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Abstract

We investigate the use of a boundary-fitted moving adaptive grid technique in vertical
direction for the numerical modeling of transport in multi-dimensional shallow-water
applications. The difficulty with such modeling is that both the non-horizontal bottom
and the free water surface, as well as nearly-horizontal regions of high gradient are to
be represented accurately. The results that we present show that by using a moving grid
that adapts automatically to the solution and is fitted to both the bottom and the free
surface, it is possible in principle to model all relevant transport processes.

Introduction

In stratified flows in estuaries and lakes, the exchange of matter in the ver-

tical direction plays a crucial role in water quality studies. Steep vertical

gradients of salinity or temperature may lead to locally very small turbu-

lence levels that reduces significantly the vertical transport. In order to take

proper account of this phenomenon, it is important to model steep vertical

gradients accurately. Likewise, it is important to represent the free surface

and the bathymetry adequately, for the modeling of the effect of, e.g., wind
shear stress and bottom friction. Satisfying these demands with one of the

standard numerical approaches is difficult Deleersnijder & Ruddick [5].

The use of a vertical coordinate system that is boundary-fitted to both
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428 Computer Methods in Water Resources XII

the bottom and the surface (the so-called sigma coordinate system) is well

suited to represent a varying bottom topography and a moving free surface.

On the other hand, the calculation of gradients in vertical direction depends

critically on how the equations are transformed to sigma coordinates Huang

& Spaulding [2], as well as on the size of discretization errors. The latter

may lead to large modeling errors in the vicinity of the sharp interface be-

tween layers of different salinity or temperature Stelling & van Kester [1].

Since these layers usually extend (nearly) horizontally, their interface can

be modeled adequately by using a Cartesian coordinate system with strictly

horizontal grid surfaces Stelling & van Kester [1], This, however, necessi-

tates the use of a less accurate 'staircase' grid to represent the surface and

bottom Deleersnijder & Ruddick [5].

To satisfy all modeling demands simultaneously, we propose an adap-

tive sigma coordinate system, where grid points are moved dynamically in

the vertical to capture all important details. This includes the modeling of

steep vertical gradients that do not extend in strictly horizontal direction,

as well as steep gradients that move in time. Moving adaptive grid meth-

ods, also characterized by the term r-refinement, have been shown to be

very useful for solving parabolic and hyperbolic partial differential equa-

tions (PDEs) involving small scale structures. For a recent overview of

developments in adaptive grid methods in general, we refer to the proceed-
ings of the Conference on Grid Adaptation in Computational PDEs, 1996,

Edinburgh (Duncan [6]).

In one space dimension, moving adaptive grid methods have been ap-
plied successfully to a large class of PDE systems (see, e.g., Zegeling et

al. [8, 7] and Borsboom & van der Marel [3]). In two space dimensions,

application of moving adaptive grid methods is less trivial (Catherall [4]).
Two, not just one, coordinates per grid point have to be determined, i.e., not

only the grid stretching in two directions, but also the grid skewness has to

be controlled.

In this paper we describe a two-dimensional finite-difference method

with grid adaptation in one direction only. The latter reduces the complexity

of the technique. Although keeping grid distortion sufficiently low, it is still
an important issue. The moving adaptive grid technique that we employ is

therfore based on an equidistribution principle with smoothing operators
to ensure that the generated adaptive grids are smooth both in space and in
time. As an illustration, we present results for a 2D transport problem with a

steep vertical gradient that enters the domain from the inflow boundary. The

problem is a model for the advection of a moving salt wedge that creates a

sharp, moving interface between a layer of salt water near the bottom and
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Computer Methods in Water Resources XII 429

the fresh water area. Such a situation is typical of estuaria problems.

The Transport Model

We consider the time-dependent two-dimensional transport equation:

<9c 0, . 9, \ # / <9c\ #

+ ><> + ^ = +

where (w, w)^ is the velocity vector that satisfies the incompressibility con-

straint du/dx + dw/dz — 0, and where DH and Dy are respectively the

coefficient of horizontal dispersion and of vertical turbulent diffusion. We

seek for the solution c(x, z, t) (salinity of the water) with (,r, z) G ft and

t G [0, T], in which ft represents an estuary model defined by x G [0,1]

and z G [z&, (], with L, z\» and ( respectively the length of the model, the
bottom profile, and the position of the free surface.

