

Adaptive Negotiation for Agent-Based Grid Computing
Weiming Shen and Yangsheng Li

Integrated Manufacturing Technologies Institute
National Research Council Canada

800 Collip Circle
London, Ontario, N6G 4X8, Canada

Phone: +1 519 430-7134
weiming.shen@nrc.ca

Hamada H. Ghenniwa and Chun Wang
Dept. of Electrical and Computer Engineering

University of Western Ontario
1151 Richmond Street

London, Ontario, N6A 5B9,Canada
Phone: +1 519 661-3758

hghenniwa@eng.uwo.ca

ABSTRACT
The Grid concept has recently emerged as a vision for future
network based computing, by enabling seamless integration of
computing systems and clusters, data storage, specialized
networks and sophisticated analysis and visualization software.
Intelligent agents can play an important role in helping achieve the
Grid vision. Although agents have been applied to computing load
balancing for many years, attempts to apply intelligent agents in
realizing the Grid vision have been made by academic researchers
during the past few years. Due to the highly heterogeneous and
complex computing environments, effective load balancing for
Grid computing is a very difficult problem, even though intelligent
agents are used. In this paper we attempt to highlight major
challenges in managing resources in a Grid computing environment
and present some of our recent work on adaptive negotiation
strategies for agent-based load balancing and Grid computing. The
proposed approach is to implement multiple negotiation
models/protocols/strategies that can be selected by the system
automatically to adapt to computation needs as well as changing
computing resource environment.

Keywords
Agents, Grid Computing, Adaptation, Scalability, Negotiation,
Load Balancing.

1. INTRODUCTION
Allocation of limited computing resources in an open environment
to complete maximum computation tasks is very complex and
time consuming. Ideally, researchers and practitioners would
spend no time at all deciding which systems to use, where the data
resides for a particular application domain, how to migrate the
data to the point of computation (or vice versa). Disparate
computing resources keep disciplines stratified, so researchers
often end up wasting time by replicating work, and this often
results in wastage of resource utilization - as a researcher who
decides when and where to run a job is often not aware of the
loads and priorities of all systems.

The Grid concept is proposed as a means to help address some of
these concerns, enabling seamless integration of computing
systems and clusters, data storage, specialized networks and

sophisticated analysis and visualization software. Like an
electrical power grid, the Grid will aim to provide a steady, reliable
source of computing power. Intelligent agents can play an
important role in helping achieve the Grid vision. Due to the
highly heterogeneous and complex computing environments,
effective load balancing for Grid computing is a very difficult
problem, even though intelligent agents are used. This paper
presents some of our recent work on adaptive negotiation
strategies for agent-based load balancing and Grid computing.

2. AGENT-BASED GRID COMPUTING
AND RELATED WORK
Grid Computing is an exciting buzzword in the computing world
today. It is usually defined as “the exploitation of a varied set of
networked computing resources, including large or small
computers, PDAs, file servers and graphics devices.” The
networks could be anything from high speed ATM to wireless or
modem connections. Exploiting these connected resources could,
for example, enable large scale simulations not possible on a single
supercomputer, aid computational work of geographically
distributed collaborations, simplify remote use of machines, and
enable the new dynamic application scenarios.

Although agents have been applied to computing load balancing
for many years, attempts to apply intelligent agents in realizing
the Grid vision have been made by academic researchers during the
past few years. A series of workshops on Agent-Based Cluster
and Grid Computing were initiated in 2001 [7] as part of the
IEEE/ACM International Conference on Cluster Computing and
the Grid. The most interesting work in the literature might be the
Agent Grid concept proposed under the DARPA ISO's Control of
Agent-Based Systems (CoABS) program [6]. The agent grid is a
specific construct or mechanism within that layer for making
services and resources available. Another interesting example is
ARMS [1].

According to Cao et al. [1], there are two key challenges that must
be addressed for Grid computing: Scalability and Adaptability.
Our proposed approach described below is to address these two
challenges through scalable system architecture and adaptive
negotiation techniques.

