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Abstract— In this article we describe a novel Particle Swarm
Optimization (PSO) approach to Multi-objective Optimization
(MOO) called Adaptive Multi-objective Particle Swarm Op-
timization (AMOPSO). AMOPSO algorithm’s novelty lies in
its adaptive nature, that is attained by incorporating inertia
and the acceleration coefficient as control variables with usual
optimization variables, and evolving these through the swarm-
ing procedure. A new diversity parameter has been used to
ensure sufficient diversity amongst the solutions of the non
dominated front. AMOPSO has been compared with some
recently developed multi-objective PSO techniques and evo-
lutionary algorithms for nine function optimization problems,
using different performance measures.

I. INTRODUCTION

Evolutionary algorithms have been found to be very ef-
ficient in dealing with multi-objective optimization (MOO)
problems [1] due to their population based nature.

Particle Swarm Optimization (PSO), has been relatively
recently proposed in 1995 [2]. It is inspired by the flocking
behavior of birds, which is very simple to simulate. The
simplicity and efficiency of PSO [3], [4] in single objective
optimization motivated the researchers to apply it to the
MOO [5]–[12].

In MOO, two important goals to attain are the convergence
to the Pareto-optimal front and the even spread of the solu-
tions on the front. In the present article we describe a multi-
objective PSO, called adaptive multi-objective particle swarm
optimization (AMOPSO). In AMOPSO the vital parameters
of the PSO i.e., inertia and acceleration coefficients are
adapted with the iterations, making it capable of effectively
handling optimization problems of different characteristics.
Here these vital parameters are treated as control parameters
and are also subjected to evolution along with the other
optimization variables. To overcome premature convergence,
the mutation operator from [13] has been incorporated in
AMOPSO.

In order to improve the diversity in the Pareto-optimal
solutions, a novel method exploiting the nearest neighbor
concept is used. This method for measuring diversity has an
advantage that it needs no parameter specification, unlike the
one in [11]. Note that diversity has earlier been incorporated
in PSO using different approaches, namely the hyper-grid
approach [11], σ-method with clustering [9] and NSGA-
II based approach [10]. Both the hyper-grid and clustering
based approaches for diversity are found to take significant
computational time. In the former, the size of the hyper-grid
needs to be specified a priori, and the performance depends
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on its proper choice. The measure adopted in this article is
similar to the one in [10], though the way of computing the
distance to the nearest neighbor is different. Comparative
study of AMOPSO with other multi-objective PSOs viz.,
σ–MOPSO [9], NSPSO (Non-dominated sorting PSO) [10]
and MOPSO [11] and also other multi-objective evolutionary
methods viz., NSGA-II [14] and PESA-II [15] has been
conducted to establish its effectiveness for nine test problems
using qualitative measures and also visual displays of the
Pareto front.

II. BASIC PRINCIPLES

A. Multi-objective Optimization (MOO)

A general minimization problem of M objectives can be
mathematically stated as: Given �x = [x1, x2, . . . , xd], where
d is the dimension of the decision variable space,

• Minimize : �f(�x) = [fi(�x), i = 1, . . . , M ], subject to :
gj(�x) ≤ 0, j = 1, 2, . . . , J, and
hk(�x) = 0, k = 1, 2, . . . , K , where fi(�x) is the ith

objective function, gj(�x) is the jth inequality constraint,
and hk(�x) is the kth equality constraint.

A solution is said to dominate another solution if it is not
worse than that solution in all the objectives and is strictly
better than that in at least one objective. The solutions over
the entire solution space that are not dominated by any other
solution are called Pareto-optimal solutions.

B. Particle Swarm Optimization (PSO)

The PSO is a population based optimization algorithm,
inspired by the flocking behavior of birds [2]. The popula-
tion of the potential solutions is called a swarm and each
individual solution within the swarm, is called a particle.
Particles in PSO fly in the search domain guided by their
individual experience and the experience of the swarm.

