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Abstract

Adaptive Multilevel Summation (AMS) is a rare event sampling method that requires minimal 

parameter tuning and that allows unbiased sampling of transition pathways of a given rare event. 

Previous simulation studies have verified the efficiency and accuracy of AMS in the calculation of 

transition times for simple systems in both Monte Carlo and molecular dynamics (MD) 

simulations. Now, AMS is applied for the first time to a MD simulation of protein-ligand 

dissociation, representing a leap in complexity from the previous test cases. Of interest is the 

dissociation rate, which is typically too low to be accessible to conventional MD. The present 

study joins other recent efforts to develop advanced sampling techniques in MD to calculate 

dissociation rates, which are gaining importance in the pharmaceutical field as indicators of drug 

efficacy. The system investigated here, benzamidine bound to trypsin, is an example common to 

many of these efforts. The AMS estimate of the dissociation rate was found to be (2.6 ± 2.4) × 102 

s−1, which compares well with the experimental value.
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1 Introduction

In simulations of physical processes, a powerful and expedient means of studying the 

behavior of the system is to project the trajectory of the system on a small number of 

reaction coordinates or order parameters, and sample along the reaction coordinates. The 

physical process in question is often a rare event with respect to the time scale of the 

simulation, characterized by high free energy barriers along the reaction coordinate(s), 

particularly in the case of molecular dynamics (MD). Rare event sampling techniques enable 

sampling of regions in the reaction coordinate that are normally difficult to access.

One class of rare event sampling techniques involves the setting up of branching points 

along the reaction coordinate, at which trajectories are initialized. At each branching point, 

the sampling method builds upon the reference prior probability of the branching point and 

focuses on sampling the posterior probabilities of trajectories emanating from the branching 

point to the next branching point, thus avoiding the difficulty of sampling a very small 

overall unconditional probability of the event. Members of this class of techniques include 

importance sampling,1,2 transition interface sampling,3,4 forward flux sampling,5,6 and 

multilevel splitting.10 Adaptive Multilevel Splitting (AMS)11,12 is a variant of multilevel 

splitting, designed to minimize the need for prior knowledge, such as good choices of 

reference probabilities in importance sampling or branching locations and frequencies in 

transition interface sampling, forward flux sampling and multilevel splitting, by adaptively 

determining the branching points during the simulation. In contrast to most other rare event 

sampling methods, AMS does not require prior definition of branching point locations and 

frequencies, thus enabling easy implemention to a potentially high degree of automation 

even for processes that are highly complex and/or for which little information apart from the 

initial and final states is available.

The present study serves as a proof-of-principle of the applicability of AMS to MD 

simulations, in the context of measuring drug-target dissociation rates by using the 

benzamidine-trypsin complex as an example system. The drug binding rate has traditionally 

been a quantity of interest in the field of drug discovery, fueling numerous in silico studies 

of binding kinetics.7–9,16,18,20 However, dissociation rates are increasingly considered an 

equally important indicator of drug efficacy13,14 and efforts are being made to develop 

computational means of determining these rates.15–18 The complexity of unbinding 

processes underlies the difficulty of obtaining dissociation rates. In the case of benzamidine-

trypsin, previous computational studies16–18 have identified multiple dissociation pathways 

and utilized Markov State Models19,20 to characterize the entire dissociation process and 

obtain estimates of the overall dissociation rate. In the present study, AMS is applied along a 

simple reaction coordinate to estimate the dissociation rate. In contrast to the other 

computational studies, prior determination of pathways and specific metastable states was 

not required in the AMS calculation, but it is noted that such knowledge may be helpful in 

obtaining better convergence of results. It should also be noted that the retrospective 

reconstruction of pathways and metastabilities is possible through the reactive pathways 

obtained in the AMS algorithm,12 but has not been undertaken in the present study.
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This article is organized as follows. In the Methods section, a concise description of the 

basic AMS algorithm and theory is given, followed by issues of practicality that arise in 

adapting AMS to MD simulations, and finally the simulation of the benzamidine-trypsin 

system. The next section, Results and Discussion, begins with details on a prior equilibrium 

MD simulation for the purpose of exploration and parameter selection, followed by a 

discussion of the AMS simulation results, and ends with an error analysis. The error analysis 

addresses an auxiliary aim of the present study, which is to identify some common pitfalls in 

AMS and suggest solutions to mitigate them.

