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ABSTRACT
Nearest neighbor (NN) searches represent an important class of
queries in geographic information systems (GIS). Most nearest neigh-
bor algorithms rely on static distance information to compute NN
queries (e.g., Euclidean distance or spatial network distance). How-
ever, the final goal of a user when performing an NN search is of-
ten to travel to one of the points of the search result. In thiscase,
finding the nearest neighbors in terms of travel time is more im-
portant than the actual distance. In the existing NN algorithms dy-
namic real-time events (e.g., traffic congestions, detours, etc.) are
usually not considered and hence the pre-computed nearest neigh-
bor objects may not accurately reflect the shortest travel time. In
this paper we propose a novel travel time network that integrates
both spatial networks and real-time traffic event information. Based
on this foundation of the travel time network, we develop a local-
based greedy nearest neighbor algorithm and a global-basedadap-
tive nearest neighbor algorithm that both utilize real-time traffic in-
formation to provide adaptive nearest neighbor search results. We
have performed a theoretical analysis and simulations to verify our
methods. The results indicate that our algorithms remarkably re-
duce the travel time compared with previous nearest neighbor so-
lutions.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Search Process; H.2.8 [Database Management]:
Database Application—spatial databases and GIS

General Terms
Algorithms

Keywords
Nearest neighbor query, travel time network, location-based ser-
vices, advanced traveler information systems.

1. INTRODUCTION
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Nearest neighbor (NN) queries are of significant interest for ap-
plications that work with spatial data. A sample query couldbe to
“find the nearest gas station from my current location.” Previous
work [12, 6] has resulted in efficient techniques to compute NN
queries in Euclidean space. More recently, novel algorithms [7, 15,
11] have been proposed to compute NN queries in spatial networks.
These methods extend NN queries by considering the spatial net-
work distance, which provides more realistic measure for applica-
tions were objects are constrained in their movements. However,
these existing techniques only consider static models of spatial net-
works: pre-defined road segments with fixed road conditions are
used in computing nearest neighbors. Thus any real-time events
(e.g., detours, traffic congestions, etc.) affecting the spatial net-
work cannot be reflected in the query result. For example, a traffic
jam occurring on the route to the computed nearest neighbor most
likely elongates the total driving time. More drastically,the closure
of a restaurant which was found as the nearest neighbor mighteven
invalidate a query result. This motivates the need for new algo-
rithms which extend existing NN query techniques by integrating
real time event information.

Recent advances in personal locater systems (e.g., GPS), wire-
less communication technologies (e.g., 802.11x), and peer-to-peer
networks (P2P) have created an innovative environment thatallows
the exchange of real time traffic information between peers.By
leveraging ad-hoc networks, traffic information can be shared in a
P2P manner among mobile hosts (MH) and thus local traffic in-
formation (e.g., driving speed of vehicles) can be considered when
computing NN queries. Furthermore, cellular communication en-
ables remotetraffic information server(TIS) access such that col-
lecting and disseminating traffic information for a much wider area
becomes possible.

In this paper we propose two novel adaptive nearest neighbor
query algorithms which incorporate real time traffic information.
Compared with existing work, our design leverages the communi-
cation among mobile hosts and traffic information servers toadap-
tively compute more accurate nearest neighbor results. Thecontri-
butions of our work are:

• We introduce the concept oftravel time networks(TTN). A
travel time network integrates the real time traffic informa-
tion with a static data of a spatial network. The length of each
edge in the travel time network represents the driving time of
each road segment. As a result, NN queries are computed on
travel time networks more realistically than on spatial road
networks.

• We propose a Local-based Adaptive Nearest Neighbor query
algorithm (LANN). LANN utilizes the peer-to-peer commu-



nication model to frequently update the travel time network
on each mobile host. The LANN algorithm incrementally se-
lects the road segments to the nearest neighbor based on the
most current instantiation of the local travel time network.
At each step local traffic information is collected to select
the best road segment leading toward the nearest neighbor.

• We also propose a Global-based Adaptive Nearest Neigh-
bor query algorithm (GANN). A traffic information server
is used to aggregate and maintain valid traffic events. Mobile
hosts access and retrieve traffic information and constructa
global travel time network. Nearest neighbors are computed
in a best-first manner on this global travel time network.

• We report experimental results based on a simulated travel
time network environment.

