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Abstract: Accurate and reliable tracking of multi-pedestrian is of great importance for autonomous
driving, human-robot interaction and video surveillance. Since different scenarios have different best-
performing sensors, sensor fusion perception plans are believed to have complementary modalities
and be capable of handling situations which are challenging for single sensor. In this paper, we
propose a novel track-to-track fusion strategy for multi-pedestrian tracking by using a millimeter-
wave (MMW) radar and a monocular camera. Pedestrians are firstly tracked by each sensor according
to the sensor characteristic. Specifically, the 3D monocular pedestrian detections are obtained
by a convolutional neural network (CNN). The trajectory is formed by the tracking-by-detection
approach, combined with Bayesian estimation. The measurement noise of the 3D monocular detection
is modeled by a detection uncertainty value obtained from the same CNN, as an approach to
estimate the pedestrian state more accurately. The MMW radar utilizes the track-before-detection
method due to the sparseness of the radar features. Afterwards, the pedestrian trajectories are
obtained by the proposed track-to-track fusion strategy, which can work adaptively under challenging
weather conditions, low-illumination conditions and clutter scenarios. A group of tests are carried
out to validate our pedestrian tracking strategy. Tracking trajectories and optimal sub-pattern
assignment (OSPA) metric demonstrate the accuracy and robustness of the proposed multi-sensor
multi-pedestrian tracking system.

Keywords: pedestrian tracking; sensor fusion; monocular 3D detection; MMW radar; track-to-track
fusion

1. Introduction

Pedestrian detection and tracking are fundamental tasks for a number of applications
including autonomous vehicle and video surveillance. Specifically, information about
object classes, locations as well as velocity are required in the process of environment
perception. The more accurate and detailed the tracking results are, the easier for the system
to manage motion planning. For example, autonomous vehicles need reliable pedestrian
tracking results in high frame rate to finish path planning and avoid collision. Robots need
accurate pedestrian tracking results to interact with users. With the significant progress
in artificial neural network, 2D pedestrian detection and tracking in image plane have
achieved satisfying performance and are almost regarded as solved problems. However,
the 2D tracks of the pedestrians are far from adequate for demanding applications in a
variety of challenging scenarios. Accurate 3D space localization is a more intuitive choice
for system robustness and reliability. As a result, 3D pedestrian tracking with detection
attracts more attention of researchers and becomes a more and more important task [1].
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For multi-pedestrian scenario, detection and tracking are regarded as two separate but
correlated tasks [2,3]. In a situation where the target features are sparse or missed detections
occur frequently, the track-before-detection method is widely adopted. For example,
a low resolution radar can only obtain limited reflections without convincing detections.
The obtained tracks can help identify the target category by offering the history location as
an additional feature. The lost of tracking targets and miss matches are prone to happen
when sensors perform poorly or the targets number is large. As a result, the track-before-
detection method is feasible when the target identification process is challenging.

In other situations, the features from sensors results are rich enough for detection
task. The tracking-by-detection method can be adopted and the tracking results are more
robust, compared to the former track-before-detection method. Since the detections are
of high accuracy and the features are enough for target identification, the track of each
target is unlikely to have miss matches and therefore has a higher continuity. From the
detection results to the tracking results, the main difficulty is about properly associating
detections across frames since the detection results may contain some false positive or
missed targets. Conventional data association methods like GNN [4], JPDA [5], MHT [6]
are widely used for tracking. The possible association proposals grow with target number
and time steps. As a result, only part of the proposals are kept according to the cost of
the computation complexity. After proper association, the pedestrian states are updated
according to some Bayesian-based estimation methods [7-9]. Advanced tracking theories
provide novel approaches [10,11]. Famous instances based on random finite set like PHD-
filter [12], CPHD-filter and GM-PHD-filter are widely used when the object number in the
scene is unknown and inconstant.

In order to obtain the pedestrian detection and tracking results, a list of sensors are
adopted. Among them, the most popular and widely deployed choices are light detection
and ranging (LiDAR), camera and radar. LiIDARs are capable of providing accurate and
dense point clouds, however they may fail under challenging weather conditions like
strong sunlight or fog. In addition, LiDARs suffer from issues of high deployment cost and
sensitivity to shocks.

The cameras can provide rich semantic information while the depth information for
3D detections cannot be directly measured. Stereo cameras recover the depth by matching
point pairs from similar perspectives with known baseline. The accuracy is much influenced
by the calibration result and thus causes dependency on a mild environment. Also the
computational burden is high compared to other sensors. Another solution is the RGB-D
camera. The depth is obtained by other components in the camera. However, the detection
range is limited and the sensor is likely to be interfered in outdoors. For monocular camera,
the depth information is estimated according to strong prior on camera extrinsic parameter
and object size. Recent progress in convolutional neural network (CNN) as well as its
derivatives have provided a new approach for monocular depth estimation. Therefore,
a list of solutions for monocular 3D detection become feasible. Specially designed neural
network for this task is currently widely studied and the performance is improving on a
daily basis [13,14].

Progress in MMW radar has offered a new promising object detection option. The MMW
radar can provide accurate localization results up to centimeter level [15]. At the same time,
the velocity of the object is inferred from the Doppler information. The radar can handle
challenging weather like foggy or dusty environment. However, MMW radars are short in
angular detection resolution due to the nature of radar.

Since different kinds of sensors have strengths and weaknesses for different scenarios
in terms of accuracy and robustness, multi-sensor schemes are proposed to handle sensor
degradation under certain condition [16]. Specifically, the multi-modal fusion methods
have been getting popularity nowadays [17]. Not only the perceptual field is enlarged,
but also the data quality and reliability are increased. Less noise, less uncertainty and
fewer deviations from the truth can be achieved if proper sensor fusion is implemented.
LiDAR and RGB-D camera have the best accuracy, while the working range is limited [18].
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Monocular camera can help LiDAR in terms of detection [19,20]. LiDAR with radar can
enhance the output point clouds by increasing density or introducing velocity [21]. Radar
and camera can provide accurate and robust fusion results at a reasonable cost and are
thoroughly developed [22-32]. Utilizing all three types of sensors is also an option, at a
cost of complexity [33]. Other plans have also been proposed, with the help of acoustic
sensors [34] or the introduction of tags for targets [35].

