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Abstract

The concept of multiresolution-based adaptive DG schemes for nonlin-
ear one-dimensional hyperbolic conservation laws has been developed and
investigated analytically and numerically in N. Hovhannisyan, S. Müller,
R. Schäfer, Adaptive multiresolution Discontinuous Galerkin Schemes for
Conservation Laws, Math. Comp., 2013. The key idea is to perform a
multiresolution analysis using multiwavelets on a hierarchy of nested grids
for the data given on a uniformly refined mesh. This provides difference
information between successive refinement levels that may become neg-
ligibly small in regions where the solution is locally smooth. Applying
hard thresholding the data are highly compressed and local grid adapta-
tion is triggered by the remaining significant coefficients. The focus of
the present work lies on the extension of the originally one-dimensional
concept to higher dimensions and the verification of the choice for the
threshold value by means of parameter studies performed for linear and
nonlinear scalar conservation laws.

1 Introduction
Nowadays discontinuous Galerkin (DG) methods are used very often in numer-
ical simulations. The original method was introduced by Reed and Hill in 1973
[40] for a linear transport equation. In the end of the 1980s Cockburn and Shu
started to develop Runge-Kutta discontinuous Galerkin (RKDG) methods for
nonlinear conservation laws [14, 1, 12, 15] applying the method of lines: the
partial differential equation (PDE) at hand is first discretized in space by a
discontinuous Galerkin ansatz and then the resulting system of ordinary differ-
ential equations in time is solved by a Runge-Kutta (RK) method. Nowadays
DG methods are widely applied not only for hyperbolic PDEs such as trans-
port problems but also for elliptic and parabolic problems as well as ordinary
differential equations. For an overview we refer to [13, 6]. A review on RKDG
schemes for convection-dominated problems can be found in [16].

DG methods are very attractive because they offer the possibility to increase
the order of accuracy without enlarging the discretization stencil. Thus the lo-
cality property allows for an efficient parallelization. However, DG schemes
suffer from a large number of degrees of freedom per elements that significantly

1



inflates with increasing spatial dimension and polynomial degree of the ele-
ments. Since the solution of conservation laws typically is very heterogeneous,
i.e., there exist large regions where the solution is smoothly varying and local
regions exhibiting discontinuities, the underlying discretization may be coarse
in smooth regions and a locally high resolution is only needed at discontinuities.
Therefore it is evident to combine DG methods applied to conservation laws
with grid adaptation techniques to reduce significantly the number of degrees
and to realize a high accuracy of the approximation.

In order to control local grid refinement numerous refinement indicators have
been developed so far that are based on interpolation error estimates of some
key quantity using a priori knowledge of the solution. Since these concepts offer
no reliable error control, a priori as well as a posteriori error estimates have been
developed to control the adaptive process, e.g., Bey and Oden [8], Flaherty et
al. [2, 41], Houston et al. [29, 28, 30], Dedner et al. [21], and recently Mavriplis
et al. [46]. These approaches are aiming at estimating the error of the solution.
However, in general there are no mathematical rigorous a priori or a posteriori
error estimates available for nonlinear systems of conservation laws. Therefore
the multiresolution-based grid adaptation concept has been proposed that does
not rely on error estimates. The rationale behind its design is to accelerate
a given scheme (reference scheme), e.g., DG scheme or a finite volume (FV)
scheme, on a uniformly refined mesh (reference mesh) through computing actu-
ally only on a locally refined adapted subgrid, while preserving the accuracy of
the discretization on the full uniform grid. For this purpose, a multiresolution
analysis (MRA) is performed, where the data corresponding to the current solu-
tion are represented as data on some coarse level and the fine scale information
is encoded as arrays of detail coefficients of ascending resolution. The new data
format reveals insight into the local behavior of the solution. It can be shown
that the details become small with increasing refinement level when the under-
lying function is smooth. As suggested by this so-called cancellation property,
we may determine a locally refined grid performing data compression on the ar-
ray of detail coefficients using hard thresholding. This significantly reduces the
complexity of the data. Based on the thresholded array local grid adaptation is
performed, where we refine an element whenever there exists a significant detail.
Of course, the crux in this context is to arrange this procedure in such a way
that at no stage of the computation there is ever made use of the fully refined
mesh.

This concept originates from Harten’s work in the early 1990s in the frame-
work of finite volume schemes, cf. [27]. In his work Harten was not aiming at
local grid adaptation but applied the MRA only to switch between expensive
and cheap flux evaluations to design a cost-effective scheme while still work-
ing on a uniformly fine grid. In the late 1990s, the MRA was also used to
design fully adaptive schemes performing local grid adaptation, cf. [24, 33, 42]
In the following decade multiresolution-based mesh adaptation methods have
been quite successful with FV solvers. A comprehensive review together with
numerous references can be found in [38] and [19] provides some overview on
recent trends.

For the realization of a MRA one can use Harten’s discrete framework [26]
or bi-orthogonal wavelets [18], respectively. The efficiency of multiresolution-
based mesh adaptation schemes crucially relies on the compression rate. In the
wavelet context it can be proven that the rate of decay of the details fastens
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with increasing number of vanishing moments of the wavelets, i.e., more details
may be discarded in smooth regions and the adaptive mesh becomes coarser.
However, for biorthogonal wavelets to realize more vanishing moments requires
to extend the support of the wavelet functions. Its construction, in particular,
becomes even more complicate on unstructured grid hierarchies. Therefore it is
natural to extend the multiresolution-based mesh adaptation concept to higher
order DG discretizations using so-called multiwavelets [45, 34]. Multiwavelets
allow for higher order vanishing moments, while being supported on a single
mesh element. First work in this regard has been reported in [10, 44, 5, 31, 43]:

Calle et al. [10] consider the implicit diffusive DG scheme (IDDG) where the
DG discretization is stabilized using streamline diffusion instead of a limiter.
The IDDG scheme is combined with wavelet-based grid adaptation techniques
where instead of multiwavelets the Haar wavelet is used in the multiscale anal-
ysis providing only one vanishing moment. Therefore compression rates are
moderate and the adaptive grids are not as sparse as for higher order vanishing
moments.

In [44] Shelton presents a multiresolution DG method for unsteady com-
pressible flows, adopting Alpert’s multiwavelets in the multiresolution analysis.
There scale transition algorithms are used to transfer matrix operators of the
reference scheme onto the multiresolution-based DG scheme. Such a transfer
is not needed in our method, where the underlying scheme is a classical DG
method, which acts on the single-scale coefficients and not on the details.

In [31, 43] an implementation for scalar one-dimensional conservation laws
has been developed and tested. In particular, it has been rigorously proved that
choosing an ideal threshold value the adaptive solution is of the same accuracy
as the reference solution on a uniformly refined mesh, but at significantly re-
duced computational cost. A proof of concept for a solution methodology for
compressible flows has been given in [32].

Main objective of this work is the extension of the method developed in
[31, 43] to the multi-dimensional case. For this purpose we construct appropriate
multiwavelets. Since there is no analysis available similar to the one-dimensional
scalar case that provides us with the choice of an appropriate threshold value,
we perform parameter studies to verify numerically that the one-dimensional
result may extend to the multi-dimensional case.

The paper is organized as follows. In Section 2 we briefly summarize the
key ingredients of RKDG schemes. In Section 3 we introduce the concept of
MRA using multiwavelets and their construction on general multidimensional
nested grid hierarchies and explain how to design a locally refined grid. Then in
Section 4 we present the multiwavelet-based adaptive DG scheme and present
a strategy to choose an appropriate threshold value. Finally, we consider in
Section 5 some numerical examples where we apply the adaptive scheme to a
linear transport equation, the inviscid Burgers’ equation and two non-linear test
cases with non-convex fluxes.
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2 The reference DG scheme
For convenience of the reader and to fix the notation we briefly summarize the
main ideas of RKDG schemes applied to multi-dimensional conservation laws

∂u

∂t
+∇ · f(u) = 0 (2.1)

in the space-time domain Ω × (0, T ) with Ω ⊂ Rd and T > 0 describing the
evolution of the conserved quantity u : Ω × [0, T ] → R with the flux vector
f : R→ Rd. This problem has to be supplemented with initial data

u(x, 0) = u0(x), x ∈ Ω

and suitable boundary conditions, e.g., periodic conditions or Dirichlet condi-
tions at the inflow part. In particular, choosing Ω = Rd, then there exists a
unique entropy solution u ∈ L∞(0, T, L1

loc(Rd)) for all T > 0 provided that
u0 ∈ BV (Rd) ∩ L∞(Rd) ∩ L1(Rd) and f ∈ C1(Rd), see [22].