Considering a d-dimensional search space, the
ith particle is associated with the position attribute
�Xi = (xi,1, xi,2, . . . , xi,d), the velocity attribute
�Vi = (vi,1, vi,2, . . . , vi,d) and the individual experience
attribute �Pi = (pi,1, pi,2, pi,d). The position attribute
( �Xi) signifies the position of the particle in the search
space, whereas the velocity attribute (�Vi) is responsible for
imparting motion to it. The �Pi parameter stores the position
(coordinates) corresponding to the particle’s best individual
performance. Similarly the experience of whole of the
swarm is captured in the index g, which corresponds to the
particle with the best overall performance in the swarm.
The movement of the particle towards the optimum solution
is governed by updating its position and velocity attributes.
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The velocity and position update equations are given as [4]:

vi,j = wvi,j + c1r1(pi,j − xi,j) + c2r2(pg,j − xi,j) (1)

xi,j = xi,j + vi,j (2)

where j = 1, . . . , d and w, c1, c2 ≥ 0. w is the inertia
weight, c1 and c2 the acceleration coefficients, and r1 and
r2 are random numbers, generated uniformly in the range
[0, 1], responsible for imparting randomness to the flight
of the swarm. The c1 and c2 values allow the particle to
tune the cognition and the social terms respectively in the
velocity update equation (Equation 1). A larger value of c1

allows exploration, while a larger value of c2 encourages
exploitation.

III. ADAPTIVE MULTI-OBJECTIVE PARTICLE SWARM

OPTIMIZATION: AMOPSO

The AMOPSO algorithm proposed in this article is de-
scribed below.

A. Initialization

In the initialization phase of AMOPSO, the individuals of
the swarm are assigned random values for the coordinates,
from the respective domains, for each dimension. Similarly
the velocity is initialized to zero in each dimension. The
Step 1 takes care of the initialization of AMOPSO. This
algorithm maintains an archive for storing the best non-
dominated solutions found in the flight of the particles. The
size of the archive lt at each iteration is allowed to attain a
maximum value of Na. Archive is initialized to contain the
non-dominated solutions from the swarm.

Algorithm AMOPSO: Of = AMOPSO(Ns,Na,C,d)
/* Ns: size of the swarm, Na: size of the archive,
C: maximum number of iterations, d: the dimensions
of the search space, Of : the final output */

1) t = 0, randomly initialize S0,
/*St: swarm at iteration t */

• initialize xi,j ,∀i, i ∈ {1, . . . , Ns} and ∀j,

j ∈ {1, . . . , d}
/* xi,j : the jth coordinate of the ith particle */

• initialize vi,j , ∀i, i ∈ {1, . . . , Ns} and ∀j,

j ∈ {1, . . . , d}
/* vi,j : velocity of ith particle in jth dimension */

• Pbi,j ← xi,j ,∀i, i ∈ {1, . . . , Ns} and ∀j,

j ∈ {1, . . . , d}
/* Pbi,j : the jth coordinate of the personal best of
the ith particle */

• A0 ← non dominated(S0), l0 = |A0|
/* returns the non-dominated solutions from the
swarm*/
/* At: archive at iteration t */

2) for t = 1 to t = C,

• for i = 1 to i = Ns /* update the swarm St */

– /* updating the velocity of each particle */

∗ Gb ← get gbest()
/* returns the global best */

∗ Pbi ← get pbest()
/* returns the personal best */

∗ adjust parameters(wi, c
i
1
, ci

2
)

/* adjusts the parameters, wi: the inertia coef-
ficient, ci

1
: the local acceleration coefficient,

and ci
2
: the global acceleration coefficient */

vi,j = wivi,j + ci
1
r1(Pbi,j − xi,j) +

ci
2
r2(Gbj − xi,j)