In addition to sensor combination selection, fusion strategy also influences the multi-
sensor tracking performance. Sensor fusion can be categorized into low-level raw data
fusion, mid-level feature fusion and high-level track fusion [33]. When entering into higher
level of fusion, the sensor data is selected and compressed. Therefore, the raw data fusion
retains the most information while faces the highest processing difficulty. Compard to raw
data, extracted features like bounding box from images and clusters from point clouds are
more representative. Zhao et al. [20] use modality from one sensor to generate region of
interest (ROI) for faster detection and more accurate clustering. Some researchers combine
data or feature matrix from both sensors to one unified neural network for detection [36—40].
Compared to sequential fusion approach [32], track-to-track fusion method has the best
flexibility and scalability. It not only has the least requirement for data bandwidth and
computation source, but also supports specialized sensor models for specific sensors.
The data collected by each sensor are used to detect and track the targets through a tracker
which suits the sensor best [18,33,41].

Despite the fact that some fusion strategies have been proposed, multi-pedestrian
tracking task remains challenging, especially in situations where sensor failures may occur.
Though the track-to-track fusion strategy can reduce the missed detection rate to some
extent, the occasional absence of the sensing modality may influence the fusion process
and thus should be handled separately. The confidence of the monocular camera detection
and tracking results is another issue to be solved. With proper modeling of the results from
the individual sensors, the accuracy of the fusion results can be improved.

In this paper, we aim at multi-pedestrian challenging scenario, and propose a novel
3D pedestrian tracking framework based on a track-to-track fusion strategy by using MMW
radar and monocular camera. The MMW radar follows the track-before-detection approach
and provides reliable tracks against smoky or low-light interference. The monocular camera
uses a CNN to generate pedestrian locations in Bird’s eye view directly from 2D images.
The track-by-detection approach is adopted to form pedestrian tracks with the help of
Bayesian-based filters. The proposed track-to-track fusion strategy is utilized to leverage
strengths from both sensors according to their complementarity. Experiments are carried
out to validate the framework. It is shown that the system can work in different scenarios,
including visually degradated situations, smoky situations and pedestrian clutter situations
where the pedestrians are too close for the radar to distinguish. The main contributions are
as follows:

*  Animproved 3D monocular multi-pedestrian tracking-by-detection method is imple-
mented, with its measurement noise modeled by the detection uncertainty from the
3D pedestrian detection neural network.

*  Anovel track-to-track fusion strategy is proposed to integrate the pedestrian tracks
obtained by MMW radar and monocular camera. The adaptive multi-pedestrian
tracking strategy is able to automatically detect the occurence and handle challenging
weather condition, low-illumination condition and clutter situation. Also, the track-
to-track fusion approach enables the pedestrians to be more accurately tracked by
individual sensors before fusion.

*  The performance of the proposed tracking strategy is compared in both normal and
challenging scenarios using the optimal sub-pattern assignment (OSPA) metric. The su-
periority of the fusion approach is demonstrated both intuitively and numerically.

The remainder of this paper is organized as follows. In Section 2, some representa-
tive works on monocular 3D object detection, MMW radar tracking, and radar-camera
based sensor fusion method are listed and explained. In Section 3, the details of our multi-
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pedestrian detection and tracking strategy are presented, including how the pedestrians
are tracked by individual sensors and how the track-to-track fusion is implemented. Exper-
imental validation for the proposed strategy and comparison to other methods are shown
in Section 4, followed by a comprehensive discussion part in Section 5. Conclusions and
future research interest are in Section 6.

2. Related Work
2.1. Radar Pedestrian Tracking

Radar object tracking has been studied in depth. Since the features derived from radar
signals are limited, the classification task is challenging [42,43]. Based on the dependency
of detection results, radar tracking methods can be roughly separated in two directions.

The first category is the tracking-by-detection approach [3]. The tracks are formed by
associating detection results across time. The radar detection step is challenging due to the
nature of radar signal. Firstly, most tracking theories rely on the point object hypothesis.
However, radars resolution in depth is high enough to form a set of point detections for
the same object. The point cloud needs to be partitioned and clustered to form a unique
detection for each target. Some researchers use K-means to get the centroids of each cluster
while others use object shape and boundary to match the points. To handle situations when
the total number of objects is unknown, DBSCAN method is adopted. Secondly, object
classification and identification can be hard for the radars. Until recently, neural networks
are adopted to obtain a satisfying performance [44]. For the data association process, it is
challenging to assign new detections to existing tracks when features are limited. When
multiple choices are available, the association complexity increases and no features can
be used to reduce the difficulty. Though conventional methods including GNN, JPDA,
MHT and advanced methods like PHD are adopted, the performance cannot match those
association methods by features matching. Also, the algorithm complexity and computing
burden is high [45,46].

The second category is the tracking-before-detection [47]. It is designed for extended
object tracking. Multiple measurements may belong to the same object. The clustering,
associating and filtering are implemented simultaneously. Different from the detection-
association-filter approach, the tracking results rely much on the accuracy of the prediction
step. When the motion model differs from the reality, the generated measurement boundary
has a large chance to include wrong raw point cloud or miss the true point cloud. After-
wards, the trajectory can provide more information for higher identification accuracy. Some
researches have been made, though the performance could be further improved [48,49].

For the aforementioned tracking methods, the pedestrian state is usually estimated by
Bayesian methods. Popular options are Kalman filter, EKF, UKF and particle filter. The dis-
tribution assumption of the objects varies from simple to complex for different situations.

