any sequence inS can be modeled as a first-order
Markov source using the structureDMT1 and parametersP. We
call this process Dynamic Markov Chain (DMC) modeling.
Theorem 2. The structureDMT1 and parametersP are equivalent
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to a stochastic sequential machine. (Proofs can be found in [12]).
Generally speaking, the theory of stochastic sequential

machines is far more developed than the theory of DMC
modeling. However, the DMC modeling technique based on
DMT1 seems to be more effective as it offers a much more
compact structure and generally outperforms the compaction
techniques based on stochastic machines.

The structureDMT1 just introduced is general enough to
capture completely spatial correlations and first-order temporal
correlations. Indeed, the recursive construction ofDMT1 by
considering successive bits in the upper and lower subtrees
completely captures the word-level (spatial) correlations for each
individual input vector in the original sequence. Furthermore,
cascading lower subtrees for each path in the upper subtree, gives
the actual sequencing (temporal correlation) between two
successive input patterns.

IV. A DMC-BASEDVECTORCOMPACTIONPROCEDURE
A practical procedure to constructDMT1 and generate the

compacted sequence is described subsequently. During a one-
pass traversal of the original sequence (when we extract the bit-
level statistics of each individual vectorv1,v2...,vn and also those
statistics that correspond to pairs of consecutive vectors (v1v2),
(v2v3),...,(vn-2vn-1),(vn-1vn)) we grow simultaneously the tree
DMT1. We continue to growDMT1 as long as the number of
nodes in the Markov model is smaller than a user-specified
threshold. After reaching the threshold we generate the new
sequence up to that point and discard (flush) the model; a detailed
example involving flushes is worked out in [12]. A new Markov
model is started again and the process is continued up to the end
of the original sequence. In general, by alternating the generation
and flushing phases in the DMC procedure, the complexity of the
model can be effectively handled. The issue of accuracy in the
context of these repeated flushes is discussed in the subsequent
section.

Each generation phase is driven by the user-specified
compaction parameterratio that is, in order to generate a total of
m = n/ratio vectors, we have to keep the same compaction ratio
for every dynamically grown Markov model. For generation, we
use a modified version of thedynamic weighted selection
algorithm[20]. In that approach, a similar structure withDMT0 is
built; more precisely, a full tree having on the leaves the symbols
that need to be generated. The counts on the edges are
dynamically decreased and the symbols are generated according
to their probability distribution. We use this strategy only to
generate the first vector. After that, to ensure a minimal level of
error, we use anerror controlling mechanism. The pseudocode
for the generation phase and a detailed example is given in [12].

In all our experiments we used the DMC modeling technique
based on the structureDMT1. We also note that this strategy does
note allow ‘forbidden’ vectors that is, those combinations that did
not occur in the original sequence, will not appear in the final
compacted sequence either. This is an essential capability needed
to avoid ‘hang-up’ (‘forbidden’) states of the circuit during
simulation process for power estimation.

IV. PRACTICAL CONSIDERATIONS
A. Complexity Related Issues
The DMC modeling approach offers the significant advantage of
being aone-pass adaptive technique. As a one-pass technique,
there is no requirement to save the whole sequence in the on-line
computer memory. Starting with an initial empty treeDMT1,

while the input sequence is scanned incrementally, both the set of
states and the transition probabilities change dynamically making
this technique highly adaptive.

Input sequences having a large number of bitsk are very
common in practice; the success of DMC models for sequence
compaction whenk is large is based on two key observations:
• The larger the value ofk is, the sparser the structure ofDMT1
will be. The DMC modeling technique exploits this observation
by starting with an initially empty model and dynamically
growing (’on-demand’) the Markov tree that characterizes the
input sequence. By doing so, one can expect to build much
smaller trees than the ones otherwise obtained by using a static
model based on an initial full tree.
• Biased sequences which usually occurs in practice as candidates
for power estimation, contain a relatively small number of distinct
patterns which arise in many different contexts in the whole
sequence. Therefore, a probabilistic model is ideally suited for
modeling them.

A natural question still remains: when should the growing
process be halted? If it is not halted, there is no bound on the
amount of memory needed. On the other side, if it is completely
halted we lose the ability to adapt if some characteristics of the
source message change. A practical solution is to set a limit on
the number of states in the DMC [17] as we actually did in [12].
When this limit is reached, the Markov model is flushed and a
new model is started. Although this solution may appear as too
drastic, in practice it performs very well. The intuition behind this
property is the capability of DMC model to adapt very fast to
changes that occur while the input is scanned. A less extreme
solution to limit model growing is also possible; we can keep a
backup buffer that retains the lastp vectors emitted by the source
and whenever the model should be discarded, we may reuse this
information to avoid starting the new model from the scratch.

