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ABSTRACT In this paper, we propose a novel Adaptive Modulation and Coding (AMC) scheme enabled by

Artificial Neural Network (ANN) aided Signal-to-Noise power Ratio (SNR) estimation. The Power Spectral

Density (PSD) values are trained for SNR classification and it is mapped to respective Modulation and

Coding Scheme (MCS) sets. Once trained, optimal MCS can be determined in low calculation complexity.

The proposed approach is robust especially in high mobility environment since the PSD appearance is hardly

influenced by the Doppler shift. Its effectiveness in terms of throughput is presented through computer

simulations compared to the existing Error Vector Magnitude (EVM) based link adaptation scheme.

INDEX TERMS SNR estimation, artificial neural network, adaptive modulation and coding.

I. INTRODUCTION

The next generation mobile radio communication systems,

5G and beyond 5G, require realizations of large capacity,

massive connectivity and low latency [1], [2]. Link adaptation

schemes such as Adaptive Modulation and Coding (AMC)

and Transmit Power Control (TPC) are truly essential to max-

imize the throughput performance for wireless communica-

tion wherein propagation environments drastically fluctuate

[3]–[7]. It can be rephrased that AMC is very sensitive to

changes in Signal-to-Noise power Ratio (SNR) to maximize

the spectral efficiency. Channel condition and the received

SNR are varied from the instant of estimation due to the

mobility of user terminal or surrounding objects such as vehi-

cles. In order to track the dynamics of SNR, frequent SNR

estimation and feedback should be performed. It imposes

heavy computation complexity and feedback overhead. The

modulation and coding schemes (MCS) are determined based

on the SNR estimated at the receiver and is fed-back to

the transmitter side. AMC is effective not only in the flat

fading environment, but also in the frequency selective fad-

ing environment. In this case, MCS parameters should be

optimally associated to SNR according to the channel con-

dition on which error rate performance depend. In order

to fully exploit channel capacity, lots of MCS parameters

should be prepared with fine granularity of SNR [8]–[10]
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and its estimate values should be highly accurate. Compli-

cated SNR estimation process for high accuracy may cause

feedback delay and it could depress the throughput perfor-

mance. Well investigated approaches are Error Vector Mag-

nitude (EVM) [11] or time domain analysis [12]. In addition

to the above concern, they are substantially based on the

complex signal processing which may be affected by the

Doppler shift in high mobility environment. Such fluctua-

tion in time domain could impact to the SNR estimation

accuracy.

In order to address the above issue, this paper proposes a

novel SNR estimation method using an Artificial Neural Net-

work (ANN)with supervised learning. ANN is composed of a

plurality of neurons made by imitating the human brain func-

tion [13]–[18]. It has a high problem solving ability by chang-

ing synaptic connections according to learning results. Neural

network design is roughly classified into supervised learning

and unsupervised learning. Supervised learning extracts fea-

ture quantities using the pair of input training signals and out-

put teacher signals. Resultant function can solve regression

problems and identification problems. However, supervised

learning, requires enormous teacher data sets that may be

difficult to collect depending on an object of interest. On the

other hand, unsupervised learning attempts to divide input

signals into clusters having common factors and to extract

frequent patterns, without giving correct solutions. Once

learned, ANN can derive the result with simple calculation.

It is extremely effective in the environment where
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computation resources and memory are limited or when the

strictly low processing latency is imposed.

The proposed method estimates SNR using ANN exploit-

ing power spectral density (PSD) values of the received

signal. Since the estimator of the proposed method requires

only PSD values, it can implement with a simple config-

uration. It is also a point that it is easy to acquire data

set of PSD value and teacher signal of SNR value. Thus,

this estimation method easily realizes a high accuracy and

low computational complexity by extracting features such

as noise power from the PSD. In addition, the proposed

method is hardly affected by the Doppler shift since it focuses

on only the power-domain which excludes the phase offset

impact. SNR estimation accuracy can be kept even in the high

mobility environment. Its robustness andmaximized through-

put performance are valuably disclosed through computer

simulations.

The reminder of this paper is organized as follows.

Section II reviews related works and validates our contribu-

tion. The systemmodel is described in Section III. Section IV

introduces the proposed method that estimates SNR using

ANN for AMC scheme. Section V presents the simulation

results from various viewpoints. Section VI concludes this

paper.