2.1 Weak formulation
The entropy solution is approximated by a DG scheme following the idea of the
method of lines: for the spatial discretization a DG method is used and the
resulting system of ordinary differential equations in time is solved by a Runge-
Kutta scheme. Here we confine ourselves to the semi-discrete formulation of the
DG method. A detailed description can be found in [12] and [14]:

Since computations are only performed on bounded domains, we consider in
the following a uniform finite discretization. For this purpose we discretize the
domain Ω by a finite number of cells Vλ such that

Ω =
⋃
λ∈I

Vλ, with Vλ ∩ Vµ = ∅, λ 6= µ ∈ I.

Here the index set I characterizes the numbering of the cells. We call G :=
{Vλ}λ∈I the computational grid. On this grid we introduce the DG space

S := {f ∈ L2(Ω) : f |Vλ ∈ Πp−1(Vλ) ∀ λ ∈ I}. (2.2)

where Πp−1(V ) denotes the space of polynomials on the element V of total
degree less than p, i.e.,

Πp−1(V ) := span
{
xi
∣∣
V

: i ∈ P
}

with P :=
{
i ∈ Nd0 : ‖i‖1 ≤ p− 1

}
.

For the finite-dimensional space S we introduce two sets of basis functions,
Φ := {ϕλ,i}λ∈I,i∈P and Φ̃ := {ϕ̃λ,i}λ∈I,i∈P such that Sp = spanΦ = span Φ̃.
We assume that these functions fulfill the biorthogonality relation

〈ϕλ′,i′ , ϕ̃λ,i〉Ω = δi,i′ δλ,λ′ (2.3)

and are compactly supported, i.e., supp ϕλ,i = supp ϕ̃λ,i = Vλ, i ∈ P. Here
〈f, g〉Ω :=

∫
Ω
f(x) g(x) dx denotes the standard L2-inner product.

For the semi-discretization of (2.1), we now assume that the approximate
solution can be written as an expansion of the basis Φ, i.e.,

uh(·, t) =
∑
λ∈I

∑
i∈P

vλ,i(t)ϕλ,i(·) ∈ S. (2.4)
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For ease of notation we distinguish the coefficients and the functions by v and u,
respectively. The coefficients vλ,i are determined by the biorthogonality relation
(2.3) as

vλ,i(t) = 〈uh(·, t), ϕ̃λ,i〉Ω. (2.5)

In order to derive an evolution equation for these coefficients we first rewrite
(2.1) in a weak formulation. For this purpose we multiply (2.1) by a test function
vh ∈ S and integrate over a cell Vλ. Then we perform integration by parts and
introduce numerical fluxes f̂ approximating the fluxes f · ~n in direction ~n. This
results in the semi-discrete DG-formulation:
Find uh(·, t) ∈ S, t ∈ [0, T ], such that for all vh ∈ S and λ ∈ I:∫

Vλ

∂uh
∂t

vhdx−
∫
Vλ

f(uh) · ∇vhdx +

∫
∂Vλ

f̂(u+
h , u

−
h , ~nλ)vhdS = 0. (2.6)

Here u+
h denotes the inner and u−h the outer value of uh at the boundary of Vλ.

Furthermore ~nλ is the outward pointing unit normal vector corresponding to
Vλ. In our computations we choose the local Lax-Friedrichs flux [14]:

f̂(u+, u−, ~n) =
1

2

(
f(u+) · ~n+ f(u−) · ~n

)
− αλ

(
u+ − u−

)
with

αλ = s max
u∈I(u+,u−)

|f ′(a) · ~n|,

where I(u+, u−) := [min(u+, u−),max(u+, u−)] and s ∈ {−1, 1} depends on the
orientation of ~n. If f is convex, this reduces to αλ = smax (|f ′(u−) · ~n|, |f ′(u+) · ~n|).
Other numerical fluxes, known from the context of finite volume schemes could
be chosen as well provided the flux is consistent and acts stabilizing to the
scheme.

If we choose in (2.6) for the test functions the basis functions collected in
Φ̃, i.e., vh = ϕ̃λ,i, then we obtain a system of ordinary differential equations in
time for the coefficients in the basis representation (2.4) of the solution uh

∂vλ,i
∂t

=

∫
Vλ

f(uh) · ∇ϕ̃λ,idx−
∫
∂Vλ

f̂(u+
h , u

−
h , ~nλ)ϕ̃λ,idS =: Gλ,i −Bλ,i, (2.7)

where the right-hand side is composed of a volume integral Gλ,i and a boundary
integral Bλ,i, respectively. Here we employ the biorthogonality property (2.3)
and the local support of the basis functions.

To obtain a fully-discrete method, we have to discretize the system in time.
For this purpose we use strong-stability-preserving Runge-Kutta methods [23]
in our computations in Section 5.

2.2 Local projection limiting
In order to suppress oscillations near discontinuities which typically arise in
hyperbolic equations we have to stabilize the discretization by either adding
artificial viscosity or applying a limiter to guarantee nonlinear stability of the
DG scheme. Here we use the Barth-Jesperson limiter [7] that was originally
developed in the context of finite volume schemes on unstructured meshes. Here
we apply their idea to the Π1-projection of uh for a fixed time instance tn ∈
[0, T ]:
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(i) Project uh to Π1, then the Π1-part (linear part) of uh can be written
locally as:

uΠ1(x, tn) : = Π1uh(x, tn)

= uλ(tn) +∇uΠ1(tn) (x− xλ) , x ∈ Vλ,

where uλ is the mean value of uh in Vλ and xλ the centroid of Vλ.

(ii) Compute the maximum and minimum mean value umin and umax over all
elements Vµ which share an edge with Vλ as well as Vλ.

(iii) For each cell Vλ find the largest α ∈ [0, 1] such that for some fixed control
points xi ∈ V λ:

umin ≤ ũΠ1(xi, t
n) ≤ umax

holds, where

ũΠ1
(x, tn) := uλ(tn) + α∇uΠ1

(tn) (x− xλ) , x ∈ Vλ.

(iv) If ũΠ1 6≡ uΠ1 the solution will be limited on Vλ, i.e., set all high order
coefficients corresponding to the cell Vλ in (vλ,i)i∈P to zero and scale the
linear coefficients according to α.

The basic idea of this limiter is the assumption that spurious oscillations only
occur in the approximate solution if they already occur in its Π1-part. If limiting
is necessary, the solution will be projected to its Π1-part. Then the slopes
will be limited and all higher order coefficients will be set to zero. Thus the
approximate solution is corrected in the entire cell. Note that the limiter is
formulated independently of the polynomial degree p.

In our computations the control points xi are chosen as the nodes of the
Gaussian quadrature rule, which is used to approximate the integral on the
boundary of Vλ in (2.6). The local projection limiting is applied to each stage
of the Runge-Kutta method used for the time integration of (2.7).

3 Multiresolution analysis, data compression and
grid adaptation

The DG discretization typically works on an array of coefficients, see (2.5) and
(2.7). In order to realize a certain target accuracy at the expense of a possibly
low number of degrees of freedom, viz. a possibly low computational effort, one
should keep the size of the cells large wherever the data exhibit little variation,
reflecting a high regularity of the searched solution components. Our analysis of
the local regularity behavior of the data is based on the concept of multiwavelets,
cf. [34]. This can be considered a natural extension of the MRA for cell averages
corresponding to a FV discretization, i.e., p = 1, where biorthogonal wavelets
have been used to construct an appropriate MRA, cf. [20] and [37]. Here we will
briefly summarize the basic ideas of the MRA concept. The core ingredients
are (i) a hierarchy of nested grids, (ii) (orthogonal) multiwavelets and (iii) the
multi-scale decomposition. In contrast to [31] we present here the MRA on
general multi-dimensional grid hierarchies.
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3.1 Nested grid hierarchy
The starting point for the multiresolution analysis is a coarse uniform mesh G0

with N0 cells. Then the cells of the mesh G0 are subdivided recursively and we
obtain grids G` for increasing number of refinement levels `:

G` := {Vλ}λ∈I` with Ω =
⋃
λ∈I`

Vλ, ` ∈ N0,

Obviously, the resulting grid hierarchy is nested:

Vλ =
⋃

µ∈Mλ

Vµ, ∀λ ∈ I`, ` ∈ N0, (3.1)

where Mλ ⊂ I`+1 denotes the refinement set of cell λ. In Figure 1 we exam-
plarily present two-dimensional grid hierarchies for triangular and quadrilateral
elements.

