
Abstract
Relevance feedback is often used in refining similarity retriev-

als in image and video databases. Typically this involves modifi-
cation to the similarity metrics based on the user feedback and
recomputing a set of nearest neighbors using the modified similar-
ity values. Such nearest neighbor computations are expensive
given that typical image features, such as color and texture, are
represented in high dimensional spaces. Search complexity is a
critical issue while dealing with large databases and this issue has
not received much attention in relevance feedback research. Most
of the current methods report results on very small data sets, of
the order of few thousand items, where a sequential (and hence
exhaustive search) is practical. The main contribution of this
paper is a novel algorithm for adaptive nearest neighbor compu-
tations for high dimensional feature vectors and when the number
of items in the database is large. The proposed method exploits the
correlations between two consecutive nearest neighbor searches
when the underlying similarity metric is changing, and filters out
a significant number of candidates in a two stage search and
retrieval process, thus reducing the number of I/O accesses to the
database. Detailed experimental results are provided using a set
of about 700,000 images. Comparison to the existing method
shows an order of magnitude overall improvement.

Keywords
relevance feedback, nearest neighbor search, similarity retrieval

1 Introduction
In recent years, there has been considerable work on the use of

low level visual features for content based image and video
retrieval. Much of this work focus on feature extraction and on
combining multiple image features, such as color and texture, for
effective retrieval. Classic examples are the IBM’s QBIC [13] and
the Virage image search engine [1]. While the low level features

are quite effective in "similarity" retrieval, the similarity is not
necessarily at a semantic level. This has been generally acknowl-
edged in the image retrieval literature.

As a step towards semantic retrieval, many researchers have
proposed the use of relevance feedback to improve the retrieval
effectiveness. In relevance feedback, the user is given an opportu-
nity to provide feedback to the system regarding the set of retriev-
als computed. This feedback is then used to compute a next set of
retrievals that better match the user’s expectations [9, 10, 14, 15,
16]. Typically, this learning involves either modifying the feature
space and/or the similarity metrics used in computing the dis-
tances between the query and the database items. For example, in
[10, 14] the database objects are adaptively clustered to match the
user’s responses. In [9, 15, 16], the weights associated with the
various feature vector components are modified to achieve a simi-
lar objective.

Relevance feedback is an iterative process wherein the
retrievals are updated at each stage based on the user’s feedback.
The updated set of retrievals are supposed to be more similar to
the query image. Assuming that one can modify the feature space
and the distance metrics in an efficient way to provide a better set
of retrieval examples, one still needs to recompute a set of nearest
neighbors for the given query vector iteratively. This nearest
neighbor computation is needed during each update. When large
datasets of image/video objects are involved, this iterative process
of finding nearest neighbors is an expensive computation, and can
be a limiting factor on the overall effectiveness of using relevance
feedback for similarity retrieval.

One important factor contributing to this computational com-
plexity is that nearest neighbor search in a high dimensional fea-
ture space is expensive when the search is over a large number of
objects. Typically, the dimensionality of image/video descriptors
tends to be in the range of few tens to few hundreds. Similarity
search in such high-dimensions is an active research area. Some
well-known indexing schemes are presented in [2, 3, 4, 5, 7, 8, 18,
19], but a recent study of these index structures demonstrates that
their indexing performance degrades to a linear search of the
whole database when the dimensionality is high [18]. For smaller
databases (containing a few thousand items), a linear search is a
feasible option. In fact, most of the current work on relevance
feedback do not address this indexing issue and assume an
exhaustive search of the database during each iteration. Such com-
putations can become prohibitive as the database size increases.

The changing nature of the underlying feature space and the
similarity metrics in relevance feedback further add to the com-
plexity of this nearest neighbor search. For example, the distance
between two feature vectors is typically calculated as a weighted
Euclidean distance and the weights are updated based on the rele-

Adaptive Nearest Neighbor Search for Relevance Feedback in
Large Image Databases

P. Wu and B.S. Manjunath
Department of Electrical and Computer Engineering

University of California, Santa Barbara, CA 93106-9560
{peng, manj}@ece.ucsb.edu

vance feedback. Given the updated weight matrix, the next set of
nearest neighbors is then computed. The focus of this paper is on
efficient computation of these nearest neighbors when the under-
lying distance metric is changing during each iteration. To the
best of our knowledge, this issue has not been addressed in the
database research.