2 Methods

2.1 Adaptive Multilevel Splitting - Basic Algorithm

The output of AMS is the committor probability, defined as the probability that a system, 

after leaving a given initial state, reaches the given final state before returning to the initial 

state. Following the formulation by Cérou and Guyader,11 let {Zt} be a Markov process 

along some continuous reaction coordinate z, with Z0 = z0. Let an event be defined by Zt = 

zmax for some zmax > z0. Define also the committor probability PC that a given realization of 

{Zt} exceeds zmax before returning to z0 for t > 0, given that Zt>0 ≥ z0. The event is rare if 

PC is small, namely, PC < 10−9.

The AMS algorithm begins with the initialization of N replica trajectory segments , n = 

1, …, N. Simulate the replicas until all of them have returned to z0 (1a). Any of these 

replicas may also exceed zmax, at which point the replica is stopped, but the probability is 

presumably negligible for such an event to occur within N replicas. Obtain the farthest point 

along z attained by each replica,

(1)

and identify the minimum of these points,

(2)

Note that at the kth iteration, the proportion of surviving replicas, 1 − 1/N, provides an 

estimate  of the conditional probability that a process starting at z0 attains a supremum S > 
qk, given that its supremum is greater than qk−1, i.e. P (S > qk|S > qk−1). In the first iteration, 

 estimates simply the probability P (S > q1). The probability that a process 

starting at z0 exceeds zmax before returning to z0 is by definition the committor probability 

PC, given by

(3)
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where M is the number of iterations taken by the AMS algorithm to reach completion.

It can be shown that the product  of estimators  of P (S > qk|S > qk−1) is itself an 

estimator of the committor probability PC,11 achieving equality in the N → ∞ limit, where

(4)

The algorithm is here presented for continuous time diffusion process. Slight modifications 

have to be made for discrete time processes where it is possible for more than one replica to 

reach the same supremum level.23

In an idealized setting (namely when the chosen reaction coordinate is the committor 

function associated with the two sets A = {z ; z < z0} and B = {z ; z > zmax}), it can be 

shown that the symptotic variance as N → ∞ is:21,22

(5)

which can be estimated in practice using , the square root of which provides an 

estimate of the uncertainty in . This estimate should be used with care since it is an 

asymptotic result and since, in practice, the reaction coordinate is not the committor 

function. However, it can be used to get a lower bound on the variance. We will discuss in 

the next paragraph another way to get a safer estimate of the variance.

In the interest of improving efficiency via parallelism, a few variations can be made to the 

original algorithm described above. Regardless of the choice of N, the mean of  is PC,23 so 

that instead of a single AMS simulation with large N, several smaller simulations can be run 

in parallel to obtain  to a similar degree of accuracy through simple averages. Additionally, 

obtaining multiple estimates of  allows for a safe estimation of the variance, by treating 

itself as a random variable, without having to rely on the need for a large number of replicas 

through 5. Parallelism may also be incorporated into the algorithm itself, by re-initializing 

the (k/N)th quantile at each iteration, killing and restarting k > 1 replicas.11,25 Nevertheless, 

it should be noted although the number of iterations can be reduced by using a larger 

quantile, the variance on the estimator of the probability PC will also be larger, and it has 

been suggested that killing only one replica is the best compromise.24

2.2 Practical Implementation

The AMS simulations described in the present study run on two different time steps, namely 

the conventional MD time step and the interval between reaction coordinate measurements, 

which we term the AMS time step. The MD platform used in the present study, NAMD26 

(see Section S2 of Supporting Information for details on implementation), does not perform 

on-the-fly evaluation and comparisons of reaction coordinate values or replica kill-and-
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restart operations without incurring a large computational overhead. Instead, reaction 

coordinate evaluation, as well as inter-replica communication and decisions, are performed 

at regular time intervals larger than the MD time step in the interest of computational 

efficiency. This modification does not affect the reliability of the AMS algorithm, which is 

therefore applied to the subsampled process considered at multiples of the AMS time step. 