Level 2

Level 1

Level 0

3

02
1

0

1

2 1
213

0 3 2 0
3

3

0

1
2

Level 2

Level 1

Level 0

Figure 1: Two-dimensional grid hierarchies for triangular and quadrilateral grids
with |Mλ| = 4.

3.2 Multiresolution analysis
Similar to (2.2) we introduce for each grid G` the discretization space

S` = {f ∈ L2(Ω) : f |Vλ ∈ Πp−1(Vλ) ∀ λ ∈ I`}, ` ∈ N0

of piecewise polynomial functions of total degree less than p. To this multires-
olution sequence we apply the concept of multiresolution analysis [36]. Due to
the nestedness of the grid hierarchy these spaces form a multiresolution sequence
S which is a nested sequence of closed linear subspaces of L2(Ω), i.e.,

S0 ⊂ S1 ⊂ . . . ⊂ S`+1 ⊂ . . . ⊂ L2(Ω). (3.2)

such that S is dense in L2(Ω), i.e.,

closL2(Ω)

( ∞⋃
`=0

S`

)
= L2(Ω). (3.3)
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The nestedness of the discretization spaces implies that there exist orthogonal
complement spaces Wl := S`+1\S` such that S`+1 = S` ⊕ W`. Recursively
applying this two-scale relation we obtain:

SL = S0 ⊕W0 ⊕ ...⊕WL−1 (3.4)

for arbitrary but fixed highest refinement level L ∈ N0. This multi-scale relation
is the core ingredient of our adaptation strategy, because the complement spaces
reveal insight into the local regularity behaviour of the solution that can be
exploited to trigger the grid refinement process.

3.3 Choice of basis
To perform the multi-scale decomposition of the single-scale space SL in (3.4)
we need to specify a bases for the single-scale spaces S` and the complement
spacesW`. Then the multi-scale decomposition corresponds to a change of basis.
With regard to an efficient transformation we assume that the basis functions
are compactly supported:

S` = span
λ∈I`,i∈P

ϕλ,i, supp(ϕλ,i) = Vλ,

W` = span
λ∈I`,i∈P,e∈E

ψλ,i,e, supp(ψλ,i,e) = Vλ,

where P characterizes the local degrees of freedom, see Section 2.1, and E :=
{1, . . . ,#Mλ − 1} the additional degrees of freedom of the complement spaces
W`. The functions ϕλ,i and ψλ,i are referred to as scaling functions and multi-
wavelets, respectively. For convenience of the reader we simplify the presentation
and introduce the set P∗ := P ×E characterizing the total local degrees of free-
dom of the complement spaces. Furthermore, we define the sets IS` := I` × P
and IW` := I` × P∗ corresponding to the global degrees of freedom of W` and
S`, respectively. Then we may rewrite these spaces as

S` = span
i∈IS`

ϕi and W` = span
i∈IW`

ψi.

In addition to the compact support, we want the basis to be orthogonal:

〈ϕi, ϕj〉Ω = 0, i, j ∈ IS` , i 6= j, (3.5)

〈ψi, ψj〉Ω = 0, i, j ∈ IW` , i 6= j. (3.6)

By definition of the complement spaces W ` the wavelets are orthogonal to the
scaling functions:

〈ψi, ϕj〉Ω = 0 i ∈ IW` , j ∈ IS` , ` ∈ N0. (3.7)

The scaling of the basis functions is chosen such that:

‖ϕi‖L∞(Ω) ≤ C and ‖ψj‖L∞(Ω) ≤ C i ∈ IS` , j ∈ IW` , (3.8)

where the constant C is independent of `. Due to the uniform boundedness in
L∞ the basis is not orthonormal. Therefore we introduce bi-orthogonal bases
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{ϕ̃i}i∈IS` for S` and {ψ̃i}i∈IS` for W` such that:

〈ϕi, ϕ̃j〉Ω = δij, i, j ∈ IS` , 〈ψi, ψ̃j〉Ω = δij, i, j ∈ IW` ,
(3.9)

〈ϕi, ψ̃j〉Ω = 0, i ∈ IS` , j ∈ IW` , 〈ψi, ϕ̃j〉Ω = 0, i ∈ IW` , j ∈ IS` .

These dual basis functions can easily be constructed by scaling the primal basis
functions such that they are uniformly bounded in L1(Ω).

Finally we need that each multiwavelet provides vanishing moments of order
M ≥ p:

〈P,ψi〉Ω = 0, ∀P ∈ ΠM−1. (3.10)

Since the scaling functions are assumed to be piecewise polynomials, the orthog-
onality relation (3.7) implies that the minimal number of vanishing moments is
larger or equal to p, i.e.,M ≥ p. From the nestedness of the spaces and required
properties of the basis functions we can derive two-scale relations for the scaling
functions and multiwavelets:

Proposition 1 For the scaling functions and multiwavelets the two-scale rela-
tions hold:

(i) ϕ̃λ,i =
∑

µ∈Mλ

∑
i′∈P

ϕ̃µ,i′ 〈ϕµ,i′ , ϕ̃λ,i〉Vµ , λ ∈ I`, i ∈ P, ` = 0, . . . , L− 1,

(ii) ψ̃λ,i =
∑

µ∈Mλ

∑
i′∈P

ϕ̃µ,i′ 〈ϕµ,i′ , ψ̃λ,i〉Vµ , λ ∈ I`, i ∈ P∗, ` = 0, . . . , L− 1,

(iii) ϕ̃µ,i =
∑
i′∈P

ϕ̃λ,i′ 〈ϕλ,i′ , ϕ̃µ,i〉Vµ +
∑

i′∈P∗
ψ̃λ,i′ 〈ψλ,i′ , ϕ̃µ,i〉Vµ , µ ∈Mλ, λ ∈

I`, i ∈ P, ` = 1, . . . , L.

3.4 Construction of multiwavelets and scaling functions
For a dyadic grid hierarchy on a one-dimensional interval, i.e., Ω = [a, b], a
prominent example are the Legendre polynomials and Alpert’s multiwavelets
[3, 4] for the scaling functions and the multiwavelets, respectively. Then ϕλ,i
and ψλ,i are determined by shifts and translates, see [31]. Whereas wavelets are
in general continuous functions, this regularity is lost when passing to Alpert’s
multiwavelets. This loss of regularity is necessary, since the complement spaces
contain discontinuous functions.

In the case of a Cartesian grid and a tensor-product based polynomial space,
which is characterized by P := {i ∈ Nd0 : ‖i‖∞ ≤ p − 1} instead of P, one can
use the tensor products of the one-dimensional basis functions in the different
directions. However, the tensor-product ansatz inflates the degrees of freedom
because #P < #P. Therefore we construct genuinely multi-dimensional scal-
ing functions and multiwavelets. The scaling functions ϕλ,i, i ∈ P can be
constructed by applying the Gram-Schmidt process to a monomial basis on Vλ
and a following normalization with respect to L∞(Vλ). For the construction of
the multiwavelets we generalize Alpert’s construction principle [3] for arbitrary
nested grid hierarchies:

Algorithm 1 (Construction of multiwavelets on cell Vλ)
For given ϕλ,j , j ∈ P, and Mλ = {µ1, ..., µ|Mλ|} the multiwavelets ψλ,i, i ∈ P∗,
can be constructed by the following steps:
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(i) Initialize ψλ,i, i ∈ P∗, such that the following conditions are satisfied:

a) ψλ,i|Vµ ∈ Πp−1(Vµ), µ ∈Mλ,
b) span

i∈P∗
ψλ,i|Vλ 6∈ Πp−1(Vλ),

c) {ψλ,i}i∈P∗ is a linearly independent family,
d) supp ψλ,i = Vλ.

(ii) Apply the Gram-Schmidt process to orthogonalize ψλ,i with respect to ϕλ,j , j ∈
P.

(iii) Orthogonalize ψλ,i, i ∈ P∗ by a Gram-Schmidt process.

(iv) Normalize ψλ,i,e, i ∈ P, e ∈ E with respect to L∞(Vλ).

Note that by construction the wavelets are (i) locally supported, (ii) orthogonal
and (iii) have vanishing moments of order M = p. In step (i) one might choose:

ψλ,i,e :=


xi if x ∈ Vµe
−xi if x ∈ Vλ \ Vµe
0 else

.

