
Adaptive mutation rate control schemes in
genetic algorithms

Dirk Thierens
Institute of Information and Computing Sciences

Utrecht Univerisity, The Netherlands

Abstract - The adaptation of mutation rate parameter values
is important to allow the search process to optimize its perfor-
mance during run time. In addition it frees the user of the need
to make non-trivial decisions beforehand. Contrary to real vec-
tor coded genotypes, for discrete genotypes most users still prefer
to use a fixed mutation rate. Here we propose two simple adap-
tive mutation rate control schemes, and show their feasibility in
comparison with a fixed mutation rate, a self-adaptive mutation
rate and a deterministically scheduled dynamic mutation rate.

Keywords—Adaptive mutation, Constant gain adaptive mu-
tation, Declining adaptive mutation, Counting ones problem,
Zero/one multiple knapsack problem.

I. Introduction

Novice users of Genetic Algorithms are often puzzled by
the choices they have to make for a number of parameters be-
fore being able to run their GA. In this study we will focus on
the probability of mutation. Previous studies have shown that
varying the mutation probability is preferable to a fixed con-
stant mutation rate ([2],[3],[5],[8],[12],[15],[18],[20]). Unfor-
tunately most novice users prefer to use a fixed mutation rate
due to its simplicity as compared to for instance the some-
what complicated self-adaptive mutation rate control scheme.
In this paper we propose two simple adaptive mutation rate
control schemes.

Evolutionary algorithms with non-fixed parameter settings
can be divided into three subclasses ([4],[14]):

1. Dynamic parameter control: The dynamic schemes
typically prescribe a deterministically decreasing sched-
ule over the number of generations. Fogarty ([8]) exper-
imentally studied a dynamical mutation rate control for
genetic algorithms and he proposed to use a schedule that
decreases exponentially over the number of generations:���������
	 ������� ��� ������������
The results obtained showed an increased performance,
but the experimental setup is rather specific. Hesser and
Männer ([12], [13]) derived a more general expression

for decreasing mutation rate parameter control schedule:� � ������	 � !#"!%$�&�' �(�*) !,+ �.- � �/(0 1
with 1 the stringlength and / the population size. Unfor-
tunately the constants !#2 can only be roughly estimated
for simple problems. Bäck and Schütz ([5]) also tested a
deterministically decreasing scheme:�3�4�����5	6� � � 17) �8 ) � ���:9 "
with
8

the number of generations the GA is run. Excel-
lent experimental results where obtained for hard com-
binatorial optimization problems, and we will use their
algorithm for comparison latter in this work.

2. Adaptive parameter control: During the optimization
process we can extract feedback information on how well
the search is going and use this information to adapt
the parameter control values. Rechenberg’s “ � - � suc-
cess rule” is an early example of this scheme ([21]). The
rule tries to keep the ratio of successful mutations to all
mutations close to � - � by increasing the step size when
the ratio is larger than � - � , and decreasing the step size
when the ratio is less than � - � . Although the use of feed-
back from the ongoing search process seems a useful ap-
proach, it has not been studied much in the Evolutionary
Computation literature.

3. Self-adaptive parameter control: The most evolution-
ary solution to the parameter control problem is the prin-
ciple of self-adaptation where the parameter values are
modified by evolving them. Each individual has con-
trol parameters encoded into its genotype. It is impor-
tant to notice that there is only an indirect link between
good parameter control values and highly fit individu-
als. Self-adaptation provides no direct feedback mech-
anism to good or bad parameter control values. The
idea is that good parameter values will provide an evo-
lutionary advantage to the individual it belongs to and
therefore it will itself proliferate in the population. Self-
adaptation has been successfully applied in case of con-
tinuous optimization problems with Evolutionary Strate-
gies and Evolutionary Programming ([10],[22]). Bäck
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and Schütz ([5]) designed a self-adaptive scheme for bi-
nary strings following the principles from the continuous
domain. They proposed a logistic transformation:������� � � �
	;� � � � )<� � ������ � ����� &�' �(�*)>=@?>� �BA � �.��� 9 "
such that the mutation probability �7����� � � � is distributed
according to a logistic normal distribution with probabil-
ity density functionCED,F5G ��H "�I � ' �5	 �0 ��J = ' � � ) ' � &#'

�(�LK
�
with KM	 )N��OQPSR" 9 R )TOUP D F G � I" 9 D%FVG � I � $� = $
The learning rate = controls the size of the adaptation
steps and in [5] a value of =W	 �B� ��� is chosen. The self-
adaptive scheme performs rather well and we will also
include it in the comparison further on.