∀j, j ∈ {1, . . . , d}
– /* updating coordinates */

xi,j = xi,j + vi,j

∀j, j ∈ {1, . . . , d}
• /* updating the archive */

– At ← non dominated(St ∪ At)
– if (lt > Na) truncate archive()

/* lt: size of the archive */

• mutate (St) /* mutating the swarm */

3) Of ← At and stop. /* returns the Pareto optimal
front */
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Fig. 1. AMOPSO Diversity computation

B. Update

The Step 2 of AMOPSO deals with the flight of the
particles within the swarm through the search space. The
flight, given by Equations 1 and 2, is influenced by many
vital parameters, which are explained below:

1) Personal Best Performance (pbest): In multi-objective
PSO, the pbest stores the best non-dominated solution at-
tained by the individual particle. In AMOPSO the present
solution is compared with the pbest solution, and it replaces
the pbest solution only if it dominates that solution.

2) Global Best Performance (gbest) : In multi-objective
PSO, often the multiple objectives involved in MOO prob-
lems are conflicting in nature thus making the choice of
a single optimal solution difficult. To resolve this problem
the concept of non-dominance is used. Therefore instead
of having just one individual solution as the global best a
set of all the non-dominated solutions is maintained in the
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form of an archive [11]. Selecting a single particle from
the archive as the gbest is a vital issue. There has been a
number of attempts to address this issue, some of which
may be found in [16]. In the concepts mentioned in [16],
authors have considered non-dominance in the selection of
the gbest solution. As the attainment of proper diversity is the
second objective of MOO, it has been used in AMOPSO to
select the most sparsely populated solution from the archive
as the gbest. In AMOPSO the diversity measurement has
been done using a novel concept. This concept is similar to
the crowding-distance measure in [14]. The parameter (di)
is computed as the distance of each solution to its immediate
next neighbor summed over each of the M objectives.
An example in Figure 1 illustrates the computation of di

parameter. Density for all the solutions in the archive is
obtained. Based on the density values as fitness, roulette
wheel selection is done to select a solution as the gbest.

3) Control Parameters (w): The performance of PSO
to a large extent depends on its inertia weight (w) and
the acceleration coefficients (c1 and c2). In this arti-
cle these are called control parameters. These parame-
ters in AMOPSO have been adjusted using the function
adjust parameters(wi, c

i
1
, ci

2
).

Some values have been suggested for these parameters in
the literature [4]. In most of the cases the values of these
parameters were found to be problem specific, signifying
the use of adaptive parameters [3], [4], [17]. In this article
a novel concept for adapting the control parameters has
been proposed. These control parameters have been subjected
to optimization through swarming, in parallel with that of
the normal optimization variables. The intuition behind this
concept is to evolve the control parameters also so that the
appropriate values of these parameters may be obtained for
a specific problem. Here the control parameters have been
initially assigned some random values in the range suggested
in [4]. They are then updated using the following equations:

vc
i,j = wiv

c
i,j + ci

1
r1(p

c
i,j − xc

i,j) + ci
2
r2(p

c
g,j − xc

i,j) (3)

xc
i,j = xc

i,j + vc
i,j (4)

Here, xc
i,j is the value of the jth control parameter with the

ith particle, whereas vc
i,j , pc

i,j are the velocity and personal
best for the jth control variable with ith particle. pc

g,j is
the global best for the jth control parameters. The previous
iteration values of the control parameters have been used for
the corresponding values of wi, ci

1
and ci

2
. It is to be noted

that in the above equations the values of j equal to, 1, 2
and 3, corresponds to the control parameters inertia weight,
cognition acceleration coefficient and the global acceleration
coefficient respectively. Note that the control parameters for
the flight of a particle are taken from its own copy of control
variables.

4) Mutation: The mutation operator plays a key role in
MOPSOs [11]. In this article a mutation operator of [13] has
been used to allow better exploration of the search space.

