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*e feedback PID method was mainly used for the navigating control of an unmanned surface vessel (USV). However, when the
intelligent control era is coming now, the USV can be navigated more effectively. According to the USV character in its navigating
control, this paper presents a parallel action-network ADHDPmethod.*ismethod connects an adaptive controller parallel to the
action network of the ADHDP. *e adaptive controller adopts a RBF neural network approximation based on the Lyapunov
stability analysis to ensure the system stability. *e simulation results show that the parallel action-network ADHDP method has
an adaptive control character and can navigate the USV more accurately and rapidly. In addition, this method can also eliminate
the overshoot of the ADHDP controller when navigating the USV in various situations.*erefore, the adaptive stability design can
greatly improve the navigating control and effectively overcome the ADHDP algorithm limitation.*us, this adaptive control can
be one of the intelligent ADHDP control methods. Furthermore, this method will be a foundation for the development of an
intelligent USV controller.

1. Introduction

*e development of science and technology is speeding up
the informatization to intellectualization. Many systems are
facing the new problems of intelligent control. *e in-
telligent control can also be widely used in the unmanned
surface vessel (USV) for its learning and adaptive ability. At
present, the control research for the USV mainly focuses on
the path-following, path planning, formation control, and
experiment etc.

Among the above researches, the path-following has
been researched at most. In 2017, Shin et al. proposed a path-
following control for the USV based on an identified dy-
namic model [1]. In 2018, Qin et al. solved the path-tracking
control of the USV with input saturation and full-state
constraints [2]; Qu et al. presented an exponential path-
tracking control of the USV with external disturbance,
system uncertainties [3], etc. *ese methods generally re-
quire the precise model of the USV or external environment,
which are difficult to establish.

*e path planning is also one of the major research
studies. In 2017, Kim et al. fulfilled the path optimization of
the USV under environmental loads using the genetic al-
gorithm [4]. In 2018, Lyu and Yin used a path-guided po-
tential-field method to achieve the path planning in
restricted waters [5]. In 2019, Wang et al. adopted an im-
proved grey wolf optimizer to optimize the USV trajectory
[6]. *is is a new intelligent method, but it still has some
shortcomings.

In addition, in 2017, Klinger et al. evaluated the in-
telligent controller performance through a USV experiment
[7]. In 2018, Conte et al. developed a ROS of multi-agent
structure for the USV, and tested its path planning [8]. Dai
et al. combined many methods to achieve the UAV for-
mation control [9] and so on. For more detailed develop-
ment and trend analysis, please refer to these review papers
[10–12].

However, the nonlinear adaptive optimal control of the
USV has not been fully investigated. *is is an important
task in the intelligent USV control, and further research is
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needed. For the adaptive optimal control of the USV, it
usually needs solving the Hamilton–Jacobi–Behrman
(HJB) equation. *is equation is difficult to solve in many
cases except for a linear quadratic system. *e classical
dynamic programming method still suffers to the curse of
dimensionality. Fortunately, in recent years, the approxi-
mate dynamic programming (ADP) method has arisen
with neural network approximation [13]. Liu et al. gives the
most recent developments of the ADP theory and its ad-
vances in industrial control [14]. Yang et al. presented a
guaranteed cost neural tracking control for a class of un-
certain nonlinear systems using the ADP [15]. *ese re-
searches make the ADP suitable for the optimal control of
minimizing a performance index. *us, the ADP can also
be used to learn and adjust the navigating according to the
USV conditions.

However, in practice, simply relying on the ADP cannot
achieve enough accurate adjustment, especially under an
external influence, while the adaptive control has the ability
to adapt to different environment. If we combined the
advantages of these two kinds of control, the USV navigating
can be adjusted more quickly and accurately. *erefore, in
this paper, these two methods are jointed for the navigating
USV. *en, based on the analysis of the USV, this paper
presents a parallel action-network ADP method. *is
method connects an adaptive controller parallel to the action
network of the ADP.*is parallel adaptive controller adopts
a RBF neural network approximation based on the Lya-
punov stability analysis.*e simulation results show that the
parallel action-network ADP has an adaptive control
character and can navigate the USV more accurately and
rapidly. In addition, this method can also eliminate the
overshoot of the ADP controller when navigating the USV in
various situations. *us, this adaptive control can be one of
the intelligent ADP control methods. *is method will also
be a foundation to the development of an intelligent USV
controller.