2.2. Monocular 3D Pedestrian Detection

Most works on pedestrian tracking for camera are limited in 2D RGB plane, for deriv-
ing depth information from single image is regarded as an ill-posed problem. The object
detection task in the 2D image plane has been studied extensively. Some recent works
have achieved satisfying performance and serve as a feature extractor for the 3D detection
task. Based on the 2D detection results, in order to further find the 3D location or at least
Bird’s eye view location of the targets, geometry constraints and human height hypotheses
are widely used [14]. Some previous works focus on the homography matrix from real
world to image plane and assume the ground plane to be flat. Using pre-calibrated extrinsic
parameters of the camera and assuming average human height as reference, the pedestrian
location can be determined. However, these methods are valid only when targets stand
straightly on the ground. In a walking scenario, the height varies with time, not to men-
tion the strict calibration requirements and the corresponding errors. These prior-based
methods rely on a strong assumption and are therefore less flexible in real situations.
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With the development in deep learning, feature representing ability and model com-
plexity are strong enough to form a neural network for 3D object detection directly from
image. Learned paradigm has replaced hand-engineered features for proposal generat-
ing [13]. In recent works, 2D human pose estimations and 2D segmentation results from
image are introduced to enhance the performance. The derived keypoints or contours are
more suitable for state representing, compared to 2D bounding boxes. Another way to
upgrade 2D detections to 3D space is to combine them with a pseudo depth image. Monoc-
ular depth estimation methods can estimate the depth for each pixel, so as to inversely
project the 2D bounding boxes or segmented contours to 3D space. An alternative solution
is to directly generate pseudo LiDAR point cloud and make use of point cloud 3D detection
network [50]. By decoupling the 3D detection process into separate tasks, the sub-tasks can
be tested and tuned more thoroughly to increase the interpretability. However, the total
inference time would increase significantly due to the additional depth estimation step for
each pixel. The training process of the neural network is also challenging since the ground
truth depth for each pixel in image plane is hard to obtain.

The end-to-end monocular 3D detection methods, regarded as ultimate solutions, are
widely explored in recent years. Chen et al. [41] follow the general 2D object detection
pipeline by generating class-specific 3D bounding box proposals and scoring afterwards.
Candidates are scored with a CNN by class semantic, instance semantic, context, shape
features as well as location priors. Zhou et al. [51] propose an extrinsic free method by
predicting camera parameters. The detection performance is exclusive from the camera
perturbation and thus more robust. Potholed and uneven roads scenarios are therefore
successfully handled. Hu et al. [52] can detect and track the target at the same time by
integrating spatial feature learning and 3D state estimation. MonoGRNet [53] combines 2D
object detection, instance depth estimation and 3D center localization subnetworks into one
network. The unified network makes use of the results from the 4 task-specific networks to
predict the depth and the poses of the targeting 3D bounding box. Though pixel-level depth
estimation is avoided, the overall computational burden remains heavy. PoseCNN [54]
estimates 6D object pose with 3D rotation and 3D translation. Occlusion and symmetric
objects in cluttered scenes can be handled due to its new loss functions. Though most of
the methods are designed for tracking of general objects or vehicles, features of pedestrians
can also be learned if trained with proper ground truth. MonoLoco [55] focuses on the
pedestrian detection task by extracting 2D human poses first. The 3D localization results are
obtained through another fully-connected network. It also introduces confidence intervals
to address the ambiguity problem in the task, which can be used as an additional feature of
the detection results.

2.3. Fusion of Radar and Camera

Results from complementary sensors can be helpful in improving the pedestrian
detection and tracking performance. Common sensor combinations are camera with
LiDAR, camera with radar, Lidar with radar as well as camera with radar and LiDAR. Due
to the high cost in the deployment of LiDAR, here we mainly discuss the radar and camera
fusion method. As for the tracked targets, vehicles and pedestrians are of different sizes
but high similarity. Fusion tracking strategies for both targets are collected and discussed.

Recent works by fusion of radar point clouds and camera images have improved
accuracy and running speed for different tasks. Since the data from radar and camera are
of different modalities, the fusion strategies can be grouped into two categories, namely
the single-modality way and the multi-modality way.

The single-modality way firstly transforms the image detections and tracks into 3D
space points, before fusing with the radar points. 3D monocular detections are generated
based on different prior and assumptions. Tracks are formed after associating detections
from radar and camera. Since the detections are of the same modality and format, the fusion
process is simplified as a probabilistic problem. Otto et al. [22] present an improved data
association filter to tackle the problem of pedestrian tracking across the blind region where
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only radar is available. However, the adopted 3D monocular detection algorithm depends
on histograms of gradients (HOG) features and radar detects all objects instead of focusing
on pedestrians. Liu et al. [23] fuse information from radar and monocular vision by
combining interacting multiple model with probabilistic data association. They adopt an
asynchronous tracking system with low level data fusion to avoid loss of sensor information.
Dimitrievski et al. [24] calculate the joint likelihood of radar and camera after the camera
observations are back-projected on the ground plane. Both tracking-by-detection and
tracking-before-detection are adopted in the particle update process, depending on the
association results. The idea is innovative but clutter environments are not well handled.
The fusion can also be applied after each object is detected and tracked. The track-to-track
fusion approach has flexibility and scalability due to the sensor-specific processing pipeline.
Lee et al. [33] propose a permutation matrix track association method to associate the
object tracks provided by different trackers and use a sequential approach to update new
observations by an unscented Kalman filter. The improvement in association is validated
while the track fusion can be further developed. Zhong et al. [26] cluster the detection
point cloud from radar sensors into ROI and use HOG for image classification. The fusion
block tracks both in 3D space for radar and 2D image plane for camera. In addition,
the 3D velocity synthesis recovers the associated 3D velocity by using partial information
from each sensor. Kim et al. [27] compensate the low resolution of radar bearing angle
by camera observation and adopt the integrated probabilistic data association to handle
clutter environment.

The multi-modality way focuses on the association problem cross modalities. ROl is
widely used to improve the detection performance. Radar points can be projected into im-
age plane, indicating where the objects are likely to be. The image detection can also provide
additional information to guide the radar detection process [28]. Cho et al. [29] make use
of the complementary sensing modality by separating the task. Camera determines class of
object and object size. Radar points provide object location update information. Tracking
is improved by a switching mechanism of two motion models based on object distance.
Bai et al. [56] also use radar for spatial position and camera for classification, while some
improvements are made by adopting GM-PHD. Another way to handle multi-modality
detections is using neural network. Nabati et al. [36] use the radar detections to generate
radar-based feature maps to complement the image features. Features are fed into a trained
network and the 3D object detection performance is improved. Wang et al. [37] follow a
similar approach and generate ROI in time-frequency spectrum for neural network input.
Zhang et al. [38] propose an end-to-end deep neural network for multi-modality tracking.
Two neural networks are adopted as the image feature extractor and the point cloud feature
extractor. The fusion module includes simple concatenating of features, linear combination
as well as attention mechanism with weighted importance. The affinity estimator and
the start-end estimator are used for adjacency before giving final results. All modules are
combined in one framework, making it possible to be trained in an end-to-end manner for
joint optimization.

