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Adaptive Multi-view and Temporal Fusing
Transformer for 3D Human Pose Estimation
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Abstract—This paper proposes a unified framework dubbed Multi-view and Temporal Fusing Transformer (MTF-Transformer) to
adaptively handle varying view numbers and video length without camera calibration in 3D Human Pose Estimation (HPE). It consists
of Feature Extractor, Multi-view Fusing Transformer (MFT), and Temporal Fusing Transformer (TFT). Feature Extractor estimates 2D
pose from each image and fuses the prediction according to the confidence. It provides pose-focused feature embedding and makes
subsequent modules computationally lightweight. MFT fuses the features of a varying number of views with a novel Relative-Attention
block. It adaptively measures the implicit relative relationship between each pair of views and reconstructs more informative features.
TFT aggregates the features of the whole sequence and predicts 3D pose via a transformer. It adaptively deals with the video of
arbitrary length and fully unitizes the temporal information. The migration of transformers enables our model to learn spatial geometry

better and preserve robustness for varying application scenarios. We report quantitative and qualitative results on the Human3.6M,
TotalCapture, and KTH Multiview Football Il. Compared with state-of-the-art methods with camera parameters, MTF-Transformer
obtains competitive results and generalizes well to dynamic capture with an arbitrary number of unseen views.

Index Terms—3D human pose estimation, Multi-view Fusing Transformer, Temporal Fusing Transformer.

1 INTRODUCTION

HREE-dimensional human pose estimation (HPE) aims to
T predict 3D human pose information from images or videos,
in which skeleton joint location is the primary output result to
carry pose information. It plays a fundamental role in many
applications, such as action recognition [1], [2], [3], human body
reconstruction [4], [5], and robotics manipulation [6], [7].

With the emergence of deep learning, 3D HPE has made
considerable progress. Especially, 2D-to-3D [8], [9], [10], [11]
methods have superior performance owing to intermediate 2D
supervision [12]. In practice, the 2D-to-3D pipeline involves sev-
eral variable factors deriving from different application scenarios,
including the number of views, the length of the video sequence,
and whether using camera calibration.

In the monocular scene, most works [8], [13], [14], [15] esti-
mate body structure from a static image with elaborate networks
such as Convolutional Neural Networks and Graph Convolutional
Networks. This scheme is convenient since a single image is easy
to obtain and process. Nevertheless, the information in a single im-
age is insufficient considering the occlusion and depth ambiguity.
For compensation, some works [16], [17], [18], [19], [20] utilize
temporal information from video sequences. Sequential variation
in the video is conducive to revealing the human body’s structure.
However, continuous images contain more homogeneous informa-
tion rather than complementary clues. In a word, monocular 3D
HPE is convenient to implement, but recovering 3D structure from
2D images is always an ill-posed problem.

o  The authors are with Engineering Research Center of Digital Forensics,
Ministry of Education, School of Computer and Software, Nanjing Univer-
sity of Information Science and Technology, Nanjing, 210044, China. (E-
mail: huishuail 3@nuist.edu.cn, llwu@nuist.edu.cn, gsliu@nuist.edu.cn)

®  Hui Shuai and Lele Wu equally contributed on the work. Qingshan Liu is
the corresponding author. Code is available in https://github.com/lelexx/
MTF-Transformer.

Manuscript received 03 Nov. 2021; revised 18 Apr. 2022 and 19 Jun. 2022;
accepted 29 Jun. 2022

Recently, prevalent works [21], [22], [23], [24], [25] tend to
utilize multi-view geometric constraints. Most existing multi-view
methods aggregate information from different views via projective
geometry, depending on calibrated camera parameters. Camera
parameters incorporate solid prior knowledge into the network
but are difficult to calibrate accurately in dynamic capture. To this
end, some works [26] attempt to fuse multi-view features without
calibration, but they have strict requirements on camera configu-
ration and the number of views. In addition, massive computation
in the geometric space hinders multi-view methods to deal with
video sequences. Overall, most existing multi-view methods are
more accurate than monocular methods, but camera calibration
and computation overhead limit their application scenarios.

Each method, as mentioned above, targets one or a few partic-
ular combinations of those variable factors and is not compatible
with others, limiting the flexibility of the 3D HPE algorithm. Thus,
developing a unified framework that can adaptively handle all the
factors is essential. The main obstacles are that (1) Most deep
learning modules, such as fully connected layers, long and short-
term memory (LSTM), and GCN, are not friendly to variable-
length input. Moreover, these modules still have generalization
problems even with careful adjustments to handle variable-length
input. (2) Most methods rely on camera calibration to deal
with multi-view information, but precise camera parameters are
unrealistic to calibrate synchronously in dynamic capture. (3)
Some methods are too computationally expensive to deal with
multi-view videos. Accordingly, a unified framework needs to be
compatible with monocular to multi-view, single-image to videos
3D HPE: (1) It should effectively integrate an arbitrary number
of multi-view features in uncalibrated scenarios. (2) It should
adaptively fuse temporal features in the variable-length videos and
be compatible with a single image. (3) It should be lightweight
enough and have generalization capability.

To satisfy these requirements, we propose a unified framework
to deal with variable multi-view sequences without calibration,
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named Multi-view and Temporal Fusing Transformer (MTF-
Transformer) because the transformer can perceive the global
relationship of a varying number of tokens and aggregate them
adaptively [27]. MTF-Transformer consists of Feature Extractor,
Multi-view Fusion Transformer (MFT), and Temporal Fusion
Transformer (TFT). In the Feature Extractor, a pre-trained 2D
detector predicts the 2D pose of each frame first. Then, coordinates
and confidence are encoded into a vector via a feature embedding
module, discarding the image features. It makes subsequent mod-
ules lightweight and focuses on lifting the 2D pose into the 3D
pose. MFT is designed to fuse the features of multiple views into
more informative ones. It integrates the relationship between the
views into the procedure that calculates the key, query, and value
in the Relative-Attention block, avoiding camera calibration. In
TFT, we employ a conventional transformer to capture temporal
information. It is worth mentioning that, to make the MTF-
Transformer adaptive to the input of an arbitrary number of views
and length of sequences, we design a random mask mechanism in
both MFT and TFT, referring to the dropout mechanism [28].

We evaluate our method on Human3.6M [29], TotalCap-
ture [30], and KTH Multiview Football II [31] quantitatively
and qualitatively. We also conduct detailed ablation study exper-
iments to verify the effectiveness of each module. Experiment
results demonstrate that MTF-Transformer outperforms camera
parameter-free methods. Besides, MTF-Transformer can be di-
rectly applied to the scenarios with different configurations from
the training stage, bridging the generalization gap significantly. In
short, our contributions are:

e We proposed a unified framework (MTF-Transformer) for
3D HPE. It is adaptive to scenarios with videos of arbitrary
length and from arbitrary views without retraining.

e We design a novel Multi-view Fusing Transformer (MFT),
where the relationship between views is integrated into the
Relative-Attention block. MFT reconstructs the features
from multiple views according to the estimated implicit
relationship, avoiding the need for camera calibration.

e We introduce the random mask mechanism into MFT and
Temporal Fusing Transformer (TFT) to make them robust
to variable view number and video length.

e Not only does our model outperform camera parameter-
free models in precision, but it also has a better general-
ization capability to handle diverse application scenarios.

