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Abstract 
We develop an adaptive multiresolution approach 

to the problem of multidimensional time series 

characterization. Furthermore we provide a dedicated 

elastic pseudo distance to support similarity search 

mechanisms for such characterization.  We show 

theoretically and experimentally that our 

multiresolution decomposition of times series has a 

linear complexity in time and space. The pseudo elastic 

distance AMR-DTW that we develop to match 

multiresolution representations of time series is also 

based on iterative algorithms that show linear time and 

space complexity for some tuned parameters. We 

evaluate the proposed adaptive multiresolution 

algorithm and associated pseudo elastic distance in a 

classification experiments to demonstrate the efficiency 

and accuracy of the proposed representation and 

matching scheme for time series data mining. 

 

1. Introduction 
More and more applications require searching and 

extracting similar time series. Among numerous 

examples, we find financial data analysis [2], the 

identification of moving objects [28], the search for 

similar musical excerpt [6], etc. Research studies in this 

area address mainly two strongly interconnected 

questions: i) the choice of a representation space in 

which time series are embedded and the choice of a 

metrics to compare time series within this space (either 

a distance, a pseudo distance or a similarity measure) 

appropriate to the application domain; ii) the scalability 

of the search algorithms. A wide range of metrics have 

been proposed throughout the literature, in particular 

the Lp norms [2][8], dynamic time warping (DTW) [22] 

[27] [12] [10], the Longest Common Sub Sequence 

(LCSS) [4] and the edit distance (Symbolic Edit 

Distance SED, Edit Distance on Real Data EDR) 

[16][6]. The previous metrics are far to be equivalent : 

Lp norms are efficiently computed (in O(N) 

complexity) but their main drawbacks, at least for a 

wide range of applications (such as speech recognition, 

stock analysis, etc.) is their high sensitivity to local 

temporal compression, or dilatation. In the contrary, 

DTW, LCSS or EDR pseudo elastic distances have been 

precisely proposed to ‘resist’ to local time warp 

transformations, but suffer from a higher computational 

cost since they show to have a quadratic complexity. 

Several ways are considered in the literature to address 

the scalability of similarity search in large time series 

data bases. A first way considers reducing the 

dimension of the representation space in which time 

series are embedded. The search mechanisms are then 

exploited in the reduced dimensionality space. This 

general idea has been introduced in [2] with the use of 

the first Discrete Fourier Transform (DFT) coefficients 

to represent time series excerpts. Other techniques have 

been experimented, such as Singular Value 

Decomposition, (SVD) [11], Discrete Wavelet 

Transform, DWT [4]), Adaptive Piecewise Constant 

Approximation (APCA ) [11], etc. A second way 

consists in reducing the complexity of the search 

mechanism. A tight lower-bounding measure for 

dynamic time warping (DTW) distances for univariate 

time series was introduced for instance in [12][27], 

[10] to avoid comparing the search template to a time 

series with DTW when the lower-bounding estimate 

(calculated in O(N)) indicates that the time series is a 

worse match than the current best match or outside a 

search neighbourhood. [24] proposed FastDTW 

algorithm based upon a multilevel approach that 

recursively projects a solution from a coarse resolution 

and refines the projected solution. They prove the 

linear time and space complexity of FastDTW both 

theoretically and empirically. In this context we tackle 

scalability of elastic matching through adaptive 

multiresolution polygonal approximation and matching 

of time series at the price of a linear time and space 

complexity. In the first part of this paper, we develop 

the adaptive multiresolution approach to the problem of 

approximating multidimensional time series. In the 

second part we detail a matching paradigm dedicated to 

the proposed adaptive multiresolution representation of 

time series. Finally, we use supervised classification 

paradigms on synthetic and real data to evaluate the 

efficiency and accuracy of our algorithms. 