Indeed, as shown in,23 the AMS algorithm is unbiased for a discrete-in-time process.

It is also important to note that for physical systems, the initial condition is typically a 

collection of initial states occupying a continuum on the reaction coordinate, rather than a 

single value. In a scheme adapted from Cérou et al,12 instead of starting the simulation at z = 

z0, the replicas are initialized and allowed to reach quasi-equilibrium within the defined 

subspace A of initial states (hereafter called the initial metastable state), assumed to be 

characterized by the condition z < z0. A value, zmin > z0, is chosen as discussed below, and 

the replicas are then evolved in time until every replica has reached zmin, so as to obtain a 

representative distribution of trajectories up to the z = zmin hyperplane in configuration 

space. Thence, the AMS algorithm described above can proceed as shown in 2b. The final 

state B is similarly defined to be the subspace characterized by z > zmax, but this definition 

does not affect the present implementation of the algorithm.

The reason for using initial conditions with reaction coordinate value greater than zmin>z0 

is to avoid the situation where the replicas have a very small probability to reach B before A, 

leading to a small estimated committor probability that is typically difficult to estimate 

accurately. Thus, zmin should not be chosen too close to z0. Suitable choices of z0 and zmin 

can be determined heuristically from a quasi-equilibrium distribution of the system, such 

that z0 and zmin are far enough from each other that the average trajectory from zmin to z0 is 

resolvable given the AMS time step. Note that zmin is also bounded above by the 

requirement that direct simulation can adequately sample trajectory times to and from z0 to 

zmin within reasonable computational time.

Another practical consideration is that the AMS algorithm, as described above, allows no 

parallelization after the initial preparation of replicas. Consider that while one replica is 

running, if the process of that replica surpasses the lowest supremum of the non-running 

replicas, then it is certain that the replica corresponding to that lowest supremum will be 

killed in the next iteration. Instead of waiting for the running replica to finish its course, the 

replica to be killed can be restarted immediately, thus achieving two parallel runs although 

conceptually, each iteration still corresponds to the killing of one replica. This parallelization 

process is easily generalized to the case of multiple currently running replicas. However, it 

should be noted that the maximum possible number of concurrently running replicas at any 

time depends on the stochastic occurrence of the current iteration exceeding the current 

lowest supremum. For example, during the AMS simulation in the present study, the number 

of running replicas at any one time ranged from 1 to 20. The fluctuating number of replicas 

is not easily implemented in traditional computing clusters (the present implementation 

relies on manual monitoring and initialization of replica runs) and would likely require 

sophisticated distributed computing resources for complete automation. An easier-to-

implement and more extensive parallelism may be introduced, although not in the present 
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study, by running multiple independent AMS simulations and making use of the 

unbiasedness of the estimator , as discussed previously.

2.3 Calculation of mean first passage time and determination of AMS parameters

The committor probability obtained from AMS provides a means of estimating the mean 

first passage time from the initial state A to the final state B. The inverse of the committor 

probability  is an estimate of the expected number of non-reactive A-to-A trajectory 

segments that the system undergoes before a reactive A-to-B trajectory is observed. To make 

precise the notion of trajectory loops, define t1 to be the time taken for a trajectory starting at 

z0 to reach zmin and t2 to be the time taken for a non-reactive trajectory starting at zmin to 

reach z0. The expectation of the time taken for one loop is then . Additionally, 

define t3 to be the time taken by a reactive trajectory, that is one starting at zmin and reaching 

zmax without first returning to zmin. The expected time for a reactive path is then .