2 RELATED WORK

This section firstly summarizes 3D human pose estimation works,
including monocular and multi-view methods. Then, we review
the transformer technology and introduce the methods that apply
the transformer in 3D human pose estimation and some other
related tasks.

2.1 3D Human Pose Estimation

Fundamentally, 3D HPE is to reconstruct the 3D body structure
from 2D data. It is an ill-posed inverse task as one 2D image
corresponds to many possible 3D poses, further amplified by
occlusions, background clutters, etc. Thus, utilizing all kinds
of clues, such as the mutual constraint between the joints in
the image, the complementary information in videos, and the
spatial geometric relationship from multiple viewpoints, to piece
together the most likely 3D pose is the rationale for 3D HPE.

2

According to the different clues, 3D HPE methods are divided
into categories and developed into several frameworks that handle
specific application scenarios.

2.1.1 Monocular 3D Human Pose Estimation

With the pattern self-organizing and non-linear mapping capacity
of deep neural networks, many approaches [8], [32], [33], [34],
[35], [36], [37], [38] directly map pixel intensities to 3D poses
from a single image. It forces DNNs to remember the pattern and
infer the 3D pose. These networks are difficult to learn and rely
on tremendous labeled samples, resulting in unsatisfactory perfor-
mance and generalization capability. Therefore, prior constraints
between joints are utilized to determine the special pose. Fang [5]
et al. incorporate kinematics, symmetry, and motor coordination
grammar in 3D pose estimation. Some works employ GCN to
model the constraints between the joints [15], [39]. These methods
are devoted to digging into the image’s potential information,
but such a manner is insufficient to solve an ill-posed problem.
To solve the ambiguity of a single image, more works [17],
[40], [41], [42], [43] pay attention to temporal consistency in the
video. For example, Pavllo et al. [16] transform a sequence of 2D
poses through temporal convolutions. Cai et al. propose a graph-
based method to incorporate spatial dependencies and temporal
consistences [17]. Wang et al. [40] employ a novel objective func-
tion to involve motion modeling in learning explicitly. Temporal
information compensates for the incompleteness of 3D geometry,
improving the performance of 3D HPE. In general, monocular
methods are easy to implement as there is no need for camera
calibration. However, to piece up the 3D structure from 2D images,
it is evident that the clues from multiple viewpoints are better
alternatives.

2.1.2 Multi-view 3D Human Pose Estimation

To tackle the occlusion and depth ambiguity, multi-view
methods [21], [22], [24], [44], [45] exploit geometric information
from multiple views to infer 3D pose. Most utilize intrinsic and
extrinsic camera parameters to fuse 2D features from different
views. For example, He et al. [21] aggregate features on epipolar
lines between different views, depending on camera parameters
in specific camera configurations. Iskakov et al. [22] utilize
volumetric grids to fuse features from different views with
camera parameters and regress root-centered 3D pose through
a learnable 3D CNN. Despite predicting 3D poses reliably,
volumetric approaches are computationally demanding. These
methods require precise camera parameters but can not generalize
to scenarios with new camera configurations, not to mention the
dynamic capture. Huang et al. [26] propose a new vision-IMU
data fusion technique to avoid strict requirements on camera
configuration and the number of views. FLEX [40] introduce
to predict joint angles and bone lengths invariant to the camera
position rather than directly 3D positions, so calibration is
obviated. Nevertheless, it is complicated, and its performance
degenerates with only a few views. Multi-view pose estimation
methods are more accurate due to adequate feature fusing
via projective geometry. However, another side of the coin is
that these methods rely on the restricted camera configuration
explicitly or implicitly, limiting their application scene.

Monocular and multi-view methods exploit the clues from
different aspects and fit particular application scenarios. Unlike
these methods, we attempt to fuse all the clues adaptively in
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Fig. 1. The architecture of MTF-Transformer. It consists of three successive modules: Feature Extractor, Multi-view Fusing Transformer (MFT), and
Temporal Fusing Transformer (TFT). Feature Extractor predicts 2D pose (P>p and Csp) first and then encodes 2D pose into a feature vector for
each frame. MFT measures the implicit relationship between each pair of views to reconstruct the feature adaptively. TFT aggregates the temporal
information of the whole sequence and predicts the 3D pose of the center frame.

a unified network that can predict robust 3D poses in all the
application scenarios. So, the critical component is to find a
mechanism that organically integrates the information from
different aspects.

2.2 Transformer in 3D Pose Estimation

Transformer and self-attention have tremendously succeeded in
Natural Language Processing and Computer Vision [47]. The self-
attention module can adaptively capture long-range dependencies
and global correlations from the data. In 3D pose estimation,
the core is to integrate the information from spatial 2D joints,
temporal sequence, and multiple viewpoints. Thus, the transformer
is suitable for handling these aspects of information, and some
works utilizing the transformer models have recently emerged.

Following the line of lifting 2D to 3D, some monocular
methods improve the performance by introducing the transformer.
Among them, METRO [48] employs a multi-layer transformer
architecture with progressive dimensionality reduction to regress
the 3D coordinates of the joints and vertices. PoseGTAC [49]
proposes graph atrous convolution and graph transformer layer
to extract local multi-scale and global long-range information,
respectively. More works handle spatial-temporal clues with the
transformer to alleviate occlusion and depth ambiguity in a single
image. For example, LiftFormer [50] estimates 3D pose from a
sequence of 2D keypoints with self-attention on long-term infor-
mation. MHFormer [5 1] proposes a Multi-Hypothesis Transformer
(MHFormer) to learn spatio-temporal representations of multiple
plausible pose hypotheses and aggregates the multi-hypothesis
into the final 3D pose. Strided Transformer [52] incorporates the
strided convolution into the transformer to aggregate long-range
information in a hierarchical architecture at low computation.
PoseFormer [20] proposes a purely transformer-based approach
to model the spatial relationships between 2D joints and temporal
information in videos. Naturally, the transformer is also used to
aggregate the multi-view clues, but it usually works with epipolar
geometric while camera parameters are essential prerequisites.
Epipolar transformer [21] leverages the transformer to find the
point-point correspondence in the epipolar line. TransFusion [25]
further proposes the concept of epipolar field to encode 3D
positional information into the transformer.

This tendency demonstrates the potential of the transformer for
feature fusing in 3D pose estimation. Moreover, the transformer is
inherently adaptive to a variable number of input tokens. Thus, our
concerns focus on generalization capability and calibration avoid-
ance. Fortunately, the transformer generalizes well to the config-
urations different from the training phase in some other tasks.
For example, Pooling-based Vision Transformer [53] improves
model capability and generalization performance via designing a
pooling layer in ViT. Neural Human Performer [54] synthesizes
a free-viewpoint video of an arbitrary human performance, and
it generalizes to unseen motions and characters at test time. It
adaptively aggregates multi-time and multi-view information with
temporal and multi-view transformer. However, Neural Human
Performer fuses the multi-view features that are pixel-wisely
matched by a parametric 3D body model (SMPL). Such pixel-
pixel correspondence between multiple viewpoints is stronger
than pixel-epipolar correspondence. So, fusing multi-view features
without camera calibration remains an open problem for us.