2. Adaptive Multiresolution simplification 

of times series using polygonal curves 

approximation 
Approximation of multi dimensional discrete time 

series has been widely studied essentially to speed up 

data processing required by more and more resource 

demanding applications such as Computer Vision, 

Computer Graphics, Data Compression, etc. For 

polygonal approximation of discrete time series, the 

problem can be informally stated as follows: given a 

digitized curve X of N ≥ 2 ordered samples, find k 

dominant samples among them that define a sequence 

of segments which most closely approximate the 

original curve. This problem is known as the min-ε 

problem. Numerous algorithms have been proposed for 

more than thirty years to solve efficiently this 

optimisation problem. Most of them belong either to 

graph-theoretic, dynamic programming or to heuristic 

approaches. In this section, we derive a new partially 

optimal algorithm that belongs to the dynamic 

programming category to solve the min-ε problem. 

This algorithm is essentially inspired from [18], [14]. It 

provides a polygonal multi resolution approximation of 

any discrete time series in linear time and space.   

Notation: 

• X(m): a discrete time series 

• mr(X): the multiresolution of X  

• mr(X,i): the polygonal approximation of X for the 

resolution level i. 

• p: the dimension of the space that embeds X; 
p

RmXm ∈∀ )(,
 

• N: the number of samples or length of the multivariate 

time series 

• kN: number of segments of a polygonal approximation  

• ρN: the ratio kN/N : ρN ∈]0;1[ 

• roN =(1- ρN) 

• αN: the corridor factor  

• Cradius: the corridor radius, a parameter used to 

reduced the search space of PyCA algorithm: 

Cradius=αN/ρN=αN.N/kN 

• cr: the compression rate for a polygonal approximation  

• Lb(i) = CRadius –i; Lower bound used to limit the 

search space of the PyCA algorithm 

• Cinf(j): Corridor lower bound for the jth segment 

• Csup(j): Corridor upper bound for the jth segment 

• 
MR

NC : Complexity of the PyCA algorithm  

• NC : Complexity of the AMR-PyCA algorithm 

• R: number of iterations for the multi resolution, 

equivalently the number of resolution levels. 

 

We consider time series as a multivariate process 

X(t)=[x1(t), x2(t),…, xp(t)] where X(t) is a time-stamped 

spatial vector in 
p

R . In practice, we will deal with a 

discrete sampled time series X(m) where m is the time-

stamp index (m∈{1,…,N}). Adopting a data modelling 

approach to handle the adaptive approximation of the 

time series, we are basically trying to find an 

approximation 
θ̂

X  of X(m) such as: 

( )),(ˆ
θ

θ

θ XXEArgMin= , where E is the RMS error 

between X and the model θX . In the case of polygonal 

curve approximation, we select the 

family{ } { }Nm
mX

,...,1
)(

∈θ as the set of piecewise linear 

and continuous functions (successive segments have to 

be contiguous, so that the end of a segment is the 

beginning of the next one). Numerous methods have 

been proposed for the problem of approximating 

multidimensional curves using piecewise linear 

simplification and dynamic programming in O(kN.N
2
) 

time complexity (Perez et al. 1994). Some efficient 

algorithms [1] with complexity O(Nlog(N))  have been 

proposed for planar curves, but none for the general 

case in R
d
. Here, we have constrained the search of the 

segments by imposing that the extremities of the 

piecewise linear segments are vertices of time series 

X(t). Thus, θ  is nothing but the set of discrete time 

location {mi} of the segments’ endpoints. Since the end 

of a segment is the beginning of the following one, two 

successive segments share a common mi at their 

interface. The selection of the optimal set of parameters 

{ }im̂ˆ =θ  is performed using a dynamic programming 

algorithm (Bellman  1957) as follows: we first define 

the compression rate of the piecewise approximation 

as:  
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where A stands for the cardinal of set A and 

mmX p ∀ℜ∈ ,)(  
Given a value for cr and the size of the trajectory 

window to sample N= { } { }nn
mX

,..,1
)( ∈

, the number 

k= { }im -1 of piecewise linear segments is known. Let 

us define θ(j) as the parameters of a piecewise 

approximation containing j segments, and δ(j,i) as the 

minimal error between the best piecewise linear 

approximation containing j segments and covering the 

discrete time window {1,..,i}: 
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According to the Bellman optimality principle 