The procedure (described below) for finding numerical solutions of (1)

is based on the method of lines. This means that the discretization is carried

out in two stages. In the first stage the space variables are discretized, giving

a large system of ordinary differential equations (ODEs). The second stage

deals with the numerical integration in time of this stiff ODE system to

generate the desired numerical solution.

The adaptive ̂ -transformation

The physical domain is transformed to the computational domain [0,1] x
[0, 1] by the mapping (x, z, t) -4- (£, a, T):

(7 = (7(Z,Z,Z) ,

T = t .

Using the inverse of this transformation, transport model (1) is written as:

-̂ T + ̂[̂ ĉ] + — [(%f (%; - zj - z;%) c]

d
+ (2)
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430 Computer Methods in Water Resources XII

d_

do J

where J = ẑ .is the Jacobian of the transformation. Note that we only

consider grid point movement in vertical direction along strictly vertical

grid lines, i.e., in (2) we have used XT — 0 and .xv = 0. We restrict

ourselves to uniform grids in z-direction, so x% will be taken constant.

Equation (2) is space discretized on a uniform grid with grid cells of

sizes A£ and ACT, using standard central differences. Dirichlet conditions

are imposed at inflow boundaries and homogeneous Neumann conditions

are applied elsewhere. Together, this leads to a system of ODEs for the

vector of unknowns C = {ĉ }, with Ci,k the salinity per grid point. To

complete this system, we need to define how the grid is moved with and

adapted to the solution.
We have used a moving grid PDE that is based on an equidistribution

principle enhanced with smoothing procedures in time and vertical space

direction. The moving grid PDE is given by

_

da >V
= 0, (3)

with m the non-smoothed grid point concentration and weight function VV
taken as >V — \J\ + a(ĉ , where parameter a controls the level of adap-

tivity. A uniform grid in z-direction is obtained for a = 0 when weight

function >V becomes equal to 1, whereas for a > 0 the grid adapts to the

solution gradient 3c/dz.

The grid point concentration m = 1/ẑ  that is used in (2) is obtained

by smoothing m:

(4)

with K the spatial smoothing parameter. Loosely speaking, the weight func-
tion >V determines the shape of the grid distribution and K the level of clus-

tering. With K = O(l), rather modestly stretched space grids are obtained.
The parameter TS in (3) controls the temporal smoothness of the grid; it

serves as a delay factor for the grid movement and provides a means for
suppressing grid oscillations in time. See Zegeling [7] for more details on

the use of %, TS and equations like (3).
The discretization of (3) and (4) in space gives the system of ODEs

for Z — {̂ ,/J, with Zi^ the vertical coordinate per grid point. When
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Computer Methods in Water Resources XII 431

combined with the space discretization of (2) and its boundary conditions,

we obtain the complete system of ODEs:

Numerical Results

In this section we present some results obtained with the moving finite-

difference method (MFD) described before. In the experiment we have

used a time tolerance tol = 10~^ for DASSL, a uniform starting grid, and

a zero initial concentration field. A flat bottom profile z& = 0 [ra] and a

uniform water level ( = 10 [m] have been specified, while the length L

of the model was taken equal to 100 [m]. The values of the parameters in

the model equation (1) were: DH = 0.1 [m?/s], Dy = 0.001 [™?/s],

u = 0.5 [ra/s], w = 0 [m/s]. These values model typical shallow-water

conditions. The value of Dy has been taken small enough to investigate

the numerical problems associated with the modeling of small turbulent
diffusion in the vertical.

At the left boundary, the following inflow Dirichlet condition was im-
posed:

c(0,z,f) = 0, z>/W; c(0,z,f) = l, z</(t), (5)

with f(t) = 3 - 3 * (f/200 - 1)̂ + z\> to model an incoming salt wedge that

slowly grows in time. To avoid spurious oscillations in space, this inflow
condition was smoothed slightly at z = f(t) by means of a steep cosine
function.

