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Adaptive Morphological Reconstruction for Seeded

Image Segmentation
Tao Lei, Xiaohong Jia, Tongliang Liu, Shigang Liu, Hongying Meng, and Asoke K. Nandi

Abstract—Morphological reconstruction (MR) is often em-
ployed by seeded image segmentation algorithms such as wa-
tershed transform and power watershed as it is able to filter
seeds (regional minima) to reduce over-segmentation. However,
MR might mistakenly filter meaningful seeds that are required
for generating accurate segmentation and it is also sensitive to the
scale because a single-scale structuring element is employed. In
this paper, a novel adaptive morphological reconstruction (AMR)
operation is proposed that has three advantages. Firstly, AMR
can adaptively filter useless seeds while preserving meaningful
ones. Secondly, AMR is insensitive to the scale of structuring
elements because multiscale structuring elements are employed.
Finally, AMR has two attractive properties: monotonic in-
creasingness and convergence that help seeded segmentation
algorithms to achieve a hierarchical segmentation. Experiments
clearly demonstrate that AMR is useful for improving algo-
rithms of seeded image segmentation and seed-based spectral
segmentation. Compared to several state-of-the-art algorithms,
the proposed algorithms provide better segmentation results
requiring less computing time. Source code is available at
https://github.com/SUST-reynole/AMR.

Index Terms—Mathematical morphology, image segmentation,
seeded segmentation, spectral segmentation.

I. INTRODUCTION

MORPHOLOGICAL reconstruction (MR) [1] is a power-

ful operation in mathematical morphology. It has been

widely used in image filtering [2], image segmentation [3],

and feature extraction [4], etc. Among these applications, one

of the most important applications is that MR is often used

in seeded segmentation algorithms [5], [6] such as watershed

transformation (WT) [7] and power watershed (PW) [8] to

reduce over-segmentation caused by image noise and details.

However, there are two drawbacks [9], [10] when MR is used

in seeded segmentation algorithms.
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• It is difficult to reduce over-segmentation while obtaining

a high segmentation accuracy for seeded segmentation

algorithms (we use MR-WT to denote MR-based wa-

tershed transform and use MR-PW to denote MR-based

power watershed). Although MR is able to filter noise

in gradient images, some important contour details are

smoothed out as well.

• MR is sensitive to the scale of structuring elements.

In practical applications, if the scale is too small, the

reconstructed gradient image suffers from a serious over-

segmentation. Oppositely, if the scale is too large, the

reconstructed gradient image suffers from an under-

segmentation.

Generally, MR is used in watershed transform to improve

the segmentation effect by employing a structuring element

to filter regional minima [11]. However, it is very difficult

to filter useless regional minima while preserving meaning-

ful ones by simply considering one single-scale structuring

element. Although H-min imposition [12] is a simple and

efficient method for over-segmentation reduction, it relies on

a threshold choice and is likely to miss some important

boundaries. Region merging [13], [14] is also a popular

method for this, but it requires iterating and renewing edge

weight leading to a high computing burden. In addition, some

researchers employ reasonable contour detection methods, e.g.,

globalized probability of boundary (gPb) [15] that combines

the multiscale information from brightness, color and texture,

to achieve better image segmentation. However, the gPb is

computationally expensive because it combines too many fea-

ture cues for contour detection. To speed up the algorithm of

contour detection, Dollar and Zitnick [16] took the advantage

of the structure present in regional image patches and random

decision forests, and proposed a fast structured edge (SE)

detection approach using structured forests. This algorithm

obtains real-time performance and state-of-the-art edge de-

tection but requires a huge amount of memory for training

data. To reduce memory requirement, Hallman and Fowlkes

[17] proposed a simple and efficient model to learn contour

detection, namely oriented edge forests (OEF). Although these

improved contour detectors are superior to traditional detec-

tors, e.g. Sobel or Canny, and they are helpful for improving

subsequent image segmentation, they still generate a large

number of seeds leading to serious over-segmentations.

In practice, contour detection methods are usually com-

bined with other approaches to improve image segmentation

effect. For example, Fu et al. [18] proposed a robust image

segmentation approach using contour-guided color palettes
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Fig. 1. An example for pointwise extremum operation. (a) Pointwise
minimum. (b) Pointwise maximum.

by integrating contour and color cues, where SE, mean-shift

algorithm [19], region merging, and spectral clustering [20]

are combined to achieve better segmentation results. However,

the approach is complex because it combines several different

algorithms that requires many parameters.

In this paper, we propose an adaptive morphological recon-

struction (AMR) operation that is able to generate a better seed

image than MR to improve seeded segmentation algorithms.

Firstly, AMR employs multiscale structuring elements to re-

construct a gradient image. Secondly, a pointwise maximum

operation on these reconstructed gradient images is performed

to obtain the final adaptive reconstruction result. Because

AMR employs small structuring elements to reconstruct pixels

of large gradient magnitudes while employing large structuring

elements to reconstruct pixels of small gradient magnitudes in

a gradient image, AMR is able to obtain better seed images

to improve the seeded segmentation algorithms. Our main

contributions are summarized as follows.

• Multiscale structuring elements are employed by AMR,

and different scaled structuring elements are adaptively

adopted by pixels of different gradient magnitudes with-

out computing the local features of a gradient image.

• AMR has a convergence property and a monotonic in-

creasing property, the two properties help seeded segmen-

tation algorithms to achieve a hierarchical segmentation.

• AMR has a low computational complexity, and it can help

seed-based spectral segmentation to achieve better image

segmentation results than the-state-of-art algorithms.

The rest of the paper is organized as follows. In the next

section, the research background related with AMR is intro-

duced and analyzed. On this basis, AMR is proposed, and its

two properties, monotonic increasingness and convergence are

carefully analyzed in Section III. To demonstrate the superior-

ity of AMR, AMR is used for seeded image segmentation and

seed-based spectral segmentation. Experiments are presented

in Section IV, followed by the conclusion in Section V.

(a) (b)

Fig. 2. Binary MR from markers. (a) A mask image. (b) Recon-
structed result.

(a) Mask 1. (b) Mask 2. (c) Mask 3.

Fig. 3. Binary MR from different markers.

II. BACKGROUND

A. Morphological Reconstruction

MR is an image transformation that requires two input

images, a marker image and a mask image. Let two grayscale

images f and g denote the marker image that is the starting

point for the transformation and the mask image that constrains

the transformation, respectively [21]. If f ≤ g, which means f

is pointwise less than or equal to g, the morphological dilation

reconstruction (Rδ) of g from f is denoted by

Rδ
g(f) = δ(n)g (f), (1)

where δ
(1)
g (f) = δ(f)∧g, δ

(k)
g (f) = δ(δ

(k−1)
g (f))∧g for 2 ≤

k ≤ n, k, n ∈ N+ satisfies δ
(n)
g (f) = δ

(n−1)
g (f). The symbol

δ represents the elementary morphological dilation operation,

and ∧ stands for the pointwise minimum at each pixel of two

images as shown in Fig. 1(a).