II. RELATED WORKS

At present, an application of machine learning to the wireless

communication field has attracted a great deal of attention

and research has been actively conducted [19]. Particularly,

modulation recognition (MR) [20]–[25] and channel

estimation by using a neural network [26], [27] have been

extensively studied. Modulation recognition (MR) is a pio-

neering technology that fully exploits the potentiality of

ANN. MR aims at implementation of correct demodulation

in the receiver side and is an essential technique to improve

the communication performance especially in the cognitive

radio environment. Literature claims that MR is fundamental

for AMC, however, MR and AMC is substantially differ-

ent techniques. AMC requires information about channel

quality such as SNR at the receiver side and it is fed-back

to the transmitter side. Our proposal introduces ANN to

accurately estimate SNR using PSD. MR is to improve the

signal reception performance even at lower SNR situation,

but not to estimate SNR itself. On the other hand, the neu-

ral network based channel estimation can also improve the

estimation accuracy as well as communication performance.

The common objective of using neural networks among these

approaches including our proposal is to simplify the com-

plicated calculation processing for a high-speed and a high

reliable communication. The proposed approach focused on

frequency-domain real-valued signals which can be easily

obtained by Fourier transform of specified signal samples

and can reduce the burden on the receiver. In terms of

learning neural network, a data set of PSD can be acquired not

only by signal processing but also commercial measurement

instruments such as a spectrum analyzer; captured images can

also be acceptable. Once the learning process is conducted,

only the resultant optimized function should be installed to

the transceiver. Therefore, the proposed AMC works in a

simplified manner and can be applied to small transceivers

being driven with limited power. Furthermore, in the link

adaptation such as AMC, FBI for control is essential. The

computation complexity for SNR estimation and the amount

of FBI itself are factors of the feedback delay. The neural

network aided proposed method can also alleviate it, since

these features, the proposed approach can contribute to the

massive connectivity and low latency applications such as

mission critical IoT and vehicle-to-vehicle communication.

III. SYSTEM MODEL

A. CHANNEL MODEL

This section explains the time-varying multipath fading chan-

nel that we assumed as the propagation model in this paper

[28], [29]. In the case that the transmission bandwidth is

larger than the channel coherence bandwidth, the frequency

components of the transmission signal exceeding the coherent

frequency bandwidth have different phase transitions and

gains. This channel is called frequency selective channel [30].

Its discrete expression can be written as follows:

h(t; τ ) =
K
∑

k=1

hk (t)δ(t −
k

W
) (1)

hk (t) =
gk√
K

K
∑

k=1

exp [j (2π fd t cosαk + φk)] (2)

where K is the number of discrete multipaths, and hk rep-

resents the channel complex gain of the kth multipath com-

ponent. δ(t) denotes the Dirac’s delta function, W is the

transmission signal bandwidth, gk indicates the k-th path

amplitude. fd denotes the Doppler frequency, αk and φk indi-

cate the angle of arrival (AoA) of the kth incoming wave

and its initial phase, respectively. We constructed a time-

varying channel based on Jakes’ model.
∑K

k=1 E
[∣

∣h2k

∣

∣

]

= 1

where E [·] indicates the ensemble-average operation. Then,

the frequency response H (t; f ) is obtained by the discrete

Fourier transform (DFT) of h(t; τ ) expressed as follows:

H (t; f ) =
∫ ∞

−∞
h(t; τ )exp (−j2π f τ) dτ

=
K
∑

k=1

hk (t)exp

(

−j2π f
k

W

)

. (3)

In regards to K , the following relationship holds,

K = ⌊WTms⌋ + 1, (4)

where Tms represents the spread of multipath. From (4), since

K > 1, the frequency response of channel is not immutable

due to the variation of each channel gains. Such a fading envi-

ronment is called frequency selective. The Doppler power

spectra can be written as follows:

Dk (λ) =
∫ ∞

−∞
E

[

1

2
h∗
k (t)hk (t + τ )

]

· exp (−j2πλτ) dτ,

for k = 1, 2, 3, . . . ,K . (5)
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FIGURE 1. Block diagram of the proposed system.