The paper is organized as follows: Section 2 provides a brief
overview of relevance feedback and in Section 3 we discuss an
approximation based indexing structure for high dimensional
feature spaces. In Section 4 we propose a modification to the fil-
tering process in the approximation based search and indexing to
facilitate iterative nearest neighbor retrievals. Experimental
results are provided in Section 5 and we conclude with a brief
discussion in Section 6.

2 Relevance feedback
Low level descriptors often fail to capture the underlying

semantics of the data. Relevance feedback has attracted consider-
able attention in the context of computing a better set of retriev-
als for a given query. For example, given a set of retrievals for a
query, the user may identify some relevant examples and some
non-relevant examples. Based on the user’s feedback so col-
lected, the similarity metric is modified to recompute the next set
of retrievals. The hope is that this modification to the similarity
metric would help provide better matches to a given query and
meet the user’s expectations.

Consider a database of , -dimensional feature vectors

, . For example, these

feature vectors may correspond to the color histograms of images

in the database. Let be the query object.

A popular dis-similarity metric - the weighted Euclidian distance
- is used for retrieving the nearest neighbors. The distance

between a database object and the query is computed as:

(1)

where is a real symmetric matrix [9, 14, 15, 16]. In our fol-

lowing discussion, we assume to be a diagonal matrix, and
the results can be extended to a more general symmetric matrix.

The weight matrix is updated iteratively in relevance

feedback. Let be the iteration index, . is

the total number of iterations. Let be the weight matrix and

 be the set of nearest neighbors for the query during

iteration . The weight matrix is initialized by assigning the

value to each of the diagonal elements. User’s feedback is

in the form of identifying those objects in that are relevant to

the query object. These objects are considered as positive exam-
ples. These positive examples are used to modify the weight
matrix as follows [16],

(2)

where is the standard deviation of from all the positive

examples. These weights are further normalized.

(3)

This modified weight matrix will be used in iteration

 to recomputed the next set of nearest neighbors.

This iterative process is illustrated in Figure 1. Consider the

case when , , and . Note that

the query is located at the origin of the coordinates in

Figure 1(a). The two weights associated with the two axes

and are denoted as and , respectively, which corre-

spond to the diagonal elements of the weight matrix.

 correspond to the changes in the nearest neigh-

bor set as the weight matrix is updated from .

During the relevance feedback, we face the task of finding

 nearest neighbors for a query under a weight matrix at

each iteration. As discussed in the introduction, the iterative pro-

cess is very expensive if we consider each iteration of nearest

Fig 1. Weight updates during the relevance feedback. (a) A, B, C, D and E are feature vectors and Q is the query; (b) The two
nearest neighbors to Q during each iteration.

(a) (b)

r2 r2
u

N M

Fi fi1 fi2 … fiM, , ,[]= i 1 … N, ,=

Q q1 q2 … qM, , ,[]=

Fi Q

d Q Fi W, ,() Q Fi–()W Q Fi–()T=

W

W

W

t t 1 2 … T, , ,= T

Wt

Rt K Q

t

1 M⁄
Rt

wjj
t 1+ 1

σj

-----=

σj fi j

wjj
t 1+ wj j

t 1+

wj j
t 1+

j 1 … M, ,=

∑
--------------------------------=

Wt 1+

t 1+

N 4= M 2= K 2= T 3=

Q

x1

x2 w1 w2

R1 R2 R3→ →

W1 W2 W3→ →

K Rt Wt

K

neighbor search as independent. In this paper, we focus on the

issue of how to find more efficiently given , and

.

3 An approximation based index scheme to
support relevance feedback

Typical audio-visual descriptors are high dimensional vec-
tors [1, 11]. Their dimensionality range from few tens to a few
hundreds. To index such high dimensional feature vectors, vari-
ous index structures have been proposed [2, 3, 4, 7, 8, 18, 19].
One can broadly classify them into feature based and distance
based methods, as discussed in [4]. In feature based methods, the
feature values in each of the feature dimensions are used to parti-
tion the space. This partitioning is independent of the distance
metric used for comparing objects. In distance based methods,
the distance of the objects to a set of pivot points is used to guide
the partitioning.