(Bellman, 1957), δ(j,i) can be decomposed as follows: 
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is the linear segment between X(i) and X(m). The 

initialization of the recursion is obtained given that 

δ(1,1)=0. The end of the recursion gives the optimal 

piecewise linear approximation, e.g. the set of discrete 

time locations of the extremity of the linear segments:    
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It is easy to show that the complexity of the 

previous algorithm that implements a “Full Search” 

(FS) is in O(kN.N
2
), which prevents the use of such an 

algorithm for large N. In the scope of dynamic 

programming search algorithm the only way to reduce 

time complexity is to reduce the search space itself. 

Sakoe and Shiba [22] have managed to reduce the 

complexity of the Dynamic time Warping algorithm 

down to O(N) while defining fixed constraints that 

define a ‘corridor’ inside the search space. Following 

Sakoe and Shiba’s work, we developed a dynamic 

programming solution (PyCA) that implements a fixed 

size ‘corridor’ [17]: the search space is thus reduced 

using two fixed constraints. The first one limits the 

search of the j
th

 segment upper extremity i around the 

mean value j.N/kN namely the limit of the j
th

 segment as 

to be chosen inside the interval:  

{ }
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The second constraint limits the search of the j
th

 

segment lower extremity m in the interval 

{ }[);(,1[ iiLbMax where lb(i)=i-Cradius. Thus, the 

first constraint defines search bounds for the upper 

extremity of the j
th

 segment (the i index) while the 

second constraint defines a search bound for the lower 

limit of the j
th

 segment [);,1[max( iCradiusim −∈ , 

where CRadius is fixed by the user through parameter 

αN. The recursive equations for the PyCA algorithm 

are: 
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The initialization of the recursion is still obtained 

observing that δ(1,1)=0 and the end of the recursion 

gives the sub-optimal (it is optimal on the constrained 

search space) piecewise linear approximation, e.g. the 

set of discrete time locations of the extremity of the 

linear segments: 

{ }

{ } [;,1[ where
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For CRadius = 2.N/kN, this leads to an O(N
2
/kN) 

complexity.  

 

3. Adaptive Multi Resolution approach to 

Polygonal Curve Approximation (MR-

PyCA algorithm) 
Basically, the idea behind the adaptive 

multiresolution approach to polygonal curve 

simplification is to successively approximate previous 

approximations obtained by using some given 

simplification algorithm, this process being initiated 

from an original discrete time series. Following 

Kolesnikov’s notation [14], we take a sequence of 

polygonal curves {X1, X2,…, XR} as a multiresolution 

(multiscale) approximation of a N-vertex input curve X, 

if the set of curves Xr satisfies the following conditions:  

    i) A polygonal curve Xr is an approximation of the 

curve X for a given number of segments kr (min-ε 

problem) or error tolerance εr (min-# problem), where r 

is the number of resolution level (r=1,2,…, R). 

    ii) The set of vertices of curve Xr for resolution level 

r is a subset of vertices of curve Xr-1 for the previous 

(higher) resolution level (r-1). The lowest resolution 

level r=R is represented by the most coarse 

approximation of X. The highest resolution level r=1 is 

represented by the most detailed approximation with 

the largest number of segments kr (k0 > k1 >…> kR) or 

smallest error tolerance εR for some distance measure 

(e.g.L∞) (ε0<ε1<…<εR). Thus, an approximation curve 

Xr is either obtained by inserting new points into the 

approximation curve Xr+1, or, conversely, Xr is 

obtained by deleting points from the approximation 

curve Xr-1. These two approaches have led to the 

development of two very popular heuristic approaches: 

Split and Merge methods respectively. A famous split 

method is the Douglas-Peucker algorithm [7]; it has 

been used for multiresolution approximation in [15]. In 

the Merge approach [19], [26], the approximation is 

performed by using a cost function that allows 

sequential elimination of the vertices with the smallest 

cost value, and the two adjacent segments are merged 

into one segment.  