The time interval that we have considered is t G [0, 150] [.sec]. Note
that during this period, the salt wedge specified in (5) does not enter fully

into the domain. Further, 'standard' values have been used for the moving

adaptive-grid parameters. They have been scaled to account for the spatial
and time scale of the model, i.e., we have used a = 10*, K = 1 and
T", = 10-3.

In figure 1 numerical results are shown for the adaptive moving-grid

method with 30x15 grid cells at t = 150 [sec]. On the left the solution is
display ed for different values of x (x = 0, 10, 30, 50, 70 [m]).

On the right of figure 1 the adapted grid is shown. It is seen that the

grid adapts nicely to the transition region. For lower values of x, the con-
centration of grid points follows the sharp interface between low and high

concentration. One clearly recognizes the parabolic shape of the salt wedge
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432 Computer Methods in Water Resources XII

imposed at the inflow boundary (5). Horizontal dispersion causes the inter-

face to smear out, so further downstream of the inlet there is no need for a

high local grid point concentration. The result shows that the adaptive grid

algorithm takes care of this automatically.

VERTICAL DIRECTION Z

Figure 1: Moving adaptive grid results (left: solution, right: grid).

VERTICAL DIRECTION Z VERTICAL DIRECTION Z

Figure 2: Uniform grid solutions (left: 31x16 grid, right: 31 x 61 grid).

In figure 2 results are given for the fixed uniform grid case (a = 0). On

the left the rather inaccurate solution obtained with a 31 x 16 grid is shown.

This uniform grid solution is improved by adding more grid points in the
vertical direction: the right plot in figure 2 shows the results for 31x61

uniformly distributed grid points.
A comparison between the figures 1 and 2 shows that when a uniform

grid is used, about 4 times more grid points are required to get a solution

of the same quality as the one obtained with the proposed grid adaptation

algorithm. Note however the slight 'lift-up' around z = 2.5 [ra] in the

adaptive grid result at the position x = 70 [ra] that is not present in the
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Computer Methods in Water Resources XII 433

uniform grid solution. Detailed inspection of the results at earlier time lev-

els has revealed that this is caused by the excessive grid distortion of the

adapted grid that occurs when the salt wedge starts entering the domain.

This sudden change of the solution at (x, z) = (0, 0) leads to a strong lo-

cal clustering of grid points in the beginning of the calculation, and hence

to rather large discretization errors because of the excessive skewness of

the grid. The negative effect of this on the solution is transported down-

stream, and reaches position x = 70 [m] at about t = 150 [sec]. It is this
mechanism that causes the small error observed in figure 1.

Not shown in a figure, but important to mention is that results obtained

with different values of AC and TS have shown the importance of smoothing

the grid both in time and in space (see eq. (3)). Grid smoothing is essential

for letting the grid move with and adapt to the solution in a satisfactory way.

This phenomenon has already been observed by others, see, e.g., Duncan

[6].

Conclusions

The performance of the adaptive moving-grid method presented in this pa-

per is promising. Satisfactory results were obtained when the method was

used to solve a time-dependent 2D transport model of an incoming salt

wedge with steep salt-fresh water interface. When a uniform grid is used, 4

times more grid points have to be used in the vertical direction to produce
comparable results.

It was observed that the smoothing of the grid both in time and in space
is necessary to prevent the creation of irregular adaptive grids, although it

did not fully suppress the effect of grid distortion on the solution. This is
actually not surprising, since the weight function >V that we used in (3) does

not monitor the gradients in ̂ -direction. The grid distortion in ̂ -direction
is therefore not properly detected by the algorithm.

The design of a weight function that monitors the behavior of the solu-
tion in both coordinate directions is presently under study. Another topic of

research is the development and use of a discretization technique that is less
sensitive to grid distortion. In the near future we will also investigate the

performance of the method for other transport problems, in particular prob-
lems defined in geometries with varying bottom slope and non-uniform,
moving free surface.
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