For quadrilateral or triangular grids with a uniform refinement, cf. Figure 1,
the multiwavelets can be constructed on a reference element and shifted to the
local elements in the grid. In this case the fourth step in Algorithm 1 can be
skipped, since the level independent boundedness of the multiwavelets in (3.8)
is automatically satisfied. For instance, for Cartesian grid hierarchies we apply
Algorithm 1 on [0, 1]2. In Figure 2 examples of these multiwavelets are shown.
We list a set of constructed multiwavelets for p = 1, 2, 3 in the Appendix. These
multiwavelets are used for the computations in Section 5. For details on the

0
0.5

1 0

0.5

1
−5

0

5

0
0.5

1 0

0.5

1−5

0

5

Figure 2: Examples of two-dimensional multiwavelets on a dyadic Cartesian
grid hierarchy for p = 3

construction on triangular grids we refer to [47].

3.5 Cancellation property
The vanishing moments (3.10) and the normalization (3.8) imply that the details
become small with increasing refinement level when the underlying function is
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locally smooth, i.e.,

|〈u, ψi〉Ω| ≤ inf
P∈ΠM−1

|〈u− P,ψi〉Ω| . 2−`M d/2‖u‖HM (Vλ) i ∈ IW` (3.11)

holds for any function u in the Sobolev space HM (Vλ). Here we assume that the
grid hierarchy is quasi-uniform in the sense that the diameters and the volumes
of the cells on each level ` are proportional to 2−` and 2−d `, respectively, i.e.,

diamVλ ∼ 2−` and |Vλ| ∼ 2−d `,

where “∼” denotes an upper and a lower bound up to some constant indepen-
dent of the level and the position encoded by the index λ. More precisely, the
details decay at a rate of at least 2−`M d/2, provided that the function u has suf-
ficient regularity on the support of the multiwavelet, and the multiwavelet has
vanishing moments of order M . In fact, the higher M the more details may be
discarded in smooth regions. Therefore, opposite to biorthogonal wavelets, the
number of vanishing moments can be easily improved by increasing the order p
without enlarging the support. The multiwavelets constructed with Algorithm
1 have vanishing moments of order p. Note that the algorithm can be extended
by one additional step to obtain higher vanishing moments.

3.6 Multiscale transformation
In order to exploit the potential of data compression motivated by the cancel-
lation property (3.11) we make use of the multi-scale transformation (3.4), and
determine the relation between the basis coefficients in the single-scale and the
multi-scale representation of uL ∈ SL:

uL =
∑
i∈ISL

viϕi =
∑
i∈IS0

viϕi +

L−1∑
`=0

∑
i∈IW`

diψi. (3.12)

Similar to (2.5) we conclude from the bi-orthogonality relation (3.9) that the
single-scale coefficients vi and the detail coefficients di are determined as the
inner products of uL with the dual basis functins, i.e.,

vi = 〈uL, ϕ̃i〉 and di = 〈uL, ψ̃i〉.

Similar to the two-scale relation of the scaling functions and multiwavelets in
Proposition 1 we can derive from (3.12) two-scale relations for these coefficients:

Proposition 2 For the single-scale coefficients and the detail coefficients the
two-scale relations hold:

(i) vλ,i =
∑

µ∈Mλ

∑
i′∈P

vµ,i′ 〈ϕµ,i′ , ϕ̃λ,i〉Vµ , λ ∈ I`, i ∈ P, ` = 0, . . . , L− 1,

(ii) dλ,i =
∑

µ∈Mλ

∑
i′∈P

vµ,i′ 〈ϕµ,i′ , ψ̃λ,i〉Vµ , λ ∈ I`, i ∈ P∗, ` = 0, . . . , L− 1,

(iii) vµ,i =
∑
i′∈P

vλ,i′ 〈ϕλ,i′ , ϕ̃µ,i〉Vµ +
∑

i′∈P∗
dλ,i′ 〈ψλ,i′ , ϕ̃µ,i〉Vµ , µ ∈ Mλ, λ ∈

I`, i ∈ P, ` = 1, . . . , L.
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Recursively applying the two-scale relations (i) and (ii) of Proposition 2 the
array of single-scale coefficients corresponding to the finest discretization level

vL := (vi)i∈ISL

can be transformed into a sequence of coarse grid data u0 and details dl

v0 := (vi)i∈IS0 , d` := (di)i∈IW` , ` = 0, . . . , L− 1,

where the arrays of the details represent the successive update from a coarser
resolution to a finer resolution. We refer to this transformation as the multi-
scale transformation determined by the multi-scale operator ML : vL −→
(v0,d0, . . . ,dL−1). It is reversed by recursively applying the two-scale relation
(iii) in Proposition 2. The resulting inverse multi-scale transformation is de-
scribed by the inverse multi-scale operator M−1

L : (v0,d0, . . . ,dL−1) −→ vL.
In case of quadrilateral or triangular elements these transformations can be re-
alized in a very efficient way, because the inner products in the relations in
Proposition 2 have to be computed only once and to be stored for the reference
element Then during run-time, the transformations reduce to a local application
of matrix-vector products to the local vectors of coefficients corresponding to
one cell.

3.7 Thresholding
Due to the cancellation property (3.11), detail coefficients may become negligibly
small whenever the underlying function is locally smooth. This gives rise to hard
thresholding characterized by the index set

Dε := {i : |di| > ε`, i ∈ IW` , ` = 0, . . . , L− 1, }.

The level-dependent threshold values ε` are determined by an appropriate scal-
ing of the threshold value ε ≥ 0 that is to be discussed later.

For an arbitrary index set D of multi-scale coefficients the threshold operator
TD : (v0,d0, . . . ,dL−1) −→ (ṽ0, d̃0, . . . , d̃L−1) is defined element-wise by

d̃i :=

{
di, i ∈ D
0, otherwise and ṽi := vi, i ∈ IS0 .

From this operator we define the approximation operator

AD :=M−1
L TDML, (3.13)

and, in particular for D = Dε,

Aε :=M−1
L TDεML. (3.14)

For any uL ∈ SL we then can define the approximation uL,ε corresponding to
(3.14):

uL,Dε =
∑
i∈IS0

viϕi +

L−1∑
`=0

∑
i∈D`ε

diψi, (3.15)

where D`ε := IW` ∩ Dε. The error introduced by thresholding can be estimated
proceeding in analogy to classical wavelet analysis, cf. [17].
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Proposition 3 (Approximation error)
Let Ω be a bounded domain, L ∈ N, uL ∈ SL and ε` = a`−Lε with a > 1.
Then the approximation error with respect to the set of significant details Dε is
uniformly bounded with respect to Lq(Ω), q ∈ [1,∞), i.e.,

‖uL − uL,Dε‖Lq(Ω) ≤
C|P∗||Ω|

1
q

a− 1
ε, (3.16)

where C is the uniform upper bound of the primal basis functions with respect
to L∞(Ω) given in (3.8).

This proposition implies that we may approximate any function uL ∈ SL by the
approximation uL,Dε up to an error that is proportional to the threshold value
but at the expense of less degrees of freedom, because Dε can be significantly
smaller than the full set D0 =

⋃L−1
`=0 IW` . In particular, Proposition 3 suggests

how to choose the level-dependent threshold values εl for a given ε ≥ 0.

3.8 Grid adaptation
From the index set D we now determine a locally refined grid. This will be
characterized by an index set G ⊂ {λ : λ ∈ I`, ` = 0, . . . , L} satisfying Ω =⋃

(λ)∈G Vλ with |Vλ ∩ Vλ′ | = 0 for λ 6= λ′. How to determine G is detailed in the
sequel: First of all, we assume that D is a tree, i.e., the relation

(µ, i) ∈ D ⇒ (µ, j) ∈ D and (λ, j) ∈ D ∀i, j ∈ P∗ (3.17)

holds for any µ ∈Mλ, λ ∈ I`, ` ∈ {1, . . . , L− 1}. Note that in case of adaptive
MR-FV schemes [37] the tree needs to be graded of degree q ≥ 1. This leads

Level 2

Level 1

Level 0

Figure 3: Multi-scale transformation, thresholding and the adaptive grid.

to larger trees and, hence, degrades the efficiency. Then G can be determined
recursively. For this purpose, the index set G is initialized by all indices of the
coarsest discretization. Then, traversing through the levels from coarse to fine
we proceed as follows: if (λ, i) ∈ D for some i ∈ P∗, then the cell Vλ is locally
refined, i.e., the index λ is removed from G and the indices µ ∈ Mλ of the sub
cells on the finer level are added to G. Finally, we obtain a locally adapted grid
which naturally corresponds to the outer leaves of the tree of significant details,
i.e.,

G = {µ ∈ I`, ` ∈ {0, ..., L} : (µ, i) 6∈ D ∀ i ∈ P∗ and
∃ i ∈ P∗, µ ∈Mλ s.t. (λ, i) ∈ D }.
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For an illustration of the multi-scale transformation and the adaptive grid cor-
responding to the set D, computed by the thresholding operation, see Figure 3.