The rest of this paper is organized as follows. The related work
is described in Section 2. In Section 3 we define the the traveltime
network and introduce the LANN and the GANN algorithms. The
experimental validation of our design is presented in Section 4. We
discuss the conclusions and future work in Section 5.

2. RELATED WORK
In this section we review previous work related to Euclideandis-

tance nearest neighbor queries (Section 2.1), spatial network dis-
tance nearest neighbor queries (Section 2.2), and inter-vehicle com-
munication (Section 2.3).

2.1 Nearest Neighbor Query Processing in the
Euclidean Space

The R-tree algorithm and its extensions [5, 14, 1] are very pop-
ular index structures for spatial query processing in the Euclidean
space due to their efficiency and simplicity. To find nearest neigh-
bors, Roussopoulos et al., [12] proposed a branch-and-bound algo-
rithm that searches an R-tree in a depth-first manner. A best-first
NN algorithm [6], which was proposed later keeps a heap with the
entries of the nodes visited so far and the algorithm always expands
the first entry in the heap. The best-first NN algorithm is opti-
mal, because it visits only the necessary nodes for obtaining nearest
neighbors. Furthermore, the algorithm reports nearest neighbors in
ascending order according to their distance to the query point, and
can be applied under conditions without knowing the numberk of
queried nearest neighbors in advance.

2.2 Nearest Neighbor Query Processing in the
Spatial Network Space

Several spatial network nearest neighbor query methods have
been proposed in recent years. Huang et al. [7] proposed an al-
gorithm to integrate spatial and connectivity information. Their
approach utilizes thematic spatial constraints to restrict permitted
paths, but it is inapplicable to general query processing (e.g., near-
est neighbor query). Shahabi et al. [15] proposed a method to
perform nearest neighbor queries in road network by transform-
ing the problem to high dimensional space. However, these solu-
tions only extend nearest neighbor queries into the spatialnetwork
space with no consideration to traffic conditions. As an extension
of NN queries in the Euclidean space, Papadias et al. [11] proposed
an Incremental Euclidean Restriction (IER) algorithm to solve the
problem of finding nearest neighbors in spatial network databases.
Our design extends IER to compute nearest neighbors within the
travel time network. We review the IER algorithm in Section 3.3
due to its relevance to our design.

2.3 Inter-Vehicle Communication
Inter-vehicle communication (IVC) enables a vehicle (and its

driver) to communicate with other vehicles (and their drivers) ex-
changing real time information, such as road conditions, traffic
speeds, and weather hazards. Benefiting from the power capaci-
ties of vehicles,the nodes of these networks can have and virtually
unlimited lifetime.

There are many previous studies about the Media Access Con-
trol (MAC)/Physics (PHY) layer [10, 8] and network layer pro-
tocols [16, 3] for the inter-vehicle communication. Consider the
inter-vehicle communication at a relatively short range and low
cost, Ott et al. [10] proposed the use of IEEE 802.11 networksfor
sending and receiving high data volumes between vehicles mov-
ing at different speeds. Their solution enables a single access point
with an estimated reach of some 200 meters in diameter. The speed
limit for vehicles under this model is able to reach 120 km/h.In
contrast, the infrastructure mode of a cellular-based network (such
as utilized by the OnStar service1) links the vehicle and driver to the
base station with a much longer communication range. By integrat-
ing with the Global Positioning System (GPS) system, this model
enables a centralized server providing location-based services.

The design of communication protocols for IVC is very chal-
lenging due to the variety of application requirements and the tight
coupling between an application and its supporting protocols [9].
Therefore, there are several very recent research projects(such as
FleetNet2 and CarTALK 20003) for next generation IVC protocols
and technologies.

3. SYSTEM DESIGN
We outline our system architecture in this section and propose

two adaptive nearest neighbor query algorithm: Local-based adap-
tive nearest neighbor query (LANN) and Global-based adaptive
nearest neighbor query (GANN). LANN follows the peer-to-peer
model and provides incremental results for navigating a mobile
host to its nearest neighbor. In contrast, GANN employs Traffic In-
formation Servers and mobile hosts can access traffic information
of the whole district. The system infrastructure and assumptions
are explained in Section 3.1. Next, we introduce the conceptof a
Travel Time Networkin Section 3.2. Travel time nearest neighbor
queries are discussed in Section 3.3. We propose the local-based
adaptive nearest neighbor query algorithm in Section 3.4. Traf-
fic events collection and distribution of TIS is illustratedin Sec-
tion 3.5. Section 3.6 covers the design of the global-based adaptive
nearest neighbor query algorithm.