3. PROPOSED APPROACH
Based on our previous research results on agent-based computing
load balancing for a distributed multidisciplinary design
optimization (MDO) environment [4], agent-based manufacturing
scheduling [5], as well as agent-based e-Marketplace, we have
been working on the development of adaptive negotiation
strategies for all these similar applications. In this paper, we
present how this approach can be applied to complex Grid
computing environments.

As introduced in the previous section, we are facing two key
challenges for Grid computing: scalability and adaptability. In this
paper, we propose a five-layer architecture (Figure 1) to address
the scalability issue.

Figure1. Five -Layer System Architecture

As shown in Figure 1, the Applications layer contains all kinds of
software applications installed in different computing resources
(PCs, workstations, HPC clusters, etc.). Each application is to be
wrapped into a software agent.

The Computing Resources layer contains Resource Agents. Each
resource agent is used to manage all applications with “one”
computing resource which could be a PC, a workstation, or a
cluster of computers, and is responsible to schedule this
computing resource. This resource agent should have knowledge
about the hardware performance of this computing resource, and
all applications installed with it as well as the performance of
these applications in this particular hardware environment. Case-
based learning mechanism will be implemented in this resource
agent to keep a case history for all local applications.

The Lookup Services layer contains Directory Facilitators or
Yellow Page agents. All resource agents in the Computing
Resources layer need to register with these Directory Facilitators
or Yellow Page agents.

The (Web-Based) Servers layer includes front-end servers for end
users (human users or other software applications) to submit
computation jobs. These servers are usually implemented as
application servers. When a job is received by the server, a job
agent will be created. This job agent will be in charge of finding
candidate resource agents through Directory Facilitators, and
select a most suitable negotiation protocol, coordinate the
negotiation process to finally select resource agents to do the job.
The job agent will be dissolved when the job is finished and the
results are sent to the end user (the results may also be saved in a
secure storage resource). The job agent must be resource-aware
and be able to express its resource needs to the system, and be
able to negotiate for system resources.

The End Users layer includes human end users or other software
applications.

The proposed architecture shares some similarities with existing
approaches, including commercial technologies like Jini™ network
technology (http://www.jini.org/). However, many
implementation issues are to be addressed, particularly the
security issue. It is evident that the proposed five-layer
architecture addresses well the scalability issue. As it can be seen
in the following section, our adaptive negotiation approach is well
suited to address the adaptability issue.

4. NEGOTIATION FRAMEWORK

4.1 Adaptive Negotiation Approach
In the context of agent-based computing load balancing or Grid
computing, negotiation is used to optimize computing resources
allocation to computation jobs over time. A negotiation protocol
contains the basic rules for the negotiation process and the
communication. In addition to using a protocol, each agent will
develop and use a negotiation strategy appropriate to the problem
to be solved. Clearly, negotiation protocols and strategies will be
quite different for different categories of negotiations. Since
negotiation involves exchanges of messages, protocols structure
what are called conversations, defining classes of dialogue. The
simplest dialogues are found in contract-net approaches where
they are limited to exchanges involving offers, bids, and grants of
contract. More complex dialogs are found in human types of
negotiations, when trying to change other agent's beliefs. If
negotiation protocols govern the exchange of proposals (and
perhaps arguments) among agents, negotiation strategies decide the
position of a particular agent during the negotiation process.

In order to address the second key challenge, i.e., adaptability, for
Grid computing as mentioned in the previous section, we propose
to use an adaptive negotiation approach, i.e., the job agent is able
to select a suitable (optimal) negotiation protocol based on the
specific computation needs, available computing resources and
their computing loads. The decision is made by the job agent
according to its knowledge using a case based learning/reasoning
mechanism, i.e., the job agent learns negotiation strategies based on

Applications

Computing
Resources

Lookup
Services

(Web-Based)
Servers

End
Users

Servers

Job Agents

Directory Facilitators

previous experiences. Each agent involved in the negotiation
should be able to adapt to the protocol selected by the job agent
(such information is contained in the request messages, e.g., Call
for Bid messages).