Compared to the fixed mutation rate schemes most non-
static parameter setting strategies have a better performance.
Unfortunately there are some drawbacks. The dynamic pa-
rameter control scheme requires the user to devise a sched-
ule specifying the rate at which the parameter is typically de-
creased. The self-adaptive scheme does not need such a spe-
cific schedule and is conceptually quite appealing to evolu-
tionary algorithmists. Unfortunately it is rather complicated
to explain to novice users, and as a result they usually prefer
the simple fixed mutation rate scheme. Contrary to Evolu-
tionary Strategies the use of a fixed mutation rate with genetic
algorithms - like the often advised � � 	 � -�X#�ZY\[]/7^_1 & /7^`��a- does seem to give satisfactory results, which adds to the
novice user’s reluctance to apply the more elaborate schemes.

In the next section we propose two simple adaptive muta-
tion rate control schemes: the constant gain and the declining
adaptive mutation scheme. Section 3 tests their feasibility in
a limited experimental comparison. The goal of this paper
is not to extensively analyse and test these adaptive mutation
schemes, but merely to find out whether it is worthwhile to
investigate simple adaptive parameter control schemes at all.

II. Adaptive Mutation Rate Parameter Control

A. Constant gain adaptive mutation rate control

The first scheme is inspired by the stochastic Manhattan
learning algorithm from the field of stochastic approximation
([17]). Stochastic learning algorithms provide recursively re-
fined estimates of optimal model parameters. Their general
form is b ��� � � �c	 b ����� �ed �����*fg� b ����� A ' ������� , where b �����
is the parameter estimate at the recursive time step � , d ����� is
the learning rate, ' ����� is the input data at time step � , and

fh� b A ' � represents the learning rule. The learning rate d �����
is either a constant factor or a decreasing function, result-
ing in resp. constant gain or adaptive gain algorithms. The
stochastic Manhattan learning algorithm adapts the parameter
in proportion to the sign of the gradient of some error functioni � b A ' � , resulting in

b ��� � � �
	 b ����� �Md �����j)MX,[]^`/lknm i � b ����� A ' �������m b o �
Stochastic Manhattan learning algorithms are very robust re-
cursive learning algorithms using fixed parameter changes. In
evolutionary algorithms we do not have a gradient of an er-
ror function to guide the search, but a somewhat equivalent
procedure to Manhattan learning can be devised as follows.
Suppose our current mutation parameter value is �7������� , and
we generate two new individuals by mutating the current one
respectively with a mutation rate �7p� �����q	;rs�3�4����� , and with�3p� �����t	u�3�v�����.-\r , where r is a constant called the explo-
ration factor. Evaluating the mutated individuals and compar-
ing their fitness value gives us a rough - and very noisy - indi-
cation of whether we should increase or decrease the current
mutation rate. Similar to constant gain Manhattan learning
we could add or subtract a fixed factor to the current mutation
probability. We prefer however to have a modification in pro-
portion of the current value and therefore use a multiplicative
constant learning factor w . If the process converges to the op-
timal mutation probability we should make use of this value
so in addition to the two mutated individuals with a larger and
smaller mutation probability we also generate a new individ-
ual with the current value.

Formally let us notate the mutation of the binary string x of
length y with mutation probability �7� generating offspring x p
with new mutation probability �7p� as z � x A � � �q{|� x p A ��p� � .
We bound the range of possible mutation values between
[ � - y �Q�U� ��� � ]. Values generated outside this interval are given
the boundary value. The constant gain adaptive mutation rate
parameter control scheme then becomes:

Constant gain adaptive mutation scheme

1. Mutate the current individual � x A � � � :z � x A ���@-�r5�
{}� x(~ A ����- w �z � x A � � �5{}� x�� A � � �z � x A rs� � ��{}� xs� A w � � �
2. Select the fittest individual of� � x A � � � A � x ~ A � � - w � A � x�� A � � � A � xs� A w � � �:�
Note that the learning-factor w and the exploration-factorr typically have different values ( w A r�� � ). To reduce the
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noise in the evaluation of the direction of modification a rather
large value is needed, while the learning-factor should remain
smaller to avoid wild oscillations of the learning process. Typ-
ical appropriate values are w 	 � � � and rg	 � � � .
B. Declining adaptive mutation rate control