Similarly, if f ≥ g, the morphological erosion reconstruc-

tion (Rε) of g from f , which is the dual operation of Rδ , is

defined as

Rε
g(f) = ε(n)g (f), (2)

where ε
(1)
g (f) = ε(f)∨ g, ε

(k)
g (f) = ε(ε

(k−1)
g (f))∨ g for 2 ≤

k ≤ n, k, n ∈ N+ satisfies ε
(n)
g (f) = ε

(n−1)
g (f). The symbol

ε represents the elementary morphological erosion operation,

and ∨ stands for the pointwise maximum at per pixel of two

images as shown in Fig. 1(b).

To further illustrate the principle of MR for image transfor-

mation, we present an example for the binary MR as shown

in Fig. 2, where the red regions denote seeds, i.e., the marker

image f .

According to Fig. 2 and (1)-(2), a suitable marker image

is important for MR. We have known that f ≤ g for Rδ

while f ≥ g for Rε. Thus, there are lots of choices for f .

Different marker images corresponds to different reconstruc-
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(a) (b) (c) (d) (e) (f)

Fig. 4. The original image and ground truths (GT) from BSDS500.
(a) “100007”. (b) GT 1. (c) GT 2. (d) GT 3. (e) GT 4. (f) GT 5. BSDS
(http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/) is a
very popular image dataset and it is often used for the evaluation of
image segmentation algorithms. For each image in BSDS, there are
4 to 9 ground truths segmentations that are delineated by different
human subjects.

tion results as shown in Fig. 3. To obtain an efficient f in

practice, the marker image is usually obtained by performing

a transformation on the corresponding mask image [22]-[24].

For example, the erosion or dilation result of a mask image is

often considered as a marker image [25], i.e., f = εbi(g) or

f = δbi(g), where bi is a disk shaped structuring element, the

radius of bi is i, i ∈ N+. Therefore, MR is sensitive to the

parameter i because the marker image is decided by the scale

of the structuring element.

As compositional morphological opening and closing opera-

tions show better performance than elementary morphological

erosion and dilation operations for image filtering, feature

extraction, etc., we present the definition of compositional

morphological opening and closing reconstructions (Rγ and

Rφ) of g from f as follows
{

Rγ
g (f) = Rδ

g(R
ε
g(f))

Rφ
g (f) = Rε

g(R
δ
g(f))

. (3)

B. Multiscale and Adaptive Mathematical Morphology

For image filtering and enhancement using morphological

operators, a large-scale structuring element can suppress noise

but may also blur the image details, whereas a small-scale

structuring element can preserve image details but may fail

to suppress noise. Some researchers proposed multiscale and

adaptive morphological operators to improve the performance

of traditional morphological operators. However, most multi-

scale morphological operators [26], [27] such as morpholog-

ical gradient operators and morphological filtering operators,

average all scales of morphological operation results as final

output

y =
1

λ

λ
∑

j=1

gj , (4)

where y is the final output result, j is the radius of the

structuring element, 1 ≤ j ≤ λ, j, λ ∈ N+. Although the

average result is superior to the result based on single-scale

morphological operators, it causes contour offset and mistakes.

Some researchers improved multiscale morphological opera-

tors by introducing a weighted coefficient to (4), and they

defined adaptive multiscale morphological operators as follows

[28]

y =
1

λ

λ
∑

j=1

ωjgj , (5)

gPb

Sobel

OEF

SE

(a) (b) (c) (d)

Fig. 5. Over-segmentation reduction by improving the gradient image
of “100007”. (a) Different gradient images. (b) Seed images (regional
minima). (c) WT. (d) PW (p = 2) [8].

where wj is the weighted coefficient on the jth scale result.

However, because the computing of weighted coefficients

is complex, the adaptive multiscale morphological operators

have a low computational efficiency. Moreover, the weighted

average result is similar to average result because it is difficult

to obtain the optimal weighted coefficient, even though the

former is slightly better than the latter.

Although lots of adaptive multiscale morphological opera-

tors [29]-[32] have been proposed, it can be seen from (4)-

(5) that both the multiscale and adaptive morphological oper-

ators employ a linear combination of different-scale results

to improve single-scale morphological gradient or filtering

operators. Because the linear combination is unsuitable for

multiscale morphological reconstruction operation, in this pa-

per, we try to employ a non-linear combination (i.e., the point-

wise maximum operation denoted by ∨) to design adaptive

morphological reconstruction operators. These operators are

different from conventional multiscale and adaptive morpho-

logical operators employing linear combination in (4)-(5). We

use non-linear operation ∨ instead of linear combination since

the former is more suitable than the later for the removal of

useless seeds in seeded image segmentation.

C. Seeded Segmentation

Seeded segmentation algorithms, such as graph cuts [33],

random walker [34], watersheds [7], and power watershed [8]

have been widely used in complex image segmentation tasks

due to their good performance [35]. It is not required to give

seed images for both graph cuts and random walker because

they usually consider each pixel as a seed. However, a seed

image is necessary for WT and PW by computing the regional

minima of a gradient image.

Since both WT and PW obtain seeds from a gradient image

that often includes a huge number of seeds generated by noise

and unimportant texture details, they usually suffer from over-

segmentation. A larger number of approaches for addressing

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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Both useless gradient details and meaningful 

ones are removed in the gradient image

Useless gradient details

Meaningful gradient details

Gradient magnitudes

Watershed segmentation

Reconstructed gradient images Centers of seeds Segmentations

The gradient image

MR (i=1)

MR (i=10)

MR (i=3)

Morphological reconstruction on gradient images

row=270, col=240:310

row=270, col=240:310

row=270, col=240:310row=270, col=240:310

Regional minima (seeds)

“12003”

Fig. 6. A seeded segmentation framework based on MR-WT. (Rφ
g (f) is employed to reconstruct a gradient image, and original gradient

(OG) denotes a row of the original gradient image).

Small structuring 
elements

Medium structuring 
elements

Large structuring 
elements

The useless local 
minima are removed

The meaningful gradient 
details are preserved

(a) (b)

Fig. 7. The motivation of AMR. (a) Gradient. (b) Reconstructed
gradient.

over-segmentation was proposed, and these approaches can be

categorized into two groups.

• Feature extraction or feature learning is used to obtain

a better gradient image that enhances important contours

while smoothing noise and texture details [15]-[17].