3 METHOD

The purpose of our framework is to adaptively handle features
from an arbitrary number of views and arbitrary sequence length
without camera calibration. As shown in Fig. 1, the basic idea is
to embed 2D detections into vectors first, then fuse multi-view
features, and finally aggregate temporal clues to predict 3D joints.
This framework consists of Feature Extractor, Multi-view Fusing
Transformer (MFT), and Temporal Fusing Transformer (TFT).

3.1 Feature Extractor

Feature Extractor uses a pre-trained 2D pose detector (e.g.,
CPN [55]) to obtain 2D predictions and then maps them into 1D
feature vectors through a feature embedding module.

Taking multi-view sequences Z = {I; fvleT with N views
and T frames as input, each frame is an image I € R *H*3_Ag
the following operations are conducted on each frame, we omit N
and T for simplicity here. For each frame, Feature Extractor first

uses a pre-trained 2D pose detector D;p to infer the 2D prediction:

Z =Dy (I) (D
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Fig. 2. The feature embedding module encodes the 2D prediction into a
feature vector. It splits the 2D prediction into five partitions and then uses
five branches to extract features. Finally, the features of five partitions
are concatenated and mapped to a global feature f.

where Z = {Pp,Cop}, Pop = {p; }‘jjzl represents J co-
ordinates of the 2D pose and Cop = {c;}7_; represents the
confidence of these coordinates. Then a feature embedding module
encodes the predicted 2D pose into a feature vector (as shown in
Fig. 2). The movements of the limbs and head are relatively inde-
pendent, so we divide the human body joints into five partitions
and deal with them in five parallel branches. The five partitions
are the head, left and right arms, and left and right legs:

PY, = {py|k € 87} )
Cyp = {ck|k € S9} 3)

where g refers to the g-th partition, g € {1,2,3,4,5}, P¥,, C5p
are subset of Pop, Cop, SY C {1,2,..., J} represents the index
set belongs to the g-th partition. For matrix multiplication, PgD,
CgD are reshaped into vectors that pgD € R?’, ch eR”.

Since the 2D pose inferred from the pre-trained detector is un-
reliable due to motion blur and occlusion, simply fusing them may
lead to unstable performance. Previous works, such as FLEX [46],
directly concatenate the 2D pose and confidence values together
for aggregation but they ignore the effects of unreliable inputs on
the features as the pose changes. In order to alleviate this issue,
we utilize the confidence to modulate coordinates. Specifically,
Confidence Attentive Aggregation (CAA) extracts local feature
F9 € RC/2 for each part, C' is the dimension of the output of
Feature Extractor. It can be formulated as:

7 =72 (%) 4)
a’ = F¢ (chp) )

fngges(fg+ag'pgn) (6)

where FJ is a fully connected layer to map 2D coordinates P to
initial feature vectors f7 € RC/2, F9 is another fully connected
layer to learn a attention matrix a9 € R(C/2*277 from the
confidence ¢3,. The third fully connected layer F2,, aggregates
initial feature vectors f_g with 2D coordinates pgD modulated by
attention matrix ad. It consists of two res-blocks [8].

We further concatenate features of five partitions together and
map them into a global feature f € R®. This procedure can be
described as:

£ = Forrini (Concat (£, £.£°, £, £°))

4

where Fiprink is another fully connected layer. It maps features
from five branches to the global feature of each frame. For the
input multi-view sequence Z with N x T frames, Feature Extractor
extracts the feature X € RN T for the subsequent pipeline.

3.2 Multi-view Fusing Transformer

We target to measure the relationship between the features from
an arbitrary number of views and fuse these features adaptively.
Transformer models are characterized by the ability to model
dependencies in the input tokens regardless of their distance and
enable immediate aggregation of global information [27]. Thus,
the transformer is a candidate to complete this task. Nevertheless,
the conventional transformer does not meet our requirements in
position encoding, and Point Transformer [56] has limitations in
manipulating the value item. So, we design a Relative-Attention
that measures the relative relationship between multiple view-
points and employs a more elaborate value transform procedure.

3.2.1 Revisit Transformer and Self-attention

The transformer is a family of models consisting of the self-
attention block, appending the position encoding, and the mask
block. The position encoding provides a unique coding for each
input token. The mask block truncates some nonexistent connec-
tions based on prior knowledge. Self-attention operator transforms
the input feature vectors X = {z;} Y, into output feature vectors
Y = {y,}},, one output feature vector y, is a weighted sum of
all the input feature vectors. Typically, self-attention operators can
be classified into scalar attention and vector attention [56].

The scalar dot-product attention can be formulated as follows:

vi= Y rle@) v@)+d)al)  ®

x;eX

where ¢, ¥, and « are pointwise feature transformations, such
as linear projections or MLPs, ¢ (x;), ¢ (;), and « (x;) are
called query, key, and value. § is a position encoding function and
p is a normalization function such as softmax (mask block is
optional). The scalar attention layer computes the scalar product
between features transformed by ¢ and ¢, and uses the output as
an attention weight for aggregating features transformed by .

Differently, in the vector attention, attention weights are vec-
tors that can modulate individual feature channels:

yi= > p(v(Ble(m),v(x)+0) 0alz;) O

x;EX

where [ is a relation function (e.g., subtraction) and <y is a
mapping function (e.g., an MLP) that produces attention vectors
for feature aggregation, © is element-wise product.

Nevertheless, scalar attention and vector attention do not
perfectly satisfy our requirements. First, they both employ position
encoding to indicate the absolute position of the input token, but
we only need a relative relationship. Second, the value is only a
derivative of & ;, but we hope it can reflect the relative relationship
between x; and x; as well. Point Transformer [56] proposes
a relative position encoding and adds the position encoding to
the value item, alleviating the above two issues. However, its
relative position encoding is additive. The addition represents the
translation operation in the vector space, but we need a more
flexible operation to manipulate the features from different views.
Moreover, if we directly use Point Transformer in our task, we
have to concatenate all the 2D joints and converse it into the
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position encoding. This procedure results in more parameters.
More parameters but less flexibility often lead to the generalization
problem, and this problem is verified in TABLE 6.