As can be seen from the above equation, multipath can be

modeled using Doppler spread and power spectra, and it is

greatly affected by Doppler frequency representing moving

speed of the transceiver. The influence of multipath phase

changes in OFDM signals that degrade channel tracking

performance depends on Doppler frequency. Thus, in the

case of high Doppler frequency, channel estimation accuracy

deteriorates and detection performance also deteriorates.

B. TRANSMITTER STRUCTURE

The transmitter structure is shown in Fig.1(a). The time

domain transmission signal is represented as follows:

s(t) =
∞
∑

n=−∞

√

2P

Nc
· p(t − nT )

·
[

Nc
∑

m=1

d(m, n) · exp
(

j2πm(t − nT )

Ts

)

]

(6)

where P is the average transmission power, Nc denotes

the number of subcarriers and d(m, n) is the m-th subcar-

rier of the n-th modulated symbol. Here, d(m, n) satisfies

E [|d(m, n)|] = 1. T is the symbol length of OFDM signal,

Ts indicates the effective symbol length of OFDM signal not

including guard interval (GI). It is assumed that GI length is

Tg and Tg is a value that satisfies T = Ts+Tg. The frequency

interval between adjacent orthogonalized OFDM subcarriers

is 1/Ts. p(t) is the transmission pulse, and expressed as

p(t) =
{

1 −Tg ≤ t ≤ Ts

0 otherwise.
(7)

C. RECEIVER STRUCTURE

The receiver structure is shown in Fig.1(b). After remov-

ing the GI and performing serial to parallel conversion,

the received signal that passed through the multipath fading

channel is expressed as follows:

r(t) =
∫ ∞

−∞
h(t; τ )s(t − τ )dτ + z(t) (8)

where z(t) is the additive white Gaussian noise (AWGN)

which has power spectral density of Z0. The received signal

after fast Fourier transform is given by

r(m, n) =
1

Ts

∫ Ts+nT

nT

r(t) exp

(

−j2πm(t − nT )

Ts

)

dt

=

√

2P

Nc

Nc
∑

a=1

d(a, n) ·
1

Ts

∫ Ts

0

exp

(

j2π (a− m)t

Ts

)

·
{∫ ∞

−∞
h(τ, t + nT )p(t − τ )

· exp
(

−j2πaτ
Ts

)

dτ

}

dt + z(m, n) (9)

where z(m, n) is AWGN having variance of 2Z0/Ts with zero-

mean. Suppose the maximum chromatic dispersion between

subcarriers is smaller than Tg, the integral with respect to τ

can be expressed as

Nc
∑

a=1

{∫ ∞

−∞
h(τ, t + nT )p(t − τ ) exp

(

−j2πaτ
Ts

)

dτ

}

=
Nc
∑

a=1

∫ Ts

0

h(τ, t + nT ) exp

(

−j2πaτ
Ts

)

dτ

= H (m, t + nT ) . (10)
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FIGURE 2. BER of various coding rate and modulation level at Doppler
frequency of 10 Hz.

Here, under the assumption that the channel state remains

nearly flat over the symbol duration T ,

H (m, t + nT ) ≈ H (m, n) for 0 ≦ t ≦ T . (11)

Thus, (9) can be rewritten as

r̃(m, n) ≈
1

Ts

√

2P

Nc

Nc
∑

a=1

d(a, n) ·
∫ Ts

0

exp

(

j2π (a− m)t

Ts

)

·
{∫ ∞

−∞
h(τ, t + nT )p(t − τ )

· exp
(

−j2πaτ
Ts

)

dτ

}

dt + z(m, n)

=

√

2P

Nc
H (m, n) d(m, n) + z(m, n). (12)

Observing (12), the received signal is affected by frequency

selective fading. In addition, channel coefficient H (m, n) is

varied with the time progress. With the pilot-based channel

estimation, a channel estimation accuracy is degraded for the

latter part of transmission frame. Therefore, it indicates that

the change in Doppler frequency between the transmitter and

receiver greatly affects the channel estimation methods in

terms of channel fluctuation tracking ability.

D. AMC

AMC is generally performed by FBI of estimated SNR [10].