The second adaptive mutation rate control scheme we pro-
pose here is a variant of the constant gain method. As will be
discussed in the next section it seems that the constant gain
scheme should benefit from a more aggressive step size. In-
creasing the learning factor however results in a too widely
fluctuating parameter value. The declining adaptive rule aims
for a more aggressive step size while retaining a rather smooth
dynamics. Each time an individual creates an offspring by
mutation its mutation probability is decreased by a small fac-
tor, the declination factor = . In addition the exploration to-
wards lower mutation probability values is replaced by an ex-
ploration towards higher values. The step size adaptation is
also made more aggressively than in the constant gain method.
Formally the algorithm is defined as:

Declining adaptive mutation scheme

1. Mutate the current individual � x A � � � :z � x A rs�3����{�� x(~ A w �3���z � x A � � ��{}� x�� A � � �z � x A rs� � ��{�� xs� A w � � �
2. Decrease the mutation probability of the parent:� x A �3���
{�� x A =`�����
3. Select the fittest individual of� � x A =`� � � A � x ~ A w � � � A � x�� A � � � A � xs� A w � � ���
Note that r A w � � , while =�� � . Typical appropriate val-

ues are
��� ��� =W� � , and rM	 w 	 ��� � .

III. Experimental Results

In this section we perform some limited experiments to
check the feasibility of the proposed simple adaptive muta-
tion rate control schemes. First we measure the dynamic be-
haviour on the ’fruit-fly’ of genetic algorithm research - the
Counting Ones problem. For this function the optimal muta-
tion probability for each individual is known ([3],[6],[18]).

A. Counting Ones problem

The Counting Ones problem is defined as� � x ��{��l� � � x ��	 �� 2Q�(" ' 2
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Fig. 1. Generations to optimal solution for Counting Ones problem
( �������#� ) with fixed and constant gain adaptive mutation rate
(note the x-logscale).

where x is a binary string of length 1 , x 	 ' " ' $ �,�,� ' � ( ' 2��� ��A � � ).
Figure 1 shows a first advantage of using an adaptive muta-

tion rate versus a fixed mutation rate (results are averaged over
25 runs, vertical bars represent 1 standard deviation above and
below the average value; similar deviations are obtained for
the fixed mutation rate scheme but are not plotted for clarity).
The number of generations needed to converge to the optimal
solution is much more sensitive to the choice of the (initial)
mutation probability for a fixed mutation rate scheme than for
instance for the constant gain adaptive mutation scheme. For
a fixed mutation rate the range of mutation probabilities where
convergence goes well is not very wide, and once outside the
interval � ��� ��� � �,�#�*��� ����� the number of generations needed to
reach the optimal solution increases rapidly. For the constant
gain adaptive mutation rate control the range of initial muta-
tion probabilities can be quite large: between � �B� ����� � �,�#�*��� ����
performance is satisfactory and once outside the interval the
required number of generations increases far less dramatically
than with the fixed mutation rate scheme (note that the initial
mutation probabilities are plotted on a logscale).

In table 2 the average number of function evaluations and
generations are shown for 6 different mutation strategies. The
self-adaptive, constant gain adaptive, and declining adaptive
are run with a (1+3) selection strategy. The fixed, determin-
istic, and optimal scheme are run with a (1+1) selection strat-
egy, since they do not need the extra offspring for the Count-
ing Ones problem. Unfortunately this makes the comparison
somewhat harder to make. It is important to realize though
that for more difficult functions all algorithms will need a
large offspring population, eliminating the different popula-
tion sizes seen here. The next section will illustrate this.

The constant gain adaptive mutation rate scheme is run with
learning-factor w 	 � � � and exploration-factor r�	 � � � . The
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mutation schemes average number std. dev. number
fct. evals. (gens.) fct. evals. (gens.)

(1) Self-adaptive 2082 (694) 2223 (741)
(2) Constant Gain 2499 (833) 1458 (486)
(3) Declining (

��� �
) 918 (306) 231 (77)

(4) Declining (
��� � ) 714 (238) 198 (66)

(5) Fixed 575 181
(6) Deterministic 1272 211
(7) Optimal 583 157

Fig. 2. Number of function evaluations (resp. generations) for differ-
ent mutation rate control schemes on the Counting Ones problem
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Fig. 3. Distribution of the mutation probabilities applied with self-
adaptive mutation rate control compared with optimal values.

declining adaptive mutation rate scheme is run with declina-
tion factor =l	 ��� � and alternatively with =h	 ��� � , while in
both cases w 	erM	 �_� � .