3.2.2 Multi-view Fusing Transformer

To bridge the gap between our purpose and existing transformer
models, we propose the Multi-view Fusing Transformer (MFT).
As shown in Fig. 3, taking X € RE*NXT a5 input, MFT
considers it as tokens of X = {;}}¥,, from the perspective of
view. The dimension of 7" is omitted here as MFT equally operates
in each time slice. In addition, different body parts go through
a similar transformation between multiple viewpoints even after
feature transformation. Inspired by Squeeze Reasoning [57] that
related components distribute in different groups along channels
sparsely, we divide the dimension of C' into K groups, and
the same transform matrix manipulates each group. So, we get
x; € RP*K (C = D x K. The output of MFT is X':

X' =RA(X)+X (10)
RA is Relative-Attention. In Relative-Attention, the input X tripli-
cates the role of query, key, and value, the outputis Y = {y; f\il

Aij =y R(zs,z;)) (11)
T-j =a(R (wz,wj)) (12)
= > r(Ay) © (Tiz;) (13)

x]EX

where 3 (x;, ;) measures the relationship between each pair of
view {x;, z; }, v and a further transform R (z;, ;) into attention
matrix A;; € RP*K and transform matrix T,; € RPXD yia
fully connected layers, p consists of a block mask module and a
softmax operation. The block mask module randomly sets all the
values of A;; to —inf at the rate of M, except the condition
that ¢ = j. Those values turn into zero after softmax. This
mechanism ensures the MFT generalizes well to the scenario
with an arbitrary number of views. For further regularizatis)n, we
penalize the difference between the inferred T;; and T,; that
derived from rotation matrix R;; between two viewpoints. R;; is
the rotation matrix calculated from the 3D pose of ¢-th and j-th
viewpoints via SVD. Then, it is flattened, transformed with MLP
1), and reshaped as T';;.

’

Tij = (Ri;) (14)
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T F ! svD t-w__ __pt e T
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Fig. 4. The architecture of relative relation encoding module

In the testing phase, this branch related to T;j is discarded. It is
interesting to note that our framework is also compatible with the
scenario with camera parameters. When utilizing camera extrinsic,
we let T;j take the place of T';; in both the training and testing
phase. In this circumstance, R;; is the rotation matrix of extrinsic
parameters. The architecture of R (x;, «;) is shown in Fig. 4,
formulated as:

hij = Fp(pip — Plp) + Fi (z:) + Fj (x;)
R (xi,xj) = Fij (hij) + hj

15)
(16)

where péD and p%D are flatten 2D poses from the 2D detector.
We add the offset between viewpoints to enhance the geometric
awareness of the relative-attention module. F,, F;, F; and F;;
are fully connected layers.

The Relative-Attention is a vector product-like operation. The
difference between them is that (1) the explicit position encoding
is discarded in query and value items, and (2) the relative rela-
tionship is also integrated into the value item in the form of a
transform matrix. In brief, MFT reconstructs the feature of each
view according to the relationship between them, formulated as:
X — X/,X/ c RC’XNXT.

3.3 Temporal Fusing Transformer

Add & Norm

P3D

]

Temporal Fusing
Transformer

X xr

Feed Forward

- >

Add & Norm

Position

Encoding {
X

Multi-Head
attention

Fig. 5. The architecture of Temporal Fusing Transformer. It predicts the
3D pose of the middle frame.

The Temporal Fusing Transformer (TFT) is shown in Fig. 5, it
takes X' as input and predicts the 3D pose of J joint points Psp €
R3*XN in static scenes or dynamic scenes. Specifically, TFT
utilizes a Transformer Encoder block [27] of two encoder layers to
get the 3D pose of the middle frame. As the temporal sequence has
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TABLE 1
Quantitative results on Human3.6M. MTF-Transformer and MTF-Transformer+ are trained with 27 frames, where T is the length of the sequence
for testing. We employ CPN [55] as the 2D detector, and * means no 2D detector.

‘ Dir. Disc. [Eat. Greet Phone Photo Pose Purch. Sit. SitD. Smoke Wait WalkD. Walk WalkT. ‘ Avg
Monocular methods
Pavllo et al. [16] (CPN, T =243) | 452 467 433 456 481 551 446 443 573 658 47.1 44.0 49.0 328 33.9 46.8
Chen et al. [58] (CPN, T =1) | 438 486 49.1 4938 57.6 61.5 459 483 620 734 54.8 50.6 56.0 43.4 455 52.7
Liu et al. [59] (CPN, T =243) | 41.8 448 41.1 449 474 541 434 422 562 63.6 453 435 453 313 322 | 451
Wang et al. [18] (CPN, T =96) | 40.2 425 42,6 41.1 46.7 56.7 414 423 56.2 604 46.3 422 46.2 31.7 31.0 44.5
Zeng et al. [60] (CPN, T =243) | 46.6 47.1 439 41,6 458 49.6 465 400 534 611 46.1 42.6 43.1 315 326 | 44.8
Cheng et al. [61] (CPN, T =128) | 383 413 46.1 40.1 41.6 519 418 409 515 584 422 446 41.7 337 30.1 429
Multi-view methods with camera parameters
Pavlakos et al. [62] *T=1 412 492 428 434 55.6 469 403 637 976 119 52.1 42.7 519 41.8 394 | 569
Qiu et al. [24] *T=1 240 267 232 243 24.8 228 241 286 321 269 310 256 25.0 28.0 244 | 262
Iskakov et al. [22] *T=1 199 200 189 185 20.5 194 184 221 225 287 212 208 19.7 22.1 20.2 20.8
He et al.(IMU) [21] *T=1 257 277 237 248 26.9 314 249 265 288 317 282 264 23.6 283 235 26.9
Zhang et al. [23] *T=1 178 195 176 207 19.3 168 189 202 257 20.1 192 205 17.2 20.5 17.3 19.5
Zhang et al. [63] T=1) — — — — — — — — — — — — — — — 21.7
Remeli et al. [64] *T=1 273 321 250 265 29.3 354 288 316 364 317 312 299 26.9 33.7 30.4 30.2
MTE-Transformer+ (CPN, T =1) |238 260 239 250 282 297 236 255 301 373 266 245 274 23.1 234 | 265
MTF-Transformer+ (CPN, 7' =27) | 234 252 23.1 244 27.4 28.5 22.8 252 28.7 36.2 259 23.6 26.6 22.6 22.7 25.8
Multi-view methods without camera parameters
Huang et al. [26] o, T =1) 26.8 320 256 521 333 423 258 259 405 766 39.1 54.5 359 25.1 242 375
FLEX [46] ([22, T=27) | 231 288 268 28.1 31.6 37.1 257 314 365 396 350 295 35.6 26.8 26.4 30.9
FLEX [46] (CPN, T' = 27) — — — — — — — — — — — — — — — 31.7
MTE-Transformer (CPN, T =1) |242 264 261 256 29.4 29.7  25.1 254 324 374 27.1 254 29.5 23.8 244 | 2715
MTF-Transformer (CPN, T =27) | 231 254 247 245 279 283 239 246 307 357 258 242 28.4 22.8 23.1 26.2
MTF-Transformer (CPN, T :.27) 246 254 248 246 28.7 291 239 256 314 362 266 247 28.9 23.7 23.6 | 26.6
no added view

FLEX [46] (GT, T =27) — — — — — — — — — — — — — — — 229
MTEF-Transformer (GT, T =27) 155 17.1 137 155 14.0 162 158 165 158 16.1 14.5 14.5 16.9 14.3 13.7 15.3

a direction and the order of frames matters, the position encoding
is employed here. In addition, TFT masks some frames during the
training stage to be compatible with a single image in static scenes
and multi-view videos in dynamic scenes. For example, when the
input video sequence has 7 frames, the left and right frames are
masked evenly.