In image/video retrieval, feature based methods [2, 3, 18] are
preferred over the distance based methods [19] due to the varia-
tions in the similarity metrics and the need for interactivity and
user feedback. Further, it is argued in [18] that typical index
methods are outperformed by a linear search when the search
dimensions exceed 10. This has motivated the introduction of
approximation methods [7, 18] to speed up the linear search.
Approximation based methods have certain advantages. First,
they support different distance measures. This is a very important
property especially for learning and concept mining related
applications. Secondly, the construction of approximation can be
made adaptive to the dimensionality of data. A brief description
of the construction of such an approximation is given below.

3.1 The construction of approximations
Given a high dimensional feature space, the corresponding

approximation based index structure is constructed as follows.
First, each of the feature vector dimensions is partitioned into

a certain number of non overlapping segments. Typically, the

number of segments is assigned to be , ,

where is the number of bits allocated to dimension . Denote

the boundary points that determine the partitions to be ,

. A given partition is determined

by . Thus, each high dimensional cell is repre-

sented by a string of bits of length B (). For a

feature vector , its approximation is an index to the

cell containing . Consider Figure 2(a), where

. The approximation for is “0110”, where

“01” and “10” are the indices on dimension and respec-

tively. Note that each approximation cell contains a number of

feature vectors. For example, in Figure 2(a), and
have the same approximation “1110”.

Note that if is in partition along the th dimension,

then

(4)

Given a query feature vector and a weight matrix , it is

easy to verify that [18]

(5)

w h ere t h e l o w er b o u nd a n d u p p er bo u n d

 are computed as

(6)

(7)

where

Rt 1+ Rt Wt

Wt 1+

2
Bj j 1 … M, ,=

Bj j

2
Bj bl j,

l 0 1 … 2
Bj 1–, , ,= Gj l()

bl j, bl 1 j,+,[]

B Bj

j 1 … M, ,=

∑=

Fi P Fi()

Fi

B1 B2 2= = P A()

x1 x2

P C() P E()

Fi l j

bl j, fi j bl 1 j,+≤ ≤

Q Wt

Li Q W, t() d Q Fi Wt, ,() Ui Q W, t()≤ ≤

Li Q W, t()

Ui Q W, t()

Li Q Wt,() li1 li2 …liM[]Wt li1 li2 …liM[]T=

Ui Q W, t() ui1 ui2 …uiM[]Wt ui1 ui2 …uiM[]T=

Fig 2. (a) Construction of the approximations; (b) Computation of the lower bound and the upper bound.
(a) (b)

(8)

Figure 2(b) illustrates these bounds for the 2-D examples in
Figure 2(a).

In equation (6) and (7), and vary

with weight matrix . The computations of these bounds can

become more involved if approximations other than hyper rect-
angles are used. In Figure 3, we illustrate this observation by
using a hyper-sphere to bound the feature vectors [5]. When the

weight matrix is updated from to , also changes.

3.2 nearest neighbor (NN) search in approxi-
mation based index structures

Approximation based nearest neighbor search can be consid-
ered as a two phase filtering process [18].

1. Phase I - Approximation level filtering: In this phase, the set
of all vector approximations is scanned sequentially and lower
and upper bounds on the distances of each object in the database
to the query object are computed. During the scan, a buffer is

used to keep track of the -th largest upper bound found from
the scanned approximations. If an approximation is encountered

such that its lower bound is larger than the -th largest upper
bound found so far, the corresponding feature vector can be

skipped since at least better candidates exist. Otherwise, the
approximation will be selected as a candidate and its upper
bound will be used to update the buffer. Denote the set of candi-

date objects at this stage to be and the number of

elements in the set to be .

2. Phase II - Data level filtering: In the second phase filtering,

the actual feature vectors are examined. The fea-

ture vectors are visited in increasing order of their lower bounds
and the exact distances to the query vector are computed using
equation (1). If a lower bound is reached that is larger than the

-th actual nearest neighbor distance encountered so far, there is

no need to visit the remaining candidates. Let

denote the set of objects visited before the lower bound threshold

is encountered. Finally, the nearest neighbors are found by

sorting the distances.

The objective of Phase I filtering is to find a set of approxi-

mations so that nearest neighbors can be found from the fea-
ture vectors contained by those approximations. Note that the
efficiency of the two phase filtering process is mainly determined
by the effectiveness of Phase I filtering. The reason is that the
number of candidates from Phase I filtering determines the cost
of disk access or page access. The disk/page access is considered
the most expensive process in large databases. The smaller this
candidate set is, the better is the indexing performance. For this
reason, our main focus is on how the Phase I filtering can be
improved in the relevance feedback context.