Our algorithm relates to the Merge approach: we 

initiate the simplification process from the finest 



resolution level and iterate to obtain the crudest, while 

discarding some vertices during each iteration using the 

PyCA algorithm. The parameters of this algorithm are 

the corridor factor α (alpha), the ro factor (ro=1-ρ) 

between two successive resolution levels. If K, the 

number of segments of the crudest approximation, is an 

input, the number of resolution levels R (the number of 

iterations) is calculated given K and ro. In that case we 

chose r such that: RR NKN ρρ .. 1 ≤<+ . As 

potentially RNK ρ.< , a residual iteration is required to 

simplify the R
th

 approximation (corresponding to 

resolution level R) that has R
N ρ. segments to an 

approximation having exactly K segments.  
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FIG. 1 – Adaptive multiresolution of a signal composed with 7 sinus 

functions, with ρ=.25. 

The adaptive multiresolution is the sequence of 

nested approximations provided as outputs. By 

construction this algorithm maintains partial optimality 

between two successive resolution levels, since a 

constrained dynamic algorithm is used to search inside 

a fixed size ‘corridor’ for which segment extremities 

should be discarded and which should be kept. An 

example of adaptive multiresolution is given in Fig.1 

for the signal:   )2/2sin()2/1()( 7
6

0

k

k

k
ttf

−

=

∑= π . 

Complexity of PyCA  

According to the previous notations, the complexity of 

the PyCA algorithm evaluates to: 

N

NN
k

N
kCradius

22
2 ..2
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α
==C  (5) 

Two cases can be considered: 

i) ρN is constant, meaning that the compression rate is 

constant, then: ∀N,  ρN=ρ0 in that case kN is linearly 

increasing with N: kN=N.ρ0 and 

0

2..2

ρ

α N
N =C  is 

linear. 

ii) KN is constant: meaning that the number of 

segments composing the approximation is fixed, 

whatever the length of the time series, then: ∀N,  

kN=k0 leading to a decreasing of ρN according to ρN 

=k0/N. With that condition, 

0

22
..2

k

N
N

α
=C becomes a 

quadratic function of N. 

 

Complexity of Multi-Resolution MR-PyCA 

If we consider that for all N and a given k0 there 

exist a natural number r and a constant ρ0 in ]0;1[ such 

that r

N
N

k
0

0 ρρ == , and defining  Nk j

j .0ρ= , then, 

using the PyCA algorithm, we can obtain from an 

original curve of size N a polygonal curve 

approximation having k1 (k1-PyCA) segments with 

complexity: 
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If we consider as a second step the simplification of 

the k1-PyCA curve still using the PyCA, then we get a 

polygonal curve approximation having k2 segments 

from the k1-PyCA curve with complexity  
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Iterating the process, we get: 
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By induction, it is easy to show that for all j in 

{1,..,R} we have : 
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Finally, from the original time series of size N, we 

get after r iterations of the previous process a 

polygonal approximation having Nk r

i .0ρ= segments 

with a complexity: 
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as ρ0 ∈]0;1[, we get the following upper bound 

showing that the AMR-PyCA complexity is O(N):  
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We note that this upper bound is minimized for 

2/10 =ρ . 

 



4. Elastic Alignment of Adaptive 

Multiresolution Representation of Time 

Series(AMR-DTW) 
The objectives behind the development of an elastic 

alignment algorithm dedicated to the matching of 

adaptive multiresolution representations of time series 

are two folds. The first one is related to computation 

efficiency: we want to break down the quadratic 

complexity of elastic pseudo distances based on 

dynamic time warping that are commonly used when 

similarity between time series is intensively required. 

The second one is related to the multiresolution 

representation space itself: if we can derive a suitable 

pseudo-metric for this space, we will be able to handle 

time series directly within this space with the capability 

to work at any resolution level in a very efficient way. 