3.1 System Infrastructure and Assumptions
Figure 8 illustrates the system infrastructure of our design. We

are considering mobile hosts with abundant power capacity,such as
vehicles, that are equipped with a Global Positioning System (GPS)
for obtaining continuous position information. In addition, mobile
hosts also maintain the road network data and the set of Points of
Interest (POI) in local memory (for example, stored on a CD).The
road network data (e.g., the US Census TIGER data set4) covers
the road segments of highways, primary roads, rural roads, etc.
and these different road types are defined as road class attributes
in the TIGER data set. Since the road class attribute of the TIGER
data set does not cover the speed limit information, we definea
fixed speed limit of each road class (e.g., 65 mph for highways).

1http://www.onstar.com/
2http://www.fleetnet.de/
3http://www.cartalk2000.net/
4http://www.census.gov/geo/www/tiger/



Furthermore, we assume that two-tiers of wireless connections are
available on each mobile host. The cellular-based networks(such
as utilized by the OnStar service) allow medium range connections
to base-stations that interface with the wired Internet infrastruc-
ture. A second type of short-range ad hoc communication protocols
(e.g., IEEE 802.11x) are also supported to communicate between
neighboring peers. Mobile hosts can either broadcast requests of
traffic information to peers within the communication range(local
solution) or send requests to the traffic information serverdirectly
(global solution). Currently there are many real-time traffic event
providers (e.g., California Highway Patrol5, SIGALERT.com real-
time traffic information6, etc.) which supply traffic information of
plenty urban areas. These web sites can be easily integratedas a
TIS server with Web service interfaces in the future. A localtravel
time network of each mobile host is thus built via integrating the
information of traffic events from peers or TIS and the local stored
road network for processing nearest neighbor queries.

Peer-to-Peer

Channel

Mobile Host

Transmission

Range

Spatial Database

Base Station

Transmission

Range

GPS Satelite

Base Station

Peer-to-Base

Channel

Figure 1: The system infrastructure.

3.2 Travel Time Networks
Leveraging existing methods, we assume a digitization process

that generates a modeling graph from an input spatial network. The
modeling graph contains three categories of graph nodes: the net-
work junctions, the start/end points of a road segment, and other
auxiliary points (e.g., the speed limit change point). However, a
digitized spatial network (like Figure 2a) cannot reflect real-time
traffic events in it and this limitation decreases the accuracy of NN
query algorithms [15, 11] which utilize spatial networks. In order
to obtain a more accurate estimation of the nearest POI to a query
point Q. We propose to combine real time traffic information with
spatial road networks for generatingtravel time networks(TTN). A
travel time network uses the travel time as the edge weight, rather
than the Euclidean distance as in spatial networks. For example, as-
sume that the spatial distance of edgee is five miles (the left most
road segment in Figure 2a) and the speed limit ofe is thirty miles

5http://cad.chp.ca.gov/
6http://www.sigalert.com/

per hour (mph); we can get the minimum driving time between
nodeA andB to be ten minutes and it is the distance between node
A andB on a travel time network (the left most road segment in
Figure 2b).

With travel time networks, real-time events can be plainly inte-
grated into related road segments by normalizing their influences to
time. For example, if the driving speed of a road segment is slower
than its speed limit because of a traffic congestion, the travel time
between its starting and ending points can be dynamically updated
to reflect the congestion. In addition if a road segment is closed af-
ter a traffic accident, this road segment can be temporarily removed
from its travel time network.

3.3 Travel Time Network Nearest Neighbor
Queries

In the real world, mobile objects often move on pre-defined net-
works (e.g., roads, railways, etc.). In this scenario, the spatial net-
work distance provides a more exact estimation of the traveldis-
tance between any two objects than Euclidean distance. Papadias et
al. [11] have proposed the Incremental Euclidean Restriction (IER)
algorithm to solve spatial network nearest neighbor queries. Here
we extend the IER algorithm to solve NN queries on travel timenet-
works. We propose to use travel time networks to replace spatial
networks and take driving time as the length between two nodes
for utilizing real-time traffic information. We name the modified
method astravel time network nearest neighbor query.