4 Adaptive Nearest Neighbor Search for Rel-
evance Feedback

In investigating how to adapt the Phase I filtering within the
context of relevance feedback, we begin by exploring the corre-

lation between and , i.e., the nearest neighbors in

two consecutive iterations.

At iteration , contains the nearest neighbors of query

 computed using the weight matrix . Let denote the

distance between and the -th farthest object. Our objective

li j

qj bl 1 j,+– qj bl 1 j,+>

0 qj bl j, bl 1 j,+,[]∈

bl j, qj– qj bl j,<





=

ui j

qj bl j,– qj bl 1 j,+>

max qj bl j,– bl 1 j,+ qj–,() qj bl j, bl 1 j,+,[]∈

bl 1 j,+ qj– qj bl j,<





=

Li Q W, t() Ui Q W, t()

Wt

W1 W2 li j

K

K

K

K

N1 Q W, t()

N1 Q W, t()

N1 Q W, t()

K

N2 Q W, t()

K

N2 Q W, t()

K

Rt Rt 1+ K

Fig 3. (a) Using hyper-sphere to bound feature vectors. For illustrative purpose, we assume feature vectors A, B, C, D and E are
bounded by sphere P. (b) The lowers bound computed from different weight matrixes when using hyper-sphere as the approximation.

(a) (b)

t Rt K

Q Wt rt Q()

Q K

is to establish an upper bound on when is updated

to . Denote this upper bound as .

Theorem 1:(upper bound of)

Let be the set of nearest neighbors of

query Q at iteration t. Let

(9)

Then

(10)

proof: see [20].

Consider Figure 1, we have . When is

updated to , . The theorem states

that the maximum of the distances between the query and objects

in computed using , , can not

be larger than .

The purpose of Phase I filtering discussed in Section 3.2 is to

determine a subset of approximations from which the nearest

neighbors can be retrieved. Let denote the mini-

mal set of approximations that contain all the nearest neigh-

bors. The best case scenario for Phase I filtering is to identify

exactly this subset . In the following, we will intro-

duce a set of necessary conditions for an approximation to be a

qualified one in . If any of the necessary conditions

can not be satisfied, the approximation will be safely excluded
from the Phase I filtering.

Necessary condition I: Denote the -th largest upper bound

among all the approximations , , to be

. I f a h yp e r re c t an g le b e l on g s t o

, then .

When an approximation does not satisfy this condi-

tion, it can be excluded. In the standard approaches [3, 7, 18], the

approximations are scanned sequentially. Only the -th largest
upper bound from the scanned approximations is available and

used for filtering. Let be -th largest upper bound found so
far during a scan. Note that this is not necessarily the same as

. An approximation will be chosen as a candidate if its

lower bound is smaller than , and its upper bound will be used

to update the buffer and the value of . This filtering process
may introduce some false candidates, i.e., candidates with lower

bound larger than . The number of such false candi-

dates resulting from Phase I filtering depend on how soon the

value of returned from the buffer can converge to .

The following theorem establishes a bound on .

Theorem 2:(upper bound on)
For the candidates resulting from iteration ,

denote the -th largest upper bound of them under to be

, then

(11)

proof: see [20].

 The above observation leads us to the following necessary

condition for an approximation to be chosen as a candi-

date of .

Necessary Condition II: For an approximation to be

chosen as a candidate of , its lower bound must

satisfy the inequality

(12)

Unlike the first condition, the bound can be com-

puted in advance of Phase I filtering at iteration . When the
inequality (12) is not satisfied, we can skip the corresponding

 and do not need to update the buffer even if

 is smaller than .

Based on theorem 1, another necessary condition can be

derived for to be a qualified one in . At

iteration , and are computed according

to equation (6) and (7) for . Given from equation

(9), we have the following condition.