4 Adaptive multiresolution DG scheme
In order to derive our adaptive scheme we now combine the MRA in Section 3
with the reference DG scheme presented in Section 2. Here again we will confine
ourselves to the semi-discretization. The extension to the full discretization in
space and time is straightforward. The idea is first to derive evolution equations
for the single-scale and the multi-scale coefficients, respectively, and then to ap-
ply thresholding to discard non-significant contributions and, hence, to reduce
the complexity of the evolution system. Starting point is a given DG discretiza-
tion that is defined on the uniform highest resolution level L, i.e., uL = uh with
coefficients vλ,i, λ ∈ IL, i ∈ P, in (2.4). This will be referred to as the reference
scheme on the reference mesh.

4.1 Evolution equations for single-scale and multi-scale
coefficients

In a first step we now apply the two-scale relation (i) in Proposition 2 for the
single-scale coefficients to the evolution equation (2.7). Proceeding level-wise
from fine to coarse we then recursively obtain for any λ ∈ I`, i ∈ P, the two-
scale evolution equations for the single-scale coefficients

∂vλ,i
∂t

= Gλ,i −Bλ,i, (4.1)

where the terms on the right-hand side correspond to the volume integral and
the boundary integral in (2.7) that are recursively determined for ` = 0, .., L−1
and (λ, i) ∈ IS` by

Bλ,i :=
∑
µ∈Mλ

∑
i′∈P

〈ϕµ,i′ , ϕ̃λ,i〉VµBµ,i′ =

∫
∂Vλ

f̂(u+
L , u

−
L , ~nλ)ϕ̃λ,idS (4.2)

Gλ,i :=
∑
µ∈Mλ

∑
i′∈P

〈ϕµ,i′ , ϕ̃λ,i〉VµGµ,i′ =
∑
µ∈Mλ

∫
Vµ

f(uL) · ∇ϕ̃λ,idx. (4.3)

Here we use the two-scale relations for the scaling functions and coefficients in
Proposition 1 and 2.

Note that for the boundary integral (4.2) only those terms on the left-hand
side have to be computed that have an intersection with the boundary ∂Vλ of
the coarse cell whereas all internal boundaries cancel due to the nestedness of
the grid hierarchy and the consistency property of the numerical fluxes.

In a second step, we similarly derive evolution equations for the details where
we recursively apply the two-scale relation (ii) in Proposition 2 for the detail
coefficients to the evolution equation (4.1) of the single-scale coefficients for
` = L − 1, . . . , 0. Then the evolution process (2.7) on the uniform reference
mesh is equivalent to the evolution of the multi-scale coefficients, i.e., coarse-
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scale coefficients and details,

∂vλ,i
∂t

= Gλ,i −Bλ,i, (λ, i) ∈ IS0 (4.4)

∂dλ,i
∂t

= Gλ,i −Bλ,i, (λ, i) ∈ IW` , ` = 0, . . . , L− 1. (4.5)

Here the numerical flux balance, the flux integral and the source integral differ
from those in (4.1):

Bλ,i :=
∑
µ∈Mλ

∑
i′∈P

〈ϕµ,i′ , ψ̃λ,i〉VµBµ,i′ (4.6)

G
n

λ,i :=
∑
µ∈Mλ

∑
i′∈P

〈ϕµ,i′ , ψ̃λ,i〉VµGµ,i′ . (4.7)

Since the multiwavelets ψλ,i typically are discontinuous inside the support Vλ,
the numerical fluxes at internal edges corresponding to subcells of Vλ do not
cancel in (4.6).

According to the change of basis (3.12) applied to (2.4), the evolution equa-
tion (2.7) of the reference scheme can be rewritten equivalently as

∂uL
∂t

=
∑
i∈ISL

∂vi
∂t
ϕi =

∑
i∈IS0

∂vi
∂t
ϕi +

L−1∑
`=0

∑
i∈IW`

∂di
∂t
ψi, (4.8)

where the derivatives of the multi-scale coefficients are determined by (4.4) and
(4.5). We emphasize that up to now we only derived an equivalent representation
of the reference DG Scheme (2.7) without having reduced the overall complexity
that is still proportional to the reference mesh. How to reduce the costs without
loosing significantly in accuracy is explained in the following.

4.2 Data compression
As is motivated by the cancellation property (3.11), we may reduce the degrees
of freedom by first applying data compression to the multi-scale coefficients
where the approximation error can be controlled according to Proposition 3.
Then the compressed set of equations is solved on a locally refined adaptive grid
characterized by some index set G. According to Section 3.8 this set is deter-
mined by means of an index set D corresponding to significant detail coefficients.
Note that, if D is a tree, the system of evolution equations for the single-scale
coefficients (4.1) for G is equivalent to the system of evolution equations for the
multi-scale coefficients (4.4) and (4.5), i.e., by the sets D and G a local change
of basis is performed that, in analogy to (3.12), reads

∂uL,D
∂t

=
∑

(λ,i)∈G×P

∂vi
∂t

ϕλ,i =
∑
i∈IS0

∂vi
∂t

ϕi +
∑
i∈D

∂di
∂t

ψi. (4.9)

The transformation between the two representations characterized by the local
single-scale coefficients vG = (vλ,i)λ∈G,i∈P and the compressed multi-scale coef-
ficients vD = ((vi)i∈IS0 , (di)i∈D), respectively, can be realized efficiently, i.e., the
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number of operations is proportional to the number of cells #G and the num-
ber of significant detail coefficients #D, respectively. In [31] the transformation
algorithms are explicitly given in the one-dimensional case.

Obviously, the number of evolution equations corresponding to the multi-
scale coefficients has been reduced in (4.9). Due to the recursive definition of
the integrals in (4.2) and (4.3) the coefficients are determined by the sum of
all integrals on the finest scale L, although (4.1) is the evolution equation of
the coefficients on the coarse scale `. Thus we still have the complexity of the
reference grid. However, if the integrals can be computed exactly, then the sums
can be replaced by one integral on the local scale `. Otherwise, we approximate
the integrals on the right-hand side on the local scale by quadrature rules of
higher order than those used in the reference scheme to avoid loss of accuracy
and to reduce the complexity of the reference mesh to that of the adaptive grid.
In particular, one has to ensure that the error introduced by the quadrature
rules is smaller than the error resulting from the tresholding procedure. In the
one-dimensional case this has been investigated analytically in [43].

So far we have only considered the semi-discrete evolution equations, i.e.,
the sets G and D are time-dependent, since the underlying data by which we
perform grid adaptation according to Section 3 depend on time. As we do for the
reference scheme we now apply an explicit RK scheme for the time discretization
in (4.9) and (4.1), (4.4), (4.5), respectively. Then for each discrete time tn we
perform grid adaptation with respect to the coefficients of this time level. Note
that by means of the thresholding strategy we may only coarsen a given grid
according to Dnε at time tn. However if we would apply the DG scheme on the
coarsen grid, we cannot make sure that the grid is suitable for the solution at the
next time level tn+1. Therefore we need a refinement strategy to approximate
Dn+1
ε .

4.3 Prediction
We have to predict which details will be significant at the new time level tn+1.
Prediction can only be based on the information available at the old time level
tn, i.e., on the set Dnε of significant details at time level tn. In view of reliability
an appropriate prediction set D̃n+1

ε has to satisfy the condition

Dnε ∪ Dn+1
ε ⊂ D̃n+1

ε . (4.10)

For the design of such a prediction set we follow the idea of Harten’s strategy
[27] developed in the finite volume context and, thus, operates on cell averages
only. Instead of operating on zeroth order coefficients only, we consider also
higher order coefficients:

(i) details in a local neighborhood of a significant detail may also become
significant within one time step due to the finite speed of propagation,
i.e.,

max
i∈P∗

|dλ,i| > ε` ⇒ {(µ, i) : µ shares an edge with λ, i ∈ P∗} ⊂ D̃n+1
ε ,

(4.11)

(ii) gradients may steepen due to the formation of shocks causing significant
details on higher levels, i.e.,

max
i∈P∗

|dλ,i| ≥ 2M̄+1ε` ⇒ {(µ, i) : µ ∈Mλ, i ∈ P∗} ⊂ D̃n+1
ε , (4.12)
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where M̄ = p is the number of vanishing moments of the multiwavelets.