• MR is used for gradient reconstruction to reduce the

number of regional minima [36]-[38].

For the first group of approaches, gPb, OEF, and SE are

popular for reducing over-segmentation as shown in Figs. 4-5.

In Fig. 5, although gPb, OEF, and SE provide better gradient

images that can reduce over-segmentation for WT and PW, the

segmentation results are still poor compared to ground truths

shown in Fig. 4.

The second group of approaches depends on MR and WT,

it is denoted by MR-WT. Najman and Schmitt [36] employed

MR to remove regional minima to reduce over-segmentation.

Furthermore, a dynamic threshold is used to change the

gradient magnitude that is smaller than the threshold, and

then a hierarchical segmentation result is obtained. Wang

[26] proposed a multiscale morphological gradient algorithm

(MMG) for image segmentation using watersheds. The pro-

posed MMG employs multiple structuring elements to obtain a

better gradient image, and uses MR to remove regional minima

to improve watershed segmentation.

Fig. 6 illustrates the principle of a seeded segmentation

framework based on MR-WT. We can see that the number of

the regional minima in the gradient image decreases rapidly

with the increase of i, but the boundary is also destroyed

simultaneously. It is clear that the larger structuring element

corresponds to fewer seeds. One major reason is that MR

employs a single-scale structuring element, which equally

treats all pixels of different gradient magnitudes in the gradient

image. For example, in dilation reconstruction, the marker

image f = εbi(g) converges to the minimum grayscale value

of pixels in the mask image as the value of i increases.

Obviously, both large and small structuring elements lead to

poor reconstruction results while a moderate-sized structuring

element achieves a rough balance via sacrificing contour

precision. Therefore, it is difficult to obtain a good seed image

by employing a single-scale structuring element. Although

many researchers employ multiscale structuring elements to

generate a better gradient image, there are few studies on

multiscale MR for gradient images. Moreover, the fusion of

different-scale results is also a problem.

D. Spectral Segmentation

It is well-known that spectral clustering [20] is greatly suc-

cessful due to the fact that it does not make strong assumptions

on data distribution, and it is implemented efficiently even

for large datasets, as long as we make sure that the affinity

matrix is sparse. However, since the size of the affinity matrix

is (M ×N)2 for an image of size M ×N , and it is not sparse

because of Gaussian similarity measure, spectral clustering is

often inefficient for image segmentation due to eigenvalue

decomposition of the huge affinity matrix. To address the

issue, a great number of algorithms have been proposed to

construct a smaller affinity matrix and thus to improve the

computational efficiency of spectral clustering [39]-[42]. Most

of these algorithms employ pre-segmentation (superpixel)

methods such as the simple linear iterative clustering (SLIC)

[43], mean-shift [19], linear spectral clustering (LSC) [44],

and superpixel hierarchy [45], to reduce the number of pixels

of the original image and, in turn, reduces the size of the

affinity matrix. As an example, Zhang et al. [46] proposed

a fast image segmentation approach that is a re-examination

of spectral clustering on image segmentation. The approach

provides better image segmentation results yet requires a long

running time.
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AMR (m=10)

row=270, col=240:310row=270, col=240:310

AMR (m=1)

AMR (m=3)

Gradient magnitudes

Adaptive morphological reconstruction on gradient images Watershed segmentation

Reconstructed gradient images Centers of local seeds Segmentations

The gradient image

row=270, col=240:310row=270, col=240:310

row=270, col=240:310row=270, col=240:310

row=270, col=240:310row=270, col=240:310

The useless gradient details are removed

The meaningful gradient details are preserved

Useless gradient details

Meaningful gradient 
details

Useless gradient details

Meaningful gradient 
details

Regional minima (seeds)

Fig. 8. Seeded segmentation framework based on AMR-WT.

(a) (b)

Fig. 9. Comparison of gradient reconstruction and seed filtering with
variant value of m. Because AMR has an important property of
convergence, the seed image is unchanged when the value of m is
large enough. The seed image is unchanged when m≥12 for the
image “12003”. (a) The variation of gradient magnitudes. (b) The
variation of seed images.

The popular superpixel approaches have some drawbacks

for spectral segmentation. Firstly, mean-shift algorithm in-

volves three parameters and it is sensitive to these parameters.

Secondly, SLIC only generates superpixels that include regular

regions, and these regions have a similar shape and size.

Finally, LSC is superior to SLIC because LSC successfully

connects a local feature with a global optimization objective

function, so that LSC can generate more reasonable segmen-

tation results. However, similar to SLIC, LSC also provides

superpixels that include regular regions with a similar shape

and size.

As seed-based spectral segmentation algorithms are sensi-

tive to pre-segmentation results, an excellent pre-segmentation

algorithm can improve segmentation results generated by seed-

based spectral segmentation algorithms.

III. ADAPTIVE MORPHOLOGICAL RECONSTRUCTION

A. The Proposed AMR

To overcome the drawback of MR on regional minima

filtering, we propose an AMR that is able to filter useless

regional minima and maintains meaningful ones generated by

salient objects. Fig. 7 shows the motivation of AMR in which

multiscale structuring elements are employed to reconstruct

(a) (b) (c) (d)

Fig. 10. Segmentation results using AMR-WT by changing the value
of s. (a) s = 1, m = 10. (b) s = 2, m = 10. (c) s = 3, m = 10.
(d) s = 5, m = 10.

a gradient image, i.e., small structuring elements are adopted

by pixels of large gradient magnitude while large structuring

elements are adopted by pixels of small gradient magnitude.

Definition 1. Let bs ⊆ · · · bi ⊆ bi+1 · · · ⊆ bm be a series

of nested structuring elements, where i is the scale parameter

of a structuring element, 1 ≤ s ≤ i ≤ m, s, i,m ∈ N+.

For a gradient image g such that f = εbi(g) and f ≤ g, the

adaptive morphological reconstruction denoted by ψ of g from

f is defined as

ψ(g, s,m) = ∨s≤i≤m

{

Rφ
g (f)bi

}

. (6)

Note that the pointwise maximum operation is only suitable

for Rφ, but not suitable for Rγ . Because lim
m→∞

Rγ
g (f)bm =

max(g) (the proof is presented in Appendix A) and

lim
m→∞

∨s≤i≤m

{

Rγ
g (f)bi

}

= max(g), ψ(g, s,m) is un-

able to obtain a significantly convergent gradient image if

ψ(g, s,m) = ∨s≤i≤m

{

Rγ
g (f)bi

}

.

We apply AMR to the gradient image shown in Fig. 6. The

reconstruction and segmentation results are shown in Fig. 8,

where the adopted structuring elements are disk and s = 1.