A combination of the single-modality and multi-modality fusion is also possible.
Wang et al. [40] compensate the vision processing by using ROI provided by the MMW
radar. Afterwards, objects are tracked by each sensor in the form of single-modality 3D
locations. Finally, the fusion is simplified as a verification process for false alarms since
the camera uses an outdated edge symmetry detection algorithm. The components can
be replaced by recent progress and the tracking system should be further customized.
A summary of the mentioned fusion methods is given in Table 1.
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Table 1. Summary of some tracking methods by sensor fusion with radar and camera.

Fusion Methods Work Highlights
Otto et al. [22] continue tracking across blind regions
Single-modality way Liu et al. [23] combine interacting multiple models
Dimi et al. [24] calculate joint likelihood of radar and camera
Lee et al. [33] update sequentially by all sensor observations
Nobis et al. [28] use ROIs to guide detection by other sensors
Cho et al. [29] camera determines class, radar provides location
Multi-modality way Bai et al. [56] detect target independently, track with GM-PHD
Nabati et al. [36] use radar feature maps to complement images
Zhang et al. [38] use e2e neural network with feature extractors
Combination way Wang et al. [40] use both ROIs and single-modality fusion

2.4. Tracking Evaluation Metrics

The tracking performance can be evaluated in different ways. For multi-pedestrian
tracking problem, both the target number and the localization accuracy should be con-
sidered. Missed targets and false targets can cause the estimated number to be wrong or
unmatched. The difficulty lies on the unifying of the localization error and cardinality
mismatches, namely on how to quantify the performance by one index.

Classic metrics like Wasserstein metric lack a consistent physical interpretation [57].
Scoring methods proposed by Fridling and Drummond [58] can evaluate the performance
of multiple target tracking algorithms fairly but the track to truth association needs to be
further developed.

The OSPA metric [57] is considered to be the most popular metric for multi target
tracking. OSPA optimally assigns all targets in the test set and the target set. Afterwards, it
computes the localization error based on this assignment. The mismatches of the targets are
modeled by a cardinality mismatch penalty. A combination value of the two parts, namely
the localization error and the cardinality error, is used to evaluate the tracking performance.

Recent works advance the problem by adjusting the metric. The generalized optimal
sub-pattern assignment (GOSPA) metric [59] penalizes localization errors for detected
targets, missed targets and false targets in different ways. It emphasizes the usefulness of
GOSPA by encouraging trackers to have few false and missed targets. However, the im-
provement compared to the original OSPA is limited.

When object size is also considered, the metric should be extended to bounding boxes
error estimation. Conventional metrics based on CLEAR metrics [60], including MOTP,
MOTA, are not able to describe the performance when false positive occurs. The metrics
may also be influenced by the choice of confidence threshold. Integral metric named
by AMOTA and scaled accuracy metric named by sAMOTA are proposed by [61] to
standardize the evaluation of 3D multi object tracking. In this paper, pedestrian size is
not considered and OSPA metric is selected for tracking evaluation because it balances the
localization error, the cardinality error and the computational burden well.

3. Methods
3.1. MMW Radar Pedestrian Tracking

MMW radars are radars which transmit wavelength in millimeter range. A typi-
cal MMW radar operating at 76-81 GHz can have a centimeter-level range resolution.
With multiple antennas working as transmitters and receivers, the system becomes a
multiple-input multiple-output (MIMO) radar and gives a finer spatial resolution. Using
frequency modulated continuous wave (FMCW) technology, the adopted radar transmits a
frequency-modulated signal continuously and receives range, angle and velocity information.
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For the range measurement, the calculated intermediate frequency (IF) signal is mod-
eled as a sine wave. Afterwards, the distance from the object is derived by the IF frequency
and phase using Equation (1).

Y = Asin(27tfot + ¢o)
2dS
fo=— (1)
dfe
$o = 747rcf

where A is the signal amplitude, d is the distance, S is the slope of the chirp(rate of change
of frequency), c is the speed of light and f, is the start frequency.
Additionally, the range resolution is determined by the bandwidth swept by the chirp,

equals to
c

7B 2

where c is the speed of light and B is the bandwidth swept by the chirp.
The velocity is measured according to Doppler effect and the velocity resolution is

dres =

A
Ures = 5+ 3)
es 2Tf

where Ty is the frame time and A is the signal wavelength.

For the angle estimation, at least two RX antennas are used to find the angle of
arrival(AoA). Array length is properly designed and small § approximation is adopted.
As a result, the estimation accuracy decreases when 0 increases. Similarly, the angle
resolution achieves its best performance when 6 equals to 90 degrees.

2

N cos(6) @

Ores =
where N is the number of antennas in the array.

In order to make use of the height dimension, the MMW radar works in 3D detection
mode. The radar can generate dense measurements without introducing extra clutters,
comparing to the 2D mode. As a result, the radar can provide point cloud measurements
with range, velocity, azimuth and elevation information.

Since the radar resolution is much smaller than the pedestrian size, each target gener-
ates multiple measurements which are spatially structured around the objects. Under this
situation, extended object tracking has to be adopted. Traditionally, extended object track-
ing is implemented through spatial clustering and temporal filtering. The spatial clustering
generates detection candidates. The filters are applied to smooth the associated candidates.
However, due to the signal-to-noise ratio (SNR) nature of radar, the raw measurement
which is generated after constant false alarm rate (CFAR) detection can be either too dense
or too sparse. Both sides will influence the spatial clustering performance. It is also chal-
lenging for MMW radar to detect object boundary, which makes the classification accuracy
of clusters not promising. As a result, we adopt the tracking-before-detection approach.
By combining the spatial and temporal process, the tracker can achieve more stable perfor-
mance. The proposed radar tracking algorithm includes (i) prediction, (ii) association with
clustering, and (iii) update. It is shown in Figure 1 and explained in detail.
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Figure 1. MMW radar pedestrian tracking algorithm.

