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RESEARCH ARTICLE
10.1002/2014WR016254

Adaptive, multiobjective optimal sequencing approach for

urban water supply augmentation under deep uncertainty

Eva H. Y. Beh1, Holger R. Maier1, and Graeme C. Dandy1

1School of Civil, Environmental and Mining Engineering, University of Adelaide, Adelaide, South Australia, Australia

Abstract Optimal long-term sequencing and scheduling play an important role in many water resources

problems. The optimal sequencing of urban water supply augmentation options is one example of this. In

this paper, an adaptive, multiobjective optimal sequencing approach for urban water supply augmentation

under deep uncertainty is introduced. As part of the approach, optimal long-term sequence plans are

updated at regular intervals and trade-offs between the robustness and flexibility of the solutions that have

to be fixed at the current time and objectives over the entire planning horizon are considered when select-

ing the most appropriate course of action. The approach is demonstrated for the sequencing of urban water

supply augmentation options for the southern Adelaide water supply system for two assumed future real-

ities. The results demonstrate the utility of the proposed approach, as it is able to identify optimal sequen-

ces that perform better than those obtained using static approaches.

1. Introduction

Formal optimization methods for sequencing or scheduling play an important role in long-term manage-

ment and planning for a number of water resources problems, such as the sequencing of urban water sup-

ply augmentation options [Beh et al., 2014; Mortazavi-Naeini et al., 2014; Ray et al., 2012], the sequencing of

urban water supply infrastructure [Kang and Lansey, 2014], scheduling the replacement of urban water sup-

ply mains [Dandy and Engelhardt, 2001, 2006], investment scheduling for irrigated agricultural expansion

planning [Allam and Marks, 1984], management of water supply systems [Housh et al., 2013], and the sched-

uling of environmental flows in rivers [Szemis et al., 2012, 2013]. The focus of this paper is on urban water

supply augmentation, for which the optimal sequencing of supply sources has long been used to identify

systems that maintain water supply security and minimize water supply costs [e.g., Becker and Yeh, 1974;

Butcher et al., 1969; Morin and Esogbue, 1971; Atkinson, 2002]. As part of the optimal sequencing process,

the best combination of supply augmentation options that is able to satisfy projected demands over a

long-term planning period (e.g., 30–50 years) is identified. The optimal sequencing of these options over

the planning period is also determined, in recognition of the fact that demands are likely to change over

time. Consequently, decisions in relation to which augmentation options should be implemented are made

at a number of decision points over the planning horizon, which are generally spaced at regular time inter-

vals (e.g., 10 years), resulting in a number of staging intervals over the planning horizon.

In the past, optimal sequencing approaches have considered traditional sources of water, such as reservoirs

and groundwater, and have attempted to minimize cost objectives [e.g., Chang et al., 2009; Connarty and

Dandy, 1996]. More recently, multiple objectives [e.g., Beh et al., 2012, 2014; Mortazavi-Naeini et al., 2014]

and alternative sources of water, such as desalinated water, storm water, rainwater, and reclaimed waste-

water [e.g., Beh et al., 2012, 2014; Downs et al., 2000; Ray et al., 2012] have been considered. However, while

uncertainties about future conditions, such as population growth, per capita demand and hydrological

inputs, have been considered in the determination of optimal portfolios of future urban water supply and

demand management options [e.g., Kasprzyk et al., 2009, 2012, 2013; Paton et al., 2014b; Zeff et al., 2014],

they have generally not been considered in the optimal sequencing of these options. In other words, while

these uncertainties have been considered in determining which sources are best suited to satisfying

demand at some time in the future, they have not been considered in relation to the timing of the imple-

mentation of these sources over the planning horizon, which is a much more complex problem. Only Ray

et al. [2012] have developed a formal optimization approach for the sequencing of long-term urban water
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supply augmentation options under deep uncertainty, which is uncertainty associated with multiple possi-

ble futures for which relative probabilities are unknown (e.g., climate change and population growth [Lem-

pert et al., 2003]). However, it should be noted that the approaches of Housh et al. [2013] and Kang and

Lansey [2014] could also be used for this purpose, even though they were developed for the optimal

sequencing of urban water supply infrastructure and water supply system management options,

respectively.

A potential disadvantage of the approaches of Ray et al. [2012] and Housh et al. [2013] is that they are

based on what are generally referred to as traditional optimization methods (i.e., linear and stochastic pro-

gramming, respectively, in this case), which have a number of shortcomings compared with evolutionary

optimization approaches [see Maier et al., 2014; Mortazavi-Naeini et al., 2014]. Some of these shortcomings

include not being able to be linked with simulation models of the urban water supply system under con-

sideration, thereby potentially ignoring important nonlinear interactions [Matrosov et al., 2013b], and not

being truly multiobjective. Although Kang and Lansey [2014] use a genetic algorithm as their optimization

engine and indicate that their approach could be extended to include multiple objectives, this was not

done in their paper.

The approaches presented in Ray et al. [2012], Housh et al. [2013], and Kang and Lansey [2014] do not

include formal mechanisms for updating optimal sequences over time when new information about current

and plausible future conditions becomes available. Consequently, these approaches can be considered to

deal with deep uncertainty by way of ‘‘static robustness,’’ which aims to reduce vulnerability under the larg-

est range of plausible future conditions [Walker et al., 2013]. However, given that optimal urban water sup-

ply augmentation sequence plans are generally developed over periods of 30–50 years, with augmentation

options added incrementally over time (e.g., at 5 or 10 year intervals), there is likely to be significant benefit

in developing an optimal sequencing approach that deals with deep uncertainty by way of ‘‘dynamic

robustness,’’ which considers adaptation over time as conditions change [Walker et al., 2013]. It should be

noted that although any of the above sequencing approaches could be applied using a sliding temporal

window and Kang and Lansey [2014] include an explicit flexibility criterion in their optimization process and

mention that their approach should be reapplied periodically, these adaptive mechanisms have not been

formalized and their utility has not been demonstrated. The lack of the explicit application of an adaptive

approach could at least in part be due to the difficulty of being able to test the adaptive mechanisms of

such sequencing approaches, as adaptation needs to respond to changes in future conditions, which have

not yet occurred and are therefore unknown. Consequently, there would be value in developing an experi-

mental approach for testing the potential benefits of formal adaptive optimization approaches compared

with currently used static (i.e. non-adaptive) approaches.

Given that existing multiobjective approaches to the optimal sequencing of water supply augmentation

options are deterministic [e.g., Mortazavi-Naeini et al., 2014] and that existing optimal sequencing

approaches that do consider uncertain future conditions are not multiobjective and do not include any for-

malmechanisms for adaptation, there is a need to develop a multiobjective, adaptive optimisation

approach for the sequencing of urban water supply augmentation options. However, as pointed out by

Kwakkel et al. [2014], the use of dynamic adaptive plans, rather than static plans, represents an emerging

planning paradigm for dealing with deep uncertainty. As such, implementation of this paradigm represents

a major challenge, especially in terms of the development of computational methods that support the

development of such plans, including consideration of transient scenarios [Kwakkel et al., 2014]. This is par-

ticularly the case for the urban water supply augmentation problem, as infrastructure decisions are difficult

to reverse and have long lifespans, making it difficult to develop dynamic, adaptive pathways. In addition,

because of long lead times and large investments associated with urban water supply infrastructure, there

is a need to ensure that water supply security is not compromised in periods between the implementation

of augmentation options.

It follows that an adaptive approach to the optimal sequencing of urban water supply augmentation

options is not simply a matter of reapplying an optimal static approach over a sliding window [see Szemis

et al., 2014], but requires careful design so that it enables the identification of (i) augmentation sequences

that are both optimal for the long term, yet sufficiently flexible to be able to be adapted with minimal loss

of optimality and (ii) augmentation options that are robust to changing conditions in periods between the

implementation of augmentation options. In other words, such an approach should account for (i) dynamic
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robustness over the entire planning horizon, (ii) static robustness during those periods of the planning hori-

zon when no changes can be made to the system, and (iii) pathways that are sufficiently flexible to cater to

adaptation at minimal loss of optimality.

Consequently, the objectives of this paper are (i) to develop an formal optimal sequencing approach for

urban water supply augmentation that is multiobjective and adaptive and (ii) to demonstrate the applica-

tion of the approach to a case study based on the southern Adelaide water supply system in South Aus-

tralia, including the development of an experimental approach that enables the potential benefits of

adaptive approaches to be compared with currently used static approaches. The remainder of this paper is

organized as follows. The proposed optimal sequencing approach is introduced in section 2 and its applica-

tion to the case study is described in section 3. Results and discussion are presented in section 4, followed

by a summary and conclusions in section 5.

2. Proposed Adaptive, Multiobjective Optimal Sequencing Approach

The philosophy underpinning the proposed approach is to add consideration of deep uncertainty to the tra-

ditionally used approach to obtaining optimal urban water supply augmentation sequences, which is based

on the optimization of a set of objectives subject to the satisfaction of water supply security constraint(s).