2. The ADHDP Control Method

*e action-dependent heuristic dynamic programming
(ADHDP) is one of the main approaches in the ADP
family. *e critic and action networks of the ADHDP are
usually established based on the BP neural network
[16, 17]. As shown in Figure 1, the main function of the
critic network uses the system state to approximate the
cost function J(t). *e correctness of the cost function will
guide the action network to the optimal u(t) approxi-
mation. If the output of the action network is received as
part of the input to the critic network, it forms a new critic
network. *e new critic network conceals a controlled
object model and approximates the new cost function
Q(t). *e output Q(t) is an estimation of the cost function
in the next time. *us, Q(t) � J(t + 1), and the ADHDP
can perform control without the mathematical plant
model.

2.1. -e Problem Formulation. *e action-critic scheme of
the ADHDP and its symbols are both shown in Figure 2.
Assuming that a nonlinear system is set up as

x(t + 1) � Ft[x(t), u(t), t], (1)

where x(t) ∈ Rn is the system state of time t, u(t) ∈ Rm is the
system action of time t, and Ft is the state transition equation
of the nonlinear system.

In order to let the system run in an optimal state for the
dynamic programming algorithm, the cost function must be
defined as [18]

J[x(i), i] �􏽘∞
k�i

αk− ic[x(k), u(k), k], (2)

where α is the discount factor (0< α≤ 1), and c is the
utility function of each time step. *e objective is to
choose the control action, u(k), k � i, i + 1, . . ., so that the
cost function J(t) defined in equation (2) is minimized
[19].

2.2. -e Critic Network. As shown in Figure 2, the input
vector to the critic network is

s � x1(t), x2(t), . . . , xn(t), u1(t), u2(t), . . . , um(t)􏼂 􏼃. (3)

*e input qi(t) to the hidden layer is calculated as

qi(t) � 􏽘n+m
j�1

w(1)ci,j
sj. (4)

s in the hidden layer of Figure 2 means the nonlinear
Sigmodial function. *us, the output of the hidden layer is

pi(t) �
1 − exp − qi(t)( 􏼁
1 + exp − qi(t)( 􏼁. (5)

*e / in the output layer means adopting a linear
function, so the output layer is

Q(t) � 􏽘Nh1

i�1

w(2)ci
pi(t). (6)

*e ADHDP approximates the optimal solution by
minimizing the new cost function; that is, Q(t) �
J[x(t + 1), t + 1]. *is is achieved by training the new critic
network to minimize the following error measured over
time:

Ec(t)
���� ���� �􏽘

t

1

2
e2c(t) �􏽘

t

1

2
(αQ(t) − [Q(t − 1) − c(t)])2,

(7)
where Q(t) � Q[x(t), u(t), t, wc], wc is the critic network
weights. *e output Q(t) of time t is an estimation of the
dynamic programming at time t + 1, which is the cost
function in the next time.

*en, the gradient descent algorithm is used to update the
critic network weights andminimize Ec(t) at each time step by
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wc(t + 1) � wc(t) + Δwc(t),

Δwc(t) � lc(t) −
zEc(t)

zwc(t)
􏼢 􏼣 � lc(t) − zEc(t)

zec(t)
·
zec(t)

zQ(t)
·
zQ(t)

zwc(t)
􏼢 􏼣

� − lc(t) · ec(t) · α ·
zQ(t)

zwc(t)
,

(8)
where lc(t)> 0 is the learning rate of the critic network at
time t, which decreases to a very small value with time t [20].

2.3.-e Action Network. As shown in Figure 2, the input to
the action network is

x � x1(t), x2(t), . . . , xn(t)􏼂 􏼃. (9)

*e input hi(t) to the hidden layer of the action network
is calculated as

hi(t) �􏽘n
j�1

w(1)ai,j
xj. (10)

*e hidden layer uses the nonlinear Sigmodial function;
thus, the output of the hidden layer is

gi(t) �
1 − exp − hi(t)( 􏼁
1 + exp − hi(t)( 􏼁. (11)

*e input vk(t) to the output layer is calculated as

vk(t) � 􏽘
Nh2

k�1

w(2)ak,i
gi(t). (12)