Incremental Euclidean Restriction The IER algorithm is based
on the multi-stepkNN technique [4, 13]. To execute a nearest
neighbor search for query pointQ, IER first retrieves the first Euclid-
ean distance nearest neighborn1 of Q and computes the Euclidean
distanceED(Q, n1). Next it calculates the network distance from
Q to n1, ND(Q, n1). Subsequently the IER algorithm can useQ

as the center to draw two concentric circles with radiiED(Q, n1)
andND(Q, n1) respectively. Due to theEuclidean lower bound
property(i.e., for any two nodesi andj, their Euclidean distance
ED(ni, nj) always provides a lower bound on their network dis-
tanceND(ni, nj)). Objects closer toQ thann1 in the network
must be within the circle making use ofND(Q, n1) as its radius.
Therefore, the search space becomes the ring area between the two
circles as shown in Figure 3a. In the next iteration, the second
closest objectn2 is retrieved (by Euclidean distance). Since in the
given exampleND(Q, n2) < ND(Q, n1), n2 becomes the cur-
rent candidate for spatial network nearest neighbor and thesearch
upper bound becomesND(Q, n2). This procedure is repeated un-
til the next Euclidean nearest neighbor is located beyond the search
region (asn3 in Figure 3b).

3.4 Local-based Adaptive Nearest Neighbor
Queries (LANN)

The travel time network enables the integration of real timetraf-
fic information into a spatial representation. Since the cellular-
based communication is much more expensive than the short-range
ad hoc communication, traffic information can be exchanged in a
local area with a much lower cost. Based on this observation,we
propose a Local-based Adaptive Nearest Neighbor query algorithm
(LANN). LANN relies on exchanging local traffic informationbe-
tween peers to build up a travel time network. According to LANN,
the mobile host first computes the nearest neighbor on the spa-
tial road network when executing a travel time network NN query.
Next, the mobile host incrementally updates local traffic informa-
tion and selects a road segment correspondingly as the shortest path
to the computed nearest neighbor. As the mobile host begins to nav-
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Figure 3: Nearest neighbor search in a spatial network environment with the IER algorithm.

igate on a road segment, it broadcasts requests to collect local traf-
fic information from peers within the ad hoc communication range.
Only the traffic information of the surrounding road segments is
requested. In the case that the traffic information cannot becol-
lected from peers, the default speed limits of corresponding road
segments are used. A travel time network, which evaluates each
surrounding road segment as the sum of the actual travel costand a
heuristic travel cost, is hence built up. The travel time network uti-
lizes the travel time of surrounding road segments as the actual cost
g. The heuristic costh is computed as the Euclidean distance from
the end of each surrounding road segment to the destination point
divided by a heuristic travel speed (e.g., the average travel speed
on the spatial network). The mobile host selects the road segment
with the costf = MIN( g + h ) as the shortest path to the computed
nearest neighbor and starts to navigate on that road segment.

Figure 4 demonstrates an example of TTN and LANN compu-
tation. Assume a mobile host at the locationA executes a travel
time NN Query, the computed nearest neighbor from the spatial
road network is at the location ofB. Figure 4a shows the corre-

sponding spatial road network and the Euclidean distance from the
end of each surrounding road segments of locationA (AC, AD,
andAE in this example) to the destinationB. Next, the mobile
host broadcasts to collect the traffic information on road segment
AC, AD, andAE from peers. Assume the traffic speed of road
segmentAC is 30 mph, the speed ofAD andAE are 60 mph,
and the average travel speed on the spatial network is 55 mph.A
TTN is constructed based on these traffic information as shown in
Figure 4b. The heuristic cost ofAC, AD, andAE is computed
with the average travel speed on the spatial network. The length of
each edge in the TTN demonstrates the corresponding travel time.
Hence the cost ofAC is the actual cost (8 minutes) plus the heuris-
tic cost (32.7 minutes), which totally equals to 40.7 minutes. Simi-
larly, the cost ofAD is 12 + 16.4 = 28.4 minutes and the cost of
AE is 2+38.2 = 40.2 minutes. Road segmentAD, which has the
minimum cost, is selected in this example.

LANN is executed in an incremental manner: When the mobile
host reaches the end of the selected road segment, it broadcasts
again to collect local traffic information from peers and update the
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Figure 4: An example of traffic time networks in LANN.

travel time network. Next, the mobile host selects a road segment
to continue navigation based on the updated TTN. The mobile host
keeps executing the algorithm until it reaches the computednearest
neighbor. The complete algorithm of LANN is shown in Algo-
rithm 1.