3.4 Loss Function

The loss Function consists of two components. We employ the
mean per joint position error (MPJPE) as the training loss and the
testing metric. MPJPE first aligns the root joint (central hip) of
predicted skeleton S = {p;}/_, and the ground truth skeleton
S9 = {p?*}/_ |, and then calculates the average Euclidean
distance between each joints of them. MPJPE is computed as:

J
1
— gt
Lu(S) = 7 > llpi = pf' 2 (17
i=1

Besides, we utilize the rotation matrix between each pair of views
to constrain the transform matrix T';;, an extra transform error is
also used as:

ij

decay as in [16] and use Adam Optimizer for all modules. Besides,
we set the channel C' to 600 and the ) in the loss function to 0.5
and train the model with 60 epochs.

4 EXPERIMENTS

In this section, we first report quantitative and qualitative results
of MTF-Transformer on three datasets. Then, we conduct ablation
studies to verify the effectiveness of our design in all modules.
Considering the clarity and brevity of this section, we place some
ablation studies on the hyper-parameters in the appendix part.

4.1 Datasets

We evaluate MTF-Transformer on three datasets, including:

Human3.6M (H36M) [29] is a large publicly available 3D human
pose benchmark for both monocular and multi-view setups. It
consists of 3.6 million image frames from 4 synchronized 50Hz
digital cameras, and the corresponding 2D pose and 3D pose are
captured by the MoCap system in a constrained indoor studio

L, =|T; — T;j”1 (18) environment. Each actor performs 15 everyday activities such

as walking, discussing, etc. Following previous works [8], [65],

The total loss function is: [66], we use 5 subjects (S1, S5, S6, S7, S8) for training and 2
L=Ly+ )L, (19) subjects (S9, S11) for testing, and report MPJPE [16], [17], [43]

3.5

MTF-Transformer is an end-to-end method implemented with
Pytorch. We employ a pretrained 2D detector with frozen weights
in the training stage. During the training phase, batch size, learning
rate, learning decay, and dropout rate are set to 720, 1e=3, 0.95,
0.1, respectively. Note that learning decay is executed after the
end of every epoch. We adopt the same strategy for BN momentum

Implementation Details

as the evaluation metric. We simulate an additional virtual view
when training MTF-Transformer to enhance its flexibility. The 2D
pose in the virtual view is synthesized via random rotation and
projection, following Cheng et al. [01]. To verify the effectiveness
of the virtual view, we also report the result of MTF-Transformer
trained with no added view.

TotalCapture [30] is captured from 8 calibrated full HD video
cameras recording at 60Hz. It features five subjects. Each subject
performs four diverse performances 3 times, involving ROM,
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TABLE 2
Quantitative results on TotalCapture. We employ HRNet-W32(D1), ResNet50(D2), ResNet101(D3) as 2D pose detector. MTF-Transformer and
MTF-Transformer+ are trained with 27 frames, where T is the length of the sequence for testing.
Seen Cameras(1,3,5,7) Unseen Cameras(2,4,6,8)
Methods Seen Subjects(S1, S2, S3) | Unseen Subjects(S4, S5) Mean Subjects(S1, S2) Unseen Subjects(S4, S5) Mean
W2 FS3 A3 w2 FS3 A3 w2 FS3 A3 w2 FS3 A3
Multi-view methods with camera parameters
Qiu et al. [24] 19.0 28.0 21.0 320 540 33.0 29.0 _ — — | — — — o
Remeli et al. [64] 10.6 304 16.3 270 650 342 27.5 22.4 47.1 27.8 39.1 75.7 43.1 38.2
MTEF-Transformer+(D1,7" = 1) 123 283 18.5 272 49.1 334 26.0 16.2 314 20.2 29.3 51.1 36.3 28.6
MTF-Transformer+(D1, 7 = 27) | 11.5 274 17.8 27.0 485 333 25.4 15.6 30.5 19.4 29.2 50.6 36.2 28.1
MTE-Transformer+(D2,7" = 1) 11.8 283 18.0 274 502 337 26.0 15.6 31.3 19.7 29.7 533 35.0 28.5
MTF-Transformer+(D2, 7" = 27) | 11.2 275 17.3 274 493 33.7 25.4 15.2 30.7 18.9 29.6 52.5 35.2 28.1
MTE-Transformer+(D3,7" = 1) 114 275 17.3 275 502 34.1 25.7 14.5 30.0 18.8 29.4 50.1 35.5 27.5
MTF-Transformer+(D3, 7" = 27) | 10.7  26.5 16.7 274 494 34.1 25.1 13.9 29.2 18.1 29.2 49.5 35.6 27.0
Multi-view methods without camera parameters

FLEX [40] (D1,T=27) 383 80.8 39.7 40.0 1312 57.7 50.2 107.3  149.6 103.1 | 116.7 1902 106.8 | 120.2
FLEX [40] (D2,T=27) 345 783 36.4 393 1283 59.4 48.2 1064 1417 103.7 | 1148 1773 1223 | 119.7
FLEX [40] (D3,T=27) 332  81.0 34.2 383 1238 59.5 494 109.3  152.1 1053 | 1143 1755 1225 | 1254
MTF-Transformer(D1,7" = 1) 1.1 30.0 16.3 260 534 329 259 26.3 44.7 30.2 37.6 66.3 439 39.3
MTE-Transformer(D1,T" = 27) 9.8 278 14.9 258 51.6 32.7 24.6 25.7 434 29.4 37.4 64.7 44.1 38.6
MTF-Transformer(D2,7" = 1) 109 29.8 16.2 269 542 335 26.1 26.3 453 29.9 38.4 66.5 434 39.5
MTEF-Transformer(D2,T = 27) 9.7 278 14.9 266 524 333 249 25.8 44.0 29.2 38.2 65.0 43.6 38.8
MTF-Transformer(D3,7" = 1) 105 284 15.6 269 547 33.8 25.7 24.2 414 28.1 37.1 63.0 424 37.2
MTEF-Transformer(D3,T = 27) 93 26.5 14.5 26.7  53.1 33.8 24.7 23.7 40.3 274 37.0 61.8 429 36.6

Walking, Acting, and Freestyle. Accurate 3D human joint loca-
tions are obtained from a marker-based motion capture system.
Following previous work, the training set consists of “ROM1,2,3”,
“Walking1,3”, “Freestylel,2”, “Actingl,2”, on subjects 1,2,
and 3. The test set consists of “Walking2 (W2)”, “Freestyle3
(FS3)”, and “Acting3 (A3)” on subjects 1, 2, 3, 4, and 5. The
number following each action indicates the video from which the
action is. For example, Freestyle has three videos of the same
action, of which 1 and 2 are used for training and 3 for testing.
Camera 1,3,5,7 is used in both the training and testing set, but
camera 2,4,6,8 only appear in the testing set. That is to say. The
testing set has some unseen camera configuration.
KTH Multiview Football II [31] consists of 8000+ images of
professional footballers during a match in the Allsvenskan league.
It is filmed by moving cameras and contains 14 joints(top-head,
neck, shoulders, hips, knees, feet, elbows, and hands). To match
the topology of H36M, we create the root (pelvis) by averaging
the hips, the nose by averaging the neck and top-head, and the
spine by averaging the root and the neck.