The total time spent by the system in non-reactive trajectory loops is obtained by 

multiplying the number of trajectory loops by the average time per segment, . The time 

taken for the single reactive trajectory segment at the end then added to the time spent in the 

the non-reactive loops to produce the AMS estimate of the mean first passage time

(6)

An equilibrium simulation, separate from the AMS simulation, is performed to estimate . 

The distribution of loop times is obtained from a projection of the trajectory on the reaction 

coordinate z, thus providing an estimate of the average loop time and the associated 

uncertainty. Conveniently, the trajectory also provides the quasi-equilibrium distribution 

within the initial metastable state, from which the initial AMS replica states can be drawn 

and suitable values for the parameters z0 and zmin can be chosen. zmax is chosen by other 

means, depending on the process being studied. In the present study, a steered MD pulling 

simulation was employed to obtain a suitable value.

The average time of a reactive trajectory segment,  can be obtained from a 

reconstruction of reactive paths by piecing together the successive trajectory segments 

traversed by each replica. The resulting collection of paths represent an unbiased distribution 

of reactive paths, from which the average reactive path time can be obtained. At present, the 

AMS implementation on NAMD does not retain trajectory segments, hence such a 

reconstruction cannot be undertaken. However, it is expected that the mean reactive path 

time is small compared to the time spent in unreactive loops. This assumption is 

retrospectively confirmed by the final AMS estimate of the mean first passage time being in 

at least the millisecond time scale, as compared to the sum of AMS trajectory times, which 

is in microseconds.
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3 Results and discussion

3.1 Application to Benzamidine-Trypsin

Trypsin is a protease found in many vertebrate species. The complex of trypsin and 

competitive inhibitor benzamidine is a well studied exemplar of molecular binding and 

unbinding kinetics.16–19,27,28 In particular, the rate of dissociation of the bound complex has 

been measured both experimentally29 and computationally.16–18 The benzamidine-trypsin 

complex was set up and pre-equilibrated for MD simulation as described in Section S1 of 

the Supporting Information.

For the AMS simulation, the reaction coordinate z was defined as the center-of-mass 

distance between Cαs of residues proximal to the binding site (D171, S172, C173, Q174, 

G175, D176, S177, V191, S192, W193, G194, G196, C197, A198, G204, V205) and 

benzamidine. The initial (bound) state is characterized by z < z0 = 1.6 Å. zmin and zmax were 

chosen to be 1.7 Å and 15 Å respectively, as described in the following section. 3 provides 

visual examples of benzamidine conformations corresponding to the defined AMS levels, 

with the structure from a randomly picked equilibration frame displayed for reference.

3.2 Determination of AMS Parameters

A 130-ns equilibrium MD simulation of the benzamidine-trypsin complex was performed, 

with trajectory frames recorded at 0.1-ps time intervals. The projection of the trajectory on z 
and the normalized distributions of z values are shown in the inset and main figure of 4a 

respectively. The last ∼ 30-ns portion of the trajectory (red) reveal the presence of at least 

one metastable state distinct from the one that the system was initialized in (green). 

Trajectory frames taken from each portion of the trajectory (4b) show that they correspond 

to proximal but distinct regions of benzamidine occupancy within the binding site.

Parameters for the AMS simulation were chosen as follows. z0 was set at 1.6 Å, so that the 

initial state includes the apex of the distribution of the initial bound state, but not too far out 

so that loop times within the state are kept small and easily sampled. zmin was set at 1.7 Å, 

close to the value of z0, but such that the AMS simulation was able to proceed without 

spending a great amount of time making loops that quickly return to z0 before making 

progress along the z coordinate. Initial configurations for the AMS replicas were obtained by 

randomly drawing frames from the equilibrium simulation that satisfied z < z0.

Ideally, the initial AMS ensemble should contain exclusively configurations in the initial 

metastable state. The overlap of other, less well-sampled, metastable states in the initial 

ensemble introduces some error in the estimation of the average loop time as well as the 

calculation of , since the statistical weight of the other states cannot be determined exactly 

by simulations of the present study. However, we will argue in a later section that the impact 

of other metastable states on the final result is small.