Algorithm 1 Lobal-based Adaptive Nearest Neighbor (Q)
1: /* Q is the query mobile host */
2: Execute a spatial road network NN query for retrieving the

nearest POI and the shortest path to it.
3: Take the returned nearest POI as the destination,D

4: for each surrounding road segment in the TTNdo
5: select the minimum of actual traffic time costTg plus heuris-

tic traffic timeTh

6: end for
7: Take the returned road segment as the current route,Sroute

8: while Dist(Q, D) 6= 0 do
9: repeat

10: Navigate the mobile host toD
11: until the mobile host reaches the end ofSroute

12: broadcast to update the TTN
13: for each surrounding road segment in the TTNdo
14: select the minimum of actual traffic time costTg plus

heuristic traffic timeTh

15: end for
16: Take the returned road segment as the current route,Sroute

17: end while

3.5 Traffic Event Collection and Distribution
of the Traffic Information Server

In order to support the Global-based Adaptive Nearest Neighbor
Queries, a Traffic Information Server has to maintain valid traffic
events for mobile hosts to access. Traffic events can be broadly
classified into four categories:

• Category 1 - Congestion Events: The real traffic speed of
a road segment is much lower than the speed limit. This
condition is usually caused by traffic accidents or traffic jam.

• Category 2 - Detour Events: A road segment is closed and
the mobile host has to detour.

• Category 3 - Closure Events: The selected POI is closed and
the mobile host has to search for another nearest POI.

• Category 4 - Recovery Events: A mobile host can recover its
local TTN from previous events; a traffic congestion has been
relieved, a detour has been removed, or a POI is reopened.

Since mobile hosts send requests to the TIS to acquire new traffic
events, they can simultaneously upload the speed of their current
road segments and report any real-time traffic events. Consequently
the TIS aggregates traffic congestions, accidents, and other real-
time traffic events. In addition, transportation and law enforcement
agencies can report road construction and accident information to
the TIS. Commercial businesses (e.g., gas stations) can also report
closure events to the TIS.

Every traffic event is a time stamped and a mobile host can syn-
chronize traffic information with the TIS by checking the latest time
stamp in its local memory.

3.6 Global-based Adaptive Nearest Neighbor
Queries (GANN)

The purpose of the LANN algorithm is to ensure that a mobile
host can make efficient local navigation decisions at the endof each
road segment and always stays on the shortest path to a pre-selected
nearest neighbor. Because of the communication range limitation
of IEEE 802.11 wireless networks, a mobile host cannot access (as-
sume one hop broadcast) real-time traffic events which happened
faraway. However, these events could have significant influences
on its driving time. For example, a POI may close unexpectedly
and it maybe too late for a mobile host to be aware of the event until
it reaches the vicinity of the POI. In addition, if a mobile host holds
the knowledge of global traffic events, it can update the current NN
adaptively when receiving related traffic events. For example, if a
road segment on the path to the current nearest neighbor is tem-
porarily closed, this traffic event changes the TTN and may result
in another POI being selected as the new nearest neighbor. There-
fore, utilizing the cellular communication device on mobile hosts
to access current traffic events from the traffic informationserver is



desirable. The TIS access frequency can be decided by each mo-
bile host and all the traffic events related to the current route can be
accessed at one time.

We propose a Global-based Adaptive Nearest Neighbor query al-
gorithm that computes the nearest neighbor in a best-first manner
with a global travel time network. At the start of a trip a mobile host
M executes the GANN algorithm to compute for a nearest POI as
the destinationD and the shortest path toD as the selected route
Sroute before taking the real trip. Afterwards the mobile host fol-
lows Sroute for traveling toD before updating traffic events with
the server. WhenM receives new traffic informationTinfo from
TIS, it needs to determine ifTinfo has any influence (e.g., traffic
jam usually slows down the traffic on road segments) onSroute. If
Tinfo has no influence of the current route ofM , the mobile host
only needs to integrateTinfo into its local TTN for future usage.
However, ifTinfo is related with the current journey ofM , the mo-
bile host has to execute more methods. As discussed in Section 3.5,
there are four traffic event categories. With category 1 and 2, mo-
bile hosts have to update their local TTN (remove the edge of the
closed road segment for condition 2) and recalculate theDrtime

from the current location toD. Then it launches a travel time net-
work NN query withDrtime as the upper search boundSbound.
Afterwards, GANN chooses the shortest driving time POI within
Sbound as the new destination and navigate the mobile host there,
if any new NN has been found. In category 3, a selected POI can be
closed unexpectedly after a mobile host starts its trip. When receiv-
ing a POI closure event which is the current destination, a mobile
host has to launch a travel time network NN query for finding a
new nearest POI. Under category 4, if the recovery is about a traffic
congestion and related with the route to the current nearestneigh-
bor, the mobile host needs only to update its local TTN. Otherwise,
the mobile client launches a travel time network NN query with
current driving timeDrtime as the search upper boundSbound on
the updated TTN.