Themodulation levels and coding rates are selected according

to the estimated SNR such that it satisfies the predetermined

Bit Error Rate (BER). Fig.2 shows the BER performance of

various coding rates at Doppler frequency of 10 Hz. Here,

we use a convolutional code as an FEC and the modulation

TABLE 1. Switching threshold parameters.

level as QPSK, 16QAM and 64QAM. Detailed simulation

assumptions are presented in Section V.A. Suppose the target

BER for switching is set to 10−3, switching threshold can

be determined as shown in Table 1 [31], [32]. Based on this

setup, this paper examines the fundamental effectiveness of

the proposed approach.

E. SNR ESTIMATION WITH EVM

In this paper, SNR estimation using Error Vector Magnitude

(EVM)was used as the conventional method [33]–[36]. EVM

compares the reference constellation point with that of the

received signal and then estimates SNR from these difference.

Its SNR calculation formula can be expressed as follows,

SNREVM =10 log 10





1
N

∑N
n=1

(

I2r(m,n)+Q2
r(m,n)

)

Yr(m,n)



 , (13)

where N is the number of received signal symbol. Ir(m,n) and

Qr(m,n) represent them-th subcarrier ideal constellation points

in inphase and quadrature phases, respectively. Here, Yr(m,n)

is given by

Yr(m,n) = (Ir(m,n) − Ĩr(m,n))
2 + (Qr(m,n) − Q̃r(m,n))

2, (14)

where Ĩr(m,n) and Q̃r(m,n) are measured in-phase and quadra-

ture components from the received signal, respectively.

EVM-based SNR estimation utilizes time-domain samples

to suppress the AWGN effect. As above mentioned, in the

mobility environment, the recovered IQ data contains error

components due to the Doppler shift which would degrade

the SNR estimation accuracy.

IV. PROPOSED METHOD

A. SNR ESTIMATION BY ANN

The ANN used in the proposed system is 3 layered neu-

ral network which is exemplified in Fig.3. Based on the

back propagation algorithm [37]–[39], the input signal of the

u-th neuron in the c-th (c = 1, . . . ,C) layer is expressed as

follows:

xcu =
V
∑

v=1

wcu,vy
c−1
v + bcu, (15)

where wcu,v represents the weight for connection of the v-th

neuron in the (c − 1)-th layer to the u-th neuron in the c-th

layer and bcu indicates the bias for input of the u-th neuron
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FIGURE 3. Structure of a multilayer feed forward neural network.

in the c-th layer, respectively. Here, yc−1
v indicates the output

signal of the v-th neuron in the (c−1)-th layer and the output

signal of the u-th neuron in the c-th layer is represented as

ycu = f c
(

xcu
)

= f c

(

V
∑

v=1

wcu,vy
c−1
v + bcu

)

, (16)

where f is the activation function, and various differentiable

functions are used depending on the application. From (16),

it can be rewritten as follows:

yc = f c
(

wcyc−1 + bc
)

. (17)

The initial value of the input signal is the received signal given

by (12) and expressed as follows:

y0 = [r̃(1)T , r̃(2)T , . . . , r̃(n)T ]T , (18)

where r̃(n) indicates the n-th received symbol. Here, the num-

ber of neurons in the first layer is equal to the number of the

received signal. Assuming that the combination of the teacher

signal and the input signal is [t, y0], the output of the network

is represented by

yC = f C
(

wCyC−1 + bC
)

. (19)

Supposing that the cost function is a square error function,

the evaluation index of the network ξ is expressed as

ξ =
1

2

(

t − yC
)T (

t − yC
)

=
1

2

∥

∥

∥
t − f C

(

wCyC−1 + bC
)
∥

∥

∥

2
. (20)

In back propagation algorithm, the steepest descent method

is generally used. The gradient of the weight and the bias are

expressed as follows,

1wcuv = −η
∂ξ

∂wcu,v
(21)

1bcu = −η
∂ξ

∂bcu
, (22)

where η represents the learning rate. As described above,

the weights and biases are sequentially updated from the error

FIGURE 4. The power spectrum of the received signal according to SNR
level.

between the teacher signal and the output signal, so that the

output signal approaches to the teacher signal.