Necessary Condition III: For approximation to be a

q u a l i f i ed o ne in , i t s l o we r b o u n d

 must satisfy

(13)

Obviously, when , fewer candi-

dates need to be examined in Phase I filtering (see the proposed
algorithm below). A simple example is illustrated in Figure 4. In

Figure 4, when and weight matrix is updated to

, at iteration is determined by the dis-

tance between and the lower right vertex of ,

. The inequality

enables us to search only in the rectangle where stays.

rt 1+ Q() Wt

Wt 1+ rt 1+
u

Q()

rt Q()

Rt Fi
t i 1 … K, ,=,{ }=

rt 1+
u Q() max d Q Fi

t Wt 1+, ,() i 1 … K, ,=,{ }=

rt 1+ Q() rt 1+
u Q()≤

R1 A D,{ }= W1

W2 r2
u

Q() d Q D W2, ,()=

R2 W2 r2 Q() d Q B W2, ,()=

r2
u

Q()

K

N1
opt

Q W, t()

K

N1
opt

Q W, t()

N1
opt

Q W, t()

K

P Fi() i 1 … N, ,=

γ Q W, t() P Fi()

N1
opt Q W, t() Li Q W, t() γ Q W, t()<

P Fi()

K

φ K

γ Q W, t()

φ
φ

γ Q W, t()

φ γ Q W, t()

γ Q W, t()

γ Q W, t()
N1 Q W, t() t

K Wt 1+

θt 1+ Q()

γ Q W, t 1+() θt 1+ Q()<

P Fi()

N1
opt

Q Wt,()

P Fi()

N1
opt

Q W, t 1+()

Li Q W, t 1+() θt 1+ Q()<

θt 1+ Q()

t 1+

P Fi()

Li Q W, t 1+() φ

P Fi() N1
opt

Q W, t()

t Li Q W, t() Ui Q W, t()

P Fi() rt 1+
u

P Fi()

N1
opt

Q W, t 1+()

Li Q W, t 1+()

Li Q W, t 1+() rt 1+
u Q()<

rt 1+
u

Q() γ Q W, t 1+()<

K 1= W1

W2 γ Q W2,() t 2=

Q PA

r2
u

Q() d Q A W2, ,()= r2
u

Q() γ Q W, 2()<

A

The above conditions on the lower bounds lead us to the fol-
lowing proposed modifications to the standard Phase I filtering
approach. In the following, we refer to the method described in
Section 3.2 as the standard approach, and our modifications to it
as given below, as the proposed approach.

4.1 An adaptive K-NN search algorithm
The following steps describe our proposed changes to the

phase I filtering. Note that a buffer is used to keep track of the

value of , the -th largest upper bound found so far during a
scan. In practice, this buffer can be implemented using a heap-
based priority queue [6].

1. If . use the standard approach to Phase I filtering

(Section 3.2) to find the candidates and the K-nearest neighbors

to a query; else, go to Step 2;

2. Given , and , compute and

;

3. Insert , , into a buffer of size

and return . Let and

;

4. ;

5. compute and of ;

6. if and

, insert into the buffer and

return , insert into and

; otherwise, go to next step;

7. if , go to step 4; otherwise, continue;

8. return and , end;

It is not difficult to notice that the main modification of the
proposed approaches as compared with the standard approach is

highlighted by steps 5 and 6. The essential difference between
the two approaches is that in the proposed approach more con-
straints are enforced in filtering approximations. Because these
constraints are necessary conditions for an approximation to be

one in , more approximations can be excluded.

Thus this proposed method results in a smaller set of

 compared with that of the standard approach.

5 Experiments
In this section, we demonstrate the effectiveness of the pro-

posed approach over a large image database.

5.1 Overview of the experiment
Dataset: A total of 685, 900 images collected from the inter-

net (under the "shopping" category) are used in our experiment.
Feature space: Color feature is used to annotate the images.

The color feature descriptors are computed in the LUV color
space [12]. Each color component is quantized into 4 bins. This

results in a dimensional color feature for each of the
image objects. The value on each dimension is uniformly quan-
tized into the range 0 to 255.

Relevance feedback: Since color is the feature describing
the image data, the users are instructed to provide the feedback
based on their perceived color similarity. To facilitate gathering
the feedback information, an user interface was developed For a
specific query, the user will select a certain number of relevant
retrievals to update the distance measure. The distance metric is
updated during each iteration as described in Section 2.

Index structure: The approximations are constructed using
the method described in Section 3.1. In the implementation, we

assign equal number of bits to all dimensions (constant,

). Each of the feature dimensions is uniformly

partitioned. Let denote length of these partitions. Experiments

are carried out for four different values of , .