To obtain a suitable value for zmax, a constant velocity steered MD simulation30 was 

performed. The average pulling force profile, shown in 5 provides a qualitative survey of the 

potential of mean force along the reaction coordinate. The force drops to zero at around z = 
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13 Å, thus providing a range at which benzamidine can be considered to have completely 

dissociated. The endpoint of the simulation, at zmax = 15 Å, is thus justified.

3.3 Determination of average loop times

The equilibrium simulation was also utilized to estimate the average time taken for the 

trajectory to loop from zmin to z0 and back to zmin. Loops occurring in the two distinct 

portions of the equilibrium trajectory are considered separately. In the first portion, 

corresponding to the initial metastable state, loop times have the distribution shown in 6, 

across 2.8 × 104 loops. The estimated mean loop time  was calculated from the range 

defined by the lower and higher standard deviations about the median (described in Section 

S3 of Supporting Information, to account for the asymmetry of the distribution), giving 

 ps.

Similarly, the average loop time for the trajectory portion corresponding to other metastable 

states has a range of  ps, from a sample of size 804. An analysis of the 

relative statistical weights in the following section reveals that the overall average loop time 

is much closer to  than to , as reflected in 7.

3.4 AMS Results

Shown in 7 is a histogram of z-coordinates of branching points during the AMS simulation. 

A total of 20,376 branching points were required for the 1000 replicas to run to completion. 

The total simulation time over all replicas was about 2.1 μs. ?? yield the committor 

probability estimate , where the uncertainty is just the root of the 

variance estimate given by 5.

Of all the branching points, 12,579 fell within the range 0 Å to 2.7 Å, roughly corresponding 

to the initial metastable state. 4 can again be applied to obtain the committor probability of 

the particle exceeding the heuristic boundary z = 2.7 Å of the initial states. This committor 

probability was found to be . In other words, any loop, on condition that it 

begins at zmin, has only a small probability  of leaving the initial metastable state. 

Assuming that loops venturing outside the initial metastable state have an average loop time 

of , the overall average loop time is hence estimated as

(7)

which is practically equal to the average loop time within the initial metastable state.

The dissociation time estimate is then obtained by applying  and  to 6 while assuming 

that the contribution from  is negligible. The dissociation time estimate thus obtained 

is  s. The corresponding estimated dissociation rates, given by the 

reciprocal of the estimated dissociation time, is koff = (260 ± 240) s−1, within the same order 

of magnitude as the experimentally measured rate of 600 ± 300 s−1.29 The overall simulation 

time taken, summed over all 1000 replicas, was 2.1 μs (2.3 μs after including direct MD and 
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steered MD simulations), which is four orders of magnitude shorter than the estimated 

dissociation time of one event.

The dissociation rate estimates obtained in other computational studies of benzamidine-

trypsin16–18 differ from the experimental measurement and the present study by between one 

to two orders of magnitude. However, it should be noted that these studies treated the 

dissociation process more comprehensively, incorporating multiple distinct bound states that 

were not considered in the present study. The additional bound states could not have been 

sampled in the initial equilibration within the AMS initial state, which was shorter than the 

average transition times between the crystallographic state and the other bound states, 

reported to be on the order of microseconds.16–18 In the same spirit, it should also be noted 

that the difference in results between the present and reference studies may be due in part to 

the use of the CHARMM3631,32 force field in the present study, in contrast to the AMBER 

force fields employed in the other studies.

4 Conclusion

The results of the present study demonstrate the potential of AMS in the estimation of 

dissociation rates of protein ligand complexes, producing a koff that compares very well with 

the experimental value. However, significant sources of error exist in the methodology and it 

cannot be ruled out that the excellent agreement of koff with the experimental value is due to 

a serendipitous cancellation of errors. One such source of error was the omission of 

alternative initial bound states, as discussed in Results and Discussion. A related problem is 

the overlap of metastable states proximal to the initial bound state, which although detected 

during the AMS run, were not extensively sampled. Although it was argued that the impact 

of the overlap was small, measures to prevent such overlaps should nevertheless be 

undertaken in future AMS studies of complex systems. A number of remedies may be 

employed for this purpose.