The state of the pedestrian is modeled by the position and velocity in the OXYZ
coordinate system, with p and u representing location and velocity, respectively.

x = (P, Py, Pas thx, by, 11z) (5)

Based on the Chapman-Kolmogorov equation and Bayes’ rule, the probability density
function of the pedestrians can be described as

P(xi | z1k—1) = [ P(xk | Xe—1)P(Xk—1 | Z1:k—1)0%k—1
(6)

N P(zx) PO z1k-1)
P(Xk | zz:k) - fP(Zk‘x;()P(xl/letk*l)‘sxl,c

where subscript k represents the time step.

When the state variables are assumed to be Gaussian, the extended Kalman filter
is implemented for the prediction and update step. The pedestrians are modeled by
the constant velocity model, which assumes the target velocity to be constant during a
measurement interval. The measurement z contains distance p, azimuth ¢, elevation 6,
and radial velocity g,

z=(p,¢,0,p)" @)

Since in our coordinate system the azimuth ¢ of Y axis is considered as 0, the azimuth
¢ is calculated as the arc tangent of p, over py. The state and measurement are modeled as,

Xy = Fxp_1 + wy (8)

zp = H(xi) + v )
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tan (;Ty)
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where F is the state transition matrix, H is the state observation matrix and P is the
uncertainty matrix. Process noise w and measurement noise v follow

Wy ~ N(O, Q), O ~ N(O, R) (12)
The prediction step estimates the state and the covariance in the next time step,
Xik—1 = FRx_15-1 (13)

Piy1=F 1Py 1, 1Fl 1+ Qi y (14)

Afterwards, each measurement in the next frame is associated with one pedestrian
track. The association process requires a distance metric, which is computed by distance be-
tween the measurements and the predicted track centroids. The measurements are assigned
to the track with the closest distance. For each track, the centroid of all measurements is
calculated as the pedestrian location. Since MMW radar has limited angle resolution for
boundary detection, the shape of pedestrian is modeled as a point.

For measurements not associated with any track, a new track is initialized for them if
the SNR of the measurements is dense and strong enough. For tracks not associated with
any measurements, track deletion is implemented.

Finally, the extended Kalman filter update step is used to estimate the state and covari-
ance of the pedestrians. Due to the nonlinearity of the measurement model, the relation
between state and measurement has to be approximated by Taylor series expansion.

Px Py
r r
Py __Px
pi+r} p3+7p}
H, = _Px__ Pz _Py_ p:

2 2
Ve ey TRy

Py (0xpy—Vypx)+pz(0xpz—0zpx)  px(vypx—0xpy)+pz(vypz—2vzpy)
3

r 3

B 0 0 0

0 0 0 O
Pi+py (15)

— 0 0 0

Px(Usz—prz)+Py(UZPy—UyPZ) Px & Pz

3 T r 7

where 7 equals to |/p% + pj + p2.

Sy = HyPH] + Ry (16)

Ky = P.H[S, ! (17)
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Xk = Xik—1 + Ki(zw — H(Xgk—1)) (18)
Py = (I — KxHy)Pyj_q (19)

In order to evaluate the tracking performance, the 3D tracking results are translated to
Bird’s-eye view by omitting the p, axis. By introducing the extra height dimension in the
tracking process, the number of features for detection is increased. Therefore, the tracking
performance is improved when compared to 2D working mode.

3.2. Monocular Vision Pedestrian Detection and Tracking
3.2.1. Bird’s-Eye View Monocular Detection

Following the idea of MonoLoco [55], 3D pedestrian detection approach with confi-
dence interval is adopted. The 3D detection process consists of two submodules, namely
the 2D pose estimation neural network and the 3D location estimation neural network.
The derived keypoints in image plane are used to represent human poses and are served as
the input of the 3D localization neural network. To be specific, the 2D human pose key-
points are firstly estimated by pose detector PifPaf [62] and Mask R-CNN [63]. Afterwards,
a fully-connected network with six linear layers can output the 3D center locations for each
pedestrian. The estimated height of pedestrian is of less interest in reality and the result is
translated to Bird’s-eye view.

Apart from the pedestrian location centroids, MonoLoco is also able to evaluate the
location uncertainty. Since the human height has a variation, the consequent localization
error is inevitable. The ambiguity of the 3D detection task and the uncertainty due to noisy
observation are both modeled as a probability distribution. Results on datasets show that
around 84% of the pedestrians lie inside the predicted confidence intervals [55].

3.2.2. Tracking by Detection

Different from the MMW radar tracking, we adopt the tracking-by-detection fashion
to find the tracks for monocular vision since the 3D detections are highly reliable. The al-
gorithm is shown in Figure 2. For monocular Bird’s-eye view detection, each pedestrian
generates at most one single detection at each time step. It satisfies the point object hypoth-
esis and the tracking can be realized through two steps, namely the data association step
and the filter step.

The association step is implemented first. To assign newly obtained detections in new
frame to previous tracks, features need to be designed, extracted and compared. Apart
from location information, camera also has access to RGB data to form more discrimina-
tive features. As a result, associating detections from consecutive frames is finished by
calculating the color and location distances between pedestrian detections.

After successful association, each track has a new measurement. A Kalman filter
is utilized to merge the information from present and the past. The state vector of the
pedestrian x contains its location and velocity in Bird’s-eye view. The measurement vector
z contains location alone.

X = (px; py/ux/uy)T (20)

z=(pxpy) 1)

Similar to the extended Kalman filter built for MMW radar tracking, a constant
velocity motion model is adopted. The prediction and the update steps can be represented
by Equations (13), (14) and (16)—(19), in which P represents the state variance of camera
detection, with different models of state transition matrix F and state observation matrix H,

1 0 AT O
01 0 AT

F= 0 0 1 0 2)
00 O 1
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Figure 2. Monocular camera pedestrian tracking algorithm.

Here we propose a novel measurement noise modeling method by utilizing the ob-
tained detection uncertainty. Different from the traditional way to assume that the mea-
surement uncertainty is constant, we adopt the detection uncertainty to simulate the
measurement uncertainty fluctuation. When the predicted pedestrian confidence interval
is large, the detection uncertainty is believed to be high. The actual state has a larger
probability to be away from the estimated centroid. As a result, the measurements should
have a smaller weight during the Bayesian update step. To avoid unnecessary complexity,
the measurement noise is still modeled as zero mean Gaussian distribution, while the
variances are set to be linear to the detection uncertainty d.