An approach based on this philosophy enables decision makers to explore the impact of the consideration

of deep uncertainty on optimal sequences of water supply augmentation options by identifying dynamic

adaptive pathways, rather than a single optimal solution, which is in alignment with approaches based on

adaptive dynamic planning [Haasnoot et al., 2013, 2014; Kwakkel et al., 2014]. This philosophy is also in

keeping with that used in scenario-based decision-making, in which scenarios ‘‘provide a dynamic view of

the future by exploring various trajectories of change that lead to a broadening range of plausible alterna-

tive futures’’ [Mahmoud et al., 2009], enabling ‘‘. . .a creative and flexible approach to preparing for an uncer-

tain future’’ [Mahmoud et al., 2009]. This is in contrast to flexible optimal sequencing approaches that have

been developed for water distribution system design [Basupi and Kapelan, 2013] and flood management

[Woodward et al., 2013], in which uncertain future conditions are represented by probability distributions,

thereby explicitly weighting the likelihood of different outcomes, rather than representing a set of alterna-

tive future states of the world [Mahmoud et al., 2009]. Consequently, the proposed approach is more likely

to be able to cater to deep uncertainty. However, it is acknowledged that the proposed approach also has a

number of limitations, such as a potential loss of mathematical optimality, as discussed in section 2.5.

In line with the underpinning philosophy outlined above, the proposed optimal sequencing approach for

urban water supply augmentation under deep uncertainty consists of three steps (see Figure 1), namely, (i)

identification of a diverse portfolio of optimal water supply augmentation sequence plans over the entire

planning period with the aid of scenario-based multiobjective optimization in order to identify solutions

that are optimal under a range of plausible future conditions (catering to dynamic robustness over the

entire planning horizon); (ii) assessment of the performance of the portfolio of optimal sequence plans in

terms of robustness and flexibility over the current staging interval and variation of the optimization objectives

over the entire planning period (catering to static robustness during those periods of the planning horizon

when no changes can be made to the system and to consideration of adaptation at a minimal loss of opti-

mality); and (iii) selection of the water supply augmentation option(s) to be implemented at the current deci-

sion stage based on the trade-offs between the performance criteria in (ii). The above steps are repeated at

subsequent decision stages (e.g., if the staging interval is 10 years, this process is repeated every 10 years)

(Figure 1). Details of each of these steps are given in the following sections. It should be noted that the pro-

posed approach could be easily adapted to other long-term water resources sequencing or scheduling

applications.

2.1. Identification of Diverse Portfolio of Optimal Water Supply Augmentation Sequence Plans

When identifying a set of optimal solutions under deep uncertainty, it is critical to identify a portfolio of

potential solutions that are able to respond to different future conditions [Korteling et al., 2013]. In order to

achieve this, it is proposed to use a formal multiobjective optimization approach to develop independent

optimal sequence plans over the entire planning horizon (e.g., 50 years) for a number of scenarios repre-

senting different combinations of uncertain variables affecting future conditions. As shown in Figure 1 (Step

1a), the first step in the process involves the formulation of the optimization problem, including selection of
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the objectives to be optimized (e.g., minimize cost and minimize greenhouse gas emissions) (Os(s51 to p)),

selection of the planning horizon (i.e., the period over which optimal sequence plans are to be developed)

(T), selection of the staging interval (i.e., the interval at which the addition of potential water supply aug-

mentation options is considered) (t), selection of the water supply augmentation options (i.e., the decision

variables) (Wk(k51 to n)) and definition of the constraint(s) (i.e., that some measure of supply is greater than

or equal to some measure of demand, in addition to any constraints on the decision variables). The number

of decision stages, y, can be calculated as y5 (T1t)/t). It should be noted that it is suggested to only con-

sider discrete water supply augmentation options, as this is what would generally be considered in practice.

Next, the uncertain variables need to be selected (UV1, UV2, . . ., UVx). As the optimization problem

addressed here is the optimization of the selected objectives subject to supply being greater than or equal

to demand, the critical uncertainties are in relation to the satisfaction of this constraint, and are therefore

likely to be variables that affect supply and demand (e.g., rainfall, temperature, evaporation, and popula-

tion). As shown in Figure 1 (Step 1b), the ranges of the uncertain variables need to be defined for each of

the decision stages y at the current time period i (UV1,y,i, UV2,y,i, . . ., UVx,y,i), followed by the selection of sce-

narios that consist of different combinations and values of the uncertain variables (S1,i, S2,i, . . ., Sc,i) (Figure 1,

Step 1c). It should be noted that the ranges of the uncertain variables, as well as the selection of the scenar-

ios, should reflect current best knowledge in relation to the plausible changes of these variables over the

planning horizon.

The use of scenario analysis is considered most appropriate for determining the portfolio of diverse solu-

tions, as it enables alternative plausible future dynamic pathways to be developed in line with the philoso-

phy that underpins the proposed approach, as outlined earlier. It should be noted that the different

scenarios are not designed to predict the future, but to enable exploration of a relatively small number of

different plausible futures that are generally not equally likely [Mahmoud et al., 2009]. For this reason, sce-

nario analysis has been adopted widely as a means of assessing the impact of deep uncertainty in water

Figure 1. Diagrammatic representation of proposed adaptive, multiobjective optimal sequencing approach under deep uncertainty.
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resources planning [Kasprzyk et al., 2012, 2013; Matrosov et al., 2013a, 2013b]. Most scenario development

involves people from different disciplines and organizations [Mahmoud et al., 2009] and can be achieved

using informal [see e.g., Kasprzyk et al., 2012; Lany et al., 2013] or more formal [see e.g., Leenhardt et al.,

2012; Lempert and Groves, 2010; Mahmoud et al., 2009; Matrosov et al., 2013b] approaches.

Once the problem has been formulated and the uncertain variables and scenarios defined, the portfolios of

Pareto-optimal sequences over the entire planning horizon (i.e., from i5 a to i5 a1 T) can be obtained. As

shown in Figure 1 (Step 1d), as part of the optimization process, the benefit associated with the capital

(CAP) and operating (OP) values are maximized over the p objectives, y decision stages, and n water supply

options subject to the supply provided by the selected water supply options at a particular decision stage

(Qky) being greater than or equal to the demand at that decision stage (Dy), as suggested by Beh et al.

[2014].

For the optimization engine, it is recommended to use multiobjective evolutionary algorithms (MOEAs).

This is because they have proved to be flexible and powerful tools for solving complex water resources

problems [Nicklow et al., 2010] and are able to identify solutions that represent multiobjective trade-offs in a

single optimization run, without the need to provide relative weights for the various objectives. Addition-

ally, EAs have been found to perform well in a number of urban water resources applications [Cui and Kuc-

zera, 2003; di Pierro et al., 2009; Mortazavi et al., 2012; Newman et al., 2014]. EAs can also be linked directly

with simulation models of the water supply system under consideration, enabling interactions between dif-

ferent water sources to be taken into account, which is an important consideration [Matrosov et al., 2013b].

Further details of the advantages of EAs are given in Maier et al. [2014].

As part of the optimization process, separate deterministic optimal sequence plans are generated over the

entire planning horizon for each scenario (Figure 1, Step 1d), as was undertaken by Housh et al. [2013] and

Kang and Lansey [2014]. The objective function values of each sequence at each decision point are calcu-

lated with the aid of a simulation model of the resulting water supply system, which includes any existing,

as well as the proposed, water supply sources. The simulation model is also used to check that supply is

greater than or equal to demand throughout the planning horizon. Each staging interval of each sequence

is simulated separately in order to cater to the potential incorporation of additional water supply options at

each of the decision points. At the end of the optimization process, an approximation to the Pareto front

[Pareto, 1896] of sequence plans for the scenario under consideration is obtained, which represents the

best feasible trade-offs between the selected objectives. The solutions on the Pareto fronts for the different

scenarios constitute the desired diverse portfolio of optimal water supply augmentation sequence plans

(Figure 1, Step 1d).

2.2. Assessment of Performance of Portfolio of Optimal Sequence Plans

Even though it is important that optimal sequence plans are obtained over the entire planning horizon,

decisions in relation to which options are actually implemented are only made for the current staging inter-

val. For example, although optimal sequence plans might be developed for 40 years, if the staging interval

is 10 years, only the first set of decisions of the 40 year plan is fixed now, while the rest of the plan can be

adapted before the next set of decisions about which water supply augmentation option(s) to implement

has to be made in 10 year time. Consequently, the members of the portfolio of optimal sequence plans are

grouped prior to performance assessment so that members of each group have the same augmentation

option(s) at the current decision stage (~P1, ~P2, . . ., ~Pu ; . . . :; ~PG ), where ~Pu is the uth group of sequence

plans that have the same augmentation options at the current decision stage, and G is the number of

groups of optimal sequence plans with unique water supply augmentation options at the current decision

stage (Figure 1, Step 2), which are determined by inspection of all optimal sequence plans. In this way, it is

recognized that only decisions about which options to implement at the current decision stage need to be

made at this time. However, optimality over the entire planning horizon is taken into account by only con-

sidering options at the current decision stage that are part of optimal sequence plans for the entire plan-

ning horizon. This concept of identifying optimal solutions over the planning horizon for different scenarios

and focusing on the implementation of options at the first decision stage is similar to that followed by

Housh et al. [2013] and Kang and Lansey [2014].