5) Update Archive: The selection of the gbest solution
for the velocity update is done from this archive only. In
AMOPSO the maximum size of the archive has been fixed
to Na = 100. The archive gets updated by the non dominated
solutions of the swarm. All the dominated members from the
archive are removed. Since the maximum size of the archive
has been fixed, the density has been considered as in [11] to
truncate the archive to the desired size.

After running AMOPSO for a fixed number of iterations,
the archive is returned as the resultant non dominated set.

IV. EXPERIMENTAL RESULTS

The effectiveness of AMOPSO has been demonstrated
on various standard test problems, that have known set
of Pareto optimal solutions and are characterized to
test the algorithms on different aspects of performance.
AMOPSO has been compared with some MOEAs and
MOPSOs. The MOEAs include NSGA-II and PESA-
II, whereas the MOPSOs are MOPSO, σ-MOPSO and
NSPSO. The codes for NSGA-II and MOPSO have been
obtained from http://www.iitk.ac.in/kangal/codes.shtml and
http://www.lania.mx/ ccoello/EMOO/EMOOsoftware.html re-
spectively. The program for PESA-II has been obtained from
the authors, whereas the other algorithms are implemented.
The parameters used are: population/swarm size 100 for
NSGA-II and NSPSO, 10 for PESA-II (as suggested in [15] ),
50 for MOPSO, σ-MOPSO and AMOPSO, archive size 100
for PESA-II, σ-MOPSO, MOPSO and AMOPSO, number of
iterations 250 for NSGA-II and NSPSO, 2500 for PESA-II,
and 500 for MOPSO, σ-MOPSO and AMOPSO (to keep
the number of function evaluations to 25000 for all the
algorithms), cross-over probability 0.9 (as suggested in [14])
for NSGA-II and PESA-II, mutation probability inversely
proportional to the chromosome length (as suggested in [14]),
coding strategy binary for PESA-II (only binary version
available) while real encoding is used for NSGA-II, NSPSO,
σ-MOPSO, MOPSO and AMOPSO (PSO naturally operates
on real numbers). The values of c1 and c2 have been used as 1
and 2 for σ-MOPSO and NSPSO, respectively (as suggested
in [9] and [10] ). The value of w has been used as 0.4 for σ-
MOPSO whereas it has been allowed to decrease from 1.0 to
0.4 for NSPSO (as suggested in [9] and [10]). For AMOPSO
the initial range of the values for ci

1
and ci

2
is [0.5, 2.5] and

that for wi is [0.0, 1.0] ( as suggested in [17]).
The values for the parameters of a particular algorithm

have been used keeping in mind the suggestions in the
respective literature. Usually a smaller size of the swarm is
preferred. The relative performances of NSGA-II, PESA-II,
σ-MOPSO, NSPSO, MOPSO and AMOPSO are evaluated
on several test problems (i.e., two and three objectives), using
some performance measures.

A. Test Problems and Performance Measures

In this article nine standard test problems have been used.
Seven of these test problems SCH1, SCH2, FON [1],
ZDT 1, ZDT 2, ZDT 3, ZDT 4 [18] are of two objectives,
while the other two, i.e., DLTZ2 and DLTZ7 [19], are
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of three objectives. The performance of the algorithms is
evaluated with respect to the convergence measure Υ (viz.,
distance metric) and the diversity measure Δ [14] (viz., di-
versity metric). The Υ measure has been used for evaluating
the extent of the convergence to the Pareto front, whereas
Δ measure has been used for evaluating the diversity of the
solutions on the non-dominated set. It should be noted that
smaller the value of these parameters, the better will be the
performance.

B. Results

The results are reported in terms of the mean and variance
of the performance measures over 20 simulations in Tables I
and II. It can be seen that AMOPSO has resulted in better
convergence on all the test problems in terms of Υ measure
except for the SCH1 test problem where it is found to be
second to the NSGA-II algorithm. PESA-II has also given the
best convergence for the ZDT 2 test problem. Similarly, the
values of the Δ measure in Table II show that AMOPSO is
able to attain the best distribution of the solutions on the non-
dominated front for all the test problems except on FON and
DLTZ2, where it is second to the NSGA-II and σ-MOPSO
respectively.