By implementing this adaptive negotiation approach, the system
will also be able to adapt to changes in system state. This is an
important problem in Grid computing in which system resource
availability may fluctuate. Such fluctuation may result from
connection/disconnection of computing resources, human
interaction/interruption on the computers, etc. Once scheduled,
the job agent must also be notified if the system state has changed
in a way that impacts the job (computation tasks) and perhaps
enter re-negotiation and re-scheduling. At this point, the job agent
may need to adapt to a different set of allocated resources.

It should be noted that a resource agent or a job agent might be
involved in several negotiations of different types at the same
time, which is usually called combined negotiation. Combined
negotiation is another difficult issue, particularly in a multi-agent
system implemented with the proposed adaptive negotiation
approach. It is being investigated in our research group and will be
reported separately.

4.2 Negotiation Models
We have been investigating various negotiation models/
protocols/strategies for our adaptive negotiation framework. In
this paper, we introduce four negotiation models that are believed
to be useful in agent-based computing load balancing: Contract Net
Protocol [2]; Auction Model; Game Theory Based Model; and
Discrete Optimal Control Model.

4.2.1 Contract Net Protocol
A modified Contract Net Protocol (CNP) was the only negotiation
protocol implemented in the first prototype of our distributed
MDO environment [4]. It will also be the most useful negotiation
protocol in our adaptive negotiation environment. As mentioned in
Section 4.1, the negotiation is done through a job and a selected
resource agents (the selection process is done by the job agent
checking with one of the Directory Facilitators with their lookup
services). In the bidding process for selecting a computer, a
cluster, or a group of computers/clusters for the requested
computation task (one job agent can have a number of parallel or
sequential computation tasks), after receiving the different
propositions (bids) from different resource agents, the job agent
will select a (or a group) of resource agent(s) to perform the task
according to its criteria (e.g., cost criteria or time constraint) and
award a contract to it. Other suitable resources are not selected to
perform the task, but are recorded as alternatives which may be
contacted (negotiated with) in the future in the case of unforeseen
situations such as computer failures or any other task delays. This
will greatly reduce the re-negotiation / rescheduling time when
such unforeseen situations happen. The information about the
alternative computing resources will be saved by the job agent

together with the information about the selected resources. When
the selected resources cannot perform the scheduled tasks due to
unforeseen situations, the job agent may negotiate directly with
alternative resource agents.

The CNP is the default negotiation protocol to be used the current
prototype system in case no other specific protocol is selected.

4.2.2 Auction Model
An auction is a negotiation mechanism for selling indivisible goods
(computation resources, in our case) to bidders (application
agents). An auction is a one-to-many negotiation, between one
seller (resource agent) and many buyers in which the negotiation is
reduced into a single variable domain, namely price (e.g., money).
An auction negotiates a mutually acceptable solution for the buyer
and the seller (it uses market forces to negotiate a clearing price for
the item). The auction mechanism sets out rules for bidding, and
allocates the computation resource to a certain bidder based on its
predefined rule set. The auction literature is rich and varied, and
the following is only a brief overview of four major types of
auction mechanisms. Note that we assume that there is no further
penalty to losing the auction (i.e., the losing bidders do not pay
anything).

1. English auction: This is the most common type of auction. It
is an open outcry, ascending auction. The auctioneer begins at
the seller's reservation price, and solicits progressively higher
oral bids from the audience until only one bidder is left. The
winner claims the item, at the price it last bid. This auction is
strategically equivalent to the Vickrey auction, and carries the
additional benefits that it makes bidder reservation prices
publicly known and is efficient in the sense that it will give
the object to the bidder who values it the most.

2. Dutch auction: This auction is an open outcry, descending
auction. The auctioneer begins with a price too high for any
buyer to pay, and progressively lowers the price until one
bidder calls out, "Mine!" The winner claims the item, at the
price it bid. This auction, however, is not necessarily
efficient.