The complete algorithm of GANN is formalized in Algorithm 2.

4. EXPERIMENTAL VALIDATION
We implemented our adaptive nearest neighbor query algorithms

in a simulator to evaluate the performance of our approach. Our
main objective is to increase the accuracy of nearest neighbor queries
and decrease the driving time. First of all, real time trafficinforma-
tion can be easily integrated into the underlaying network.Sec-
ondly, the shortest path to a destination (POI) can be generated in-
crementally (LANN) or dynamically (GANN). Consequently, the
focus of our simulation is on quantifying the driving time varia-
tions. We have performed our experiments with both real-world
and synthetic parameter sets.

4.1 Simulator Implementation
Our simulator consists of three main modules, thenavigation

module, theserver module, and thebaseline module. The objective
of the navigation module is to generate and control the movements
and the NN query launch of all mobile hosts. Each mobile host is
an independent object which encapsulates all its related parameters
(such as the movement velocityMoveV elo and the wireless trans-
mission rangeTRRang) and decides its movement autonomously.
Spatial data (POI) indexing is provided with the well known R-tree
algorithm with the quadratic splitting method [5]. All mobile hosts
move inside a geographical area, measuring 4 miles by 4 miles.
Additionally there are user adjustable parameters for the simulation
such as the execution length, the number of mobile hosts and the
number of POIs. The server module interacts with mobile hosts
which execute the GANN algorithm for disseminating real-time

Algorithm 2 Global-based Adaptive Nearest Neighbor (Q)
1: /* Q is the query mobile host */
2: Execute a travel time network NN query for retrieving the near-

est POI and the shortest path to it.
3: Take the returned nearest POI as the destination,D, and the

shortest path toD as the current route,Sroute

4: while Dist(Q, D) 6= 0 do
5: Navigate the mobile host toD and request traffic events from

the server with a frequencyf
6: if The received informationTinfo is related withSroute and

is not a recovery eventthen
7: if D is not closedthen
8: Update the time network withTinfo and utilize the cur-

rent location ofQ for calculating a new driving time
Drtime to D

9: Execute the travel time network NN query withDrtime

as a search upper boundSbound

10: if any closer POI is foundthen
11: Pick the closest POI withinSbound asDnew

12: ReplaceD with Dnew and updateSroute with the
route toDnew

13: end if
14: else
15: Execute the travel time network NN query with the cur-

rent location ofQ for finding a new nearest POIDnew .
16: ReplaceD with Dnew and updateSroute with the route

to Dnew

17: end if
18: else
19: if Tinfo is a recovery eventthen
20: if Tinfo is about a traffic congestionthen
21: Update the local time network withTinfo

22: else
23: Update the time network withTinfo and utilize the

current location ofQ for calculating a new driving
timeDrtime to D

24: Execute the travel time network NN query with
Drtime as a search upper boundSbound

25: if any closer POI is foundthen
26: Pick the closest POI withinSbound asDnew

27: ReplaceD with Dnew and updateSroute with the
route toDnew

28: end if
29: end if
30: end if
31: else
32: Update the time network withTinfo

33: end if
34: end while

traffic events. In addition, the purpose of the baseline module is
to simulate traditional road network NN query solutions [11] and
compute a shortest pathSP to a NN without considering any related
traffic events (e.g., congestions, detour, etc.). Then the driving time
of following SP can be used to compare with the driving time of
utilizing the LANN and the GANN algorithm. Table 1 lists all the
simulation parameters.