*e output layer also uses the nonlinear Sigmodial
function; thus, the output of the action network is

uk(t) �
1 − exp − vk(t)( 􏼁
1 + exp − vk(t)( 􏼁. (13)

When the critic network has been trained, the objective
of training the action network is to minimize the following
index:

Ea(t) �
1

2
e2a(t) �

1

2
Q2
(t). (14)
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Figure 2: *e action-critic principle and structure of the ADHDP.
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*en, the gradient descent algorithm is also used to
update the weight of the action network byminimizing Ea(t)
with

wa(t + 1) � wa(t) + Δwa(t),

Δwa(t) � la(t) −
zEa(t)

zwa(t)
􏼢 􏼣 � la(t) − zEa(t)

zea(t)
·
zea(t)

zQ(t)
·
zQ(t)

zwa(t)
􏼢 􏼣

� − la(t) · ea(t) ·
zQ(t)

zwa(t)
,

(15)
where la(t)> 0 is the learning rate of the action network at time
t, which also decreases to a very small value with time t [20].

After getting the optimal Q(t) function, the optimal
control u∗(t) can be obtained by the following equation:

u∗(t) � argmin
u(t)

Q∗(x(t), u(t)), (16)

that is, to obtain the optimal control output of the action
network, it is necessary to make the cost function Q(t) � 0.
*is will also make the critic network output equal to zero as
close as possible.

As shown in Figure 3, the dashed line means that the
error should be eventually reduced to zero by calculating the
error of each operation and the increment of the critic and
action network weights.

3. The Parallel Action-Network ADHDP: The
Adaptive ADHDP Method

*e addition of an adaptive control to the navigating of the
USV is to ensure its system stability. *is is because the
gradient descent algorithm cannot guarantee the system
stability [21] when updating the ADHDP parameters. In
addition, it will lead to a local optimum in some cases.
*erefore, the stability design based on the Lyapunov theory
will greatly increase the stability of the navigating control and
effectively overcome the limitation of the ADHDP algorithm.

Based on the error minimization in equation (18), the
error and its differential are used as the inputs to both the

action network and adaptive controller, as shown in Fig-
ure 4. After getting the error and its differential inputs, the
adaptive control algorithm is calculated separately.

When different control signals u(t) are obtained, the
litter between the adaptive control and action network
outputs is selected as input to the controlled object. *is will
also help the stability of the navigating USV system. In this
way, the advantage of the AHDHP and adaptive control can
be integrated to achieve the navigating stability of the USV.

*e adaptive control process is as follows: Supposing that
the nonlinear system is

€x � f(x, _x) + g(x, _x)u, (17)

e � rin − y, (18)

where rin is the tracking navigation command, the error e is
the difference between the command and the system output
y, x is the system state, u is the control input, and f(x, _x)
and g(x, _x) are the nonlinear state functions of the USV
system.

Supposing that E � e _e􏼂 􏼃T, and the optimal control u∗

is designed as

u
∗
�

1

g(x, _x)
− f(x, _x) + rin

··

+ K
T
E􏼔 􏼕, (19)

where K is a coefficient. By substituting equations (18) and
(19) in equation (17), and simplifying its form, the system
error satisfies

€e + k2 _e + k1e � 0. (20)

To design K � k1 k2􏼂 􏼃T, the root of its polynomial
function s2 + k2s + k1 � 0 must be in the left half plane of the
phase-plane. When t tends to infinity, there should be
e(t)⟶ 0 and _e(t)⟶ 0.

For the adaptive control, the RBF neural network is used
for approximation. *e input to the network is x � e _e􏼂 􏼃T,
and the output of the network is

􏽢f(x) � 􏽢WT
h(x), (21)
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Figure 3: *e schematic diagram of the ADHDP control method.
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where 􏽢W is the estimation of the network weight,
hj � g(‖x − cij‖

2/b2j) is a Gauss basis function of No. j
weight, and h(x) is a vector of the Gauss basis function,
please see [22]. Suppose that the matrix P is symmetric
positive-definite and satisfies the following Lyapunov
equation:

Λ
T
P + PΛ � − I, (22)

where Λ �
0 1
− k1 − k2
􏼢 􏼣 and I is a unit matrix. After

obtaining the matrix P, the expected RBF network weights
are

_􏽢W � − φETPBh(x), (23)

where B � 0 1􏼂 􏼃T.
After the weights of the RBF neural network are ob-

tained, the output of this network can be obtained by
equation (21). Finally, the optimal control signal can be
obtained by equation (19).