B. Accuracy Related Issues
To see how the flushing technique affects the accuracy,

suppose that during the building of the Markov model, flushing
occurs after the firstn1 vectors, then after the nextn2 vectors, and
so on. If the number of flushes isf, thenn1 + n2 +... +nf = n. Letvi
(ui) be a vector from the initial (compacted)i-th subsequence
(obtained due to successive flushes) andv (u) a vector from the
initial (compacted) sequence.
Theorem 3[12]. If the i-th subsequence is approximated with an
error less thanεi, then the accuracy for the whole sequence is:

                                                  (5)

 wherer is the compaction ratio.
Therefore, as long as the models for partial DMCs accurately
capture the transition probabilities for the initial subsequences,
the transition probabilities for the entire sequence are preserved
up to someε. However, the non-homogeneous sequences that
may arise in practice (e.g. sequences with bi-modal distribution)
can have very different transition probabilities for each
subsequence. In such cases, if flushing is done properly so as to
distinguish between subsequences with different transition
behavior, then the overall accuracy can be significantly improved.

V. EXPERIMENTAL RESULTS
The overall strategy is depicted in Fig.5. We assume that the input
data is given in the form of a sequence of binary vectors. Starting
with ank-bit input sequence of lengthn, we perform a one-pass
traversal of the original sequence and simultaneously build the
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basic treeDMT1; during this process, the frequency counts on
edges ofDMT1 are dynamically updated.

Fig.5
The next step in Fig.5 does the actual generation of the output

sequence (of lengthm). If the initial sequence has the lengthn and
the new generated sequence has the lengthm< n, then we say that
acompaction ratio of r = n/mwas achieved.

Finally, a validation step is included in the strategy; for short
sequences we used the commercial tool PowerMill [2] whilst for
long sequences we resorted to an in-house gate-level logic
simulator developed under SIS.

In Tables 1-2, we provide only the real-delay results for two
types of initial sequences. Sequences of type 1 are large input
streams having the same initial lengthn =100,000 and being then
prime candidates for compaction; type 1 refers to biased
sequences obtained by doing bit-level logical operations on
ordinary pseudorandom sequences. The sequences of type 2
(having the length 4,000) are highly biased sequences obtained
from real industry applications.

As shown in Table 1, sequences of type 1 were compacted
with two different compaction ratios (namelyr = 50 and 100); we
give in this table the total power dissipation measured for the
initial sequence (column 3) and for the compacted sequence
(columns 4, 5). In the last column, we give the time in seconds
(on a Sparc 20 workstation with 64 Mbytes of memory) necessary
to read and compress data with DMC modeling.

Since the compaction with DMC modeling is linear in the
number of nodes in the structureDMT1, the values reported in
the last column are far less than the actual time needed to
simulate the whole sequence. During these experiments, the
number of states allowed in the Markov model was 20,000.

As we can see, the quality of results is very good even when
the length of the initial sequence is reduced by 2 orders of
magnitude. Thus, for C432 in Table 1, instead of simulating
100,000 vectors with an exact power of 1816.32 uW, one can
use only 2000 vectors with an estimate of 1838.89 uW or just

1000 vectors with a power consumption estimated as 1779.60
uW. This reduction in the sequence length has a significant
impact on speeding-up the simulative approaches where the
running time is proportional to the length of the sequence which
must be simulated.

The sequences of type 2 were compacted for two compaction
ratios (r = 5 andr =10) using PowerMill [2]; to asses the potential
of efficiency of the approach, for both original and compacted
sequences, we report also the actual running time required by
PowerMill to provide power estimates. The number of nodes
allowed for the Markov model construction, was 5,000; the CPU
time for DMC modeling was below 3 seconds in all cases.

As it can be seen in Table 2, the average relative error is
below 5% while the speed-up in power estimation is about one
order of magnitude on average. For example, using the original
sequence of 4000 vectors, PowerMill took for C432 about 1186
seconds to estimate a total current of 0.4135 mA. On the other
side, using the sequence generated with DMC of only 400 vectors
(r = 10), PowerMill estimated a total current of 0.4066 mA in
only 120 seconds. We note also, that the results presented both
tables 1 and 2, are significantly better than those reported in [14]
in terms of running time and memory requirements.