For the Counting Ones problem the optimal mutation prob-
ability can be approximated very closely by:�� (¡s¢� � x ��£ �� � � � � x � � �¤) y

Figures 3, 4, 5, 6, and 7 show the mutation probabil-
ity applied for each fitness value when optimizing a 100-
bit long string in comparison with the optimal and fixed
( � -�X#�ZY\[]/7^_1 & /7^`��a ) value. Results are averaged over 100 runs,
with the error bars indicating plus or minus one standard de-
viation. It is important to note that most of the time all algo-
rithms are trying to improve strings with high fitness values,
so most of the time is spend at the right part of the figures.
The most striking observation is the slow adaptive behaviour
of the self-adaptive and constant gain mutation rate schemes.
This lack of responsiveness even necessitated to start from an
initial mutation probability �7��� � ��	 ��� � instead of the opti-
mal �3�v� � �¥	 ��� � . Of course it would be possible to increase
the responsiveness by increasing the parameters controlling
the step size. Experiments show however that this has severe
negative side effects by causing erratic fluctuations in the mu-
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Fig. 4. Distribution of the mutation probabilities applied with con-
stant gain adaptive mutation compared with optimal values.
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Fig. 5. Distribution of the mutation probabilities applied with deter-
ministic dynamic mutation compared with optimal values.

tation probability value.
The dynamic and declining adaptive schemes better match

the optimal rate, even when started from the high initial value�3�v� � �¥	 �B� � . Their dynamic behaviour is also quite smooth.
It should be noted that even a declination factor =W	 �B� � does
not match the extremely rapid decline of the optimal scheme.
Naturally this is only an optimal strategy for the unimodal
Counting Ones problem.

B. Zero/one multiple knapsack problem

A second experiment was done for a hard combinatorial prob-
lem: the zero/one multiple knapsack problem ([16]). The
problem is a generalization of the simple knapsack problem.
We are given ¦ knapsacks with capacities ! " A !%$ A,�,�#�,A ! � and/ objects each with a profit � 2 . Every object [ has a weightb 2¨§ when it is included in the knapsack © . Note that con-
trary to the simple knapsack problem the weights of the ob-
jects are not constant but instead they depend on the knapsack
they have been allocated to. Objects are either allocated to
all knapsacks or they are not allocated at all. The goal is to
find an allocation of the objects to the knapsacks such that the
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Fig. 6. Distribution of the mutation probabilities applied with declin-
ing adaptive mutation ( ªv�M��« ¬ ) compared with optimal values.
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Fig. 7. Distribution of the mutation probabilities applied with declin-
ing adaptive mutation ( ªv�M��«  ) compared with optimal values.

total profit is maximised. Calling x 	 ' " ' $ �,�#� '�® (where

' 2¯� � ��A � � ) the allocation string, the goal can be formalised
as maximising ° ®2Q�¤" ' 2 � 2 constrained by the knapsack capac-
ities, or ° ®2Q�¤" b 2±§ ' 2 � !n§ . Whenever at least one knapsack
is overfilled the string represents an infeasible solution. As
in [16] we include a penalty term in the fitness function that
becomes larger the farther the solution is from feasibility. The
fitness function to be maximised is then:� � x ��	 ®� 2U�(" � 2 ' 2 )MX � ¦³² ' �¨� 2 �
where X is the number of overfilled knapsacks: X´	µ±� © µ ° ®2Q�(" b 2¨§ ' 2 � ! § � µ �In our experiments we take the multiple knapsack problem
called “weing7-1055” which has 105 objects to be allocated
to 2 knapsacks (specific weights and capacities can be found
at [19]). This particular knapsack problem was also studied
in [5] with a fixed mutation rate (� � 	 � -�X#�ZY\[¶/7^`1 & /7^���a ), a
self-adaptive mutation schedule, and a deterministic dynamic
schedule - as explained in the Introduction.