4. The USV Model for Navigating Control

*eADHDP is based on the state system and does not require a
controlled object model. *us, the ADHDP is also known as a
data-driven control method [23], which enables an online
learning and control [24]. *us, in this study, the USV model is
only used as a simulation object, not for the controller design.
However, the choice of a suitable controlled object model is also
very important for numerical experiment.

*e motion model and state space of the USV used in this
paper are summarized in [25]. *is model was proposed by
Abkowitz and other scholars with mathematical integrity and
rigor.*e standard state space of theUSV is expressed as follows

_x � Ax + Bδ, (24)

where A �

a11 a12 0
a21 a22 0
0 1 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, B � b11
b21
0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, and δ is the rudder

angle of the USV.
In it,

a11 �
Izz′ − N _r

′( 􏼁Yv′ − m′xC′ − Y _r
′( 􏼁Nv
′􏼂 􏼃V

S1
,

a12 �
Izz′ − N _r

′( 􏼁 Y_r
′ − m′( 􏼁 − m′xC′ − Y _r

′( 􏼁 N _r
′ − m′xC′( 􏼁􏼂 􏼃LV

S1
,

a21 �
− m′xC′ − N _v

′( 􏼁Yv′ + m′ − Y _v
′( 􏼁Nv
′􏼂 􏼃V/L

S1
,

a22 �
− m′xC′ − N _v

′( 􏼁 Yr′ − m′( 􏼁 + m′ − Y _v
′( 􏼁 Nr
′ − m′xC′( 􏼁􏼂 􏼃V

S1
,

b11 �
Izz′ − N _r

′( 􏼁Yδ
′ − m′xC′ − Y _r

′( 􏼁Nδ
′􏼂 􏼃V2

S1
,

b21 �
− m′xC′ − N _v

′( 􏼁Yδ
′ + m′ − Y _v

′( 􏼁Nδ
′􏼂 􏼃V2/L

S1
,

S1 � Izz′ − N _r
′( 􏼁 m′ − Y _v

′( 􏼁 − m′xC′ − N _v
′( 􏼁 m′xC′ − Y_r

′( 􏼁􏼂 􏼃L,
(25)

m is the mass of the USV, m′ is its dimensionless mass
during calculation, which is calculated withm′ � (1/2)mρL3,
ρ is the sea water density, L is the length between the
perpendiculars; Izz′ is the inertial distance, which is calcu-
lated with Izz′ � Izz((1/2)ρL2), and Izz � (mL2/16); V is the
USV speed; S1 is the reference area. For other related in-
termediate variables, please see [25], and they can be cal-
culated with

rin(t) +
_
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Plant

Critic
network
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α
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Figure 4: *e scheme of the parallel action-network ADHDP method for the navigating control of the USV.

Table 1: *e related USV parameters for simulation.

L B V T Cb m Aδ

180 (m) 27.8 (m) 9.0 (m/s) 10.3 (m) 0.64 30,000 (m3) 38 (m2)
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Y _v
′ � − 1 +

0.16CbB

T
− 5.1

B

L
􏼒 􏼓2􏼢 􏼣π T

L
􏼒 􏼓2,

Y_r
′ � −

0.67B

L
− 0.0033

B

T
􏼒 􏼓2􏼢 􏼣π T

L
􏼒 􏼓2,

N _v
′ � −

1.1B

L
−
0.041B

T
􏼔 􏼕π T

L
􏼒 􏼓2,

N_r
′ � −

1

12
+
0.017CbB

T
−
0.33B

L
􏼢 􏼣π T

L
􏼒 􏼓2,

Yv′ � − 1 +
0.40CbB

T
􏼢 􏼣π T

L
􏼒 􏼓2,

Yr′ � − −
1

2
+
2.2B

L
−
0.080B

T
􏼔 􏼕π T

L
􏼒 􏼓2,

Nv
′ � −

1

2
+
2.4T

L
􏼢 􏼣π T

L
􏼒 􏼓2,

Nr
′ � −

1

4
+
0.039B

T
−
0.56B

L
􏼔 􏼕π T

L
􏼒 􏼓2,

Yδ
′ �

3.0Aδ

L2
,

Nδ
′ � −

1

2
􏼒 􏼓Yδ
′,

(26)

where B is the width of the USV, Cb is the block coefficient,
Aδ is the area of the rudder leaf, and T is the draught of the
USV.