Our work is similar than the one proposed by [24], in 

the sense that we also tackle linear complexity through 

a multi level approach. The main difference relies in 

the adaptive feature of the developed multiresolution 

representation of time series: while in [24] the authors 

proposed a coherent down sampling of time series, we 

use an adaptive and recursive down sampling approach 

based on the polygonal curve simplification procedure 

described above that keeps more samples when local 

bandwidth is high and less samples when the local 

bandwidth is low. This allows adopting a very efficient 

matching algorithm similar to the one described in 

FastDTW but which implements a refinement 

procedure that constrains the search around the local 

artefacts of time series.   

Basically, the matching algorithm is initialized at 

resolution R, e.g. the crudest resolution level. Using a 

fixed size corridor, the pseudo distance between two 

multiresolutions mr(X) and mr(Y) is initialized as the 

standard “constrained search” dynamic time warping 

between time series mr(X,R) and mr(Y,R) the samples 

of which are formed with the segment extremities of 

each respective polygonal approximation at resolution 

level R. This elastic alignment provides a path P(X,Y,R) 

or a mapping between the time stamps associated to the 

mr(X,R) samples and the time stamps associated to the 

mr(Y,R) samples. We then define an adaptive corridor 

c(X,Y,R-1) that limits the search space at resolution 

level R-1 using a fixed corridor radius around the 

resampled path P
R-1

(X,Y,R) at level  R-1 and a 

constrained dynamic time warping matching (CDTW) 

exploiting this adaptive corridor. This leads to the 

following recursive equation: 

 

0 )),,(),,((),( ≥>= jRjYmrjXmrCDTWYX jjδ  (9) 

where CDTWi is the constrained time warping match 

between mr(X,j) and mr(Y,j) using the corridor 

constraints: 
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multiresolution representations associated to the X and 

Y time series as: ∑
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Complexity analysis of the AMR-DTW computation 

We define NX and NY as the lengths of the two time 

series being compared X and Y respectively. We 

furthermore consider that given the multiresolution 

representation mr(X) (resp. mr(Y)), the sample 

compression factor 
j

X,0
ρ  (resp. 

j

Y,0
ρ ) is constant 

between each resolution levels.  For any resolution 

level { }1,...,2,1,0 −∈ rj , the number of samples 

contained inside the j
th
 polygonal approximation of X 

(resp.Y) is 
X

j

Xj Nk
X,0, ρ=   (resp. 

Y

j

Yj Nk
Y,0, ρ= ).  

The complexity of the matching at resolution level R 

verifies: NCradiusYX R

R ...2),( 0ρδ ≤C , where 
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resolution level j the matching cost verifies: 
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showing the linear complexity of AMR-DTW. 

 

5. Experimentations 
For various N values, 100 couples of time series are 

randomly computed, the adaptive multiresolution 

representation of the time series of each couple are 

processed then matched using AMR-DTW. The empiric 

scalability of the AMR-PyCA and AMR-DTW 

algorithms is shown in Fig. 2. The experimental time 

complexity shown in Fig.2 for the whole process is 

linear with N as expected for various ro values. 

The classification tasks we consider consist in 

affecting to an unknown time series one of the possible 

categories for the 16 data sets available at UCR 

repository [25]. 

 



      Dataset Nbr of classes 

| Size of 

testing set 

1-NN Euclid. 

Dist. 

1-NN DTW Best 

Warp. Window 

1-NN DTW no 

Warp. 