3. First-price, sealed-bid auction: In this auction bidders submit
a single, irrevocable sealed bid. The bids are opened
simultaneously, and the winner is the highest bidder, who
claims the item at the price he bid.

4. Vickrey auction: In this auction bidders submit a single,
irrevocable, sealed bid. The bids are opened simultaneously,
and the winner is the highest bidder, who claims the item at
the second-highest bid price. This auction is strategically
equivalent to the English auction.

An auction is suited quite well to the automation of the dynamic
resource allocation problem for the following reasons:

• The resource allocation optimization problem can be directly
mapped into a single variable domain, i.e., price.

• The dynamic structure of the problem has been naturally
captured in the multi-agent system architecture and auction

mechanism; by which the solution is dynamically emerge
from the current setting of the problem.

• The rules of the negotiation are clearly spelled out in the rules
of the auction. Software agents can be easily designed to
follow clear rules.

• An auction's mechanism can be inference-proof. When an
auction is designed properly, neither the buyer nor the seller
will have an incentive to lie or hide their strategies (i.e., the
Revelation Principle). Take the English auction with no
reservation price as an example:

− The seller announces its strategy: to sell to the highest
bidder at the last price offered.

− The seller's rules dictate the buyers' strategies. A
rational buyer would establish a reservation price and
actively bid up to but not beyond that reservation price.
A rational buyer's strategy is public knowledge.

− The price negotiation commences with the first bid; the
item will be sold to the highest bidder at the second-
highest bidder's reservation price.

− The strategy is inference-proof; in fact, it depends on
inference for its success. If bidders were not aware of
the rule for determining the winner, they would not raise
the bidding accordingly.

4.2.3 Game Theory Based Model
Negotiation among self-interested agents has been studied from the
perspective of game theory. Early research work in this area was
carried out by Rosenschein and Zlotkin [3]. In game theory, the
global outcome for the system is given in a table showing the
results of combined decisions. Each player, however, makes
decisions independently.

In case that job agents are competing to get their jobs done or
resource agents are competing to do more computation tasks to
earn more money (e.g., computing resources are operated by
different commercial service providers), Game theory based
negotiation protocols may be useful.

When a game theory based protocol is selected, all agents involved
in the negotiation process are self-interested. To simplify the
explanation, we assume only Rosenschein’s protocol of alternating
offers [3] are used, individual agent has its own utility function,
and they can choose “out” (withdraw form the negotiation). Two
scenarios can be implemented:

If a resource agent thinks a job is costly thus against his interest, it
could offer a plan which involves other agents in the job before it
accepts it. If other agents in the group do not agree with its offer,
they can offer their plans to share the responsibility. Every agent
has its opportunity to offer a plan. If a plan is accepted by all
agents in the group, the negotiation is terminated and the plan is
implemented. If all agents choose “out” or no agreement is
reached, the job might be simply turned down, or the job agent
needs to start a new negotiation process using a different protocol.

When two or many job agents are competing one or several
computing resources at the same time. The job agents and
resources agents could form a negotiation group. They offer their
plans to solve this competition in turn. The agents try to achieve
an agreement to work out a schedule using game theory based
protocols.

4.2.4 Discrete Optimal Control Model
The proposed discrete optimal control model can be considered as
a kind of optimized market model. It consists of three steps:
acquiring information, making a decision and announcing a
decision. A Marketplace Agent obtains the information about
related resource agents (producers or processors in this case) such
as the price ($ per hour), tasks (customers) such as the number of
the tasks and performance objectives. Then the Marketplace
Agent chooses a proper algorithm to make a decision based all
available information and its knowledge. Finally, it proclaims the
results to other related agents.