More detailed comparisons are shown in Fig. 9. By comparing

Fig. 8 with Fig. 6, it is obvious that AMR obtains better seed

images than MR due to the fact that the non-linear operation

∨ is able to remove efficiently useless seeds.

To further show the influence of s on AMR, Fig. 10 shows

segmentation results provided by AMR through changing the
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value of s. We can see that there are some small segmented

areas when the value of s is small. These small areas are

merged by increasing the value of s. However, although a large

s leads to the merge of small areas, the precision of object

contours will be decreased as shown in Fig. 6. Therefore, we

usually set 1 ≤ s ≤ 3 for a moderate-sized image.

B. The Monotonic Increasingness Property of AMR

AMR is an algorithm that aims at finding meaningful re-

gional minima by merging or filtering useless regional minima.

AMR includes two parameters s and m. When we increase the

value of m, gradient images reconstructed by AMR keep the

increasing order as shown in Theorem 1.

Theorem 1. Let ψ be an adaptive morphological recon-

struction operator, ψ is increasing with respect to the scale

of structuring elements, i.e., for a gradient image g such that

f = εbi(g) and f ≤ g, 1 ≤ p, q ≤ m, p, q,m ∈ N+, we have

p ≤ q ⇒ ψ(g, s, p) ≤ ψ(g, s, q). (7)

The proof of Theorem 1 is presented in Appendix B.

Theorem 1 shows that the gradient image processed by AMR

is monotonous increasing with the increase of m. Fig. 9

demonstrates Theorem 1. We can see that if m is enlarged,

the more unimportant seeds are removed, and important seeds

are preserved. Actually, the result is equivalent to region

merging. However, the method is simpler than region merging.

According to the result, it can be seen that AMR can help

seeded segmentation algorithms to achieve a hierarchical seg-

mentation [47], [48]. Hierarchical segmentation is a multilevel

segmentation scheme, and it usually outputs a coarse-to-fine

hierarchy of segments ordered by the level of details. Multi-

scale combinatorial grouping (MCG) proposed by Pont-Tuset

et al. [49] is an excellent hierarchical segmentation approach

that employs a fast normalized cut algorithm and an efficient

algorithm for combinatorial merging of hierarchical regions.

Based on the hierarchical segmentation results provided by

MCG, some improved approaches are also proposed [50], [51].

These improved approaches achieve better segmentation effect

but have lower computational efficiency than MCG.

Before analyzing the relationship between AMR-WT and

hierarchical segmentation, we first review some basic concepts

of hierarchical segmentation. Let Ω be a finite set. A hierarchy

H on Ω is a set of parts of Ω such that

• Ω ∈ H .

• For every ω ∈ {Ω}, {ω} ∈ H .

• For each pair (h, h′) ∈ H2, h
⋂

h′ 6= ∅ ⇒ h ⊆ h′ or

h′ ⊆ h.

Note that H is a chain of nested partitions. Let H0 be the

initial partition of Ω, which corresponds to the finest partition

of Ω, and Hn be the coarsest partition of Ω, which segments

the images as one single region. A partition Hz , 0 ≤ z ≤ n,

on Ω has the property that

Hz = H0, if z ≤ 0, (8)

∃n ∈ N+, Hz = {Ω} , ∀z ≥ n, (9)

p ≤ q ⇒ Hp ⊆ Hq, 1 ≤ p, q < n, (10)

1H

m
H

0H

Fig. 11. The principle of hierarchical segmentation, H0 ⊆ H1 ⊆

· · · ⊆ Hm.

where Hp ⊆ Hq denotes the partition. Hp is finer than the

partition Hq . Derived from Theorem 1 and Fig. 9, we obtain

ψ(g, s, p) ≤ ψ(g, s, q) ⇒ S(ψ(g, s, p)) ⊆ S(ψ(g, s, q)),
(11)

where S denotes seeded segmentation algorithms such as WT

or PW. Suppose that H0 = S(g), Hm = S(ψ(g, s,m)), and

s = 1 then

H0 ⊆ H1 ⊆ · · · ⊆ Hm. (12)

According to (12), the principle of the hierarchical seg-

mentation based on AMR is shown in Fig. 11, in which

the data points represent regions obtained by the hierarchical

segmentation at different levels.

C. The Convergence Property of AMR

By comparing Fig. 6 with Fig. 8, it can be observed

that AMR provides significant gradient images and AMR-

WT generates convergent segmentation results via enlarging

the scale of structuring elements. An important convergence

property of AMR is described in the following.

Theorem 2. Let ψ be an adaptive morphological recon-

struction operator, ψ is convergent when increasing the scale

parameter m, i.e., for any gradient images f and g such

that bs ⊆ · · · bi ⊆ bi+1 · · · ⊆ bm, if min(ψ(g, s,m)) ≥
max(Rφ

g (f)bm+1
) then

ψ(g, s,m) = ψ(g, s,m+ j), (13)

i.e., ∨s≤i≤m

{

Rφ
g (f)bi

}

= ∨s≤i≤m+j

{

Rφ
g (f)bi

}

, 1 ≤ s ≤
m, j ∈ N+, and the proof is presented in Appendix C.

According to Fig 9, it can be seen that the gradient result

and the corresponding seed image will remain unchanged

when m ≥ 12. This empirically illustrates that the gradient

image reconstructed by AMR is convergent when increasing

the value of m. Besides, the large gradient magnitude is

unchanged while the small gradient magnitude converges to

ones larger than itself for AMR. However, the large gradient

magnitude converges to one smaller than itself while the small

gradient magnitude converges to one larger than itself for

MR when the structuring element is small. With the increase

of the value of m, the value of gradient magnitudes finally

converges to the minimum of the original gradient image, i.e.,

lim
m→∞

Rφ
g (f)bm = min(g) (see Appendix A). Consequently,
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SLIC

LSC

SH

MR-WT

AMR-WT

N=400

N=400

N=400

s=2, m=10

N=800

N=800

N=800

r=7r=4

s=2, m=6

Fig. 12. Segmentation results using SLIC, LSC, SH, MR-WT, and
AMR-WT, respectively on images with complex texture.Here, N
denotes the number of superpixel areas; N is 400 for the left two
images and N is 800 for the right two images. r is radius of
structuring elements for MR-WT, values of r are 7 and 4, respectively.
For AMR-WT, s = 2 and m = 10 are used for the left two images,
while s = 2 and m = 6 are used for the right two images.

MR removes all regional minima while AMR only filters

useless regional minima and preserves significant ones when

m→ ∞.