Window 

1- NN Fast-

DTW 

1-NN AMR-PyCA 

+ 

AMR-DTW 

Synthetic Control 6|300 0.12 0.017 0.007 0.04 0.02 

Gun-Point  2|150  0.087  0.087   0.093 0.087 0.027 

CBF  3|900  0.148  0.004   0.003 0.002 0.001 

Face (all)  14|1690  0.286  0.192   0.192 0.183 0.197 

OSU Leaf  6|242  0.483  0.384  0.409 0.347 0.264 

Swedish Leaf  15|625  0.213  0.157  0.210 0.198 0.115 

50Words  50|455  0.369  0.242   0.310 0.343 0.299 

Trace  4|100  0.24  0.01   0.0 0.06 0.01 

Two Patterns  4|4000  0.09  0.0015   0.0 0.021 0.003 

Wafer  2|6174  0.005  0.005   0.020 0.022 0.014 

Face (four)  4|88  0.216  0.114   0.170 0.125 0.148 

Lighting2  2|61  0.246  0.131   0.131 0.197 0.082 

Lighting7  7|73  0.425  0.288   0.274 0.274 0.247 

ECG 2|100 0.12 0.12  0.23 0.24 0.22 

Adiac 37|391 0.389 0.391  0.396 0.437 0.414 

Yoga 02|3000 0.170 0.155  0.164 0.155 0.137 

Fish 7|175 0.267 0.233 0.267 0.2 0.097 

Tab.1: Comparative study using the UCR datasets[25] 

 

For each datasets, a train subset is defined as well 

as a test subset. The classification is based on the 

simple nearest neighbour decision rule: we select first a 

reference data set containing time series for which the 

correct category is known. To affect a category to an 

unknown time series, we select from the reference data 

set the closest time series (in the sense of a distance or 

pseudo distance) to the unknown one, then affect to the 

unknown time series the category associated to its 

nearest neighbour. Tab.1 shows the results obtained for 

the tested methods, e.g. Euclidian distance on the 

original time series, DTW with best warping windows 

as defined in [20], classical DTW with no warping 

window, FastDTW as defined in [24] and AMR-DTW 

applied on the AMR-PyCA representation of time 

series. For this last method, the main parameters 

values, namely (ρ, the number of resolution levels R, 

and the size of the corridors for AMR-PyCA and the 

AMR-DTW) are selected such as to minimize the 

classification errors estimated on the train datasets. 

More precisely, we set the number of segments of the 

crudest approximation K=2, R varies from 3 to 9 

resolution levels and α, the corridor factor for AMR-

PyCA varies in {1,2}. ρ is calculated from K and R:  

( ) R
NK

/1
/=ρ , the corridor radius for AMR-PyCA and 

AMR-DTW are respectively Max{1,α/ρ,} Min{48, 

Max{1,2.α/ρ}}. For FastDTW, the corridor radius is set 

to 48 and K=2. For this experiment AMR-DTW shows 

to be globally more accurate than FastDTW and DTW 

and globally almost as accurate as DTW with learned 

constraints [20]. 
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FIG. 2 Time complexity on a logarithmic scale (expressed as 

the number of clock ticks) for various ρ values. The 

experimental time complexity for the Euclidian Distance 

(ED) is given as a baseline (bottom curve). 

 

Since the corridor radius is in the worse case 48 in 

AMR-DTW it is in average faster than FastDTW for 

which the corridor radius is fixed to 48. 

 

6. Conclusion 
To our knowledge the proposed AMR-PyCA algorithm 

and dedicated AMR-DTW elastic distance are original. 

They consist in iteratively applying a constraint 

dynamic programming search algorithm to find (and 

resp. match) successive approximations of time series 

using polygonal curve approximation. We have shown 

both theoretically and practically that these algorithms 



have linear time complexities (O(N)), whatever the 

chosen number of resolution levels. The AMR-PyCA 

algorithm does not provide a single approximation, but 

a family of nested approximations from the finest to the 

crudest approximating levels with increasing distance 

between the original curve and the successive 

approximations. This algorithm is sub optimal but 

maintains partial optimality between each resolution 

levels. It offers good approximating solutions in cases 

where real time and storage space are issues, namely 

each time the optimal solution cannot be calculated due 

to the size of N. Furthermore, the multiresolution 

aspect of the method allows managing simultaneously 

or successively various resolution levels, a 

functionality that is exploited in the AMR-DTW elastic 

pseudo distance that in some way generalizes the 

FastDTW proposed in [24]. could be very useful in 

time series information retrieval tasks for example. For 

the considered classification tasks, AMR-PyCA 

associated to AMR-DTW outperform FastDTW and 

show similar level of accuracy than DTW associated 

with the best warping window [20]. The O(N) 

complexity as well as the adaptive capability of AMR-

DTW make this pseudo elastic distance for adaptive 

multiresolution a potential candidate for time series 

data mining applications. 
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