Of ~ N(O, Rk) (24)
a2 0 myd? 4 ¢ 0
_ Px _ X X
Ry = 0 O'FZ,y o [ 0 rrzyal2 +cy (25)

The scale factor and the intercept (i, my, cx and ¢y) are determined by a calibration
process. The noise variance is calculated by the detection result and the ground truth.
By minimizing the distance between (U%X, (sz) and (myd? 4+ cy, myd2 + cy), the parameters

p
are calibrated after proper fitting.

3.3. Track-to-Track Fusion Strategy

The track-to-track fusion strategy can be divided into two steps. Firstly, the trans-
formation matrix between the two sensors is calibrated. The tracks from both sensors
are therefore successfully aligned and associated. Secondly, the statuses of the sensors
are examined according to track association results. When one sensor is believed to fail
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or degrade, the other sensor will handle the situation according to the proposed fusion
strategy. The overall fusion strategy is shown in Figure 3.

Fusion Strategy for Pedestrian Tracking

Monocular
Camera
Tracking by Detection

e |
| |
| A4 [
: Track-to-track Extrinsic {
| Fusion Strategies Calibration [
| |
| |
| |
| - |
| Camera Status Success N Assigning I
I Confirmation »{ Radar Tracks(RT) to I
I Visual Tracks(VT) |
| |
| |
| |
: \ 4 4 v {
| Foggy / Smoky / Missing RT: Unmatched Matched I
| Insufficient Lighting Miss Detections RT: Clutters Tracks {
|

| |
| |
| |
| |
| Trust Weighted Fusion |
| Visual Tracks by Uncertainty |
| |
| |
| |

Figure 3. The proposed track-to-track fusion strategy.

3.3.1. Extrinsic Calibration

The previous results from MMW radar and monocular camera are from different
coordinate system, so an extrinsic calibration for the two sensors is needed before fusion.
The proposed monocular vision tracking method and the MMW radar tracking method are
able to generate results in the bird’s-eye view plane. As a result, the spatial transformation
matrix is relatively simple compared to other visual tracking methods which are restricted
in image plane. The centers of camera and radar are aligned and their headings are
adjusted to the same direction. In this way, the transformation matrix consists of only three
translation terms.

100 H4
A=[R T]=]010 f (26)
00 1 t

where R is the rotation matrix, T is the translation matrix, f;,f; and f3 represent the
translations in three directions.

3.3.2. Fusion Strategy

The main idea of the fusion strategy is to complement the tracks according to the
sensor characteristic. The monocular tracking result is trusted to provide the number of
pedestrians due to its dominant detection rate. On the other hand, the MMW radar tracking
result can provide more precise and accurate location information. Since the track-to-track
fusion is based on tracking results from individual sensors and the trajectories before
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fusion have already been smoothed by filters, the detections from sensors are more robust
and accurate.

The fusion process firstly determines if the camera works well or not. When visual
detections are confirmed, radar detections are assigned to vision detections by a distance
gating and bidding method. All the unassociated radar detections are regarded as clutter.
For all the vision detections that have been associated with one radar detection, a weighted
fusion method is implemented. Missed detection of radar is confirmed when no radar
detections are associated with the vision detection. In that situation, the vision tracking
results are passed to the final results. The implementation details are shown in Algorithm 1.

Algorithm 1 Track-to-track fusion strategy for pedestrian tracking

Input: Ay : extrinsic transformation matrix, T, : time length of the input,
Niadar b+ Neamera,: number of tracks by radar or camera at time ¢, X545, ; :
pedestrian state (x,y) of the ith radar track at time t, Xcayerq i+ : pedestrian
state (x,y) of the ith camera track at time ¢, P44, :  state variance
(Pyx, Py) of the ith radar track at time f, Peyperai¢ :  State variance (P, Py)
of the ith camera track at time ¢, Imgy,en014 : the threshold to judge whether
in fog, smoke or dark, Disjene14 : the threshold to judge whether two
tracks match.

Output: X0, : pedestrian state (x,y) of the ith track after fusion algorithm.

Initialize;

Coordinates alignment using Acy¢;

if variance of camera image < Imgypresnors then

| Return X,z40 ; // Trust radar if in fog, smoke or dark
else

while t < T;; do

fori <— 1 to Negmera, do

for j <— 1to Nz, do

| find the closest X, q4ar,j ¢ t0 Xcamera,it;

end

if X, pd0r = O or distance > Disyyppsp014 then

Xfusion,i,t = Xcumem,i,t}

; // Trust camera for radar missed detections

else

remove Xyadar,j t from X, 407,15

; // Remove matched tracks and ignore clutter tracks

ke = Pmdar,j,t/ (Pcamem,i,t + Pmdur,j,t)/'

kr = Pcamem,i,t/ (Pcamem,i,t + Pmdar,j,t)}

Xfusion,i,t = Xcamem,i,t * ke + Xradar,j,t * ky;

; // Try weighted fusion by state uncertainty
end
end
t+ t+ AL
end
Return Xsion 5 // Output fusion tracking results

end

3.4. Evaluation Metric of the Tracking Performance

The proposed strategy aims for multi-pedestrian tracking. Since the number of targets
in the scene is not constant and not known, the detection correctness and localization
accuracy should be both modeled meaningfully. A commonly used metric called OSPA is
adopted. It combines cardinality error and state error to describe the difference between
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two sets of vectors. It also solves the consistency and compatibility problem from previous
metrics.

a5 (x,Y)
= (3 (mincer, 2 4 (33, )) "+ e (n = m) ) )

where p is the order parameter and c is the cut-off parameter.

The value of p represents the sensitivity of the metric to outlier estimates. Following
the advice in [57], we set a practical p value of 2 since it yields smooth distance curves.
The cut-off ¢ determines the penalty of cardinality error as opposed to localization error
and is set constant during the test.

1/p (27)

4. Experimental Results
4.1. Test Setup

Tests are taken out in an indoor scenario, with single or multiple pedestrians walking
around. Sensor data are collected by our radar-camera fusion system and a Jetson NX
Xavier device. The system consists of a Texas Instruments IWR 1843 MMW radar and
a monocular camera. The camera has a 90 degree range of view with 1280 x 720 pixel
resolution. To align the sampling speed, the camera and the MMW radar are both set
to work at 15 Hz. The relative position of the two sensors is fixed and pre-calibrated.
The specification of the MMW radar is given in Table 2.