Furthermore, we analyze how to determine the param-

eter m for AMR. The computational efficiency of AMR

is influenced by the parameter m. A small m means a

low computational complexity. According to Theorem 2,

the reconstructed gradient image and the corresponding seg-

mentation result are unchanged when min(ψ(g, s,m)) ≥
max(Rφ

g (f)bm+1
), but the obtained m is usually large. As

the paper aims at employing AMR to improve seeded seg-

mentation algorithms, we replace the convergence condition

min(ψ(g, s,m)) ≥ max(Rφ
g (f)bm+1

) with checking the dif-

ference between ψ(g, s,m) and ψ(g, s,m − 1). We propose

an objective function for justifying the convergence of AMR

J(g, s) = max|ψ(g, s,m)− ψ(g, s,m− 1)|, (14)

where m ≥ 2, m ∈ N+. It is clear that the segmentation result

will remain unchanged when J ≤ η, η is a minimal threshold

error, and it is a constant used for J , but m is a variant for

ψ(g, s,m). Consequently, only a parameter s needs to be tuned

for obtaining different reconstruction results.

D. The Algorithm of AMR

AMR only involves the parameter s and η, as described

in the detailed steps of AMR in Algorithm 11. To speed

1Source code is available at https://github.com/SUST-reynole/AMR

(a) (b) (c) (d) (e)

Fig. 13. Segmentation results using AMR-WT by changing the value
of m. The results shows that AMR is monotonic increasing by
increasing the value of m. Moreover, AMR is convergent because
the segmentation result is unchanged when m ≥ 11. (a) Images. (b)
s = 1, m = 1. (c) s = 1, m = 3. (d) s = 1, m = 11. (e) s = 1,
m = 50.

Algorithm 1 Adaptive morphological reconstruction (AMR)

Input: g (a gradient image).

Output: ψ (a reconstructed gradient image).

1: Initialize: set values for s, m (the scale of the minimal

and maximal structuring element) and η, both m and η are the

convergent condition used for AMR.

2: for i = s, s+ 1, · · · ,m do

3: Compute Rφ
g (f)bi where f = εbi(g), bi is a structuring

element.

4: Update ψ(g, s, i) and J(g, s),
5: if i = s then

6: ψ(g, s, i) =
{

Rφ
g (f)bi

}

7: J(g, s) = max|ψ(g, s, i)|
8: else

9: ψ(g, s, i) = ∨
{

ψ(g, s, i− 1), Rφ
g (f)bi

}

10: J(g, s) = max|ψ(g, s, i)− ψ(g, s, i− 1)|
11: end if

12: if J ≤ η then

13: break

14: end if

15: end for

up the convergence of Algorithm 1, the three parameters s,

m, and η are used for AMR because the iteration can be

stopped according to m or η. The computational complexity

of AMR depends on the values of m or η. A large value of m

corresponds to a small value of η. The larger is the value of

m, the longer is the execution time of AMR. Since we have

known that AMR has a fast convergent property as shown

in Fig. 8, a small m is enough for moderate-sized images in

practical applications. A small m indicates that AMR has a

low computational complexity.

Note that the parameter m is unnecessary theoretically,

we use two convergent condition m and η to speed up the

convergence of Algorithm 1. We applied Algorithm 1 to

images with complex texture content to demonstrate that the

proposed AMR is effective for reducing over-segmentation as

shown in Fig. 12. AMR-WT not only overcomes the problem

of over-segmentation but also obtains better contours than MR-

WT and state-of-the-art superpixel methods. Furthermore, we

test Algorithm 1 on images with text to show the monotonic
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Sobel-AMR

gPb-AMR

OEF-AMR

SE-AMR

(a) (b) (c) (d)

Fig. 14. Comparison of segmentation results using AMR-WT/PW
(s = 2). (a) Gradient images. (b) Seeds (regional minimum). (c) WT.
(d) PW (q = 2) [8].

increasing and convergent properties of AMR. Fig. 13 shows

the comparison results. We can see that the segmentation

results are nested, which demonstrates the monotonic increas-

ing property of AMR. Moreover, the segmentation results are

unchanged when m ≥ 11, which demonstrates the convergent

property of AMR.

IV. EXPERIMENTS

To demonstrate the effectiveness and efficiency of the pro-

posed AMR, we apply AMR to seeded image segmentation

and spectral segmentation. We conduct experiments on the

BSDS500 dataset. The experiments are performed on a work-

station with an Intel Core (TM) i7-6700, 3.4GHz CPU and

16GB memory.

We compare the proposed algorithms with state-of-the-art

algorithms including a multiscale morphological gradient for

watersheds (MMG-WT) [26], multiscale ncut (MNCut) [52],

oriented-watershed transform-ultrametric contour map (gPb-

owt-ucm) [15], the algorithm recovering occlusion boundaries

from an image proposed by Hoiem (gPb-Hoiem) [53], spectral

segmentation algorithms proposed by Kim et al. (FNCut, cPb-

owt-ucm) [39], Higher-order correlation clustering (HO-CC)

[54], global/regional affinity graph (GL-graph) [55], single-

scale combinatorial grouping (SCG) [49], and multiscale com-

binatorial grouping (MCG) [49]. The open source codes and

model parameters suggested by the corresponding authors are

used. Because the author did not present specific parameter

values for MMGR-WT, we set r = 5 and 0.1 ≤ h ≤ 0.3,

where h is a threshold and it is used to generate a marker

image, and r is the radius of the structuring element used for

MR. For the proposed approaches, we set 1 ≤ s ≤ 3, m = 50,

and η = 10−4.

We report the experimental results using three evaluation

metrics to quantitatively measure the performance of segmen-

tation algorithms: probabilistic rand index (PRI), segmentation

covering (CV), and variation of information (VI). The PRI and

CV are similarity measures, and they are large while the VI

TABLE I. Comparison of the number of seeds generated by gradient
images

Images Sobel gPb [15] OEF [17] SE [16]

Original gradient images 9175 746 5348 1347

Gradient images recon-

structed by AMR
15 16 15 19

is small when the final segmentation is close to ground truth

segmentation.

A. Seeded Image Segmentation

AMR is useful for improving seeded image segmentation

because it employs multiscale structuring elements to obtain a

convergent seed image without pre-setting many parameters.

To show the capability of AMR, it is applied to different

gradient images to filter seeds. Fig. 14 shows reconstructed

gradient images by AMR and the corresponding segmentation

results by WT/PW. These results are clearly better than the

ones shown in Fig. 5. The problem of over-segmentation

for seeded segmentation algorithms is therefore addressed.

Furthermore, compared Fig. 6 to Fig. 14, although both MR

and AMR are able to filter seeds, AMR is able to maintain

meaningful seeds that correspond to important contours.