One solution is to impose a more restrictive definition of the initial metastable state (i.e. 

lower z0 and zmin levels), thereby excluding all others. Overlaps may also come about as 

artifacts of the choice of reaction coordinate. Cleanly separating two metastable states in 

sampling would then be a matter of selecting the right reaction coordinate. For this purpose, 

visual inspection of the equilibrium simulation is recommended as a good practice for AMS 

methodology. In cases where the metastable bound states can be characterized, detailed 

information about the system can be obtained by applying AMS piecewise to determine 

transition rates between the various states of the system in a Markov State Model, in similar 

fashion to the other studies referenced.16–18 One may also consider the alternative approach 

of obtaining better sampling of the initial distribution of states. The major problem with 

having a mixture of metastable states within the initial distribution is that transitions 

between these states are typically too slow for a long equilibrium simulation to sample 

adequately. Enhanced sampling methods can be applied to obtain an accurate initial 

distribution of states instead of attempting to isolate one state. Such an approach is 

especially relevant in cases where significant overlap is too difficult to avoid.
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It should also be noted that unaccounted-for sources of error, inherent in MD-based 

methods, were not incorporated into the uncertainty of the dissociation rate estimate. In 

particular, the use of non-polarizable force fields may significantly affect the interaction 

strength between ligand and substrate. Tiwary et al17 suggest that the use of a non-

polarizable force field results in an overestimate of the dissociation time. Polarizable force 

fields such as the Drude model33,34 may be used to obtain more accurate descriptions of 

dissociation dynamics where solvation and other polarization-dependent effects can be 

foreseen to play a major role.

Nonetheless, the favorable result reported in the present study merits further developmental 

effort to address the present inadequacies and improve the technique; experimental evidence 

suggests that significant variation in drug efficacy occur with within-order-of-magnitude 

differences in residence times. For example, a study of a set of inhibitor compounds of the 

FabI enoyl reductase in mice infected with Francisella tularensis showed an approximate 

1.2% increase in survival rate for each 1-min increase in residence time in the range of 20 to 

140 mins.35 In a study of A2A receptor agonists, an almost twofold increase in efficacy was 

found for each increase in order of magnitude of residence time over the 1- to 100-minute 

range.36 In order to further test the applicability of AMS in this respect, future efforts are 

required to address the challenges of initial state definition and loop time sampling 

encountered in the present study, as well as to validate AMS in other molecular systems. 

Various technical issues also need to be resolved, such as improving time resolution by 

enabling more frequent reaction coordinate queries, efficient communication between 

replicas, and increased parallelism of the algorithm.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The work of I. Teo, C. G. Mayne, and K. Schulten is supported by NIH Grant 9P41GM104601. The work of T. 
Lelièvre is supported by the European Research Council under the European Union’s Seventh Framework 
Programme (FP/2007-2013)/ERC Grant Agreement number 614492. The authors benefited from the scientific 
environment of the Laboratoire International Associé between the Centre National de la Recherche Scientifique and 
the University of Illinois at Urbana-Champaign.

References

1. Glynn PW, Iglehart DL. Management Sci. 1989; 35:1367–1392.

2. Perilla JR, Beckstein O, Denning EJ, Woolf TB. J Comput Chem. 2011; 32:196–209. [PubMed: 
21132840] 

3. van Erp TS, Moroni D, Bolhuis PG. J Chem Phys. 2003; 118:7762–7774.

4. van Erp TS, Bolhuis PG. J Comp Phys. 2005; 205:157–181.