A smaller value corresponds to the approximation constructed

at a finer resolution. We compare the standard approach to com-

puting the -NN (Section 3.2) to our proposed method (Section

Fig 4. Illustration of using to exclude the approximations that need not to be searched. See Necessary
Condition III in the text for more details.

rt 1+
u

Q()

r2
u

Q()
γ Q W, 2()

φ K

t 1=

Wt Rt 1– N1 Q W, t 1–() rt
u Q()

θt Q()

Ui Q W, t() i 1 … K, ,= K

φ N1 Q W, t() P Fi() i 1 … K, ,=,{ }=

i K=

i i 1+=

Li Q W, t() Ui Q W, t() P Fi()

Li Q W, t() min rt
u Q() θt Q(),()≤

Li Q W, t() φ Q W, t()< Ui Q W, t()

φ P Fi() N1 Q W, t()

N1 Q W, t() N1 Q W, t() 1+=

i N 1–()≤

N1 Q Wt,() N1 Q W, t()

N1
opt Q W, t()

N1 Q Wt,()

M 64=

Bj =

j 1 … M, ,=

S

S S 4 8 16 32, , ,=

S

K

4.1) for these different resolutions of constructing the approxima-
tions.

Queries: 50 queries , , are selected ran-

domly from the dataset. These queries are assigned to a group of

 () users to perform the relevance feedback. For each

query, nearest neighbors are retrieved during each iter-
ation. As mentioned earlier, the feedback from the users is based

on color relevance only. For each query , the user is asked to

perform 6 iterations of relevance feedback ().

Measurements: To evaluate the effectiveness of the pro-
posed indexing scheme, we are interested in the following issues:

1. How often the inequality holds in prac-

tice? As discussed in Section 4, this may lead to a significant sav-

ings in .

2. How close is to ? The closer they are, the

more is the number of approximations that can be excluded dur-
ing the first phase of filtering.

3. The reduction in using the proposed approach

as compared with that of the standard approach.

So, each time the nearest neighbor search is performed
using the proposed approach, we record the measurements

, , and . For the standard

approach, is recorded at each iteration.

In order to reduce the subjectivity associated with individual
user feedbacks, we use the average value, averaged over all the
users for any given measurement. For instance, the average value

of for query is computed as

(14)

w h er e r e p re se n t s f ro m u s e r ,

. Note that we do not count the first round of
search, since the first iteration of nearest neighbor search is the
same for both of the standard and the proposed approaches.

5.2 Results

5.2.1 Upper bound vs.

As discussed in Section 4, when , it is

guaranteed that of the proposed approach is

smaller than that of the standard approach. So we first evaluate
how often this inequality holds in experiments. Using the

approximations constructed at a certain resolution , the average

values on and are computed for each of the

50 queries. For overall performance evaluation, these are further

averaged over all the queries , resulting in two values and

. In Figure 5, two curves are plotted. The solid one corresponds

to value for all the four resolutions , and the

dashed curve represents value for all four resolutions.

From Figure 5, we observe that the inequality

 holds in general. As such, a better perfor-

mance can be expected using the proposed method. Note also

that the difference between and increases for larger values

of . This is caused by the rapid increase in due to the larger
sizes of the hyper rectangles used in the corresponding approxi-

mations. A larger difference between and should help in a

significant improvement for the proposed method, and this is
confirmed by the results in Section 5.2.3.

Note that Figure 5 provides an overall evaluation of measure-

ments and . It is possible that for a certain

Qm m 1 … 50, ,=

L L 3=

K 20=

Qm

T 6=

rt
u

Q() γ Q Wt,()<

N1 Q Wt,()

θt Q() γ Q W, t()

N1 Q W, t()

K

rt
u

Q() θt Q() γ Q Wt,() N1 Q W, t()

N1 Q W, t()

θt Qm() Qm

θt Qm() 1
L T 1–()
-------------------- θt

l()
Qm()

t 2=

T

∑
l 1=

L

∑=

θt
l()

Qm() θt Qm() l

l 1 … L, ,=

rt
u

Q() γ Q W, t()

Fig 5. Overall measurements and computed from approximations at different resolutions.rt
u γ

rt
u Q() γ Q W, t()<

N1 Q W, t()

S

rt
u Qm() γ Qm W, t()

Qm rt
u

γ
γ S 4 8 16 32, , ,=

rt
u

rt
u

Q() γ Q W, t()<

rt
u γ

S γ

rt
u γ

rt
u

Q() γ Q W, t()

query and a certain resolution , the inequality (10) does

not hold. To be specific, we examine and

for all 50 queries at 4 resolutions, which provides 200 instances.