Although the optimal sequence plans that are part of a particular group have the same solution at the

current decision stage, they have different solutions at subsequent decision stages, as they are drawn
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from different parts of the Pareto front (i.e., they represent different trade-offs between objectives) or

from different Pareto fronts (i.e., they are optimal for different scenarios) and therefore represent different

plausible future dynamic pathways that need to be assessed and explored. In order to achieve this, the

performance of each of these pathways is assessed in terms of (i) the implications for water supply secu-

rity until further changes can be made to the system (see Figure 1, Step 2a—robustness), (ii) the implica-

tions on the ability to provide optimal solutions for different scenarios (see Figure 1, Step 2a—flexibility),

and (iii) the potential implications on objective function values (see Figure 1, Step 2b), as discussed in sub-

sequent sections.

2.2.1. Assessment of Robustness and Flexibility Over Current Staging Interval

Robustness. The system that is fixed now will be exposed to uncertain conditions over the current staging

interval (e.g., over the next 10 years). Consequently, although all current-stage augmentation options satisfy

the constraint that supply is greater than or equal to demand for the scenario for which this option is opti-

mal, to the degree to which water supply security of each of the unique current-stage solutions is adequate

under all different scenarios until further changes can be made to the system needs to be assessed. This is

achieved by assessing the static robustness of the different unique water supply augmentation options at

the current decision stage (i.e., of the optimal sequence plans that form part of each of the groups
~P1;

~P2; . . . ; ~Pu ; . . . :; ~PG
� �

for all scenarios (S1,i, S2,i, . . ., Sc,i) over the current staging interval (i.e., before

there is an opportunity to make further changes to the system) (Figure 1, Step 2a).

In order to measure robustness, a number of different metrics can be used [Hashimoto et al., 1982; Kasprzyk

et al., 2013; Korteling et al., 2013; Matrosov et al., 2013a, b], all of which reflect some measure of insensitivity

to future conditions and the ability to perform satisfactorily over a broad range of future conditions. As part

of the proposed approach, the measure of robustness used by Paton et al. [2014a, b] is used:

Robustnessu5
Ruc

c
; (1)

where Ruc is the number of scenarios for which group ~Pu of the optimal sequence plans is considered to

exhibit acceptable performance over the current staging interval and c is the total number of uncertain sce-

narios. A desirable property of this measure of robustness is that it considers each scenario as an independ-

ent plausible future and provides information on the fraction of scenarios for which a particular solution

performs at an acceptable level from a water supply security perspective. Which performance levels are

considered acceptable are case study dependent, but could include potential water supply security meas-

ures such as reliability, resilience and vulnerability, as recommended by Yazdani et al. [2011], or the risk of

water shortages, as suggested by Hall et al. [2012]. It should be noted that, as the solutions at the current

staging interval are identical for each of the groups of optimal sequence plans ( ~P1 , ~P2 , . . ., ~PG ), robustness

only has to be calculated once for each group.

Flexibility. Given the adaptive nature of the proposed approach, the flexibility that the supply augmentation

options that are fixed at the current decision stage provide in terms of being able to be part of optimal

long-term sequence plans in the face of uncertain future conditions is also important. As stated in Mejia-Gir-

aldo and McCalley [2014], a ‘‘solution is flexible when it can be adapted cost-effectively to any of the condi-

tions characterizing the identified scenarios.’’ From this perspective, a solution is more flexible if it is optimal

for a larger number of scenarios and less flexible if is optimal for a smaller number of scenarios. Conse-

quently, Flexibility is defined as the fraction of the scenarios for which group ~Pu solutions at the current deci-

sion stage are optimal as follows:

Flexibilityu5
Cpu
c

; (2)

where Cpu is the number of scenarios for which a particular set of augmentation options(s), ~Pu is selected over

the current staging interval, and c is the total number of uncertain scenarios. Therefore, a flexibility of 1 indi-

cates that the solution that is fixed at the current decision stage is part of optimal sequence plans for every sce-

nario and can therefore be part of optimal solutions under the full range of plausible future conditions

considered. In contrast, a flexibility of 1/c indicates that the solution that is fixed at the current decision stage

is only optimal for one of the c future scenarios. If this solution is implemented and the single scenario for

which this solution is optimal does not occur, any changes to the sequence plan over the planning horizon
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will result in a loss of optimality, as another plan will be optimal. It should be noted that flexibility is calculated

for each group of optimal sequence plans ( ~P1 , ~P2 , . . ., ~Pu, . . ., ~PG ) (see Figure 1, Step 2a).

2.2.2. Assessment of Variation in Objectives for the Selected Scenarios Over the Entire Planning

Horizon

In addition to the assessment of robustness and flexibility of ~Pu (i5 1, 2, . . ., G), it is important to consider

the central tendency and spread of the objective function values of all of the different optimal sequence

plans that are part of a group over all scenarios. In order to achieve this, it is proposed to use the median

and range of the objective functions (O1, O2, . . ., Op) over the entire planning horizon. It should be noted

that the median and range are suggested as measures of central tendency and variation, rather than alter-

native measures, such as the expected value and standard deviation, as the scenarios represent different

plausible futures, rather than events of a certain probability. In order to obtain the required values of

median and range, the objective functions are calculated for each member of a particular group of optimal

sequence plans over all scenarios. These calculations are repeated for each group of optimal sequence

plans ~Pu (i5 1, 2, . . ., G) so that values of the median and range are obtained for each objective for each of

the groups (see Figure 1, Step 2b).

2.3. Selection of Water Supply Augmentation Options to be Implemented

Finally, the most appropriate group of optimal sequence plans, and hence the water supply augmenta-

tion option(s) to be implemented at the current decision stage, needs to be selected. When dealing

with multiple, competing objectives, there is generally no single optimal solution, but a collection of

solutions that are all optimal [Pareto, 1896]. This is because for these solutions, improvements in one

objective can only be achieved at the expense of degradation in at least one of the other objectives,

requiring additional preference information to enable one of these solutions to be selected [Cohen and

Marks, 1975]. Consequently, the solution to be implemented has to be selected based on user prefer-

ences of the trade-offs between the median and range of the objectives over the entire planning hori-

zon (e.g., 50 years) and robustness and flexibility over the current staging interval (e.g., the next 10

years until further changes can be made to the system). It is suggested to use value path plots

[Geoffrion et al., 1972] for this purpose, as they are a well-known method for visualizing the trade-offs

between performance measures (see Figure 1, Step 3).

It should be noted that the purpose of the proposed approach is not to suggest a single best solution, but

to provide the best possible information on solutions that represent alternative future pathways to decision

makers. This is in line with other approaches that follow a similar philosophy as that underpinning the pro-

posed approach [e.g., Kasprzyk et al., 2013; Kwakkel et al., 2014]. As mentioned above, selection of the option

to be implemented is based on user preferences and should involve input from affected stakeholders. If the

number of objectives (p) and the number of groups of optimal sequence plans with the same augmentation

options at the current decision stage (G) is relatively small, this could be done informally. However, when

the product of p and G is large, the use of more advanced visual analytics [see e.g., Kollat and Reed, 2007;

Reed and Kollat, 2013], which is limited to about six or seven options, or more formal decision-making proc-

esses, such as multicriteria decision analysis [e.g., Hyde and Maier, 2006; Korteling et al., 2013] or scenario dis-

covery [e.g., Kasprzyk et al., 2012; Lempert, 2013] approaches, for example, could be used. However, as

mentioned above, the focus of this paper is not on the process for selecting the best option, but on the pro-

vision of information to decision makers.

2.4. Adaptive Process

As part of the adaptive process, the general steps outlined in sections 2.1–2.3 are repeated at each decision

stage (i.e., every t years (e.g., every 10 years)) (see Figure 1, outer loop). However, there are some differences

between decision stages, as illustrated in Figure 1 and summarized below.

As decision points are generally separated by some time (e.g., 10 years), the understanding of the

trajectories of the various uncertain variables (e.g., population growth and climate futures) is likely to

have changed from one decision point to the next. Consequently, the scenarios to be considered in

the identification of the portfolio of optimal sequence plans (i.e., S1,i, S2,i, . . ., Sc,i) are also likely to

be different, as they should be developed based on best available knowledge at the time (see

section 2.3).
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While the duration of the planning horizon (e.g., 50 years) remains unchanged, the actual start and end

times of the planning horizon over which optimal sequence plans are developed with the aid of multiobjec-

tive evolutionary algorithms will be different (i.e., there will be different start and end points) (Figure 1).

2.5. Advantages and Limitations of Proposed Approach

Optimality versus practicality. As mentioned previously, the philosophy underpinning the proposed

approach is to enable decision makers to explore the impact of deep uncertainty on urban water supply

augmentation sequences that are optimal with respect to the objectives and subject to meeting water sup-

ply security constraints, thereby presenting decision makers with plausible future pathways. Consequently,

the assessment of the impact of uncertainty on the water supply security constraint via the robustness mea-

sure and the assessment of the adaptability of selected solutions to different conditions via the flexibility

measure are not included as additional objectives of the optimization problem, but are considered postop-

timization. This is in line with other similar approaches to assessing water supply security under deep uncer-

tainty that have not considered the sequencing of options [e.g., Kasprzyk et al., 2013].