The proposed method estimates SNR from the PSD values

of received signal as shown in Fig.4. From Fig.4(a), (c),

the PSD under only AWGN channel has a large feature

according to SNR level. Thus, it is possible to estimate coarse

SNR level from these spectrum image in human eyes. Mean-

while, as shown in Fig.4(b), (d), the PSD under frequency

selective fading channel shows intense fluctuation, and it

seems difficult to extract the features in terms of SNR at a

glance. It is expected to be possible to determine the SNR

by extracting these complicated features using the neural

network. Furthermore, the feature quantities involved in SNR

estimation that obtained by the PSD value are not affected by

Doppler frequency, because the effect of Doppler frequency

appears as a rotation of the received signals’ phase com-

ponents; its effect can be excluded on the power spectrum.

Although the PSD value is the key point in the proposed

method, acquisition of this value can be easily acquired via

simple signal processing or measurement instruments such as

a spectrum analyzer. Captured images can also be acceptable

to learn the network. In this case, the burden on the receiving

side can be significantly reduced.

B. APPLICATION OF SNR ESTIMATION BY ANN TO AMC

In the proposed method, the estimator learns in advance using

PSD values and corresponding SNR values. It enables sim-

plification of the signal processing for the operation period.

If channel environment was changed, newly trained neural

network can be simultaneously updated to a large number of
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user terminals via software-basedmeans. After that, substitut-

ing the PSD value of the received signal to the learned estima-

tor as an input signal, estimated SNR can be obtained. AMC

parameters the determined according to SNR estimated value.

The above simplified mechanism is expected to contribute to

light-weight signal processing with lower latency.

FIGURE 5. Frame structure.

TABLE 2. Simulation parameters.

V. COMPUTER SIMULATION

A. SIMULATION PARAMETERS

The frame structure is based on wide spread OFDM as shown

in Fig.5. One frame consists of 2 pilot symbols and 30 data

symbols where one OFDM symbol consists of 52 subcarriers

and 16 guard interval samples. These parameters are selected

based on the great majority of legacy wireless LAN standard.

The duration of effective symbol is 3.2µs and the guard inter-

val duration is 0.8µs. Table 2 summarizes detailed simulation

parameters. The bandwidth of transmission signal is 20MHz.

Rayleigh fading channel consists of 15 multipaths with the

interval of 50 ns. Max Doppler frequencies were set to 10 and

100 Hz representing low and high mobilities, respectively.

As for the error correction code, the convolutional code with

rates of 1/2, 2/3, 3/4 and 5/6 was applied. If the effectiveness

of the proposed method is demonstrated with these basic

parameters, other FEC codes, such as Turbo code, LDPC and

Polar code, can also be effective as same.

The ANN structure used in the proposed method consists

of C = 3 layers, an input layer, a hidden layer, and an

output layer, respectively. The hidden layer is composed of

55 neurons and the learning rate η is set to 0.01. 10000 sets of

PSD values and SNR values were used for each SNR as a data

set. Sigmoid function is employed as the activation function

given by

y =
1

1 + e−x
. (23)

PSD data sets are generated using MATLAB. The train-

ing network is designed using MATLAB Deep Learning

Toolbox. Operating environment for training and testing the

network is NVIDIA Quadro GV100 GPU.

FIGURE 6. SNR estimation accuracy by ANN.

B. SIMULATION RESULTS

Fig. 6 shows the accuracy of estimated SNR with various

SNR intervals to be classified. When the interval is small,

the accuracy of SNR estimation is low. For this reason, in the

case of small interval, the spectra of adjacent SNR values

are very similar. Therefore it is difficult to extract different

feature quantities by ANN; erroneous judgment increases.

Meanwhile, increasing SNR interval to 3 dB, its accuracy

exceeds 80%. Thus, the proposed method can demonstrate

sufficient AMC performance by setting the interval of SNR

threshold to 3 dB or more.

Fig. 7 compares estimated SNR and actual SNR for EVM.

The accuracy of the estimated value by EVM deteriorates as

the Doppler frequency increases. Since the EVM estimates

SNR from the difference between the received IQ symbols

and the reference one, it is largely influenced by the Doppler
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FIGURE 7. Estimated SNR by EVM versus actual SNR.