In the finite volume context this turned out to give satisfactory results, cf. [9, 38],
although the reliability condition (4.10) has never been proven to hold.

4.4 Adaptive MR-DG scheme
Finally we summarize the adaptive MR-DG scheme. Note that because of (4.9)
we may perform equivalently the evolution with respect to the single-scale rep-
resentation and the multi-scale representation. However, from a practical point
of view we prefer to evolve the single-scale according to (4.1) on a locally re-
fined grid for two reasons: (i) the evaluation of uL,Dε that has to be performed
when computing the fluxes is more efficient and in the single-scale basis than the
multiwavelet basis (ii) the single-scale coefficients enter explicitly the limiting
process.

In Algorithm 2 we summarize the main steps of our scheme. Therein pre-
diction and thresholding are performed on the multiscale coefficients, while all
the other operations are carried out on the single-scale coefficients.

Algorithm 2 One time-step of the adaptive scheme:

(1) Grid refinement:

(a) Apply multi-scale transformation to determine the detail coefficients,

(b) perform prediction of detail coefficients that may become significant,

(c) determine refined adaptive grid by applying the inverse multi-scale
transformation.

(2) Time evolution:

Perform the Runge-Kutta time evolution where at each stage of the RK
scheme the single-scale coefficients are limited.

(3) Grid coarsening:

(a) Apply multi-scale transformation to determine the detail coefficients,

(b) perform thresholding of detail coefficients,

(c) determine adaptive grid by applying the inverse multi-scale transfor-
mation.

We emphasize that the time evolution in step (2) of the adaptive MR-DG scheme
cannot be interpreted as a time step performed with a DG scheme where the
adaptive grid is considered to be an unstructured grid. According to the defi-
nition of (4.2) and (4.3) these terms are strongly intertwined with the highest
refinement level L by means of the multiscale transformation as has been dis-
cussed above.
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4.5 Choice of the threshold value
The efficiency as well as the accuracy of adaptive MR-DG scheme is significantly
influenced by only one parameter that is the threshold value ε. In the following
we discuss a strategy how to choose this parameter. For this reason we focus our
attention on the perturbation analysis that aims at controlling the threshold er-
ror which is introduced by the adaptive process. According to Proposition 3 the
thresholding process introduces an error of order ε to the solution. In addition,
Dn+1 cannot be computed exactly for the next time-step, but is predicted by a
heuristic strategy instead. These additional errors may spoil the discretization
error of the reference scheme, i.e., the non-adaptive DG scheme applied to a
fully-refined grid on level L. The main idea behind our adaptive approach is to
accelerate the convergence of this reference DG scheme without losing accuracy.
For this purpose one has to balance the discretization error of the reference
scheme, i.e., the difference between the exact solution and the reference scheme,
and the perturbation error, i.e., the difference between the reference DG scheme
and the adaptive scheme. To quantify this, we estimate the errors in one time
step.

For any discrete time tn ∈ [0, T ] let un be the exact solution, unL ∈ SL
be the solution of the reference scheme and unL,ε ∈ SL be the solution of the
adaptive DG scheme with threshold value ε. Then we can estimate the full error
of the adaptive scheme en := un − unL,ε by the sum of the discretization error
ηn := un−unL of the reference scheme and the perturbation error νn := unL−unL,ε:

‖un − unL,ε‖L1(Ω) ≤ ‖ηn‖L1(Ω) + ‖νn‖L1(Ω)≤ TOL.

If there is an a priori estimate available for the discretization error of the
reference scheme, i.e., ‖ηn‖L1(Ω) ∼ hβ where h denotes the spatial step size and
β the order of convergence, then we would choose h such that hβ ∼ TOL. In
order to preserve the accuracy of the reference scheme we may then admit a
perturbation error that is proportional to the discretization error, i.e.,

‖ηn‖L1(Ω) ∼ ‖νn‖L1(Ω). (4.13)

This implies that h = h(TOL, β) and ε = ε(h). Let denote the threshold value
satisfying (4.13) by εideal.

In the one-dimensional case it was proven in [31, 43] that for a uniform
dyadic refined grid hierarchy the L1-norm of the perturbation error in the mean
can be bounded uniformly up to a constant by (ε + hαL + hγL)/τL. Here α > 1
is a constant coming from stability assumptions on the reference scheme and
γ > 1 corresponds to the order of the quadrature rules used to approximate the
integrals on the right-hand side of (4.2) and (4.3). Due to a CFL constraint
the time step size τL associated to the finest refinement level is proportional to
hL. Division by τL thus accounts for the fact that in each time step we may
introduce in the worst case a threshold error of order ε that accumulates over
all time steps. For α ≥ β + 1 and γ ≥ β + 1 we then may choose ε ∼ hβ+1

L to
ensure that (4.13) holds. Since the stability analysis in [31, 43] relies on a priori
estimates of the reference scheme, in general this choice will be too pessimistic,
i.e., the adaptive grid will be too dense and, thus, spoiling the efficiency of the
adaptive grid without improving the accuracy of the reference scheme. On the
other hand, for real computations it will not be possible to determine εideal
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exactly. Motivated by numerous computations in [43] it was suggested to use
the empirical estimate

ε ∼ hβL, (4.14)

that gives good results, where the power β can be chosen as 1.

5 Numerical results
To demonstrate the ability of reducing the computational cost of the reference
DG scheme (2.7) while preserving its accuracy using multiwavelet-based grid
adaptation, we apply our scheme to four test cases: a linear test case, where
all discontinuities are contact discontinuities, and three non-linear test cases,
where we have shocks. For the first two test cases the exact solution is known.
Therefore we can identify the ideal threshold value εideal.

Here we confine ourselves to two-dimensional problems. For the discretiza-
tion we use quadrilateral grids, where the grid hierarchy is obtained by a uniform
dyadic partition of Ω, i.e., |Mλ| = 4 for all λ ∈ I`, ` = 0, ..., L − 1. Then the
size of the cells Vλ, λ ∈ I`, on a fixed level ` is constant. Motivated by Propo-
sition 3, we choose ε` = 2`−Lε for the level-dependent threshold values in our
computations. All computations are performed using quadratic polynomials,
i.e., p = 3, and the SSPRK(3,3) method is used for the discretization in time.
The time step size is computed in each time step with respect to the highest
refinement level in the grid and a constant CFL number of 0.08. The integrals
are approximated with Gaussian quadrature rules, such that polynomials with
degree less or equal than 7 are integrated exactly.

5.1 Linear transport equation
In this section we consider a two-dimensional linear transport equation:

∂u

∂t
+∇ ·

(
~bu
)

= 0

on the domain Ω = [0, 1]2 with periodic boundary conditions. For this equation
the exact (entropy) solution is known. We verify the accuracy of our reference
DG scheme by computing the numerical order of accuracy for a smooth test
case. For this purpose we choose

u0(x) = sin(2πx1) sin(2πx2) and ~b =

(
1
0

)
.

Then the solution of (2.1) is given by

u(x, t) = sin(2πx1 − 2πt) sin(2πx2).

Since this solution is smooth no limiting is needed. We performed several com-
putations on uniform grids up to T = 0.5 and determined the empirical order
of convergence (EoC). The errors as well as the EoC are recorded in Table 1.
The results confirm that our reference scheme is third order accurate.
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Next we consider a discontinuous solution of (2.1) imposing non-smooth
initial data:

u0(x) =

{
q(
√
x2

1 + x2
2), if x2

1 + x2
2 <= 1 and x1 > −0.2

0, else
,

where q is defined as:

q(r) := 1− r4 + 4r4(r − 1)− 10r4(r − 1)2 + 20r4(r − 1)3.

The function q is designed in such a way that u0 is smooth almost everywhere,
but exhibits a discontinuity at x1 = 0.2 for x2

1 +x2
2 <= 1. They are advected in

the direction ~b = (1, 0.2)T . Since the problem is linear, the solution for t = 2.5
is given by

u(x, t) = u0(x1, x2 − 0.2 t).