Apart from the philosophical reasons for not including robustness and flexibility as objectives stated above,

there are also practical reasons, as the consideration of robustness and flexibility as objectives would

increase the computational effort associated with the optimization considerably. This is because the calcula-

tion of robustness and flexibility for each solution at each iteration of the EA requires the results of the opti-

mization runs for all scenarios. This would increase computational effort significantly, especially since the

run-times associated with the integrated model of the water resources system can be quite long. Further-

more, repeated model runs with different stochastically generated hydrological inputs are required in order

to obtain a rigorous assessment of water supply security [see Mortazavi et al., 2012], thereby increasing run-

times even further.

Despite the advantages outlined above, consideration of robustness and flexibility post-optimization, rather

than as objectives in the optimization problem, can also be considered a limitation, as this could result in

solutions with reduced robustness and flexibility, since these measures are not optimized. In other words,

the proposed approach identifies the relative robustness and flexibility of solutions that are optimized for

the objectives, but does not necessarily identify solutions that are optimally robust and flexible. However,

for the urban water supply augmentation problem and robustness measure considered here, the solution

for the worst-case scenario will, by definition, always have a robustness of 1 (i.e., the largest possible, and

hence optimal, value). Nevertheless, identification of the best possible trade-offs between robustness and

the other performance measures are not guaranteed. In relation to flexibility, an alternative measure, such

as regret costs [see Kang and Lansey, 2014], could have been used and included more formally in the opti-

mization process, thereby improving the mathematical optimality of the solutions. However, such an

approach would be geared toward identifying a single optimal solution, rather than presenting decision

makers with alternative pathways.

The approach of presenting decision makers with different future pathways by obtaining separate opti-

mal solutions for each scenario could also result in a loss of mathematical optimality, as a solution that

is optimal for a particular scenario might not be optimal if all scenarios are considered simultaneously,

as was done by Kang and Lansey [2014]. However, it should be noted that the flexibility criterion intro-

duced in this paper provides an indication as to whether or not this is the case. For example, if the flex-

ibility criterion is equal to 1, then there is no loss of optimality, as a particular solution is optimal across

all scenarios. In contrast, if the flexibility is less than 1, there will be some loss of optimality. However,

the magnitude of this loss cannot be quantified in terms of objective function values using this crite-

rion. It should also be noted that as Kang and Lansey [2014] used a compromise cost function to obtain

an optimal solution across all scenarios, rather than presenting alternative pathways to decision makers,

there is likely to be a trade-off between achieving mathematical optimality and presenting options to

decision makers.

Another factor that could result in a loss of mathematical optimality is the fact that the proposed approach

uses discrete values of the water supply augmentation options. However, from a practical perspective,

urban water supply augmentation options are generally discrete in nature (e.g., whether to implement a

particular augmentation option or not or what capacity a particular augmentation option should be), so this

is unlikely to present any problems from a practical perspective.
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Single objective versus multi objective. As mentioned previously, compared with other approaches to solv-

ing similar problems [Housh et al, 2013; Kang and Lansey, 2014; Ray et al., 2012], the proposed approach

is multiobjective, which is an advantage, given that most practical problems have more than one objec-

tive. Although Kang and Lansey [2014] used an EA as their optimization engine, thereby enabling their

approach to be expanded to be multiobjective, this extension has not yet been reported or tested in

the literature.

However, the proposed approach also presents a number of challenges due to its multiobjective nature.

First, there could be multiple sequence plans with the same solution at the current staging interval that are

on the Pareto front for a particular scenario. In this case, only the presence or absence of this solution on

Pareto fronts for different scenarios is taken into account in the calculation of flexibility (equation (2)), not

the number of optimal sequence plans with this solution, and hence potential losses in trade-off informa-

tion are not considered in the proposed flexibility criterion. Second, as the number of scenarios for which

particular sequence plans are optimal varies, some sequence plans that are Pareto optimal for a particular

scenario might be completely dominated in terms of the median and range of the objective function values

once the solution has been evaluated over all scenarios, for some of which a solution might not be Pareto

optimal. However, this is not a problem from a practical perspective, as such solutions can be discarded as

part of the final evaluation process.

3. Case Study

3.1. Background

In order to illustrate and test the utility of the proposed approach, it is applied to a case study based on the

southern region of the Adelaide water supply system (WSS) in 2010. Adelaide is the capital city of South

Australia (SA) (see Figure 2) and has a population of approximately 1.3 million. It is one of the driest capital

cities in the world [Wittholz et al., 2008], having a Mediterranean climate, with hot dry summers and mild

wet winters. Recorded annual rainfall ranges from 257 to 882 mm [Maier et al., 2013]. Average annual mains

water consumption was estimated to be 163 gigalitres (GL) in 2008 [Government of South Australia, 2009].

This case study is selected as it has been used as a benchmark in previous water resources studies. Paton

et al. [2013] assessed the impact of climate change on the water supply security of this system and con-

cluded that supply augmentation was needed. Paton et al. [2014b] assessed the utility of a small number of

water supply augmentation options in terms of PV of cost and water supply security and Paton et al.

[2014a] used a multiobjective optimization approach to explore the trade-offs between PV of cost, PV of

greenhouse gas emissions and water supply security for different supply augmentation options and operat-

ing policies. However, the sequencing of water supply augmentation options was not considered in any of

these studies. The optimal sequencing problem for this system was addressed by Beh et al. [2014], but they

used an approximate problem formulation in conjunction with a linear programming method, did not use a

truly multiobjective approach and did not consider the impact of uncertainty (i.e., the optimal sequencing

problem was considered to be deterministic).

The southern Adelaide WSS (see Figure 2) supplies around 50% of the demand of metropolitan Adelaide. In

2010, the system was supplied by three reservoirs—Myponga, Mount Bold and Happy Valley. Mount Bold

and Myponga reservoirs receive water from local catchments, and Mount Bold also receives water pumped

from the River Murray via the Murray Bridge to Onkaparinga pipeline. The amount of water supplied from

the River Murray is based on a 5 year rolling license for Adelaide, which is fixed at 650 GL. Of this, half is

assumed to be allocated to the southern Adelaide WSS. The Happy Valley reservoir is a service reservoir that

stores water transferred from Mount Bold reservoir prior to treatment at the Happy Valley water treatment

plant.

As highlighted by Paton et al. [2013], supply augmentation is required for the southern Adelaide WSS to

meet future demands in the face of increased water demand and climate change impacts. In this study, the

potential augmentation options identified by the SA government are considered, including a desalination

plant at Port Stanvac, various storm water harvesting schemes, and household rainwater tanks (Figure 2)

[Government of South Australia, 2009]. It should be noted that long-term demand management options

have already been applied extensively in the case study system and are therefore not considered. However,

supply shortfalls that can be accommodated by temporary water restrictions are included as part of the
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acceptability criterion for the robustness calculations (see section 3.3.2). Augmentation of existing sources is

also excluded as options, as there is limited potential for additional supply from these sources.

3.2. Overall Experimental Approach

In line with the objectives stated in section 1, the overall purpose of the experimental approach is to dem-

onstrate the application of the proposed approach to the Adelaide case study and to test the utility of the

adaptive features of the proposed approach by comparing its performance with that of an equivalent static

approach. A summary of the overall experimental approach is given in Figure 3. Part A in Figure 3 corre-

sponds to the application of the proposed approach to the Adelaide case study and is aligned with the gen-

eral approach introduced in section 2 (Figure 1). Part B in Figure 3 corresponds to the assessment of the

Figure 2. Map of the Southern Adelaide water supply system (WSS).
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utility of the adaptive features of the proposed approach by comparison with an equivalent static

approach.

As it is only possible to evaluate the true utility of the adaptive nature of the proposed approach over the

actual duration of the planning horizon (e.g., over the next 40 years), the proposed experimental approach

is based on assumed known future conditions (or simulated realities) and the simulation of what would

actually happen over the adopted planning horizon under these conditions (Figure 3, Part A). In other

words, steps 1–3 of the proposed approach (Figures 1 and 3, Part A) are implemented at 2010 to determine

which supply augmentation option(s) to implement at this time. Next, it is assumed that 10 years have

passed and that it is known what the actual values of the uncertain variables at this time are and that the

corresponding updated estimates of the ranges of the uncertain variables and scenarios are known. Steps

1–3 of the proposed approach are then repeated to determine which supply augmentation option(s) to

implement at the simulated current time (i.e., 2020). This whole process is then repeated for 2030, 2040,

and 2050 for a particular reality in accordance with the adaptive nature of the proposed approach (Figures

1 and 3, Part A).

In order to demonstrate that the proposed adaptive approach results in different augmentation options

under different sets of actual future conditions, the entire process in Part A of Figure 3 is repeated for a dif-

ferent set of assumed known future conditions. These two sets of assumed known future conditions are

referred to as Reality 1 and Reality 2. In other words, two sets of independent results are presented for two

alternative simulated realities for the sake of comparison of how different augmentation options can be

obtained by using the adaptive approach based on different changes in actual future conditions. It should

be noted that the realities are different from the scenarios. However, the realities represent actual known

Figure 3. Summary of experimental approach for the Adelaide case study.
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future conditions (i.e., what has actually happened), which are assumed for the purposes of the computa-

tional experiments for testing the utility of the adaptive features of the proposed approach presented in

this paper (Figure 3, Part B), the scenarios represent plausible future conditions at the time of decision mak-

ing and are an integral part of the proposed approach (Figure 3, Part A).