Furthermore, Table I shows the number of seeds generated

by gradient images. We can see that the reconstructed gradient

images generate fewer seeds than original gradient images,

which demonstrates AMR is efficient for the filtering of

useless seeds. Moreover, AMR is robust for different gradient

images obtained by Sobel, gPb, OEF, and SE because the final

segmentation results are similar.

In Fig. 14, we set s = 2 because the segmentation result

includes too many small regions when s = 1. Clearly, s

controls the number of small regions in segmentation results.

Generally, the value of s depends on the resolution of the

images to be segmented, e.g., 1 ≤ s ≤ 3 for BSDS500.

To demonstrate that the proposed AMR is robust for differ-

ent images, we implement AMR-WT/PW on the BSDS500.

Fig. 15 shows the comparison of segmentation results using

different algorithms, i.e., Sobel-AMR-WT/PW, gPb-AMR-

WT/PW, OEF-AMR-WT/PW, and SE-AMR-WT/PW. The

segmentation results demonstrate the effectiveness of AMR

for the filtering of useless seeds, Moreover, AMR is effective

for both WT and PW.

To compare the performance of different algorithms on

the BSDS500, Table II shows experimental results of three

evaluation metrics: PRI, CV, and VI. We can see that AMR

is more efficient for improving segmentation results obtained

by WT or PW compared to MR. MR is sensitive to r while

AMR is insensitive to s. Although MMG-MR-WT/PW is

effective for the over-segmentation reduction by introducing

the parameter h, segmentation results are sensitive to both r

and h. The gPb-AMR-WT/PW, OEF-AMR-WT/PW, and SE-

AMR-WT/PW obtain better performance than Soble-AMR-

WT/PW since the former provides better gradient images. The

SE-AMR-WT/PW obtains the best performance. In addition,

AMR-WT obtains higher PRI, CV, and lower VI than AMR-

PW in the same situation.
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(h)

(g)

(l)

(g)

(i)

(k)

(m)

(f)

(e)
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(a)

Fig. 15. Comparison of segmentation results using different algo-
rithms (s = 2). (a) Images. (b) Sobel-MR-WT(r = 5). (c) Sobel-
MR-PW (r = 5). (d) MMG-MR-WT (r = 5 and h = 0.2). (e)
MMG-MR-PW (r = 5 and h = 0.2). (f) Sobel-AMR-WT. (g) Sobel-
AMR-PW. (h) gPb-AMR-WT. (i) gPb-AMR-PW. (j) OEF-AMR-WT.
(k) OEF-AMR-PW. (l) SE-AMR-WT. (m) SE-AMR-PW.

Because AMR converges quickly, AMR has a high compu-

tation efficiency for gradient reconstruction. Table III shows

the comparison of running time of AMR-WT on different

gradient images obtained by Sobel, gPb, OEF, and SE, re-

spectively. We only present the running time of AMR-WT here

because AMR-PW has a similar running time as AMR-WT. It

can be seen from Table III that AMR-WT has a short running

time to achieve image segmentation on the BSDS500. The

SE-AMR-WT requires the shortest running time because the

corresponding gradient image converges quicker under AMR.

Tables II-III show AMR is effective and efficient for improving

seeded segmentation algorithms such as WT and PW.

Additional evidence of the superiority of AMR can be found

TABLE II. Quantitative results (PRI, CV, VOI) on the BSDS500.
Larger is better for PRI and CV while smaller is better for VI. The
best values are in bold.

Methods PRI↑ CV↑ VI↓

Sobel-MR-WT/PW (r = 5) 0.71/0.71 0.16/0.15 4.02/4.12

Sobel-MR-WT/PW (r = 8) 0.73/0.73 0.28/0.28 3.08/3.05

Sobel-MR-WT/PW (r = 12) 0.69/0.68 0.38/0.39 2.67/2.33

MMG-MR-WT/PW [26] (h = 0.1) 0.76/0.76 0.27/0.27 4.47/4.45

MMG-MR-WT/PW [26] (h = 0.2) 0.74/0.74 0.38/0.38 3.50/3.45

MMG-MR-WT/PW [26] (h = 0.3) 0.62/0.62 0.42/0.42 2.95/2.92

Sobel-AMR-WT/PW (s = 1) 0.76/0.75 0.39/0.34 2.54/2.79

Sobel-AMR-WT/PW (s = 2) 0.76/0.75 0.39/0.36 2.51/2.70

Sobel-AMR-WT/PW (s = 3) 0.76/0.76 0.39/0.36 2.52/2.66

gPb-AMR-WT/PW (s = 1) 0.75/0.75 0.35/0.32 2.55/2.77

gPb-AMR-WT/PW (s = 2) 0.75/0.74 0.35/0.33 2.55/2.77

gPb-AMR-WT/PW (s = 3) 0.75/0.74 0.36/0.33 2.55/2.76

OEF-AMR-WT/PW (s = 1) 0.77/0.75 0.39/0.34 2.45/2.72

OEF-AMR-WT/PW (s = 2) 0.77/0.75 0.39/0.34 2.43/2.72

OEF-AMR-WT/PW (s = 3) 0.77/0.76 0.39/0.35 2.41/2.70

SE-AMR-WT/PW (s = 1) 0.80/0.79 0.45/0.41 2.25/2.52

SE-AMR-WT/PW (s = 2) 0.80/0.79 0.45/0.41 2.23/2.51

SE-AMR-WT/PW (s = 3) 0.80/0.79 0.45/0.41 2.21/2.50

TABLE III. Comparison of average running time of AMR-WT on
the BSDS500 (in seconds). Lower is better. The best values are in
bold (η = 10−4).

s Sobel gPb OEF SE

s = 1 0.801 1.278 0.861 0.565

s = 2 0.774 1.241 0.825 0.534

s = 3 0.689 1.169 0.766 0.480

in Fig. 16 which shows experimental results on images with

rich texture and faded boundaries. According to Figs. 15-16,

we can see that the proposed AMR is effective for different

kinds of images.

B. Seed-based Spectral Segmentation

In this section, we directly construct the affinity matrix on a

pre-segmentation image provided by AMR-WT to reduce the

size of the affinity matrix, and then compute the subsequent

steps of spectral segmentation (we name it AMR-SC). Note

that we employ AMR-WT rather than AMR-PW because the

former is able to provide better pre-segmentation results than

the latter as shown in Table II. As the pre-segmentation image

only consists of dozens of regions, we consider color feature in

CIELAB color space and Gaussian function as the criterion to

measure the similarity of two regions. Throughout the paper,

we use σ = 1. It is clear that the affinity matrix produced by

AMR is a small matrix. Therefore, the clusters can be detected

easily and fast with the k-means algorithm.