Table 2. Detail specifications of the millimeter wave radar.

MMMW Radar Parameters
Working frequency 76-81 GHz
Max working range 15m

Range resolution 0.09 m

Field of view +50°

Azimuth resolution 15°
Update rate 15 Hz

The ground truth of the pedestrian trajectory is obtained by a ultra-wide band (UWB)
locating system. The system consists of four pre-calibrated anchor stations and multiple
tags. Pedestrians wear the tags while walking to transmit signals. Distances from tags
to stations are measured and the exact locations are calculated according to triangulation
theory. The adopted commercial UWB system works from 3.5 GHz to 6.5 GHz with
bandwidth at 500 MHz. The frame rate is 15 Hz and the maximum detection range can
reach 50 m. The test scene and the UWB system layout can be seen in Figure 4.
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Figure 4. The test setup with camera, MMW radar and UWB system. (a) Fusion system layout.
(b) UWB system layout and the test scene.
4.2. Monocular 3D Localization Noise Model Validation

The proposed monocular 3D pedestrian detection method can provide location and
uncertainty information of the targets. The detection results are shown in Figure 5.
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Figure 5. Monocular 3D pedestrian detection results. (a) Raw RGB capture example 1. (b) 3D
detection example 1. (c) Raw RGB capture example 2. (d) 3D detection example 2.

We have assumed that the variances of the monocular location measurements are
linear to the neural network detection uncertainty. To validate the proposed hypothesis,
the differences between localization results from monocular detections and ground truth are
collected. The localization variance is the fitting objective and the neural network detection
uncertainties are the variables. The fitting results are shown in Figure 6. The m,, my, ¢y and
¢y, are therefore successfully calibrated.

x_variance y_variance

- fitting result - fitting result
0.25

0.20 15 £

Xvar (m~2)

0.10 .

A :
fon &

0.05 ¥ X X,

y
. i\%"f\ﬂﬁ"’w"‘f 4 %
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w.
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(a) (b)

Figure 6. Calibration results for the measurement noise model for monocular 3D localization. (a) X
varience. (b) Y varience.

4.3. Tracking Performance with the Proposed Fusion Strategy

Tracking accuracy and robustness tests are conducted in different situations where the
number of pedestrians varies. The tests can be separated as single-pedestrian scenario and
multiple-pedestrian scenario. To evaluate the performance analytically, the OSPA metrics
of all the tracking methods are also given. Figure 7 illustrates an example result with
single target in view. Pedestrian tracking trajectory from MMW radar, from monocular
camera, from the proposed fusion strategy as well as from a state-of-the-art comparison
by [32] are all shown. In addition, the change of OSPA metrics over time are given and
compared. Similarly, tracking performance of the multiple-pedestrian scenario is shown in
Figures 8 and 9. Each scenario contains three rounds of tests to improve representativeness.
The mean OSPA values of different strategies in different scenarios are listed in Table 3.
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Figure 7. Pedestrian tracking performance comparison under single target situation. (a) Tracking
trajectories by MMW radar. (b) Tracking trajectories by monocular camera. (c¢) Tracking trajectories
by the proposed fusion strategy. (d) Tracking trajectories by the method from [32]. (e) Tracking
performance comparison in OSPA.
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Figure 8. Pedestrian tracking performance comparison under multi targets situation. (a) Tracking
trajectories by MMW radar. (b) Tracking trajectories by monocular camera. (c¢) Tracking trajectories
by the proposed fusion strategy. (d) Tracking trajectories by the method from [32]. (e) Tracking
performance comparison in OSPA.
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Figure 9. Pedestrian tracking performance comparison under crossover targets situation. (a) Tracking

trajectories by MMW radar. (b) Tracking trajectories by monocular camera. (c) Tracking trajectories
by the proposed fusion strategy. (d) Tracking trajectories by the method from [32]. (e) Tracking

performance comparison in OSPA.
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Table 3. The OSPA tracking performance of the proposed tracking method in different test scenarios.

Test Scenario and Fusion Strategy OSPA
Single pedestrian

MMW radar tracking with single pedestrian 0.197
Monocular camera 3D tracking with single pedestrian 0.383
Fusion by [32] with single pedestrian 0.222
Propsed fusion strategy with single pedestrian 0.185

Multiple pedestrians
MMMW radar tracking with multiple pedestrians 1.164
Monocular camera 3D tracking with multiple pedestrians 0.970
Fusion by [32] with multiple pedestrians 0.793
Propsed fusion strategy with multiple pedestrians 0.624

Extra tests are carried out to validate the adaptive fusion tracking strategy in camera-
challenging scenarios. For example, the noise increases when the lighting condition gets
worse. The view is blocked when the environment is smoky or foggy. The tracking
results by our fusion strategy and the corresponding test situations are shown in Figure 10.
The average OSPA metrics of the test in bad illumination and foggy environment are 0.269
and 0.223, respectively.

(a) (b)

Tracks by sensor fusion Tracks by sensor fusion

— - Fusion tracks — - Fusion tracks

14 —— Ground truth —— Ground truth

12 12

10

Y (m)

-4 -2 0 2 4 -4 -2 0 2 4
X (m) X (m)

(o) ()

Figure 10. Camera-challenging scenarios and fusion tracking results. (a) Camera captures under bad
illumination. (b) Camera captures in foggy environment. (c¢) Tracking results under bad illumination.
(d) Tracking results under foggy environment.

In addition, a group of four tests are carried out to test the tracking feasibility in
more clutter environment with more complex pedestrian characteristics. In this test, four
pedestrians wander in the scene, each with different clothes colors. Also, the height of
pedestrians varies from 1.60 m to 1.80 m for physical characteristic variety. Since the UWB
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groundtruth collectors have a huge reduction of frame rate when work with numerous
targets, the groundtruth is not collected here. The tracking trajectories by monocular
camera, by MMW radar and by the proposed fusion strategy are given in Figure 11.