4.2 Quantitative Evaluation

We report the quantitative results of MTF-Transformer on
Human3.6M and TotalCapture. MTF-Transformer and MTF-
Transformer+ represent the vanilla MTF-Transformer and the
MTF-Transformer utilizing camera parameters, respectively. In
MTF-Transformer+, we directly use the transform matrix T;j
calculated from rotate matrix R;; between 3D ground truth.

Human3.6M: The quantitative results of MTF-Transformer and
competitive methods are shown in TABLE 1. When CPN is
used as a 2D pose detector, MTF-Transformer outperforms all
the monocular methods, and it decreases the MPJPE by 1.3
when increasing the length of sequence from 1 to 27, indicating
that multi-view and temporal information benefits for 3D pose
estimation. When we employ Ground Truth as 2D pose input, both
[46] and MTF-Transformer obtain significant improvement, indi-
cating that 2D pose plays an essential role in 2D-to-3D methods.

Compared to multi-view methods with camera calibration, MTF-
Transformer is superior to [62], [64], and [21] but inferior to
others. It shows that MTF-Transformer is competitive, but camera
calibration still has an obvious advantage. Compared to Multi-
view methods without calibration, MTF-Transformer achieves the
best performance and demonstrates its superiority. Considering the
difficulty of calibrating the camera in real-time, MTF-Transformer
is a satisfactory attempt. Besides, when we extend to MTF-
Transformer+, we further improve the result. MTF-Transformer+
is inferior to some calibration-need methods. Considering that our
focus is on fusing multi-view features without calibration and
those superior methods utilize extra sensors or 2D image features,
the performance of the MTF-Transformer+ is acceptable.
TotalCapture: The quantitative results of MTF-Transformer and
competitive methods are shown in TABLE 2. MTF-Transformer
series are trained on camera 1, 3, 5, 7 of the training set, and
tested on camera 1, 3, 5, 7 (seen) and camera 2, 4, 6, 8 (unseen)
of the testing set. The testing set includes both seen subjects and
unseen subjects in the training set. From the vertical comparison,
MTF-Transformer+ outperforms [24] and [64] with arbitrary 2D
detector and the length of sequence, and MTF-Transformer has
superior result over [46]. Besides, the 2D detector has an influence
on the result, and increasing the length of the sequence improves
the performance. Moreover, MTF-Transformer with ResNet101 as
2D detector obtains better result than [24] and [64] demonstrating
the superiority of our method. From horizontal analysis, all the
methods achieve better performance on seen cameras than on
unseen cameras, on seen subjects than on unseen subjects. It
means that generalization is an important issue for 3D pose
estimation.

4.3 Qualitative Evaluation

Some results of FLEX and MTF-Transformer on Human3.6M are
shown in Fig. 6. Both FLEX and MTF-Transformer improve the
prediction as the number of views increases, but MTF-Transformer
has better results when the number of views is low. The reason is
that MTF-Transformer uses CAA to reduce the influence of 2D
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Fig. 7. Demonstration of transfer FLEX and MTF-Transformer trained on Human3.6M to KTH Multiview Football Il

detector errors and introduces Relative-Attention to improve the
fusion efficiency between multi-view features. To further verify
the generalization of MTF-Transformer under different camera
configurations, we test the model trained on Human3.6M on
more challenging KTH Multiview Football II. Some results of
generalization experiments are shown in Fig. 7. It demonstrates
that MTF-Transformer can generalize well from an indoor lab
scene to the wild environment because it stands free from camera
parameters and measures the implicit relationship between views
adaptively. Although FLEX is also parameter-free, it aggregates
the features from multiple viewpoints into one feature and then
splits it into different viewpoints. The viewpoint awareness is
twisted in the procedure by FLEX while MTF-Transformer keeps
each viewpoint’s independence.

4.4 Ablation Study

In this section, we verify the effectiveness of all modules of MTF-
Transformer on Human3.6M. We train all the models with 5 views
(4 cameras and an additional synthesized view) and test them with
different views unless otherwise stated. To eliminate the effect of
the 2D detector, we take 2D detection from CPN [55] as input.

4.4.1 Analysis on Confidence Attentive Aggregation

MTF-Transformer employs the Confidence Attentive Aggregation
(CAA) module in Feature Extractor to reduce the impact of the
unreliable 2D pose. We report the results of MTF-Transformer
with and without CAA. Besides, we also evaluate the technique
of concatenating the 2D pose and confidence values. As shown in
TABLE 3, concatenating can improve the performance, compared
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TABLE 3
Results of different procedures to fuse the 2D pose and the confidence
from 2D detector on Human3.6M.

Sequence Number of Views N Parameters
length T' 1 2 3 4 ™M)
no confidence 523 | 36.8 | 31.6 | 294 9.8
concatenate 1 522 | 36.7 | 314 | 29.2 9.9
CAA 50.7 | 35.3 | 30.1 | 28.0 10.1
no confidence 513 | 359 | 30.8 | 28.7 9.8
concatenate 3 513 | 359 | 30.7 | 28.6 9.9
CAA 498 | 345 | 294 | 273 10.1
no confidence 51.0 | 35.6 | 30.6 | 28.5 9.8
concatenate 5 509 | 35.6 | 304 | 28.3 9.9
CAA 494 | 342 | 29.2 | 27.1 10.1
no confidence 50.7 | 354 | 305 | 284 9.8
concatenate 7 50.8 | 354 | 303 | 28.2 9.9
CAA 49.2 | 34.1 | 29.1 | 27.1 10.1

TABLE 4

The results of different design of CAA

Method MPJPE
f9=f"+a’ pl, 27.121
f?=Fi, (a? - p3p) 27.499

P = Fo (F a0 ) | 27021
£9=Fo ( 7 +a -pgD) 27.056

with the circumstance without confidence. When CAA takes
the place of concatenating, MTF-Transformer can achieve better
performance at all the number of views.

We also conduct experiments to verify the design of CAA.
When we remove the res-blocks, the result of CAA is f9 = fg +
a9 - pgD; When we remove the shortcut connection, the result of
CAA is f9 = F9.. (a? - pd,); If we let f¥ takes the place of

Py, the result of CAA is f9 = F9,, (f_'g +a¥- fg). As shown
in TABLE 4, when we modulate the 2D pose and employ both
shortcut and res-blocks, CAA achieves the best performance.

4.4.2 Analysis on Multi-view Fusing Transformer

The Multi-view Fusing Transformer (MFT) measures the relation-
ship between each pair of views and reconstructs the features
according to the relationship. To validate the effectiveness of
MFT, we compare its result with other multi-view fusing methods
on Human3.6M, in the aspects of precision and generalization
capability.