Considering the marine environment effect to the
movement of the USV, the interference of a white noise ω �
ω1 ω2 ω3􏼂 􏼃 is added. *us,

_x � Ax + Bδ + ω. (27)

5. The Numerical Experiment

5.1. -e Parameters of the Control System. *e utility func-
tion of the adaptive ADHDP controller can be designed as

c(t) �(4 · e(t) + 4 · _e(t))2, (28)

where e(t) is the error in equation (18) at time t, and _e(t)
is its differential with respect to time t.

*e MATLAB/Simulink is used for the simulation. *e
S-function is used to establish the related model and al-
gorithm because there is no ADHDP toolbox in MATLAB.
*e parameters of the simulating USV model are shown in
Table 1.

5.2. Simulation and Results
(1) *e navigating target is set as east (90°) and the initial

navigation is north (0°). *e simulation time is 50
seconds. *e navigating responses of a PID and the
adaptive ADHDP control are shown in Figure 5. *e

detailed comparison information of result curves in
Figure 5 is shown in Table 2.

From the data in Figure 5 and Table 2, it can be seen
that the combination of the ADHDP and adaptive
control can shorten the adjusting time and eliminate
overshoot. *e data in figures and tables also prove
that the combination of the ADHDP and adaptive
control can adjust the navigating USV quickly and
accurately, and it only needs one navigating change.

(2) When navigating the USV in a narrow river, the
adjusting frequency and time are significantly in-
creased. For the simulation in this condition, the
navigating target is set as east (90°) for the first 50
seconds, and the initial heading is north (0°). *en,
the navigating target is set as north (0°) in the 50th
seconds, and the navigating should turn around 90°.
*is stage runs for another 50 seconds. *en, the
navigating target is set as east (90°) again in the 100th
second, and the navigating should turn back 90°. *is
stage also runs for 50 seconds. *e simulation results
are shown in Figure 6.

According to the simulation results, it can be seen
that the PID controller has a long time to adjust the
navigating USV, and its overshoot is very big.
However, the navigating USV control with the

0 5 10 15 20 25 30 35 40 45 50

Time(s)

120

100

80

60

40

20

0

θ
 (

d
eg

)

rin(t)

PID

ADHDP adaptive

Figure 5: A 90° navigating control response of the USV under a
PID and the adaptive ADHDP controller.

Table 2:*e comparison of a 90° navigating control response of the
USV under a PID and the adaptive ADHDP controller.

Comparing items PID Adaptive ADHDP

Maximum response (°) 111.1079 90
Overshoot (%) 23.29 0
Delay time (s) 2.1400 7.5535
Rise time (s) 5.4600 23.9995
Peak time (s) 10.8650 23.9995
Adjustment time (s) 22.5850 16.3405
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adaptive ADHDP is significantly enhanced in
overshoot and rapidity compared with the PID
controller.

(3) Figure 7 shows the control effect and response under
the above continuous and sharp navigating with the
individual ADHDP, and compares to that of the
adaptive ADHDP. It can be seen from Figure 7 that
the ADHDP controller has a larger overshoot in a
continuous and sharp navigating change. *is is
because the ADHDP is based on the data-driven and
previous learning effects, which is difficult to make
a right response in a short period of time. After

combining the adaptive control, the adaptive
ADHDP can avoid an overshoot in mutation state
and can ensure a safe driving for the USV.

6. Discussion and Conclusion

*e ADHDP control is a data-driven based method, which
can be used without a plant model. In the simulation, it can
be seen that the adjusting time of the ADHDP controller is
much smaller than that of the PID controller, but the
overshoot is larger than that of the PID. *erefore, an
adaptive control is added to eliminate the overshoot of the
ADHDP controller under the condition of a continuous and
sharp navigating change.

In addition, the simulation proves the feasibility of the
adaptive ADHDP control method. *is control method also
does not need the model of the controlled object, which can
simplify the controller design although it needs combining
the adaptive method. *is method can also increase the
speed and stability of the controller.*us, these methods can
lay a foundation for the development of the intelligent USV
and have a practical effect for a further enhancing of the
intelligent USV control.
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