To demonstrate the distribution of the solutions on the final
non-dominated front, FON , ZDT 3 and DLTZ2 test prob-
lems have been considered as typical illustrations. Figures 2-
4 show the resultant non dominated fronts corresponding to
these test problems. Figure 2 provides the non-dominated
solutions returned by the six algorithms for the FON test
problem. The poor performance of PESA-II and σ-MOPSO
is clearly evident. Figure 2(f) shows that σ-MOPSO has
resulted in poor diversity amongst the solutions of the non-
dominated set. Although, the results in Figure 2(a), Fig-
ure 2(d) and Figure 2(e) are better than the aforementioned
results, the best result has been obtained by AMOPSO in
Figure 2(c), in terms of convergence as well as diversity.

Similarly, Figure 3 represents the final fronts obtained
by the six algorithms for ZDT 3 function. It can be seen
from Figure 3(f) that σ-MOPSO has failed to converge
to the true Pareto-front properly. It should be noted from
Figure 3(b) that PESA-II has failed to obtain all the five
disconnected Pareto-optimal fronts. Although, NSGA-II has
been successful in obtaining the five fronts, one of these
did not come out properly (Figure 3(a)). MOPSO is found
to be better than PESA-II and NSGA-II in this regard, but
its solutions have poor spread on the front as is clearly
evident from Figure 3(d). Moreover MOPSO is often found
to converge to a local optimal front for this test function.
Such an instance is shown in Figure 3(g), where MOPSO
has been able to obtain only one front (not all the five)
because of local optima problem. NSPSO has resulted in
very good convergence, as evident from Figure 3(e), but its
diversity is not as good as that of AMOPSO. Compared to all
these algorithms, AMOPSO in Figure 3(c) has given better
convergence and spread of the solutions on this test function.
Figure 4 represents the final non-dominated fronts obtained
by the algorithms on DLTZ2 test problem. From Figure 4(a)

it can be seen that NSGA-II has failed considerably in
attaining the non-dominated set properly in terms of both
convergence as well as diversity. MOPSO (Figure 4(d)) has
failed to attain the full non-dominated set. Similarly σ-
MOPSO (Figure 4(f)) could not attain the non-dominated set
properly. Although NSPSO has resulted in better shape of the
Pareto front (Figure 4(e)), its convergence is not as good as
that of AMOPSO and PESA-II as shown in Figure 4(c) and
Figure 4(b) respectively.

V. CONCLUSIONS AND DISCUSSION

In the present article, a novel multi-objective PSO algo-
rithm, called AMOPSO, has been presented. AMOPSO is
adaptive in nature with respect to its inertia weight and
acceleration coefficients. This adaptiveness enables it to
attain a good balance between exploration and exploitation of
the search space. A mutation operator has been incorporated
in AMOPSO to resolve the problem of premature conver-
gence to the local Pareto-optimal front (often observed in
multi-objective PSOs). An archive has been maintained to
store the non-dominated solutions found during AMOPSO
execution. The selection of the gbest solution is done from
this archive, using the diversity consideration. The method
for computing diversity of the solutions is based on the
nearest neighbor concept. The performance of AMOPSO is
compared with some recently developed multi-objective PSO
techniques and evolutionary algorithms, for nine function
optimization problems of two and three objectives using
some performance measures. AMOPSO is found to be good
not only in approximating the Pareto optimal front, but also
in terms of diversity of the solutions on the front.

In this article only one version of the adaptation of control
parameters has been addressed, where each particle has
its own control parameter. This form of adaptation can be
achieved at other levels also, like at pbest and gbest level.
Further it would be interesting to study the values of these
control parameters finally when the non dominated front is
obtained.
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