We have implemented these mutation schemes and com-
pared them with our simple adaptive mutation rate algorithms

fitness (1) (2) (3) (4) (5)
1095445 - - - - -
1095382 2 5 5 4 3
1095357 - - 1 2 -
1095295 - - - 1 -
1095266 - - - 1 -
1095264 - 1 - 2 1
1095232 - - - - 2
1095207 - - - 2 2
1095206 - - 2 - 2
1095141 - - - 1 3
1095137 - 1 - - 2
1095132 - - - 1 -
1095114 - - - - -
1095112 - - - - 1
1095081 - 1 - 1 -
1095065 - - - - -
1095035 1 - - - -

runs / 30 3/30 8/30 8/30 15/30 16/30

Fig. 8. Knapsack problem: best results out of 30 runs (1) Fixed
mutation rate (2) Self-adaptive mutation rate (3) Constant gain
adaptive mutation rate (4) Declining adaptive mutation rate (5)
Deterministically scheduled dynamic mutation rate

using a (16+96) selection strategy, without applying recombi-
nation. At each generation every individual generates 6 chil-
dren by mutation. As opposed to the (1+3) selection strat-
egy the children no longer compete directly with their sin-
gle parent. Instead they compete in the entire pool of par-
ents and offspring. All algorithms are run for 2000 genera-
tions (a value advised in [5] for the deterministic schedule).
The constant gain adaptive mutation scheme is run with the
learning factor w 	 � � � and the exploration factor r;	 � � � .
The declining mutation rate control has a declination factor=;	 ��� ��· , and w 	¸ru	 ��� � . The initial mutation proba-
bility for each individual is randomly taken from the interval� � -�X#�ZY�[¶/7^_1 & /7^`��a �,�#�Z��� � � . Every algorithm is run 30 times.

Figure 8 shows the number of runs that achieved a fitness
value of at least 1095000, while table 9 shows the average
and standard deviation over all 30 runs. The fixed muta-
tion rate scheme performs worst, both in terms of average fit-
ness and in the number of solutions found with fitness above
1095000. The self-adaptive and constant gain adaptive mu-
tation rate control scheme perform very similar. Best perfor-
mance however is obtained with the declining adaptive muta-
tion rate scheme and the deterministically scheduled dynamic
mutation rate scheme.
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mutation schemes average fitness standard deviation
(1) Fixed 1092168 2292
(2) Self-adaptive 1092865 2007
(3) Constant gain 1093025 2073
(4) Declining 1094577 1048
(5) Deterministic 1094730 953

Fig. 9. Average fitness values over 30 runs for the 5 mutation rate
control schemes on the knapsack problem.

IV. Discussion

Space limitations prevent an extensive discussion here.
Two comments however need to be made.¹ Both the deterministic dynamic schedule and the de-

clining adaptive mutation rate scheme need a parameter
value set to specify how fast the mutation rate will drop
(resp. the number of generations run and the declina-
tion factor = ). This is somewhat analogous to the cool-
ing schedule of simulated annealing, and further research
needs to determine how sensitive performance is to this
parameter.¹ In this paper we have not considered the use of crossover.
Recombination would typically make large adjustments
during the initial generations, which is exactly where the
dynamic and declining adaptive schemes differ the most
from the self-adaptive, the constant gain adaptive, and
the fixed mutation schemes. It is therefore reasonable
to expect that the use of crossover would level out the
differences between all mutation rate control schemes.
In [20] some experiments have been reported that seem
to confirm this. A thorough analysis is however still lack-
ing and is no doubt an interesting topic to investigate.

V. Conclusion

We have proposed two simple adaptive parameter control
schemes for adapting the mutation probability with binary
genotypes: the constant gain and the declining adaptive muta-
tion scheme. The constant gain adaptive mutation method ob-
tains feedback of the search process by testing the results of
an increased and decreased mutation probability, and adapts
the mutation parameter with a constant multiplicative gain.
Limited experimental results indicate that the performance is
comparable to self-adaptive mutation schemes. The declin-
ing adaptive mutation rate control matches more the dynami-
cal behaviour of the deterministically scheduled dynamic mu-
tation rate control scheme. Performance-wise they also are
comparable. This paper showed the feasibility of these sim-
ple adaptive approaches, suggesting further experimental and
theoretical analysis is worthwhile to pursue.
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[4] Bäck T., An overview of parameter control methods by self-adaptation
in evolutionary algorithms. Fundamenta informaticae 34, 1-15, 1998.
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