The simulation is initialized by randomly choosing a starting lo-
cation for each MH within the simulation area. Since mobile hosts
are not always searching for nearest neighbors, we assume each
mobile host has two modes,NN search modeand driving mode.
When a mobile hostM is in the NN search mode, the navigation



Parameter Description

POINumb The number of points of interest in the system
MobiHost The number of mobile hosts in the simulation area
MoveV elo The mobile host movement velocity (MPH)

λCong The mean number of congestions per hour
λDeto The mean number of detours per hour
λClos The mean number of POI closures per hour

TRRang The transmission range of queries
T imeExec The length of a simulation run
ExpeRegn The measure of the simulation region

Table 1: Parameters for the simulation environment.

module than navigatesM to its queried nearest neighborn via em-
ploying both the LANN and the GANN algorithms (for compari-
son purpose). At the same time, the baseline module computesthe
shortest pathSP from the start location ofM to n and estimates the
driving time of it. Afterwards, the comparison module memorizes
the driving time of utilizing the LANN algorithm, the GANN algo-
rithm, and following the pre-computed shortest pathSP . Further-
more, we employ therandom waypoint model[2] as the mobility
model for the driving mode. A MH which is in the driving mode se-
lects a random destination inside the simulation area and progresses
greedily toward it. When reaching that location, the MH pauses for
a random interval and decides on a new destination for the next
travel period. Both processes (NN search and driving) repeat until
the end of the simulation. Users can decide the number of mobile
hosts which operate in the NN search mode and the driving mode.

The movement of each MH follows the underlaying road net-
work and their travel speeds is determined by the traffic speed on
the corresponding road segment.

4.1.1 Simulation Parameter Sets
In order to acquire results that closely correspond to real-world

traffic conditions, we obtained our simulation parameters from data
sets which report, for example, vehicle density, POI density, and
traffic event statistics in the Southern California area. Weterm the
two parameter sets based on real-world statistics theLos Angeles
County parameter setand theRiverside County parameter set.

• Mobile Hosts: We collected vehicle statistics of Southern
California from the Federal Statistics web site7. The data
provides the number of registered vehicles in the Los Ange-
les and Riverside Counties (5,498,554 and 944,645, respec-
tively). In our simulations we assume that about 10% of these
vehicles are on the road during non-peak hours according to
the traffic information from Caltrans8. We further obtained
the land area of each county to compute the average vehicle
density per square mile.

• Points of Interest: We obtained information about the den-
sity of interest objects (e.g., gas stations, restaurants,hos-
pitals, etc.) in Southern California from two online sites:
GasPriceWatch.com9 and CNN/Money10. Because gas sta-
tions are commonly the target of NN queries, we use them as
the point of interest type for our simulations.

• Traffic Events: According to the National Transportation Sta-
tistics11 and data from traffic related agencies (e.g., Caltrans

7http://www.fedstats.gov/
8http://www.dot.ca.gov/hq/traffops/saferesr/trafdata/
9http://www.gaspricewatch.com

10http://money.cnn.com/
11http://www.bts.gov/publications/nationaltransportationstatistics/

Office of Traffic Safety, SIGALERT.com real-time traffic in-
formation, etc.), we acquired the traffic event statistics of
Southern California and categorized these events into two
main categories: traffic congestions (e.g., traffic hazards, traf-
fic collisions, etc.) and detours (e.g., road constructions, road
closures, etc.). Because there is no official survey of POI
closure events, we assume a low occurrence rate. The event
generation module is designed to plug-in the collected traf-
fic statistic data and produce four types of traffic/POI events:
(1) traffic congestions, (2) detours, (3) POI closures, and (4)
event recoveries. We categorized traffic congestions into two
levels: medium and heavy. The corresponding speed are 10
to 20 miles per hour (mph) and 0 to 10 mph respectively on
local routes; and additionally 20 to 40 mph and 0 to 20 mph
on highways. The ratio between medium and heavy conges-
tions is also based on the traffic statistic data. The appearance
ratio of these events are based on statistical traffic data and
the interval between events is based on the Poisson distribu-
tion.

The Los Angeles and the Riverside County parameter sets rep-
resent a very dense, urban area and a low-density, more ruralarea.
Hence, for comparison purposes we blended the two real parame-
ter sets together to generate a third, synthetic parameter set. The
synthetic data set demonstrates vehicle density, POI density, and
traffic event amount in-between Los Angeles County and Riverside
County, representing a suburban area. Table 2 lists the three para-
meter sets.

Parameter Los Angeles Riverside Synthetic Units
County County Suburbia

POINumb 65 21 43
MobiHost 1852 204 1028

λCong 39 11 25 hr−1

λDeto 7 3 5 day−1

λClos 3 2 3 day−1

TRRang 200 200 200 m
T imeExec 10 10 10 hrs
ExpeRegn 16 16 16 mile2

Table 2: The simulation parameter sets for the Los Angeles
County, the Riverside County, and the synthetic suburbia.