Finally, we compare our results with simple random sampling
of vector pairs from the original sequences [21]. In simple
random sampling, we performed 1,000 simulation runs with 0.99
confidence level and 5% error level on each circuit1. We report in
Table 3 the maximum and average number of vector pairs needed
for total power values to converge [11]. We also indicate the
percentage of error violations for total power values, using as
thresholds 5%, 6% and 10%. Using different seeds for the random
number generator (and therefore choosing different initial states
in the sequence generation phase), we run a set of 1,000
experiments for the DMC technique. In Table 4, we give the
DMC results for the same thresholds as those used in simple
random sampling.

Once again, the results obtained with DMC modeling
technique score very well and prove the robustness of the present
approach. As we can see, using fewer vectors, the accuracy of
DMC is higher than the one of simple random sampling in most
of the cases.

1This means that the probability of having a relative error
larger than 5% is only 1%.

Initial sequence
L0  of lengthn

Compacted sequence
  (L «L0)

One-step DMC modeling;
Generate compacted
       sequenceL

Comparison

build DMT1; dynamically
update counts on its edges

 Gate-level logic simul.
     total power estimation

Gate-level logic simul.
 total power estimation  of length m

Table 1: Total Power (uW@20MHz) for sequences of type 1

Circuit
No.of
Inputs

Power for
initial seq.

Power for
r = 50

Power for
r = 100

Time for
DMC
(sec)

C432 36 1816.32 1838.89 1779.60 42

C499 41 3697.84 3546.65 3622.26 48

C880 60 3314.07 3229.85 3329.31 75

C1355 41 3205.27 3044.20 3109.18 48

C3540 50 10876.22 9910.08 10687.32 61

C6288 32 110038.69 114199.50 109077.42 37

s344 9 751.58 748.54 719.53 10

s386 7 818.11 844.58 848.80 8

s838 34 1052.05 1061.73 1091.14 41

s1196 14 3687.47 3702.32 3580.63 16

s9234 36 9192.75 9157.31 9209.75 43

% error 2.80 2.93

Table 2: Total Current (mA) for sequences of type 2

Initial sequence Compacted sequence

Circuit
No.of
Inputs

Current
(mA)

Time to
simulate

(sec)

Current
(mA)
r = 5

Current
(mA)
r = 10

Time to
simulate

(sec)
r = 10

C432 36 0.4135 1186 0.4352 0.4404 120

C499 41 0.8188 2675 0.8337 0.8290 235

C880 60 0.7907 2289 0.8324 0.8023 274

C1355 41 1.1375 2993 1.1549 1.1461 284

C1908 33 1.2976 4034 1.2821 1.2833 367

C3540 50 3.4490 9467 4.0500 3.8580 1082

C6288 32 14.5749 88032 14.8020 15.9315 5005

% error 4.85 4.80



V. CONCLUSION
In this paper, we addressed the vector compaction problem from a
probabilistic point of view. Based on dynamic Markov Chain
modeling, we proposed an original approach to compact an
original sequence into a much shorter equivalent one, which can
be used after that with any available simulator to derive power
estimates in the target circuit.

The mathematical foundation of this approach relies in
Markov models; within this framework a family of dynamic
Markov trees is introduced and characterized as an effective and
flexible way to model complex spatiotemporal correlations which
occur during power estimation. The results obtained both on
combinational and sequential benchmarks show that large
compaction ratios of 1-2 orders of magnitude can be obtained
without much loss in accuracy in total power estimates.
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Table 3: Simple Random Sampling

Number of vector pairs Error violations

Circ. Max. Avg. > 5% > 6% >10%

C432 3300 2176 1.1 0.7 0.4

C499 1500 862 1.4 1.3 0.2

C880 3990 2705 1.8 0.4 0.7

C1355 1380 814 1.7 1.0 0.2

C1908 1620 846 1.9 1.3 0.2

C3540 2340 1446 2.0 1.3 0.4

C6288 7470 5422 1.4 1.4 0.3

Table 4: DMC Approach

Error violations

Circ. No. of vect. > 5% > 6% >10%

C432 2000 6.7 1.9 0.0

C499 800 0.3 0.0 0.0

C880 2000 1.4 0.1 0.0

C1355 800 0.2 0.0 0.0

C1908 800 1.9 1.2 0.0

C3540 1000 0.9 0.0 0.0

C6288 2000 0.0 0.0 0.0