In order to assess the utility of the adaptive nature of the proposed approach, the augmentation options

obtained using the proposed adaptive approach are compared with an equivalent static approach [e.g.,

Mortazavi-Naeini et al., 2014], as all current approaches to the optimal sequencing of urban water supply

augmentation options are not adaptive, as discussed in section 1 (Figure 3, Part B). Consequently, the static

approach provides a benchmark of current best practice in literature against which to assess the adaptive

features of the proposed approach. The static approach is implemented for each of the plausible scenarios

to provide a comprehensive basis of comparison.

The comparison of the adaptive and static approaches is conducted over the two independent realities. As

the purpose is to assess how well the sequence plans obtained using the proposed adaptive approach and

the benchmark static approach perform under the two realities, and not which approach performs best for

a given reality, the performance metrics for a particular sequence are averaged over the two realities. This

enables the performance of a selected sequence to be assessed in the face of the occurrence of two differ-

ent actual future conditions, which are unknown at the time of decision making.

Details of the implementation of the above approach for the case study based on the southern Adelaide

WSS are given in the subsequent sections, with Part A of Figure 3 corresponding to section 3.3 and Part B to

section 3.4.

3.3. Identification of Optimal Sequence Plans

The details for steps 1–3 of the proposed approach (Figure 1) for the Adelaide case study are summarized

in Part A. of Figure 3 and described below. As mentioned above, this process is repeated for each of the

two independent realities for the sake of assessing the utility of the adaptive features of the proposed

approach.

3.3.1. Identification of Diverse Portfolio of Optimal Supply Augmentation Sequence Plans

Problem formulation (Figure 3, Part A, section 1a). A 40 year planning horizon and a 10 year staging interval

are adopted. Therefore, there are five decision stages over the 40 year planning horizon (i.e., 2010, 2020, . . .,

2050). However, as these years correspond to the first year of the 40 year planning horizon, a total time

period of 80 years is considered (i.e., 2010–2050, 2020–2060, . . ., 2050–2090).

The selected objectives include the minimization of the present value (PV) of economic cost and the PV of

greenhouse gas (GHG) emissions. GHG emissions are considered as an objective in addition to the most

commonly used objective of cost minimization due to an increased awareness of the need to reduce the

carbon footprint associated with water supply systems [Wu et al., 2010a, 2010b, 2013; Paton et al., 2014a].

GHG emissions are of particular concern for the southern Adelaide system because water is pumped signifi-

cant distances from the River Murray and because desalination is considered as an alternative source of

water [see Beh et al., 2014; Paton et al., 2013, 2014a, 2014b]. Note that gross GHG emissions are used in this

study. These may be fully or partially offset by the purchase of green power or other carbon offsets.

Both the PV of cost and the PV of GHG emissions consist of two components, namely capital and operating

values. Capital costs and GHG emissions are incurred at the construction phase of a project (e.g., materials

and outlay), while operating values are incurred over the life of a project (e.g., electricity for pumping and

maintenance). A discount rate of 6% is used for the calculation of the PV of cost, as suggested by Wu et al.

[2010b]. In contrast, a discount rate of 1.4% is used for the calculation of the PV of GHG emissions, as this

has been suggested as being appropriate for stabilizing GHG concentrations in the atmosphere within a

desired range [Wu et al., 2010a]. The capital emissions values are computed using embodied energy [Treloar,

1995] and emission factor analysis [Wu et al., 2010a]. Further details are provided in Beh et al. [2014] and

Paton et al. [2013, 2014a, b].

The existing water supply options (i.e., the three reservoirs and supply from the River Murray) are included

in all sequence plans at the beginning of the planning horizon. However, the desalination plant, storm

water harvesting schemes and household rainwater tanks are considered as potential additional water sup-

ply sources at each decision point.
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The production capacity of the Port Stanvac desalination plant is either 50 or 100 GL per annum, with the

option of a 50 GL per annum expansion of the 50 GL per annum plant. Thus, either a 50 or a 100 GL desali-

nation plant can be selected at any of the decision stages, but not both, and the selected desalination plant

cannot be down-sized at later stages. It should be noted that the desalination plant can supply the entire

metropolitan Adelaide region, so it is assumed that 50% of its capacity can supply the southern Adelaide

WSS. Once one of the desalination options has been selected, it cannot be selected again. However, if the

50 GL desalination plant is selected, expansion to full capacity is allowed at one of the subsequent

decision points.

The storm water harvesting schemes considered include Brownhill and Keswick Creek, Sturt River, Field

River and Pedler Creek (Figure 2). The potential supply from these schemes is generally different from year

to year as a result of hydrologic variability, but their estimated annual yields range from 1.6 to 7.0 GL/yr

[Beh et al., 2014]. One or more of the schemes can be selected at any of the decision stages. However, each

scheme can only be selected once. The amount of water supplied by each scheme during each decision

stage is calculated using a simulation model and is a function of rainfall and the interaction with the other

selected sources.

Ten potential rainwater tank capacities are considered, ranging from 1 to 10 kL. The potential supply from

these tanks is generally different from year to year as a result of hydrologic variability, but their estimated

annual yields range from 35 to 47.1 kL/tank/yr [Beh et al., 2014]. It is assumed that rainwater tanks with a

particular capacity can be implemented at any of the decision stages. However, the option to use rainwater

tanks as a source can only be selected once during the planning horizon. In addition, it is assumed that

once a particular rainwater tank capacity option has been selected, this is implemented across all dwellings

as a result of government regulation.

As the quality of the storm water and rainwater is generally not of drinking standard, these sources are

assigned to nonpotable uses, whereas supply from the reservoirs and the desalination plant is chosen to

provide household indoor use. Further details of the mapping of sources to end-uses and how this was rep-

resented in the simulation model are given in Beh et al. [2014] and Paton et al. [2014a, b].

The decision variables corresponding to the sequencing of the above augmentation options used during the

optimization are summarized in Table 1. The estimated yield, capital and unit operating costs and GHG emis-

sions of each water supply options are also given in Table 1 [see Beh et al., 2014]. However, these are only

estimates and the actual values supplied by each source are calculated with the aid of a simulation model

for a particular scenario at a particular decision stage based on the interaction of the different potable and

nonpotable demands and the selected mix of supply sources. As the capacities of most of the water supply

options are fixed (i.e., desalination, storm water harvesting schemes), the discrete decision variables corre-

spond to the decision stage at which a particular option is implemented, ranging from 0 (i.e., the option is

not implemented over the planning horizon) to 5 (i.e., the option is implemented at decision stage 5) (deci-

sion variables 1–4 and 6–9, Table 1). However, in addition to a decision variable for timing, rainwater tanks

also have an integer decision variable corresponding to rainwater tank capacity (decision variable 5, Table 1),

ranging from 1 to 10 kL. It should be noted that the number of rainwater tanks implemented depends on

the time of implementation, as the number of households changes with time due to changes in population.

Table 1. Details of Decision Variable Formulation

Decision

Variable Description

Lower

Limit

Upper

Limit

Estimated

Yield

Capital

Cost ($)

Unit

Operation

Cost ($/kL)

Capital

GHG Emissions

(kgCO2-e)

Unit GHG

Emissions

(kgCO2-e/kL)

1 50 GL desalination plant implementation stage 0 5 25.0 GL/yr 1,347,000,000 1.00 228,538,000 5.41

2 100 GL desalination plant implementation stage 0 5 50.0 GL/yr 1,830,000,000 1.00 237,103,000 5.43

3 50 GL desalination plant expansion implementation stage 0 5 25.0 GL/yr 483,000,000 1.00 8,565,000 5.41

4 Household rainwater tank implementation stage 0 5

5 Household rainwater tank size (kL) 1 10 35.0–47.1 kL/yr 2,181–3,560 0.63–0.78 718–4,635 1.22

6 Brownhill and Keswick Creek storm water harvesting

scheme implementation stage

0 5 6.3 GL/yr 160,025,000 1.23 7,249,000 2.04

7 Sturt River storm water harvesting scheme implementation stage 0 5 7.0 GL/yr 194,193,000 1.23 7,351,000 2.06

8 Field river storm water harvesting scheme implementation stage 0 5 1.6 GL/yr 35,689,000 1.23 3,576,000 6.05

9 Pedler Creek storm water harvesting scheme implementation stage 0 5 5.0 GL/yr 110,682,000 1.23 5,643,000 1.60
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Definition of uncertain variables and scenarios

(Figure 33, Part A, sections 1b and 1c). Popula-

tion, rainfall and temperature are considered

as the uncertain variables (UV1,i, UV2,i, UV3,i)

as they have a direct impact on supply and

demand. As mentioned in section 3.2, in

order to illustrate the benefit of the adaptive

nature of the proposed approach, it is

applied to two realities, each consisting of

different known trajectories of the uncertain

variables up to 2050. Reality 1 has a milder

and Reality 2 a more severe impact on water

supply security in terms of total demand

and climate change conditions (see Table 2).