Only for 2 instances we observe the values and

 fail the inequality. Both happen at the finest resolu-

tion, .

5.2.2 Upper bound vs.

In Section 4, is introduced to remove some false

approximations. The closer the value of is to the value of

, the more is the number of approximations that are

eliminated during the Phase I filtering. In Figure 6, the overall
evaluation of the closeness of these two measurements are pre-
sented at different resolutions. The values are averaged over all
users and over all quries, as discussed in Section 5.2.1.

We observed from the Figure 6 that does in fact

approximate quite well. Note that is com-

puted from the Phase I candidates from a previous iteration,
which typically is a very small fraction of the overall number of
items in the database. This low computational complexity helps
in screening out a large number of otherwise potential candidates
for the current iteration of Phase I filtering.

5.2.3 Improvement on

Here we examine the number of candidates found from
Phase I filtering by using the standard approach, as introduced in
Section 3.2, and the proposed approach from Section 4.

For a given resolution , the average of ,

, is computed for both approaches. We denote
the averages for the standard approach and the proposed

approach to be and respectively. Since

we are concerned with the relative improvement of using the pro-
posed algorithm, the ratio of the two averages, computed as

(15)

is used to measure the effectiveness. Figure 7(a) gives the ratios

for different resolutions. ranges from 4 at finer resolutions

() to about 60 for coarser resolutions (), thus
demonstrating a significant overall reduction in the number of
disk or page accesses.

Figure 7(b) shows the actual values of and

 of all resolutions on a log scale. It is interesting to

note that when is large, is also large.

6 Discussion
In this work an adaptive search scheme for computing near-

est neighbors of a given query in the context of relevance feed-
back is presented. During relevance feedback iterations, the
underlying similarity metric is changing. The proposed method
exploits the correlations between the nearest neighbors in succes-
sive iterations to filter out a large number of otherwise potential
candidates in a two phase search process. The method is tested
on a large image database and a significant performance
improvement is demonstrated. The proposed method thus facili-
tates iterative learning in large databases so that the scalability of
the learning algorithms can be better understood. While we dis-
cuss the proposed algorithm in the context of approximation
based index structures, similar modifications can be made to tree
based index structures as well. Also, it can be extended to cases
where the weight matrix in the relevance feedback update is not
diagonal.

Acknowledgments
This research was in part supported by the following grants/
awards: The Institute of Scientific Computing Research (ISCR)
award under the auspices of the U.S. Department of Energy by
the Lawrence Livermore National Laboratory under contract No.

Qm S

rt
u

Qm() γ Qm Wt,()

rt
u

Qm()

γ Qm Wt,()

S 4=

θt Q() γ Q W, t()

θt Q()

θt Q()

γ Q W, t()

θt Q()

γ Q W, t() θt Q()

Fig 6. Overall measurements and computed from approximations at different resolutionsθ γ

N1 Q W, t()

S N1 Qm Wt,()

m 1 … 50, ,=

stan N1() prop N1()

α stan N1() prop N1()⁄=

α
S 4= S 32=

stan N1()

prop N1()

N1 α

W-7405-ENG-48, NSF IRI#9704785, NSF #EIA-9986057, NSF
#EIA-0080134, and by Samsung Electronics. The authors would
like to thank Prof. S. Chandrasekaran and J. Tesic for many fruit-
ful discussions, and S. Newsam and B. Sumengen for the
datasets used in the experiments.