Figure 8: The simulator and its visualization interface.
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Fig. 5a. Los Angeles County. Fig. 5b. Synthetic Suburbia. Fig. 5c. Riverside County.

Figure 5: The percentage of driving time that are saved by theLANN and the GANN algorithm as a function of the mobile host
transmission range.
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Fig. 6a. Los Angeles County. Fig. 6b. Synthetic Suburbia. Fig. 6c. Riverside County.

Figure 6: The percentage of driving time that are saved by theLANN and the GANN algorithm as a function of congestions on the
pre-computed shortest path.
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Fig. 7a. Los Angeles County. Fig. 7b. Synthetic Suburbia. Fig. 7c. Riverside County.

Figure 7: The percentage of driving time that are saved by theLANN and the GANN algorithm as a function of detour on the
pre-computed shortest path.

4.2 Implementation of Travel Time Network
We acquired our road network data from the TIGER/LINE street

vector data available from the U.S. Census Bureau. The road seg-
ments belong to several different categories, such as primary high-
ways, secondary and connecting roads, and rural roads. The seg-
ments associated with a different road classes are associated with
different maximum driving speeds. We define a road segment as
the road section between two crossroads and the driving timeof
a road segment can be derived from its speed limit, current traffic
events on it, and its length.

4.3 Experiments
We used all three parameter sets, Los Angels County, River-

side County, and synthetic, to simulate our two adaptive nearest
neighbor query algorithms. We varied the following parameters
to observe their effects on the average driving time: the wireless
transmission range, the number of congestions frequency, and the
number of detours frequency. The performance metric of the simu-
lation is theDriving Time Savings Rate(DTSR) which normalizes
the saved driving time to the driving time of the pre-computed SP .
The primary differences between the three parameter sets are ve-



hicle density, POI density, and traffic event amount. Therefore,
the simulation results reveal the applicability of our algorithms to
different geographical areas. All simulation results wererecorded
after the system reached a steady state.

4.3.1 Effect of the Transmission Range
In our first experiment we varied the mobile host wireless trans-

mission range from 20 meters to 200 meters, with all other parame-
ters unchanged. We chose 200 meters as a practical upper limit on
the transmission range of the IEEE 802.11 technology. Because of
obstacles such as buildings, this range could diminish to 100 me-
ters or less in urban areas. Figure 5 illustrates the percentage of
the driving time which is saved by employing the LANN algorithm
compared with following the pre-computedSP . As the transmis-
sion range extends, a mobile host can reach more peers and more
related traffic events can be retrieved. As expected, the effect is
most pronounced in Los Angeles County, because of its high vehi-
cle density. At a transmission range of 200 m, the LANN algorithm
can save approximately 10% to 15% driving time compared with
the pre-computed shortest path solution.

4.3.2 Effect of Congestions Frequency
Since congestions have a significant impact on driving time,we

studied the effect of varying exact congestions frequency on the
pre-computed shortest pathSP by changing the frequency from 2
to 10 and the results are shown in Figure 6. We observe that when
the congestions frequency increasing, our algorithms havea better
performance in areas with a higher vehicle density. It is because
more traffic information can be detected by peer vehicles. Inaddi-
tion, the advantage of the travel time network becomes remarkable
when congestions on theSP raise.

4.3.3 Effect of Detours Frequency
Next we varied the exact detours frequency from 2 to 10 onSP .

Figure 7 illustrates the simulation results of the three parameter
sets. As we can observe, both our algorithms have a better per-
formance than the pre-computed shortest path solution based on
driving time. However since a mobile host can avoid a detour by
taking nearby routes, all the result DTSR rates are lower than in the
previous experiments.

We conclude from all the performed experiments that our algo-
rithms have better performance among all the experimented cases.
Furthermore, the mobile host density also has a considerable influ-
ence on the driving time savings rate.

5. CONCLUSIONS AND FUTURE WORK
Geographic information systems are getting increasingly sophis-

ticated and finding nearest neighbor objects represents a significant
class of queries. Existing algorithms work on realistic, but static,
spatial networks. The next generation of applications willrequire
real-time information to be integrated to produce search results that
reflect the most current network conditions. To this end we have
presented the concept of a travel time network that is dynamically
and continuously updated. Additionally, we have introduced two
nearest neighbor query algorithms that operate on such travel time
networks. We have shown through simulation results that ourtech-
niques outperform the static approaches and reduce the travel time
when dynamic events occur.
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