The changes in population growth and climate change impact used in the two realities are based on esti-

mates from the Government of South Australia [2009] and Australian Bureau of Statistics [2013] to ensure

they are plausible.

For each reality, seven scenarios (S1,i, S2,i, . . ., S7,i) consisting of different population growth and climate

change impacts are used to represent a small number of plausible, but different, future pathways. Scenario

1 represents the best set of plausible future conditions in terms of water supply security with extremely low

projected population growth and the least severe future climate change impact. In contrast, Scenario 7 rep-

resents the worst set of plausible future conditions with respect to water supply security, with extremely

high projected population growth and severe climate change impact. These extremes are considered to

ensure the generation of Pareto-optimal solutions that can cater to a wide range of plausible future condi-

tions. Details of the ranges of the uncertain variables for each of the seven scenarios for each of the two

realities, representing assumed best knowledge at the time of interest, are given in Table 3. As can be seen,

the ranges of the uncertain variables for the different scenarios change over time, thereby representing

transient scenarios, as advocated by Haasnoot et al. [2013] and Kwakkel et al. [2014].

The seven population scenarios for each reality are based on an initial population of 600, 240 for the south-

ern Adelaide region in 2010 [Australian Bureau of Statistics, 2011]. For each reality, the seven time series of

population projections are based on 40 year annual population projections accounting for various assump-

tions of fertility, mortality, net interstate migration and net overseas migration [Australian Bureau of Statis-

tics, 2013].

Table 2. Details of the Two Realities (Assumed Known Future Condi-

tions) Considered (Cumulative Changes)

2020 2030 2040 2050

Reality 1

Population growth 7% 13% 18% 22%

Climate change impact

1. Changes in temperature (�C) 0.25 0.55 0.70 1.00

2. Changes in rainfall 20.5% 21.5% 24.0% 26.0%

Reality 2

Population growth 7% 18% 20% 29%

Climate change impact

1. Changes in temperature (�C) 0.25 0.60 1.00 1.25

2. Changes in rainfall 20.5% 23.0% 26.0% 29.0%

Table 3. Uncertain Variable Options for Each Scenario and Reality (Cumulative Changes)

2010–2050 2020–2060 2030–2070 2040–2080 2050–2090

Population

Growth (%)

Temperature

Change (�C)

Rainfall

Change

(%)

Population

Growth

(%)

Temperature

Change (�C)

Rainfall

Change

(%)

Population

Growth

(%)

Temperature

Change (�C)

Rainfall

Change

(%)

Population

Growth

(%)

Temperature

Change

(�C)

Rainfall

Change

(%)

Population

Growth

(%)

Temperature

Change (�C)

Rainfall

Change

(%)

Reality 1

Scenario 1 22.80 0.80 27.60 21.20 0.94 27.70 213.60 1.06 28.60 235.20 1.16 29.30 269.20 1.25 210.00

Scenario 2 8.00 0.80 27.60 16.40 0.94 27.70 13.20 1.06 28.60 220.00 1.16 29.30 218.40 1.25 210.00

Scenario 3 18.80 1.09 29.90 17.20 1.31 210.40 9.20 1.52 211.80 226.40 1.66 212.80 221.60 1.71 213.10

Scenario 4 29.60 1.09 29.90 8.40 1.31 210.40 9.60 1.52 211.80 6.80 1.66 212.80 0.00 1.71 213.10

Scenario 5 40.80 1.09 29.90 20.00 1.31 210.40 32.00 1.52 211.80 38.80 1.66 212.80 41.20 1.71 213.10

Scenario 6 51.60 1.29 211.60 30.80 1.41 211.90 52.00 1.57 212.20 66.80 1.72 213.10 76.80 1.91 214.30

Scenario 7 62.80 1.29 211.60 34.00 1.41 211.90 58.00 1.57 212.20 75.60 1.72 213.10 88.40 1.91 214.30

Reality 2

Scenario 1 22.80 0.93 29.40 35.20 1.08 210.80 61.20 1.22 212.00 81.20 1.33 213.00 97.60 1.44 213.90

Scenario 2 8.00 0.93 29.40 38.40 1.08 210.80 67.20 1.22 212.00 90.00 1.33 213.00 108.80 1.44 213.90

Scenario 3 18.80 1.26 212.30 39.20 1.51 212.50 70.00 1.75 213.70 96.00 1.92 214.40 118.40 1.97 214.80

Scenario 4 29.60 1.26 212.30 40.00 1.51 212.50 73.20 1.75 213.70 102.40 1.92 214.40 128.00 1.97 214.80

Scenario 5 40.80 1.26 212.30 42.80 1.51 212.50 77.60 1.75 213.70 107.20 1.92 214.40 133.20 1.97 214.80

Scenario 6 51.60 1.49 214.30 45.60 1.63 215.50 81.60 1.81 216.50 112.00 1.98 217.80 138.40 2.19 218.30

Scenario 7 62.80 1.49 214.30 51.60 1.63 215.50 96.80 1.81 216.50 138.00 1.98 217.80 176.80 2.19 218.30

Water Resources Research 10.1002/2014WR016254

BEH ET AL. VC 2015. American Geophysical Union. All Rights Reserved. 1542



The seven rainfall and temperature scenarios for each reality are based on different combinations of SRES

scenarios (A1FI, A1T, A2, B1, and B2) and Global Circulation Models (GCMs) (CCSM3, CGCM3.1, CSIRO-MK3.5,

FGOALS-g1.0, MIROC3.2 (hires), MIROC3.2 (medres), and MRI-CGCM2.3.2), as suggested by Paton et al.

[2013] for the case study area. Based on the outputs of different combinations of SRES scenarios and GCMs,

the climate change impacted daily rainfall and evaporation data are obtained by multiplying the 40 year

historical rainfall and evaporation data used in the simulation model by the appropriate climate change fac-

tor obtained from OzClim (http://www.csiro.au/ozclim/), as was undertaken by Paton et al. [2013] for the

case study area.

As discussed in section 2.1, in practice, the scenarios would be developed with the aid of stakeholders with

different backgrounds and from different organizations. However, in this case, the above scenarios are

assumed for the sake of illustration of the proposed approach. However, the scenarios are selected carefully

to represent a range of plausible and very different future conditions. In addition, the different scenarios are

not necessarily equally likely, as some represent combinations of extreme conditions, while others do not.

Determination of portfolio of optimal sequences (Figure 3, Part A, section 1d). WaterCress (Water-Community

Resource Evaluation and Simulation System) is used as the simulation model for calculating the objective

functions and checking demand constraints. WaterCress is a water balance model that enables simulation of

a real life layout of a water supply system as an assembly of its components. Each component has an associ-

ated database which contains all variables (e.g., demand, rainfall, and evaporation) necessary to enable

quantities of water to be estimated and tracked through a specified water supply system [Clark et al., 2002].

WaterCress is chosen for this case study because it (i) can incorporate multiple rainfall time series, (ii) can

model multiple catchment-reservoir relationships, and (iii) can incorporate less conventional water supply

sources (e.g., desalination and recycled water). Furthermore, the model is freely available and was devel-

oped specifically for South Australian conditions. Further details of the WaterCress model developed for the

case study WSS are given in Beh et al. [2014] and Paton et al. [2014a].

Total demand is calculated as a function of population size, per capita demand and commercial and indus-

trial demand. Population is considered as one of the uncertain variables, as detailed above. Average house-

hold size is assumed to be constant at 2.3 people and per capita demand is held constant at 491 L/p/d over

the planning horizon [see Beh et al., 2014], as variability in population has been shown to have by far the

greatest impact on water supply security for this system [Paton et al., 2013].

For each of the two realities, the multiobjective optimization process is repeated for each scenario at

each of the five decision points. The Water System Multiobjective Genetic Algorithm (WSMGA) [Wu

et al., 2010a] is used as the optimization engine, as it is based on the widely used multiobjective

genetic algorithm NSGA-II [Deb et al., 2002], is able to cater to integer decision variables, and has been

used successfully in a number of multiobjective optimization studies of water systems [Paton et al.,

2014b; Wu et al., 2010a, 2010b, 2013]. In order to obtain the best possible values of the parameters con-

trolling GA searching behavior, a number of preliminary trials are conducted. The optimal values are

found to be a population size of 150, a probability of crossover of 0.9 and a probability of mutation of

0.1. Hypervolume convergence is used as the termination criterion, as this is one of the most popular

measures for capturing the diversity, as well as the convergence, of solutions in multiobjective optimiza-

tion problems [Reed et al., 2013; Zitzler, 1999].

3.3.2. Assessment of Performance of Portfolio of Optimal Sequence Plans

For a particular reality and decision stage, all solutions on the Pareto fronts for the seven scenarios are ana-

lyzed and grouped so that each group contains the same augmentation option(s) at the current staging

interval (see section 2.2) and all solutions in each of these groups are assessed in terms of robustness, flexi-

bility and variation of the median and range of the PV of cost and PV of GHG emissions over all scenarios,

as detailed below.