In this case, we suppose that there are m processors:
jP

),...,2,1(mj = , and n task
iT),...,2,1(ni = . In order to emphasize

the principle, we presume: (1) the tasks are independent to each
other; (2) task

iT),...,2,1(ni = can be run on processor
jP

),...,2,1(mj = ; (3) preemptions are not allowed; (4) the

performance objective is the load balancing. The dynamic system
model can be created as follow:

Dynamic equation:

kkkk UBXX
rrr

⋅+=+1
,),...,2,1(nk =

)1(1 XX
rr

=

Measure: ∑∑ ∑
+

= = =

−=
1

1 1 1

2)
1

(Min.
n

k

m

j

m

j

j
k

j
k x

m
xQ

where:

[]Tm
kkkk xxxX L

r
21= is state of the system describing the

accumulative work time vector of the processors before the task

kT is loaded. The unit vector []Tm
kkkk uuuU L

r
21=

mRk ⊂Ω∈)(is control input vector (decision). 1=j
ku refers to

the task
kT run on the processor

jP , vice versa.

[]m
m
kkkk ebebebB rLrr

2
2

1
1= stands for the processing time

matrix of the task
kT . j

kb is the processing time of the task
kT

on the processor
jP . je

r
 is the vector which the row j is 1 and

other rows are 0;),...,2,1(mj = . The processing time of the task

kT on processor
jP usually can be described as j

kb

),...,2,1(nk = ,),...,2,1(mj = . Q represents the difference of

the run time of each processor. This model is a discrete optimal
control model with constraints.

This mechanism can be used to get an optimal solution when the
above-mentioned conditions are met. Fore other complex
situations, soft computing techniques (Genetic Algorithms, Neural
Networks, and Fuzzy Logic, etc.) can be combined with the
proposed method to simplify the optimization process.

5. CONCLUSIONS AND PERSPECTIVES
Grid computing and particularly agent-based grid computing are
new areas of research with many open issues and challenges.
Thompson [6] enumerates a long list of open issues from Agent
Grid point of view. This paper reports some of our recent work
on adaptive negotiation strategies for agent-based load balancing
and Grid computing, without considering many other related
issues such as volume of data to be transferred, network
bandwidth, traffic, and security, etc. We tried to address the two
key challenges for Grid computing, i.e., scalability and
adaptability, by applying intelligent agents to computing resource
management or load balancing in Grid computing environment.
Our research work is still at a preliminary stage, and many detailed
implementation issues are to be investigated. The major
contributions of this research work include adaptive negotiation
and combined negotiation strategies as well as the discrete optimal
control model as a novel negotiation model.

It should be noted that the proposed approach can be used not
only in agent-based Grid computing environment, but also in other
similar resource allocation or scheduling problems, e.g., agent-
based manufacturing scheduling and transportation scheduling, as
well as agent-based e-Marketplace or e-Business.

6. REFERENCES
[1] Cao, J., Kerbyson, D.J. and Nudd, G.R. Performance

evaluation of an agent-based resource management
infrastructure for grid computing, in Proceedings of the First
IEEE/ACM International Symposium on Cluster Computing
and the Grid, (Brisbane, Australia, 2001), pp. 311-318.

[2] Davis, R., and Smith, R.G. Negotiation as a Metaphor for
Distributed Problem Solving. Artificial Intelligence 20 (1983),
63-109.

[3] Rosenschein, J. S., and Zlotkin, G., Rules of Encounter:
Designing Conventions for Automated Negotiation among
Computers, (MIT Press, 1994)

[4] Shen, W. and Ghenniwa, H.H., Multidisciplinary Design
Optimization: A Framework for Technology Integration, in
Proceedings of the First International Conference on MDO,
(London, ON, Canada, July 2001), pp. 22-28.

[5] Shen, W. Distributed Manufacturing Scheduling Using
Intelligent Agents, IEEE Expert / Intelligent Systems, 17(1)
(Jan/Feb., 2002), 88-94.

[6] Thompson, C. Characterizing the Agent Grid, Technical
Report, Object Services and Consulting, Inc., 1998
[http://www.objs.com/agility/tech-reports/9812-grid.html]

[7] Workshop on Agent based Cluster and Grid Computing,
2001, http://www.cs.cf.ac.uk/User/O.F.Rana/agent-grid/