In the aspect of precision, we compare MFT with conven-
tional transformer (removing absolution position encoding), point
Transformer, and MFT without transform matrix T;;. To adapt
Point Transformer to our task, we replace the 3D coordinates of
the point cloud with the flattened 2D pose from the 2D detector,
resulting in more parameters to deal with relative position encod-
ing. Results in TABLE 5 demonstrate that MFT outperforms other
methods in the vast majority of cases. Notably, the performance
of Point Transformer is only slightly inferior to MFT, reflecting
the effectiveness of relative position encoding. Besides, MFT and
MFT w/o T;; have little difference in results when only utilizing 1
view, but MFT achieves better performance when more viewpoints
participate in multi-view fusing. It means the transform matrix
T;; plays a vital role in multi-view feature fusing. In addition, we

TABLE 5
Results of different relative attention modules on Human3.6M. T is the
length of sequence

Number of Views N Parameters
Method T i 3 3 7 M)
transformer 50.8 | 38.7 | 34.0 | 319 10.4
point transformer 1 51.2 | 36.1 | 30.8 | 284 11.7
MFT w/o T';; 50.6 | 37.8 | 32.8 | 30.5 9.7
MFT 50.7 | 353 | 30.1 | 28.0 10.1
transformer 499 | 37.8 | 33.1 31.0 10.4
point transformer 3 50.2 | 352 | 30.1 | 279 11.7
MEFT w/o T;; ) 49.8 | 37.0 | 32.0 | 29.7 9.7
MFT 498 | 345 | 294 | 273 10.1
transformer 49.6 | 37.5 | 32.8 | 30.7 10.4
point transformer 5 499 | 350 | 299 | 27.7 11.7
MFT w/o T 495 | 36.6 | 31.6 | 294 9.7
MFT 494 | 342 | 29.2 | 27.1 10.1
transformer 494 | 373 | 32.6 | 30.6 10.4
point transformer 7 49.7 | 34.8 | 29.8 | 27.6 11.7
MFT w/o T';; 493 | 364 | 315 | 293 9.7
MFT 49.2 | 34.1 | 29.1 | 27.1 10.1

TABLE 6

Generalization capability of different relative attention modules. We
train all the models on Human3.6M with 2 views, test them with
different number of views.

Number of views N Parameters
Method T i ) 3 7 ™)
transformer 559 | 47.1 | 436 | 41.2 10.4
point transformer 1 58.0 | 51.8 | 499 | 48.7 11.7
no MFT 57.0 7.5
MFT 564 | 46.1 | 41.5 | 39.0 10.1
transformer 55.1 | 463 | 42.7 | 40.2 10.4
point transformer 572 | 51.2 | 494 | 483 11.7
no MFT 3 56.2 7.5
MFT 55.7 | 454 | 40.9 | 384 10.1
transformer 549 | 46.0 | 424 | 40.0 10.4
point transformer 57.0 | 509 | 49.2 | 482 11.7
no MFT 5 56.0 7.5
MFT 554 | 45.1 | 40.6 | 38.2 10.1
transformer 547 | 459 | 423 | 39.8 10.4
point transformer 56.8 | 50.8 | 49.1 | 48.0 11.7
no MFT 7 55.7 7.5
MFT 55.2 [ 45.0 [ 40.5 [ 38.0 10.1

display some results of MFT with and without T';; in Fig. 8. The
MFT with T';; can predict a more accurate 3D pose than the MFT
with T;;, especially the position of hand and foot. The reason
is that T;; can transform the feature from the source view to the
target view. Then the transformed feature is fused with an element-
wisely product. Without T';;, the feature always lies in the source
view, and the element-wise product is not effective enough for
multi-view fusing.

In the aspect of generalization capability, we compare MFT
with transformer and point Transformer. We also report the per-
formance of MTF-Transformer without MFT. As MFT has the
input and output of the same shape, removing MFT does not affect
subsequent modules. We train these models on two views (camera
0, 2) and test them in an increasing number of views from seen
cameras (0, 2) to unseen cameras (1, 3). As shown in TABLE 6,
the transformer achieves the best result when only 1 view is used.
MEFT gets superior performance as the view number increases from
2to 4.

To further explain the utility of relative attention modules, we
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Fig. 8. Demonstration of MFT with and without T;;; on Human3.6M

TABLE 7
Results on Human3.6M with different setting of D. T' is the sequence
length.
Dl Number of views N Parameter
1 2 3 4 M)
1 51.8 | 37.0 | 31.7 | 29.6 10.074
2 513 | 359 | 30.6 | 28.4 10.076
3 1 512 | 359 | 30.7 | 28.5 10.079
4 50.7 | 353 | 30.1 | 28.0 10.083
5 509 | 35.8 | 30.6 | 284 10.088
6 513 | 355 | 303 | 28.1 10.095
1 50.8 | 36.0 | 30.8 | 28.8 10.074
2 504 | 35.1 | 299 | 27.8 10.076
3 3 503 | 35.1 | 299 | 27.8 10.079
4 49.8 | 345 | 294 | 273 10.083
5 50.1 350 | 299 | 278 10.088
6 504 | 347 | 29.6 | 275 10.095
1 50.5 | 35.6 | 30.5 | 28.6 10.074
2 50 348 | 29.7 | 27.6 10.076
3 5 499 | 347 | 296 | 275 10.079
4 494 | 342 | 29.2 | 27.1 10.083
5 49.7 | 347 | 29.7 | 27.6 10.088
6 50 344 | 294 | 273 10.095
1 504 | 355 | 304 | 285 10.074
2 498 | 346 | 295 | 275 10.076
3 7 49.7 | 346 | 295 | 275 10.079
4 49.2 | 34.1 | 29.1 | 27.1 10.083
5 495 | 346 | 296 | 275 10.088
6 49.8 | 342 | 293 | 272 10.095

also display the contribution of the feature from each view to the
final prediction in Fig. 9, inspired by the Grad-CAM [67]. There is
a slight generalization gap when we train models on 4 views and
test on the same number of views. For the transformer, the feature
from the target view makes almost the majority contribution to the
final prediction. Instead, MFT and point transformer get uniform
contributions from all the views, indicating that relative position

10

1 view 2 views 3 views 4 views

3

4 views

without Tj;

TABLE 8
Results of different mask rate M on Human3.6M. MTF-Transformer is
trained on the training set with 5 views at different mask rate. We
evaluate these models with different number of views as input.

Mask rate M 0 02 04 06 038 1.0
112052 522 492 492 488 494
Number of views | 2 | 78.7 353 34.1 347 36.1 117.5
N 3] 445 293 291 30.1 31.7 1275
41 256 268 27.1 282 30.0 1345
Mean 89.0 359 349 355 36.7 1072

is essential to fuse multi-view information. When we train MFT
and point transformer on 2 views and test them on 4 views,
there is a big generalization gap between the training and testing
phase. We can find that MFT fuses the feature from other views
more effectively. It is intuitive and verifies the effectiveness of the
proposed Relative-Attention block.

In MFT, we divide the dimension C of input x; into K groups.
To explore the effect of K on the results, we train the model with
different settings of D because C' = D x K and D determines
the shape of T';; directly. The results in TABLE 7 demonstrate
MTF-Transformer achieves the best performance at the dimension
of 4 with different sequence lengths.