7 References
[1] J.R. Bach, C. Fuller, A. Gupta, A. Hampapur, B. Horowitz,
R. Jain, and C.F. Shu, “The virage image search engine: An open
framework for image management,” In Proceedings of SPIE,
Storage and Retrieval for Still Image and Video Databases IV,
pages 76--87, San Jose, CA, USA, February 1996..
[2] S. Berchtold, D. A. Keim, and H. P. Kreigel, “The X-tree:
An index structure for high-dimensional data,” In Proc. of the
22nd Int'l Conference on Very Large Databases, Bombay, India,
September 1996, pp. 28-39.
[3] S. Berchtold, C. Bohm, H.V. Jagadish, H. Kriegel, J.
Sander. “Independent quantization: a index compression tech-
nique for high-dimensional data spaces,” Proc. Int. Conf. on Data
Engineering, San Diego, USA, 2000, pp. 577-588.
[4] K. Chakrabarti and S. Mehrotra, “The hybrid tree: An index
structure for high dimensional feature spaces,” In Proc. Int. Conf.
Data Engineering, pp. 440-447, Sydney, Australia, 1999.
[5] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: an efficient
access method for similarity search in metric spaces,” In Proc. of
the 23rd Conference on Very Large Databases (VLDB'97), pages
426--435, Athens, Greece, Aug. 1997.
[6] T. H. Cormen, C. E. Leiserson and Ronald L Rivest, “Intro-
duction to algorithms,” McGraw-Hill Book Company, 1992.
[7] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, A. E. Abbadi,
“Vector approximation based indexing for non-uniform high
dimensional data sets,” Proceedings of the 9th ACM Interna-
tional Conference on Information and Knowledge Management
(CIKM), pp. 202-209, Washington, DC, USA. November 2000.
[8] A. Guttman, “R-trees: a dynamic index structure for spatial
searching,” Proceedings of ACM SIGMOD International Con-
ference on Management of Data, pp. 47--57, Aug. 1984.
[9] Y. Ishikawa, R. Subramanya, and C. Faloutsos, “Mind-
reader: Query databases through multiple examples,” In Proc. of
the Int'l. Conf. on Very Large Data Bases, pages 218-227, New

York, NY, USA, August 1998.
[10] C. Meilhac and C. Nastar, “Relevance feedback and cate-
gory search in image databases,” Proceedings of IEEE Interna-
tional Conference on Multimedia Computing and Systems, pp.
512-517, Florence, Italy, 7-11 June 1999.
[11] MPEG-7 Visual part of eXperimentation Model Version
8.0, ISO/IEC JTC1/SC29/WG11 #N3673, La Baule, October
2000.
[12] MPEG-7 Description of Color/Texture core experiments,
ISO/IEC JTC1/SC29/WG11 #N2929, Melbourne, Australia,
October 1999.
[13] W. Niblack, R. Barber, and et al., “The QBIC project: Que-
rying images by content using color, texture and shape,” Pro-
ceedings of the SPIE - The International Society for Optical
Engineering, vol.1908, (Storage and Retrieval for Image and
Video Databases, San Jose, CA, USA, 23 Feb. 1993.) 1993,
p.173-87.
[14] A. L. Ratan, O. Maron, W. E. L. Grimson and T. Lozano-
Perez, “A Framework for learning query concepts in image clas-
sification,” Proc. IEEE Conf. Computer Vision and Pattern Rec-
ognition, pages 423-431, 1999.
[15] Y. Rui, T. Huang, “Optimizing Learning in Image
Retrieval”, Proc. Int. Conf. on Computer Vision, pp. 236-243,
2000.
[16] Y. Rui, T. S. Huang, and S. Mehrotra, “Content-based image
retrieval with relevance feedback in MARS,” in Proc. of IEEE
Int. Conf. on Image Processing '97, pages 815--818, October
1997.
[17] H. D. Tagare, “Increasing retrieval efficiency by index tree
adaptation,” Proceedings IEEE Workshop on Content-Based
Access of Image and Video Libraries, San Juan, Puerto Rico, 20
June 1997, pp. 28-35.
[18] R. Webber, J.-J. Schek and S. Blott, “A quantitative analysis
and performance study for similarity-search methods in high-
dimensional space,” Proceedings of the Int. Conf. on Very Large
Data bases, pp. 194-205, New York City, New York, August
1998.
[19] D. White and R. Jain, “Similarity indexing with the SS-
tree,” in Proc. 12th IEEE International Conference on Data Engi-
neering, New Orleans, Louisiana, Feb. 1996, pp. 516-523.
[20] P. Wu, “Search and Indexing of Large Image/Video Data-
bases,” Ph. D Thesis, Dept. Electrical and Computer Engineer-
ing, University of California, Santa Barbara, 2001.

Fig 7. (a) Ratio for different resolutions. (b) The actual value of for both approachesα N1

(a) (b)