Tracks of pedestrians in clutter test 1 Tracks of pedestrians in clutter test 2
-~ Radartracks [ | e Radar tracks
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Figure 11. Pedestrian tracking performance of 4 tests by 4 tracking targets in clutter with different char-
acteristics. (a) Camera captures of the test scene. (b) Tracking trajectories for test 1. (c) Tracking
trajectories for test 2. (d) Tracking trajectories for test 3. (e) Tracking trajectories for test 4.
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5. Discussion

The noise model validation tests show that the linear fitting model is consistent with
the actual noise distribution derived from the observations. The noise variance is higher
when the pedestrian has a larger uncertainty in neural network localization inference
process. This is attributed to the representativeness of the modeled uncertainty. Described
by a confidence interval, the uncertainty has the ability to quantitively measure the detection
quality. Therefore, the localization noise can be modeled as a Gaussian distribution with
non-constant variances. And the variances can be modeled by a linear fit of the proposed
confidence interval. The proposed noise modeling method is valid according to the results.

In the single-target pedestrian tracking test scenario, missed detection has a small
probability of occurrence. OSPA of the proposed tracking strategy remains the lowest
at most of the time. The mean value of OSPA across the test time also suggests the
improvement of the proposed track-to-track fusion strategy compared to the sequential
fusion approach by [32]. One possible reason is that the track-to-track fusion can implement
sensor-specific tracking method with great flexibility and scalability. Tracks formed by each
sensor are of higher reliability than a centralized sequential fusion method.

In the multi-target pedestrian tracking test, the performance of all tracking strategies
drops due to the increased tracking difficulty. It can be seen that the radar performance
degrades when pedestrians are relatively close or even intersect. Though the radar tracking
method has reduced the number of clutter and missed detections to some extent, pedestrian
cardinality is underestimated during the test. This may be caused by the nature of radar.
When the gating SNR or radius is set too low, multiple clusters and detections can be
generated by the same object. Clutter can also have a higher probability of occurrence.
When the gating parameters are set too high, the strict confirmation process may lead to
missed detections. This is shown in Figure 8 and the radar OSPA increased dramatically
when cardinality is wrong. In contrast, the clutter and missed detections are less likely to
happen in the monocular vision detection due to the high recall and precision of neural
network. Though all targets are successfully tracked by the proposed monocular 3D
tracking method, the localization error is high compared to radar. When complementing the
tracking results from the two sensors, the fusion results reach lower OSPA. The sequential
fusion strategy is intuitive and shows some improvements. However, the tracks filtered by
each sensor can track targets more accurately. When missed detections and false alarms
are handled by the adaptive track-to-track fusion strategy, the resulting tracks have a
high accuracy in both location and cardinality estimation. According to the test results,
the proposed track-to-track fusion strategy achieves around 46%, 36% and 21% OSPA
reduction compared to the radar only, the camera only and the sequential fusion strategy.

For the camera-challenging scenarios, camera failure is detected successfully and
confirmed robustly. Afterwards, detected camera failures are adaptively handled by the
proposed fusion strategy during the test. The results show that our multi-sensor multi-
pedestrian tracking system can work in the smoky, foggy or low-illumination situations
and keep on providing reliable tracking results.

In the four pedestrian scenario, the tracking may fail when severe occlusion lasts.
From the results, some deviations of the monocular tracks are observed. This may also be
caused by detection cardinality error resulting from occlusion. The proposed method is able
to deal with short-term occlusion but not frequent and long-term occlusion. For different
pedestrian characteristics, the monocular detection accuracy is still reliable. The localization
accuracy is influenced by the target height, but at an acceptable level.

To conclude, the overall performance of the proposed radar pedestrian tracking
method shows its advantage in accuracy as well as its drawback in robustness. For the
monocular tracking method, the OSPA remains at a reasonable while not satisfying level.
The sequential fusion strategy by [32] has an improvement in terms of OSPA compared
to single sensor. But the proposed track-to-track fusion strategy reaches the best perfor-
mance and is validated in terms of both robustness and accuracy. It can also adaptively
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handle scenarios of challenging lighting conditions, smoky conditions and pedestrians
clutter situations.

6. Conclusions

In order to adaptively provide accurate and robust multi-pedestrian tracking per-
formance, a track-to-track fusion strategy is proposed in our work. The MMW radar
measurements are passed through a tracking-before-detection algorithm for pedestrian
tracking. Monocular vision images are used to form pedestrian trajectory with the help
of a 3D detection neural network and a Kalman filter whose noise modeling is improved.
The radar tracking method has advantages in accuracy but drawbacks in robustness.
The monocular 3D tracking method has reliable detections but less accurate localizations.
Compared to radar, depth information cannot be directly measured by monocular camera.
Though the adopted neural network method is able to detect pedestrian locations, its error
is hard to explain and reduce. Distortion of the camera can also introduce some extra error
with regard to the localization accuracy since the error in camera intrinsic parameter is
hard to calibrate and changes with time. By complementing the two sensors, pedestrian
tracking performance is improved compared to single sensor tracking or a state-of-the-art
sequential fusion tracking. The proposed track-to-track fusion strategy is tested under
various scenarios, including visual degradation situations with smoke and low-light en-
vironment. Results show that our camera-radar tracking system can work against these
challenging interference with the proposed adaptive fusion strategy. Future work will be its
implementation on an embedded system with real-time performance. A balance between
high accuracy and high frame rate is to be sought.
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Abbreviations

The following abbreviations are used in this manuscript:

LiDAR Light Detection and Ranging

GNN Global Nearest Neighbour

JPDA Joint Probabilistic Data Association

MHT Multiple Hypothesis Tracking

MMW Millimeter Wave

PHD Probability Hypothesis Density

GM-PHD  Gaussian Mixture Probability Hypothesis Density
CNN Convolutional Neural Network

ROI Region of Interest

EKF Extended Kalman filter

UKF Unscented Kalman filter

HOG Histograms of Gradients

OSPA Optimal Sub-Pattern Assignment

GOSPA Generalized Optimal Sub-Pattern Assignment
MOTP Multiple Object Tracking Precision

MOTA Multiple Object Tracking Accuracy



Remote Sens. 2022, 14, 1837 25 of 27

MIMO Multiple-input multiple-output
FMCW Frequency Modulated Continuous Wave

IF Intermediate Frequency
SNR Signal-to-noise ratio
CFAR Constant False Alarm Rate
BEV Bird’s Eye View
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