3.3.2.1. Assessment of Robustness and Flexibility

Robustness is calculated in accordance with equation (1) (see section 2.2) (Figure 3, Part A, section 2a). In

equation (1), the performance of the water supply system is considered acceptable when reliability (equa-

tion (3)) is greater than 95% and the maximum vulnerability (equation (4)) is less than or equal to 27% of

demand. This latter figure is equal to the projected savings under Adelaide’s highest Level 5 water restric-

tions [Chong et al., 2009].
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As suggested by Beh et al. [2014] and Paton et al. [2014a, 2014b], hydrologic variability is accounted for by

using 20 replicates of daily stochastic rainfall for each rainfall station. These stochastic rainfall series are gen-

erated for each scenario using the Stochastic Climate Library (SCL) (www.toolkit.net.au/scl). Further details

of the generation of the stochastic rainfall time series are given in Paton et al. [2013] and Beh et al. [2014].

Consequently, the reliability and vulnerability values used in the robustness calculations are the average val-

ues obtained for the 20 stochastic rainfall sequences for the next staging interval as follows:

Reliability5

Xm

k51

Ts
Ti

� �h i

k

m
; (3)

where Ts is the number of years for which supply meets demand, Ti is the length of the selected staging

interval (years), and m is the number of stochastic sequences.

Vulnerability5

Xm

k51
maximum

Dy

Sy

� �h i

k

m
; (4)

where Dy is the volume of annual supply shortfall, as obtained from theWaterCressmodel, and Sy is the total

annual demand, as obtained from theWaterCress model.

3.3.2.2. Assessment of Variation in Objectives

The median and range of the PV of cost and the PV of GHG emissions are obtained by calculating the

PV of cost and PV of GHG emissions for all Pareto optimal solutions for all scenarios and calculating the

required statistics for all solutions belonging to a particular group (i.e., with the same solution at the

current staging interval) (Figure 3, Part A, section 2b). This is achieved with the aid of the WaterCress

model.

3.3.3. Selection of Water Supply Augmentation Options to be Implemented

The water supply augmentation option(s) to be implemented at a particular decision stage are selected

based on informal consideration of the trade-offs between the performance metrics (i.e., robustness,

flexibility, median and range of PV of cost, and median and range of PV of GHG emissions), as illus-

trated in value path plots (Figure 3, Part A, section 3). It should be noted that all indices of the perform-

ance metrics are scaled from zero to one, where one is the best and zero the worst value.

It should be noted that in practice, more formal decision-making processes are likely to be used,

including stakeholder input and a clear articulation of the relative importance of the criteria, poten-

tially using some of the methods mentioned in section 2.3. However, this is not been undertaken

here, as the main purpose is to illustrate the information obtained by applying the proposed

approach and the selection of options has been made by weighing up the trade-offs between the

assessment criteria.

3.3.4. Application to Different Decision Stages Under Different Realities (Known Future Conditions)

As shown in Figure 3, steps 1–3 outlined in sections 3.3.1–3.3.3 are implemented for five decision stages

starting at 2010, 2020, 2030, 2040, and 2050, using the different scenarios outlined in Table 3. The

entire process is also repeated for the two independent realities, as explained earlier (see Tables 2 and

3) for the purpose of being able to simulate the performance of the proposed approach under different

actual conditions and enabling the assessment of the utility of the adaptive features of the proposed

approach.

3.4. Evaluation of Adaptive Optimal Sequence Plans

As mentioned in section 3.2, in order to assess the utility and potential benefits of the proposed adapt-

ive approach, the actual performance of the optimal adaptive sequences obtained for the two realities

is compared with that of static optimal sequences obtained for the different scenarios at the beginning

of the planning horizon in terms of optimization objectives and actual water supply security (i.e., reli-

ability and vulnerability) (Figure 4, Part B). It should be noted that for each of the optimal sequence

plans, the NPV of cost and GHG emissions are calculated for the entire planning horizon (as there is a

single plan), while reliability and vulnerability are calculated for each staging interval, as they change

over the planning horizon as different augmentation options come online. In accordance with the over-

all approach outlined in section 3.2, the overall performance of the sequences obtained using the
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proposed adaptive and the benchmark static approaches is compared by averaging the performance

measures over the two realities.

4. Results and Discussion

The results are presented in two sections, including an illustration of the development of the adaptive opti-

mal sequence plans for a single time step (Part A of Figure 3, section 4.1) and the evaluation of the utility of

the adaptive features of the proposed approach (Part B of Figure 3, section 4.2).

4.1. Development of Adaptive Optimal Sequence Plans

In this section, the results for each of the three major steps of the proposed approach (i.e., Steps 1, 2, and 3

in Figures 1 and 3a) are presented for the first decision stage (i.e., 2010) for illustration purposes (sections

4.1.1–4.1.3). The optimal sequences obtained by simulating application of the proposed approach over an

actual period of 40 years (i.e., from 2010 to 2050) for the two different realities are presented in section

4.1.4. The optimal augmentation options for 2020, 2030, 2040, and 2050 for both realities are based on the

types of results presented in sections 4.1.1–4.1.3, which are included as supporting information. It should be

noted that in real life, an optimal sequence, such as that presented in section 4.1.4, would be developed

over 40 years, with application of the three steps in the proposed process and analysis of the results occur-

ring every 10 years, resulting in the selection of the augmentation option(s) to implement at the current

decision stage. In practice, there would only be a single reality and the two different realities are simulated

here for the purposes of assessing the utility of the adaptive features of the proposed approach, as

explained previously.

4.1.1. Identification of Diverse Portfolio of Optimal Sequence Plans (2010–2050)

The Pareto fronts of optimal sequence plans for the seven scenarios for 2010–2050 are shown in Figure 4.

As can be seen, the optimal augmentation sequences required to ensure supply is greater than or equal to

demand for the seven scenarios result in significant differences in the PV of cost and the PV of GHG emis-

sions. This is as expected, as greater supply augmentation is required for the scenarios that include greater

population growth and more severe climate change impacts, resulting in higher PV of costs and PV of GHG

emissions. These increased values of the objective function values are generally due the selection of a larger

number of augmentation options or their implementation at an earlier stage in the planning horizon. Con-

sequently, by using scenarios that represent a wide range of plausible future conditions, a diverse portfolio

of optimal sequence plans is obtained, each representing different trade-offs between the objectives and

different abilities to provide water supply security under a variety of future conditions.

4.1.2. Assessment of Performance of Portfolio of Optimal Sequence Plans (2010)

The Pareto-optimal solutions in Figure 4 contain six unique solutions at the current staging interval (2010–

2020), resulting in six groups of optimal sequence plans, as shown in Table 4. As can be seen, one solution

consists of no augmentation of the existing water supply, while the other five options consist of different

combinations of storm water

harvesting schemes.

The results of the performance

assessment of the six groups of

optimal sequence plans are

given in Figure 6. As can be

seen, there is significant varia-

tion in PV of cost and PV of GHG

emissions when the optimal

sequence plans that are part of

a particular group are exposed

to the conditions represented

by all scenarios. As expected,

robustness increases as the

capacity of the augmentation

options increases. For example,
Figure 4. Trade-off between the present value of GHG emissions and the cost for the

seven projected possible future scenarios (2010–2050).
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group 1 does not have any supply augmentation and therefore has the lowest robustness, groups 2–4

include the addition of a single storm water harvesting scheme, resulting in increases in robustness and

groups 5 and 6 include the addition of two storm water harvesting schemes, resulting in maximum levels of

robustness. As can be seen, the flexibility of the augmentation options in Table 4 is highly variable, with

some solutions part of optimal sequences for all seven scenarios, while others are only part of optimal

sequence plans for two of the seven scenarios.

4.1.3. Selection of Water Supply Augmentation Option(s) to be Implemented (2010)

The value path plot corresponding to the results in Figure 5 is given in Figure 6. As can be seen, although

the optimal sequence plans in groups 1 (~P1) and 2 (~P2) perform very well in terms of the median of PV of

cost and flexibility, they perform poorly across the other criteria, with clearly the worst performance in terms

of the range of the PV of cost, the range of the PV of GHG emissions and robustness. The optimal sequence

plans in groups 4 (~P4) and 6 (~P6) have high levels of robustness, but this comes at the expense of high

median PV of cost. Although these solutions perform well in terms of the range of PV of cost, they perform

poorly in terms of the median and range of PV of GHG emissions and relatively poorly in terms of flexibility.

The optimal sequence plans in groups 3 (~P3) and 5 (~P5) tend to perform well across all performance criteria.

They clearly outperform all other groups in terms of the median and range of the PV of GHG emissions and

Table 4. Unique Solutions at the Current Staging Interval (2010–2020) for Decision Stage 1

Group

Decision Stage at Which to Implement Water Supply Options for t5 2010 (15 Implemented at t5 2010)

50 GL

Desalination

Plant

100 GL

Desalination

Plant

50 GL

Desalination

Expansion

Rainwater

Tank

Tank

Size

Brownhill and

Keswick Creek

Storm Water

Harvesting Scheme

Sturt River

Storm Water

Harvesting Scheme

Field River

Storm Water

Harvesting Scheme

Pedler Creek

Storm Water

Harvesting Scheme

~P1

~P2 1
~P3 1
~P4 1
~P5 1 1
~P6 1 1

Figure 5. Results of performance assessment for groups with the same solution at 2010.
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perform well in terms of robustness and median and range of PV of cost. Their performance in terms of flex-

ibility is at the lower end of the spectrum, but the plans that perform best in terms of flexibility tend to per-

form worst in terms of robustness.