FIGURE 8. Estimated SNR by ANN versus actual SNR.

shift. Its impact becomes non-negligible as the Doppler fre-

quency becomes higher.

Fig. 8 then compares estimated SNR and actual SNR for

ANN case. Compared with Fig 7, it can be seen that SNR

estimation using ANN is not affected by the Doppler shift.

The measured value and the actual one completely coincides.

This notable feature can be brought by the proposed method

which exploits power-domain transformed signals. It success-

fully excluded the residual phase compensation error due to

theDoppler shift. Therefore, in themethod of estimating SNR

from the spectral image using ANN, it is possible to minimize

the influence of Doppler frequency and improve the AMC

performance.

FIGURE 9. Throughput performance at Doppler frequency 10 Hz.

Fig. 9 plots the throughput performance with SNR at

Doppler frequency of 10 Hz. It compares that of ideal AMC,

AMC by EVM based SNR estimation and AMC by ANN

based estimation. Applied MCS set is QPSK, 16QAM and

64QAM with coding rate 1/2, 2/3, 3/4 and 5/6 for convolu-

tional code. Note that the BER-based AMC cannot always

show the optimal throughput performance; it fluctuates with

SNR especially in the ideal AMC case. From Fig. 9, The pro-

posed method exhibits approaching throughput performance

to the ideal AMC case and is better than the conventional

EVM method. Focusing on the thresholds of SNR = 20.0,

23.0, 26.6, 30.3 and 38.0 dB, the conventional method can

not keep up with this switching, while the proposed method

can appropriately follow this switching boundary.

Fig. 10 shows the throughput performance at Doppler

frequency of 100 Hz. In the case of high mobility, overall

throughput performance deteriorates their maximum values

are also saturated. That of the conventional scheme is further

limited due to the degradation of SNR estimation accuracy

as shown in Fig. 7. On the other hand, it can be confirmed

that the proposed method can follow the ideal AMC almost

perfectly. From this fact, the proposed method is a quite

effective even under the high mobility environment where

forces the intensive Doppler shift.

C. COMPUTATION COMPLEXITY

Here presents the effectiveness of the proposed method in

terms of the computational complexity. Let ANN learn in

advance, SNR can be estimatedwith reduced calculation cost.

In the conventional method, calculation of (13) and (14) is

required for SNR estimation. That for the proposed method

is derived from only (15). From these equations, the compu-

tational complexity by the EVM is given by

ŴEVM = 2(Nsym + 1)(Nsub × Nsym)
2 + Nsym, (24)
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FIGURE 10. Throughput performance at Doppler frequency 100 Hz.

where Nsym is the number of symbols and Nsub is the number

of subcarriers. From (24), ŴEVM is significantly affected by

the number of received symbols. On the other hand, the com-

putational complexity by the proposed system is expressed as

follows,

Ŵprop =
(

N c
u × N c

v + 1
)C−1

, (25)

where C indicates the number of layers, N c
u and N

c
v represent

the number of neuron in the c-th layer and the (c − 1)-th

layer, respectively. From (25), Ŵprop is greatly affected by the

number of layers. In the proposed system, C = 3 is sufficient

for highly accurate SNR estimation, therefore the calculation

complexity is lower than the EVM method. Substituting the

parameters shown in Table2 results in ŴEVM = 228, 556, 830

and Ŵprop = 5, 808, 056. Thus the proposed method can

reduce significantly the computational complexity by 97.5%.

The above assessment revealed overall advantage of the

proposed AMC method based on ANN, which can achieve

improved throughput performance as well as reduced com-

putation complexity.

VI. CONCLUSION

This paper proposed the novel SNR estimation method by

using ANN in AMC to improve the throughput performance

in high mobility environment. The SNR estimation function

was learned by using power spectral density values in a

supervised manner. Once estimation function was learned,

it can be installed to the communication terminals; required

operation is only SNR classification based on the obtained

PSD values. It can alleviate the computation burden on the

receiver side. Simulation results revealed that the proposed

SNR estimation method has high estimation accuracy being

hardly influenced by the Doppler shift. Furthermore, we

confirmed that the proposed method contributes to not only

improving the throughput performance, but also reducing the

computational complexity better than the conventional EVM

based method.
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