Computations are performed on Ω = [−1.25, 1.25] × [−1.05, 1.45] using peri-
odic boundary conditions. Since the solution exhibits a discontinuity we need
limiting.

smooth test case non-smooth test case
Number of Cells Error in L1 Order in L1 Error in L1 Order in L1

4 × 4 4.322e-02 7.662e-1
8 × 8 7.431e-03 2.540 5.245e-1 0.5470
16 × 16 1.136e-03 2.710 2.246e-1 1.224
32 × 32 1.596e-04 2.831 7.822e-2 1.521
64 × 64 2.128e-05 2.906 3.099e-2 1.336
128 × 128 2.750e-06 2.952 1.460e-2 1.086
256 × 256 3.496e-07 2.976 7.416e-3 0.977
512 × 512 4.407e-08 2.988 3.923e-3 0.919
1024 × 1024 5.532e-09 2.993 2.087e-3 0.911

Table 1: Empirical order of convergence for the linear transport equation.

To verify the capability of the reference scheme to deal with discontinuities
we performed several solutions on different uniform grids and determined the
EoC. For this case the EoC is one in the L1-norm that is optimal for a discon-
tinuous solution. The results are shown in Table 1.

For the adaptive computations we use 2× 2 cells on the coarsest level ` = 0
and L = 8 refinement levels. This corresponds to a grid with 262, 144 cells on
the finest level on which we perform the non-adaptive reference scheme. In order
to compare the adaptive solutions with the solution of the reference scheme, we
need the discretization error of the reference scheme, which can be found in
Table 1.

Exemplarily, we present in Figure 4 the adaptive solution and the corre-
sponding grid for ε = 0.003 at T = 0.5. We conclude from the adaptive grid
that in regions where the solution is smooth, the grid is very coarse and it is
fully refined only in a small area around the discontinuity. In regions where the
solution is smooth but not constant, the grid refinement is moderate.

To determine the ideal threshold value εideal, we need to balance the per-
turbation error with the discretization error of the reference scheme. For this
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(a) adaptive solution (b) adaptive grid

Figure 4: Adaptive solution and corresponding grid for the linear test case with
non-smooth initial data for L = 8.

purpose we perform a parameter study where we fix L and vary ε. Then we
compute the perturbation error ‖unL,ε − unL‖L1(Ω) and can determine the ideal
threshold value εideal.

The behavior of the perturbation and the full error is depicted in Figure 5(a).
For ε tending to zero the perturbation error tends to zero. The perturbation
error is monotonically decreasing in ε. For all considered values of ε the full
error is in the same order of magnitude, i.e., the method is not very sensitive
in the choice of the threshold value ε. Here the ideal threshold value can be
depicted approximately from Figure 5(a) to be εideal ≈ 3.21 ·10−3. The estimate
(4.14) suggests to use ε ≈ 4.88 ·10−3. So the estimated ε is a slightly larger than
εideal, but nevertheless it is close to εideal. Therefore it is a reliable estimate in
this test case.
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Figure 5: Error analysis and efficiency for the linear test case with non-smooth
initial data for L = 8.

In Figure 5(b) the behavior of the maximal number of cells in the adaptive
grid is shown. For all considered values of ε the maximal number of cells in
the corresponding grid is about 2 percent of the reference grid. For this test
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case our method is very efficient and accurate: for ε = 0.003 the full error of the
adaptive scheme is 7.496·10−3 and the error of the reference scheme 3.923·10−3,
but the maximum number of cells in the adaptive grid is only 1.9 percent of
number of cells of the reference scheme. If we allow for a full error that is twice
the discretization error of the reference scheme, we slash the number of cells
enormously. On the other hand we conclude from Figure 5(b): If our guess of
the threshold value is not sharp but choose a threshold value that is smaller
than εideal, then the number of cells in the adaptive grid is not increasing very
much. In this sense the strategy is robust.

5.2 Inviscid Burgers’ equation
To demonstrate the ability to deal with non-linear problems, we consider the
two-dimensional Burgers’ equation on Ω = [0, 1]2:

∂u

∂t
+

1

2
∇ ·
(
u2

(
1
1

))
= 0,

that is subject to the initial data

u0(x1, x2) =


−0.2 , if x1 < 0.5 and x2 > 0.5

−1 , if x1 ≥ 0.5 and x2 > 0.5

0.5 , if x1 < 0.5 and x2 ≤ 0.5

0.8 , if x1 ≥ 0.5 and x2 ≤ 0.5

.

For this configuration an exact solution is given in [25]. We compute the solution
at T = 0.5.

In order to verify our reference scheme, we have computed non-adaptive
solutions for different grid sizes and thereby calculated the numerical order of
accuracy. Since discontinuities are present in the solution, the reference scheme
cannot be expected to have more than first order accuracy in L1, which is
confirmed in Table 2.

L Number of Cells Error in L1 Order in L1

2 12 × 12 5.636e-2
3 24 × 24 2.977e-2 0.921
4 48 × 48 1.479e-2 1.01
5 96 × 96 7.719e-3 0.938
6 192 × 192 3.954e-3 0.954
7 384 × 384 2.027e-3 0.964
8 768 × 768 1.001e-3 1.018

Table 2: Empirical order of convergence for the inviscid Burgers’ equation at
T = 0.5.

For the adaptive computations we consider different values for ε in the
thresholding procedure. On the coarsest level ` = 0 we take 3 × 3 cells and
consider L = 8 levels of refinement, this corresponds to 589, 824 cells on the
uniform reference grid. The discretization error of the reference scheme can be
found in Table 2. Again we investigate the behavior of the perturbation error
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and the full error. In Figure 6(a) we observe that for this configuration the ideal
threshold value is about εideal ≈ 0.058.
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Figure 6: Error analysis and efficiency for Burgers’ equation for L = 8.

In this test case the estimate (4.14) suggests to use ε ≈ 1.30 · 10−3. Obvi-
ously, the estimated value for ε is not in the same order of magnitude, but is
significantly smaller. Thus the estimate is not sharp in this case. Nevertheless
the estimated threshold value is acceptable, since it is smaller than εideal and
does not spoil the accuracy. However the computational costs for the corre-
sponding computation would not be optimal. In this sense estimate (4.14) can
be considered to be reliable, but not optimal.

(a) adaptive solution (b) adaptive grid

Figure 7: Burger’s equation: Adaptive solution and corresponding grid for ε ≈
0.058 and L = 8 at T = 0.5.

In Figure 6(b) the behavior of the maximal number of cells in the adaptive
grid is shown. For all considered values of ε the maximal number of cells in the
corresponding grid is about 3 percent of the reference grid. Again our method is
very efficient and accurate: for ε = 0.053 the full error of the adaptive scheme is
1.899 ·10−3 and the error of the reference scheme 1.001 ·10−3, but the maximum
number of cells in the adaptive grid is only 1.9 percent of number of cells of the
reference scheme.
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In Figure 7 the adaptive solution and the corresponding grid for ε = 0.058
at T = 0.5 are shown. Again, the resolution of the grid is well adapted to the
local features of the solution.

5.3 Rotating wave
For the two test cases considered above, the exact solution was available, and
therefore we can determine the ideal threshold value εideal. In the following two
test cases the entropy solution is not known explicitly, so we cannot determine
the ideal threshold value and we have to rely on an estimate for it. We consider a
two-dimensional non-linear equation with non-convex fluxes on Ω = [−2.5, 2.5]×
[−3, 2]:

∂u

∂t
+∇ ·

(
sin(u− π

8 )
cos(u− π

8 )

)
= 0,

that is subject to the initial data

u0(x1, x2) =

{
7
2π, if x1

2 + x2
2 < 1

1
4π, else

.

Starting from the initial data, the solution develops a complex wave structure.
This is a modification of a challenging test case which was proposed in [35]. The
solution is computed up to T = 1.

(a) adaptive solution (b) adaptive grid

Figure 8: Rotating wave: Adaptive solution and corresponding grid for ε = 0.005
and L = 8 at T = 1.

On the coarsest level ` = 0 we have 3 × 3 cells and consider L = 8 levels
of refinement. This corresponds to 589, 824 cells on the uniform reference grid.
According to (4.14) we choose ε = 0.005 ≈ hL in the thresholding procedure.
In Figure 8 we present the adaptive solution and the corresponding grid. In
this case the maximum number of cells in the adaptive grid is 26, 856. We
conclude from the adaptive grid that in regions where the solution is smooth,
the grid is very coarse and it is fully refined only in a small area around the
discontinuity. Here we obtain an acceptable grid, where the compression rate is
4.6 % in comparison to the reference mesh.
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5.4 Buckley-Leverett
Finally we consider the two-dimensional Buckley-Leverett equation with gravi-
tational effects in x2-direction on Ω = [−1, 1.7]× [−1.1, 1.5]:

∂u

∂t
+∇ ·

 u2

u2+(1−u)2

u2(1−5(1−u)2)
u2+(1−u)2

 = 0

that is subject to the initial data

u0(x1, x2) =

{
1.0, if x1

2 + x2
2 < 0.5

0.0, else
.