As discussed previously, the selection of which option to implement at the current decision stage depends

on the priorities of the stakeholders involved. In the absence of such stakeholder input, for the purposes of

illustrating the proposed approach in this paper, the sequence plans belonging to group 3 are selected as

they provide good trade-offs between the performance criteria. Consequently, the Brownhill and Keswick

storm water harvesting scheme is chosen to be implemented at the first decision stage and fixed for the

subsequent decision stages (see Table 4).

4.1.4. Selected Optimal Sequence Plans

The optimal sequences obtained by applying the proposed approach under the two simulated realities over

the entire planning horizon and their corresponding objective function values are given in Table 5. As men-

tioned previously, each of these sequences would be developed over a period of 40 years in practice, going

through the process illustrated in sections 4.1.1–4.1.3 for the first decision stage (see supporting information

for results for other decision stages). As can be seen, there are significant differences between the two optimal

sequences as a result of the different actual and forecast populations, rainfalls and temperatures that charac-

terize the two realities, as well as the ability of the proposed approach to adapt to these different conditions

over time. This confirms that the proposed approach is successful in adapting to changing conditions.

For both simulated realities, the 50 GL desalination plant and the Brownhill and Keswick storm water har-

vesting schemes are implemented. However, the desalination plant is implemented earlier for Reality 2. In

addition, the 50 GL desalination plant expansion and the Sturt River and Pedler Creek storm water harvest-

ing schemes are implemented under the more severe conditions of Reality 2 in order to be able to satisfy

demand. As can be seen from Table 5, the NPV of cost of the optimal sequence plan for Reality 2 is about

1.5 times that of the optimal sequence plan for Reality 1, whereas the corresponding ratio of the NPV of

GHG emissions is approximately 1.2.

4.2. Utility Adaptive Features of Proposed Approach

The average values of the reliability and vulnerability of the water supply systems corresponding to the imple-

mentation of (i) the sequences obtained using the proposed adaptive optimal sequencing approach and (ii)

the fixed optimal sequence plans for each scenario under the actual conditions experienced as part of the two

simulated realities, with the associated average PV of cost and GHG emissions are shown in Table 6. As can be

seen, the performance of the sequences obtained using the proposed adaptive approach is very good

Figure 6. Results of performance assessment for decision stage 1 (realities 1 and 2). The value path of the selected option is highlighted in red.
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compared with that of the static approaches. While the NPV of cost and GHG emissions of the static sequen-

ces developed for scenarios 1 (S1) and 2 (S2) are significantly less than those of the adaptive sequences, the

corresponding water supply security is not acceptable, with average reliabilities of less than 100% in all but

one of the five staging intervals, ranging from 62 to 85%. Similarly, the average vulnerabilities (demand short-

falls) associated with the three staging intervals for which reliability is less than 100% ranges from 11.4 to

16.4%. In contrast, the water supply security of the adaptive plan is excellent, with 100% reliability in three of

the five staging intervals and average reliabilities of 92 and 98% for the other two staging intervals and corre-

sponding demand shortfalls of only 3 and 0.5%, respectively. In order to achieve comparable (although

slightly worse, see Table 6) levels of water supply security when static sequence plans are considered (S4), the

PV of cost increases by $329.77 million (17.4%) and the PV of GHG emissions by 1.25 MtCO2-e (9.4%). In order

to achieve better water supply security than that afforded by the adaptive plans (100% reliability for all stag-

ing intervals, S6), the PV of cost increases by $982.31 million (51.7%) and the PV of GHG emissions by 2.31

MtCO2-e (17.7%). In addition, when using the static approach, it is unclear which of the seven sequences to

implement. Consequently, these results clearly demonstrate the advantage of using the proposed adaptive

approach, compared with the corresponding static approach.

5. Summary and Conclusions

In this paper, an adaptive, multiobjective optimal sequencing approach for urban water supply augmenta-

tion under deep uncertainty is introduced. As part of the approach, a diverse portfolio of optimal sequence

plans is developed for different transient future scenarios using multiobjective evolutionary algorithms.

Table 5. Optimal Sequences for the Two Simulated Realities Considered

Optimal Sequence for Reality 1 and Optimal Sequence for Reality 2

50 GL

Desalination

Plant

100 GL

Desalination

Plant

50 GL

Desalination

Expansion

Rainwater

Tank

Tank

Size

Brownhill and

Keswick

Creek

Storm Water

Harvesting

Scheme

Sturt River

Storm

Water

Harvesting

Scheme

Field River

Storm Water

Harvesting

Scheme

Pedler

Creek

Storm

Water

Harvesting

Scheme

PV of

Cost

($ million)

PV of

GHG

Emissions

(MtCO2-e)

Optimal

adaptive

plan for

Reality 1

3 0 0 0 0 1 0 0 0 1,537.26 12.15

Optimal

adaptive

plan for

Reality 2

2 0 5 0 0 1 3 0 3 2,262.42 14.44

Table 6. Average Performance of Systems Corresponding to the Implementation of Different Optimal Sequence Plans for Realities 1 and 2

PV of Cost

($ million)

PV of

GHG Emissions

(MtCO2-e)

2010–2020 2020–2030 2030–2040 2040–2050 2050–2060

Reliability

(%)

Vulnerability

(%)

Reliability

(%)

Vulnerability

(%)

Reliability

(%)

Vulnerability

(%)

Reliability

(%)

Vulnerability

(%)

Reliability

(%)

Vulnerability

(%)

Optimal fixed plan

(Scenario 1)

900.10 9.74 100 0.0 85 11.4 75 13.25 62 16.4 68 14.15

Optimal fixed plan

(Scenario 2)

954.95 9.92 100 0.0 85 11.4 75 13.25 62 16.4 68 14.15

Optimal adaptive plan 1899.84 13.30 100 0.0 98 0.5 100 0.0 92 3.0 100 0.0

Optimal fixed plan

(Scenario 3)

2228.51 13.57 100 0.0 100 0.0 100 0.0 92 2.95 83.5 6.35

Optimal fixed plan

(Scenario 4)

2229.61 14.55 100 0.0 100 0.0 100 0.0 92 2.95 92 2.2

Optimal fixed plan

(Scenario 5)

2254.22 14.60 100 0.0 100 0.0 100 0.0 92 2.95 92 2.2

Optimal fixed plan

(Scenario 6)

2882.15 15.66 100 0.0 100 0.0 100 0.0 100 0.0 100 0.0

Optimal fixed plan

(Scenario 7)

3187.10 16.59 100 0.0 100 0.0 100 0.0 100 0.0 100 0.0
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Next, the robustness and flexibility of the components of the optimal sequence plans that have to be fixed

at the current staging interval is assessed for the time period between now and the first opportunity when

further changes can be made. In addition, the variability of the objective functions over the entire planning

horizon is assessed and the solution that provides the best trade-offs between these criteria, in accordance

with stakeholder preferences, is selected. This process is repeated for the next decision stages, when

updated information is available. In this way, the approach is able to successfully balance the need for the

development of optimal longer-term plans under deep uncertainty with the need to be able to respond to

changes as they arise and to provide robust solutions between decision stages. It also provides a computa-

tional method in support of the successful implementation of dynamic adaptive planning as a paradigm for

dealing with deep uncertainty.

In order to demonstrate the utility of the proposed approach, it is applied to the optimal sequencing of

urban water supply augmentation options for a case study based on the southern Adelaide water supply

system from 2010 to 2060. In order to illustrate the impact of the adaptive nature of the approach, two dif-

ferent simulated realities are considered. The results indicate that the approach is successful in adapting to

changing conditions, while optimizing longer-term objectives and satisfying water supply security con-

straints along the planning horizon, in highly uncertain planning environments. This is evidenced by the dif-

ferences in the optimal solutions obtained for the different realities, as well as the favorable performance of

the adaptive plans compared with those fixed at the beginning of the planning horizon.

Despite the methodological advances of the proposed approach, there remain a number of avenues for future

improvement. First, as mentioned previously, informal approaches to scenario development and the determi-

nation of which solution to implement are used. Consequently, the value of using more formal approaches

for these steps should be explored, especially for more complex problems and for real-life applications. Sec-

ond, the problem formulation (e.g., objectives, constraints, and decision variables) is assumed to remain con-

stant throughout the planning horizon, which is unlikely to be the case. Consequently, the incorporation of

approaches that enable the problem formulation to be changed over time should be explored [see Maier

et al., 2014; Piscopo et al., 2015]. Third, as discussed in sections 2.5, based on the philosophical approach that

underpins the proposed method, the solutions obtained might not be mathematically optimal. It would be

interesting to assess the impact of this in future studies by comparing the results obtained using the proposed

approach with that of Kang and Lansey [2014], for example. Finally, although the approach was presented and

applied in the context of urban water supply augmentation, it is also applicable to a number of other water

resources scheduling and sequencing problems, as mentioned previously. Consequently, it would be useful to

tailor and apply the approach presented in this paper to other problem domains.
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