In this paper, the pre-segmentation depends on AMR. Ac-

cording to Table II, we set s = 2 and 3, and we set the

number of clusters for the k-means according to [39], [55]. The

proposed AMR-SC is evaluated on BSDS500 and compared

with algorithms such as gPb-owt-ucm, FNCut, GL-graph, SCG

and MCG. Figs. 17-18 show that the proposed AMR-SC

generates better segmentation results than those comparative

algorithms. The result demonstrates that AMR is useful for
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Fig. 16. Comparison of segmentation results using different algo-
rithms (s = 2). (a) Images with rich texture or faded boundaries. (b)
Sobel-MR-WT (r = 5). (c) MMG-MR-WT (r = 5 and h = 0.2).
(d) Sobel-AMR-WT. (e) gPb-AMR-WT. (f) OEF-AMR-WT. (g) SE-
AMR-WT.

improving spectral segmentation due to two reasons. The first

is that the regional spatial information of an image provided

by pre-segmentation is integrated into spectral segmentation,

and the second is that the affinity graph is reduced efficiently

by removing useless seeds.

Furthermore, we employ the three measures: PRI, CV and

VI to compare the proposed AMR-SC with nine state-of-

the-art image segmentation algorithms. Table VI shows the

region benchmarks on the BSDS500. In Table VI, the proposed

AMR-SC clearly dominates other algorithms on PRI and

CV, and is on par with SCG on VI mainly due to accurate

pre-segmentation provided by AMR-WT. The OEF-AMR-SC

and SE-AMR-SC provide better performance than gPb-AMR-

SC and Sobel-AMR-SC because OEF and SE obtain better

gradient images than gPb and Sobel. In addition, AMR-SC is

insensitive to the parameter s.

We tested the running time complexity on the BSDS500

dataset. The running time comparison is shown in Table IV.

On average, generating a pre-segmentation result with SE-

AMR-WT takes 0.54 seconds (SE generates a gradient image

requiring 0.06 seconds. AMR-WT takes 0.48 seconds, s = 3
and η = 10−4), and constructing an affinity graph and spec-

tral clustering take 0.059 seconds. Consequently, SE-AMR-

SC takes about 0.60 second to segment an image from the

BSDS500. In contrast, the gPb-owt-ucm takes almost 106.38

seconds, FNCut takes about 10.58 seconds. As GL-graph has

four steps, i.e., over-segmentation, feature extraction, bipartite

graph construction and graph partition using spectral cluster-

ing, it is more complex than SE-AMR-SC, and takes almost

7.41 seconds. MCG takes about 18.60s per image to compute

the multiscale hierarchy but SCG takes only 2.21s per image.

TABLE IV. Quantitative results (PRI, CV, and VI) on the BSDS500.
Larger is better for PRI and CV while smaller is better for VI and
running time. The best values are in bold.

Methods PRI↑ CV↑ VI↓ Time↓

MNCut [52] 0.78 0.45 2.23 37.25

gPb-owt-ucm [15] 0.83 0.59 1.69 106.38

gPb-Hoiem [53] 0.81 0.56 1.78 109.77

FNCut [39] 0.81 0.53 1.86 10.58

cPb-owt-ucm [39] 0.83 0.59 1.65 107.13

HO-CC [54] 0.83 0.60 1.79 35.18

GL-graph [55] 0.84 0.59 1.80 7.41

SCG [49] 0.83 0.60 1.63 2.21

MCG [49] 0.83 0.61 1.57 18.60

Sobel-AMR-SC (s = 2) 0.82 0.61 1.77 0.86

Sobel-AMR-SC (s = 3) 0.82 0.61 1.77 0.81

gPb-AMR-SC (s = 2) 0.82 0.61 1.73 102.94

gPb-AMR-SC (s = 3) 0.82 0.61 1.73 102.92

OEF-AMR-SC (s = 2) 0.85 0.63 1.62 6.16

OEF-AMR-SC (s = 3) 0.84 0.63 1.64 6.07

SE-AMR-SC (s = 2) 0.85 0.63 1.62 0.62

SE-AMR-SC (s = 3) 0.85 0.63 1.62 0.60

TABLE V. The number of iterations of SE-AMR-WT under different
values of η, (s = 3). The number of iterations m is unchanged when
η ≤ 10−4, and the invariant values of m are in bold.

Images η = 10
−2 η = 10

−3 η = 10
−4 η = 10

−5

“2092” 9 16 16 16

“8023” 6 12 19 19

“8049” 13 16 19 19

“12074” 9 17 17 17

“12084” 9 13 13 13

“15004” 11 21 21 21

It is clear that our SE-AMR-SC is the fastest because AMR-SC

only depends on the gradient information, and the generated

affinity matrix is small.

C. Discussion

AMR has two parameters, η and s. η relates to the con-

vergent condition. Generally, a large value of η means a few

iterations (a small m, where m is the number of iterations)

while a small value of η corresponds to many iterations (a

large m). Table V shows the influence of η on m for test

images. We can see that m increases with the decrease of η

but m is unchanged when η ≤ 10−4.

Furthermore, to show the influence of η on AMR, we

implement AMR on the BSDS500 by setting different values

of η, and Tables VI-VII show the results. It is clear that the

number of iterations for AMR-WT is smaller and running time

is shorter if the value of η is larger. However, the number of

iterations and running time are unchanged when η ≤ 10−4.

Therefore, in practical application, users can select different

values of η according to their requirements.

Furthermore, we implemented SE-AMR-WT on BSDS500

with different values of η. The performance indices of segmen-

tations are shown in Table VIII. By comparing Tables V-VIII,

we can see that the average number of iterations, running time,
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Fig. 17. Comparison of segmentation results on the BSDS500 using different algorithms (s = 2). (a) Images. (b) Ground truths. (c) gPb-
owt-ucm. (d) FNCut. (e) GL-graph. (f) SCG. (g) MCG. (h) Sobel-AMR-SC. (i) gPb-AMR-SC. (j) OEF-AMR-SC. (k) SE-AMR-SC.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Fig. 18. Comparison of segmentation results on the BSDS500 using
different algorithms (s = 2). Compared to Figs. 15 and 17, we use
an overlay of the segmented result with respect to the original image
to show the accuracy of the boundary. (a) Images. (b) Ground truths.
(c) gPb-owt-ucm. (d) FNCut. (e) GL-graph. (f) SCG. (g) MCG. (h)
Sobel-AMR-SC. (i) gPb-AMR-SC. (j) OEF-AMR-SC. (k) SE-AMR-
SC.

and segmentation accuracy are unchanged for AMR-WT when

η ≤ 10−4. Therefore, the proposed AMR is insensitive to η.

The value of s controls the initial gradient value of images.