5. Allen RJ, Warren PB, ten Wolde PR. Phys Rev Lett. 2005; 94:018104. [PubMed: 15698138] 

6. Allen RJ, Valeriani C, ten Wolde PR. J Phys-Condens Mat. 2009; 21:463102.

7. Votapka, L., Amaro, RE. Multiscale Estimation of Binding Kinetics Using Brownian Dynamics, 
Molecular Dynamics and Milestoning. PLoS Comput Biol. 2015. In press. http://journals.plos.org/
ploscompbiol/article?id=10.1371/journal.pcbi.1004381 (accessed 05/01/2016)

8. Shan Y, Kim E, Eastwood MP, Dror RO, Seeliger MA, Shaw DE. J Am Chem Soc. 2012; 133:9181–
9183.

Teo et al. Page 10

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004381
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004381


9. Hurst DP, Grossfield A, Lynch DL, Feller S, Romo TD, Gawrisch K, Pitman MC, Reggio PH. J Biol 
Chem. 2010; 285:17954–17964. [PubMed: 20220143] 

10. Kahn H, Harris TE. National Bureau of Standards Appl Math Series 01. 1951; 12:27–30.

11. Cérou F, Guyader A. Stoch Anal Appl. 2007; 25:417–443.

12. Cérou F, Guyader A, Leliévre T, Pommier D. J Chem Phys. 2011; 134:054108. [PubMed: 
21303093] 

13. Lu H, Tonge P. J Curr Opin Chem Biol. 2010; 14:467–474.

14. Copeland RA. Nat Rev Drug Discov. 2015

15. Huang D, Caflisch A. PLoS Comput Biol. 2011; 7:e1002002. [PubMed: 21390201] 

16. Buch I, Giorgino T, De Fabriitis G. Proc Natl Acad Sci USA. 2011; 108:10184–10189. [PubMed: 
21646537] 

17. Tiwary P, Limongelli V, Salvalaglio M, Parrinello MP. Natl Acad Sci USA. 2014; 112:E386–E391.

18. Plattner N, Noé F. Nat Commun. 2015; 6:7653. [PubMed: 26134632] 

19. Noé F, Fischer S. Curr Opin Struct Biol. 2008; 18:154–162. [PubMed: 18378442] 

20. Prinz J-H, Wu H, Sarich M, Keller B, Senne M, Held M, Chodera JD, Schütte C, Noé F. J Chem 
Phys. 2011; 134:174105. [PubMed: 21548671] 

21. Guyader A, Hengartner N, Matzner-Løber E. Appl Math Optim. 2011; 64:171–196.

22. Cérou F, Del Moral P, Furon T, Guyader A. Stat Comput. 2012; 22:795–808.

23. Bréhier, CE., Gazeau, M., Goudenège, L., Lelièvre, T., Rousset, M. Unbiasedness of some 
generalized Adaptive Multilevel Splitting algorithms. 2015. arXiv:1505.02674 [math.PR]. 
arXiv.org ePrint archive. http://arxiv.org/abs/1505.02674 (accessed 01/20/2016). To appear in Ann. 
Appl. Probab

24. Bréhier L, Lelièvre T, Rousset M. ESAIM Proc Surv. 2015; 19:361–394.

25. Aristoff D, Lelièvre T, Mayne CG, Teo I. ESAIM Proc Surv. 2015; 48:215–225. [PubMed: 
26005670] 

26. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, 
Schulten K. J Comput Chem. 2005; 26:1781–1802. [PubMed: 16222654] 

27. Essex JW, Severance DL, Tirado-Rives J, Jorgensen WL. J Phys Chem B. 1997; 101:9663–9669.

28. Resat H, Marrone TJ, McCammon JA. Biophys J. 1997; 72:522–532. [PubMed: 9017183] 

29. Guillain F, Thusius D. J Am Chem Soc. 1970; 92:5534–5536. [PubMed: 5449454] 

30. Lu H, Isralewitz B, Krammer A, Vogel V, Schulten K. Biophys J. 1998; 75:662–671. [PubMed: 
9675168] 

31. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. J Comput Chem. 
1983; 4:187–217.