Again, the fluxes are non-convex and starting from the initial data, the solution
develops a complex wave structure. This test case was introduced in [11]. The
solution is computed up to T = 0.5 and, thus, can be compared with the results
in [11, 25].

(a) adaptive solution (b) adaptive grid

Figure 9: Buckley-Leverett: Adaptive solution and corresponding grid for ε =
0.003 and L = 8 at T = 0.5.

On the coarsest level ` = 0 we have 3 × 3 cells and consider L = 8 levels
of refinement. This corresponds to 589, 824 cells on the uniform reference grid.
According to (4.14) we choose ε = 0.003 ≈ hL in the thresholding procedure.
Here the maximum number of cells in the adaptive grid is 19, 830. In Figure 9
we present the adaptive solution and the corresponding grid. Again, we observe
that in regions where the solution is smooth, the grid is very coarse and it is
locally refined up to the finest level only in a small area around the discontinuity.
We obtain an appropriately refined grid with less than 3.4 % of the cells in the
reference mesh.

6 Discussion and Conclusion
The concept of adaptive MR-DG schemes originally developed in one space di-
mension and investigated in [31, 43] has been extended to the multi-dimensional
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case. In particular, we construct genuinely multi-dimensional multiwavelets fol-
lowing Alpert’s general construction principle [3]. The computational perfor-
mance and the accuracy of the scheme essentially relies on the choice of the
threshold value. Here we give an empirical rule that is validated by means of
linear and non-linear test cases using convex and non-convex fluxes. The re-
duction in the number of DOFs and computational time is shown to be very
favorable. Even though a rigorous analysis as the one for the one-dimensional
case [31, 43] is not yet available for the multi-dimensional case, the empirical
rule for the choice of the thresholding tolerance gives satisfactory results.
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Appendix: Multiwavelets on the reference ele-
ment [0, 1]2

In this section we give some examples of multiwavelets which are constructed
by Algorithm 1 and used for the computations in Section 5. For a detailed
description of the construction we refer to [39] To simplify their representation
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we use the following initialization in step (i) of Algorithm 1:

ψλ,i,0(x) :=


(x− xc)

i if x ∈ (0.5, 1.0)2

− (x− xc)
i if x ∈ (0, 0.5)2

0 else
,

ψλ,i,1(x) :=


(x− xc)

i if x ∈ (0.5, 1)× (0, 0.5)

− (x− xc)
i if x ∈ (0, 0.5)× (0.5, 1)

0 else
,

ψλ,i,2(x) :=


(x− xc)

i if x ∈ (0, 0.5)2 ∪ (0, 5, 1)2

− (x− xc)
i if x ∈ (0.5, 1)× (0, 0.5) ∪ (0, 0.5)× (0.5, 1)

0 else
,

with xc = (0.5, 0.5)
t.

Since the construction is done on a reference element, the uniform bounded-
ness of the multiwavelets in (3.8) is satisfied for any scaling of the multiwavelets
on the reference element. The multiwavelets we use in our computations in Sec-
tion 5 are normalized with respect to L2((0, 1)2) on the reference element and
then shifted to the local cells in the grid.

In Table 3 and Table 4 we list all multiwavelets for p = 1, 2, 3. The multi-
wavelets are shown here without normalization to keep them clearly arranged.
For simplicity we name the multiwavelets on the reference element Vλ = (0, 1)2

by ψ̂i. The multiwavelets are enummerated from 1 to 3|P|. Then a multiwavelet
is uniquely defined by four polynomials:

ψ̂i(x, y) :=



ψ̂i,1(x, y) if (x, y) ∈ [0.5, 1]× [0.5, 1],

ψ̂i,2(x, y) if (x, y) ∈ (0.5, 1)× (0, 0.5),

ψ̂i,3(x, y) if (x, y) ∈ (0, 0.5)× (0, 0.5),

ψ̂i,4(x, y) if (x, y) ∈ (0, 0.5)× (0.5, 1),

0 else.
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p = 1 p = 2 p = 3

i j ψ̂i,j ψ̂i,j ψ̂i,j
1 1 1 19− 12(x+ y) 115− 150(x+ y) + 60y2 + 72xy + 60x2

2 0 0 0
3 −1 5− 12(x+ y) −7 + 42(x+ y)− 60y2 − 72xy − 60x2

4 0 0 0
2 1 0 4y − 3 220y − 95− 120y2 − 48xy + 36x

2 1 0 0
3 0 −4y + 1 68y − 7− 120y2 − 48xy + 12x
4 −1 0 0

3 1 1 4x− 3 42y2 − 53y + 9 + 25x− 12xy − 10x2

2 −1 0 0
3 1 −4x+ 1 −42y2 + 19y − 1− x+ 12xy + 10x2

4 −1 0 0
4 1 0 509x− 190− 96xy + 3y − 285x2 + 45y2

2 7 + 12y − 12x 0
3 0 157x− 14− 96xy + 3y − 285x2 + 45y2

4 −7 + 12y − 12x 0
5 1 0 16xy + 4x− 11y + 2− 10x2

2 4y − 1 0
3 0 −16xy + 5y − 1 + 10x2

4 −4y + 3 0
6 1 0 14x2 − 20x+ 6 + 1y

2 4x− 3 0
3 0 −14x2 + 8x− 1 + 1y
4 −4x+ 1 0

7 1 1 0
2 −1 25 + 30y − 78x+ 60(x2 + y2)− 72xy
3 1 0
4 −1 −25 + 78y − 30x− 60(x2 + y2) + 72xy

8 1 8y − 1− 6x 0
2 −8y + 7− 6x −20y − 5 + 120y2 − 48xy + 12x
3 8y − 1− 6x 0
4 −8y + 7− 6x −172y + 59 + 120y2 − 48xy + 36x

9 1 8x− 1− 6y 0
2 −8x+ 7− 6y 42y2 − 31y − 2 + 13x+ 12xy − 10x2

3 8x− 1− 6y 0
4 −8x+ 7− 6y −42y2 + 65y − 24 + 5x− 12xy + 10x2

Table 3: Wavelets for p = 1, 2, 3 - part I
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p = 1 p = 2 p = 3

i j ψ̂i,j ψ̂i,j ψ̂i,j
10 1 0

2 413x− 142 + 96xy − 93y − 285x2 + 45y2

3 0
4 61x+ 34 + 96xy − 93y − 285x2 + 45y2

11 1 0
2 96xy − 120x− 66y + 54 + 60x2

3 0
4 −96xy + 96x+ 30y − 24− 60x2

12 1 0
2 28x2 − 40x+ 14− 2y
3 0
4 −28x2 + 16x− 2y

13 1 −35 + 288xy + 156(x+ y)− 300(x2 + y2)
2 179 + 288xy − 444(x+ y) + 300(x2 + y2)
3 −35 + 288xy + 156(x+ y)− 300(x2 + y2)
4 179 + 288xy − 444(x+ y) + 300(x2 + y2)

14 1 8y − 1− 6x
2 −8y + 7− 6x
3 8y − 1− 6x
4 −8y + 7− 6x

15 1 59x+ 171y2 − 27y − 8− 288xy + 85x2

2 229x− 171y2 + 315y − 136− 288xy − 85x2

3 59x+ 171y2 − 27y − 8− 288xy + 85x2

4 229x− 171y2 + 315y − 136− 288xy − 85x2

16 1 8x− 1− 6y
2 −8x+ 7− 6y
3 8x− 1− 6y
4 −8x+ 7− 6y

17 1 32xy − 1(x+ y + 1)− 15(x2 + y2)
2 −32xy + 31(x+ y)− 15(1 + x2 + y2)
3 32xy − 1(x+ y + 1)− 15(x2 + y2)
4 −32xy + 31(x+ y)− 15(1 + x2 + y2)

18 1 32x2 − 14x− 1− 36xy + 18y
2 −32x2 + 50x− 17− 36xy + 18y
3 32x2 − 14x− 1− 36xy + 18y
4 −32x2 + 50x− 17− 36xy + 18y

Table 4: Wavelets for p = 1, 2, 3 - part II
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