A large s will cause the contour offset while a small value of

s will cause too many unexpected small regions. Therefore,

we choose s = 2 and s = 3 for the BSDS500 in Table IV. To

further show the influence of s on AMR, Table IX shows the

performance indices of segmentations on BSDS500 by setting

different values of s. It can be seen from Table IX that SE-

AMR-WT is insensitive to s if 1 ≤ s ≤ 6.

V. CONCLUSION

In this work, we have studied the advantages and dis-

advantages of MR on seeded segmentation algorithms. We

proposed an efficient AMR algorithm that can preferably

improve seeded segmentation algorithms. The proposed AMR

TABLE VI. The average number of iterations of SE-AMR-WT under
different values of η, s = 3. The average number of iterations is
unchanged when η ≤ 10−4, and the invariant values of m are in
bold.

η = 10
−1 η = 10

−2 η = 10
−3 η = 10

−4 η = 10
−5

m 2.0 9.3 17.0 18.9 18.9

TABLE VII. The average running time of SE-AMR-WT on the
BSDS500 (in seconds), s = 3. The average running time is un-
changed when η ≤ 10−4, and the invariant values are in bold.

η = 10
−1 η = 10

−2 η = 10
−3 η = 10

−4 η = 10
−5

Time 0.089 0.228 0.430 0.480 0.480

has two significant properties, the monotonic increasingness

and the convergence. The monotonic increasingness helps

AMR to achieve a hierarchical segmentation. The convergence

is able to alleviate the drawback of MR for the filtering of

useless regional minima in a gradient image, and guarantees a

convergent result. Moreover, we have explored the applications

of AMR and have found that AMR is not only able to improve

seeded image segmentation results, but also can obtain better

spectral segmentation results than state-of-the-art algorithms.

Furthermore, the proposed AMR-SC is computationally ef-

ficient because a small affinity matrix is used for spectral

clustering. Experimental results clearly demonstrate that the

proposed AMR-WT generates satisfactory and convergent

segmentation results without hard-tuning parameters, and the

AMR-SC outperforms most of the state-of-the-art algorithms

for image segmentation, and it performs the best in two

metrics: PRI and CV.

The segmentation results generated by AMR-WT or AMR-

SC can be directly used in object recognition and scene

labeling. However, AMR-WT or AMR-SC cannot obtain se-

mantic segmentation results compared to the popular con-

volutional neural network (CNN), e.g., fully convolutional

network (FCN) [56]. To further improve the contour quality of
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TABLE VIII. Quantitative results (PRI, CV and VI) of SE-AMR-WT
on the BSDS500 under different values of η, s = 3. Higher is better
for PRI and CV while lower is better for VI.

η PRI↑ CV↑ VI↓

10
−1 0.77 0.30 3.21

10
−2 0.79 0.39 2.52

10
−3 0.80 0.45 2.23

10
−4 0.80 0.45 2.21

10
−5 0.80 0.45 2.21

TABLE IX. Quantitative results (PRI, CV and VI) of SE-AMR-WT

on the BSDS500 under different values of s, η = 10−4. Larger is
better for PRI and CV while smaller is better for VI.

s PRI↑ CV↑ VI↓

1 0.80 0.45 2.25

2 0.80 0.45 2.23

3 0.80 0.46 2.21

4 0.80 0.46 2.22

5 0.80 0.46 2.25

6 0.79 0.46 2.30

segmentation results, traditional algorithms such as conditional

random field [57], image superpixel [58], and spatial pyramid

pooling [59], are used to improve the performance of CNN

on image segmentation. AMR can be also used in CNN

to improve semantic segmentation results. For our future

work, we plan to investigate how to combine AMR and FCN

effectively and efficiently.

APPENDIX A

PROOF OF lim
m→∞

Rγ
g (f)bm = max(g)

Proof:

Since

f = δbm (g) ,m→ ∞, lim
m→∞

δbm (g) = max (g)

we have,

f = max(g),

and

ε(1)g (f) = ε(f) ∨ g

= ε(max(g)) ∨ g

= max(g),

ε(n)g (f) = ε(ε(n−1)
g (f)) ∨ g

= max(g).

According to Rγ
g (f) = Rδ

g(R
ε
g(f)), R

ε
g(f) = εng (f) in (1), we

get

R(ε)
g (f) = max(g).

Thus,

lim
m→∞

Rγ
g (f)bm = lim

m→∞
Rδ

g(R
ε
g(f))

= Rδ
g(max(g))

= max(g).

In terms of the duality of morphological operation,

lim
m→∞

Rφ
g (f)bm = min(g).

�

APPENDIX B

PROOF OF THEOREM 1

p ≤ q ⇒ ψ(g, s, p) ≤ ψ(g, s, q)

Proof:

Let s ≤ p ≤ q ≤ m, from Definition 1, we have

ψ(g, s, p) = ∨
{

Rφ
g (f)bs , R

φ
g (f)bs+1

, · · · , Rφ
g (f)p

}

,

ψ(g, s, p) = ∨
{

Rφ
g (f)bs , R

φ
g (f)bs+1

, · · · , Rφ
g (f)q

}

.

Because p ≤ q,

ψ(g, s, p) = ∨
{

ψ(g, s, p), Rφ
g (f)bp+1

, · · · , Rφ
g (f)q

}

,

i.e.,

ψ(g, s, p) ≤ ψ(g, s, q).

�

APPENDIX C

PROOF OF THEOREM 2

ψ(g, s,m) = ψ(g, s,m+ j),

min(ψ(g, s,m)) ≥ max(Rφ
g (f)bm+1

)

Proof:

From Definition 1, we have

lim
m→∞

ψ(g, s,m) = ∨s≤i≤m

{

Rφ
g (f)bi

}

= ∨s≤i≤m

{

Rφ
g (f)bi

}

∨
{

Rφ
g (f)bm+1

, Rφ
g (f)bm+2

, · · · , Rφ
g (f)b∞

}

= ψ(g, s,m) ∨
{

Rφ
g (f)bm+1

, Rφ
g (f)bm+2

, · · · , Rφ
g (f)b∞

}

Since bm ⊆ bm+1 ⊆ · · · ⊆ bm+j and Rφ
g (f)b∞ = min(g)

from Appendix A, we get

max(Rφ
g (f)bm+1

) ≥ max(Rφ
g (f)bm+2

) ≥ · · · ≥ Rφ
g (f)b∞ .

We have known that min(ψ(g, s,m)) ≥ max(Rφ
g (f)bm+1

),
thus

ψ(g, s,m) ≥ ∨
{

Rφ
g (f)bm+1

, Rφ
g (f)bm+2

, · · · , Rφ
g (f)b∞

}

,

i.e.,

ψ(g, s,m) = ψ(g, s,m+ j),where m, j ∈ N+.

�
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