32. Huang J Jr, A DM. J Comput Chem. 2013; 34:2135–2145. [PubMed: 23832629] 

33. Jiang W, Hardy DJ, Phillips JC Jr, A DM, Schulten K, Roux B. J Phys Chem Lett. 2011; 2:87–92. 
[PubMed: 21572567] 

34. Lopes PEM, Huang J, Shim J, Luo Y, Li H, Roux B Jr, A DM. J Chem Theory Comput. 2013; 
9:5430–5449. [PubMed: 24459460] 

35. Lu H, England K, am Ende C, Truglio JJ, Luckner S, Reddy BG, Marlenee NL, Knudson SE, 
Knudson DL, Bowen RA, Kisker C, Slayden RA, Tonge PJ. ACS Chem Biol. 2009; 4:221–231. 
[PubMed: 19206187] 

36. Guo D, Mulder-Krieger T, IJzerman AP, Heitman LH. Br J Pharmacol. 2012; 166:1846–1859. 
[PubMed: 22324512] 

Teo et al. Page 11

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/1505.02674


Figure 1. 
Schematic of basic AMS algorithm for a dissociation process of a ligand in an initially 

bound state from a binding site (blue-green). In this case, N = 3 replicas are used and the 

reaction coordinate is defined as the radius about the initial state. In (a), an initial trajectory 

segment is generated for each replica. The suprema of the segments are compared, and the 

replica with the segment of lowest supremum (red) is killed, as shown in (b). Subsequently 

in (c), a surviving replica is randomly picked (green in this case); its trajectory segment up to 

the supremum of the killed replica is cloned into the killed replica and simulation is restarted 

until the trajectory returns to the initial state. Once again, the replica which has the least 

progress along the reaction coordinate (blue) is identified and killed, as shown in (d). The 

process is repeated until all replicas have surpassed zmax (not shown).
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Figure 2. 
To avoid being stuck in small trajectory loop segments near the starting point, the first step 

of the original algorithm, shown in (a), is altered to incorporate a starting point zmin, shown 

in (b), a small distance away from z0. Replica trajectory segments now begin at zmin, but still 

terminate at z0.
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Figure 3. 
Trypsin (light blue) and benzamidine in a randomly picked equilibration frame at reaction 

coordinate zeq (red), AMS initial (yellow) bound states, and AMS final unbound state 

(purple). The reaction coordinate z is defined as the center-of-mass distance between non-

hydrogen benzamidine atoms and the Cα atoms of 16 residues near the binding site (blue 

spheres). AMS initial and final state structures were extracted from trajectory frames during 

AMS simulation.
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Figure 4. 
(a) Normalized sample distributions of z values within initial (green) and other (red) 

metastable portions of the trajectory during equilibrium simulation. The initial conditions of 

the AMS simulation are defined by z0 and zmin levels, indicated by dashed lines. The inset 

shows the time evolution of the z value. (b) Simulation trajectory frames of benzamidine 

corresponding to initial (green) and other (red) metastable state portions, each 20 ns long, 

within the binding site on trypsin (grey).
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Figure 5. 
Benzamidine is gradually pulled away from trypsin (details in Section S1 of the Supporting 

Information). The force profile height reflects the amount of resistance against the pulling 

force, which drops to near zero when benzamidine is far enough to escape the influence of 

trypsin. While being a crude measurement of the potential of mean force, this calculation 

adequately serves as a quick and simple means of locating the unbound state along the 

reaction coordinate. Note the correspondence of the force peak around z = 2 Å to the 

potential of mean force barrier of the initial metastable state.

Teo et al. Page 16

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Loop times are defined as the time taken for the system, starting from zmin, to reach z0 and 

return to zmin without reaching zmax first. The distribution of loop times shown above was 

obtained from the portion of the equilibrium trajectory corresponding to the initial 

metastable state. The average loop time is extracted from the distribution, as described in 

Section S3 of the Supporting Information, as a necessary step in calculating the dissociation 

rate.
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Figure 7. 
AMS trajectories are histogrammed by branching point z coordinates. Displayed with a 

logarithmic scale in the y axis, the histogram clearly shows a large concentration of loops 

about the initial metastable state.
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