4.4.3 Analysis on Random Block Mask

Random Block Mask is designed to ensure the generalization ca-
pability of the MTF-Transformer. To verify the effectiveness of the
Random Block Mask, we train MTF-Transformer on Human3.6M
training set with 5 views and set the mask rate M at 0, 0.2,
0.4, 0.6, 0.8, 1.0, respectively. With M increasing, more features
from different views are dropped in the training stage. M = 0
indicates that all the views participate in the feature fusing among
all the views. Each view only fuses with itself when M = 1. In
the testing stage, we test the MTF-Transformer counterparts with
different mask rates via feeding testing samples with a different
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Fig. 9. The contribution of the 2D pose (17 joint point) from 4 views to the
3D prediction (X, Y, Z coordinate) with different kind of Relative-Attention
module. We measure the gradient of the predicted 3D coordinate to
the features of each views and consider the maximum value as the
contribution ratio. For better visualization, the values are normalized to
the range of 0 to 1. (a) Transformer (b) Point Transformer trained on
4 views (c) MFT trained on 4 views (d) Point Transformer trained on 2
views (e) MFT trained on 2 views.

number of views (including 1, 2, 3, and 4 views). The results are
shown in TABLE 8. From the vertical comparison, at most mask
rates, the performance of the MTF-Transformer gets better as the
number of views increases, except for the mask rate of 1. When
the mask rate is set at 1, the MFT module fails to measure the
relationship among the features since all the interconnections are
masked. It verifies that fusing multi-view features can improve
the performance of 3D pose estimation. From horizontal analysis,
when the number of views is set at 4, MTF-Transformer achieves
the best performance at the mask rate of 0. This number of
views in the testing stage is close to that of the training stage
(5 views). As the number of views for testing decreases, the
difference between training and testing is enlarged, and MTF-
Transformer achieves the best performance at a higher mask rate.
It demonstrates that the Random Block Mask module is essential
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Fig. 10. Some predictions under different mask rate

for scenes greatly different from the training stage. The purpose of
MFT-Transformer is to handle the input from an arbitrary number
of views adaptively, so we evaluate the mean value of the MPJPE
at different mask rates. We find that the mask rate of 0.4 has
the best result, and we will set the mask rate at 0.4 in all the
experiments. Some predict results are shown in Fig. 10.

4.4.4 Analysis on Sequence Length

MTF-Transformer can adaptively handle videos with different
sequence lengths. We evaluate it via feeding videos with the
length from 1 to 27. The results are shown in TABLE. 9. The
performance of the MTF-Transformer increases as the sequence
length increases, at any number of views as input. It inflects that
a more extended period of input benefits the pose estimation.
Interestingly, MTF-Transformer converges on certain precision
as the sequence length number increases. The more views are
involved, MTF-Transformer converges on better precision and
tends to saturate more quickly. We utilize multi-view and tem-
poral clues to estimate the pose of the middle frame under each
viewpoint. Geometric and temporal information is complementary
to each other. Thus, when more multi-view clues are used, MTF-
Transformer needs less temporal information to reconstruct the
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TABLE 9
Results of different sequence length 7" on Human3.6M.

Sequence length Number of views N
T 1 view | 2views | 3 views | 4 views
1 51.62 35.13 29.74 27.46
3 50.70 34.28 28.99 26.77
5 50.28 3391 28.69 26.51
7 50.01 3371 28.55 26.41
9 49.82 33.57 28.44 26.32
11 49.66 33.47 28.38 26.28
13 49.53 33.42 28.35 26.27
15 49.45 33.39 28.35 26.27
17 49.39 33.37 28.34 26.28
19 49.33 33.34 28.33 26.27
21 49.27 33.32 28.32 26.26
23 49.23 33.29 28.30 26.24
25 49.21 33.27 28.28 26.22
27 49.19 33.26 28.27 26.21
TABLE 10

Results on Human3.6M with different number of added view.

. The number of views N Parameters
T | Added view 1 5 3 7 M)
0 51.0 | 35.7 | 30.6 | 28.4
1 1 50.7 | 353 | 30.1 | 28.0
2 514 | 358 | 304 | 28.1
0 50.2 | 35.0 | 30.0 | 27.9
3 1 498 [ 345 | 294 | 273
2 50.5 | 350 | 29.7 | 275 10.1
0 499 | 347 | 29.7 | 27.7 :
5 1 494 | 342 | 29.2 | 271
2 50.1 | 348 | 295 | 27.2
0 49.7 | 346 | 29.6 | 27.6
7 1 49.2 [ 341 | 29.1 | 27.1
2 499 | 346 | 293 | 27.1

3D pose. Moreover, multi-view clues have some information that
does not exist in temporal clues, so more viewpoints lead to better
convergence results.

4.4.5 Analysis on added synthesized views

When training Human3.6M, we added a synthesized view to train
MTF-Transformer as a data enhancement mechanism, following
cheng et al. [61]. To quantificat the effect of added views, we
compare the results with a different number of added views
in TABLE 10. MTF-Transformer achieves the best performance
when we add 1 synthesized view.

4.4.6 Analysis on computational complexity

As shown in TABLE 11, we report the total number of parameters
and estimated multiply-add operations (MACs) per frame (the
2D detector is not included). For comparison, we also report
parameters and MACs of Iskakov et al. [22]. Similar to MTF-
Transformer, Iskakov et al. [22] also infers the 3D pose via lifting
multi-view 2D detections to 3D detections. MTF-Transformer has
a slightly less number of parameters and orders of magnitude less
computational complexity. The reason is that MTF-Transformer
employs 1D convolution to manipulate the features instead of
3D convolution. We also report the time consumption of MTF-
Transformer in the training and testing phase in TABLE 12. MFT-
Transformer is a magnitude faster than FLEX for inference time,
tested in the same device. Besides, increasing the number of views
leads to a slight time consumption increment.

12

TABLE 11
Computational complexity of MTF-Transformer. We use THOP 'to
represent the number of parameters and MACs (multiply-add
operations). T is the length of sequence and N is the number of views.

Method T | N | ParameterstM) | MACs(G)

Iskakov et al. [22] 1 4 11.9 155
FLEX [46] 27 4 70.6 4.27
1 0.01
2 0.03
! 3 101 0.05
4 0.07
MTEF-Transformer I 027
2 0.68

27 3 10.1 —3
4 1.91

TABLE 12

The time consumption in training and testing phase.T' is the length of
sequence and N is the number of views.

Methods [ Device [ T [ N [ time
Training
. . 7 - 12h(60epochs)
MTF-Transformer | 2x2080Ti 77 - 34h(60epochs)
Testing
FLEX [406] 27 4 30.2ms
1 8.4ms
1 2 8.6ms
3 8.6ms
MTE-Transformer 1X2080Ti 4 8.8ms
1 9.2ms
2 9.3ms
27 3 9.5ms
4 9.9ms

5 CONCLUSION

We present a unified framework MTF-Transformer to fuse multi-
view sequences in uncalibrated scenes with an arbitrary number of
views. MTF-Transformer can adaptively measure the relationship
between each pair of views with a relative-attention mechanism,
avoiding the dependency on camera calibration. It is also com-
putationally lightweight and can be directly applied to settings
where the number of views and video frames varies. Extensive
experimental results demonstrate the effectiveness and robustness
of the MTF-Transformer.
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