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Abstract— Probabilistic Roadmap Methods (PRMs) are
widely used motion planning methods that sample robot
configurations (nodes) and connect them to form a graph
(roadmap) containing feasible trajectories. Many PRM variants
propose different strategies for each of the steps and choosing
among them is problem dependent. Planning in heterogeneous
environments and/or on parallel machines necessitates dividing
the problem into regions where these choices have to be made
for each one. Hand-selecting the best method for each region
becomes infeasible. In particular, there are many ways to select
connection candidates, and choosing the appropriate strategy
is input dependent.

In this paper, we present a general connection framework
that adaptively selects a neighbor finding strategy from a
candidate set of options. Our framework learns which strategy
to use by examining their success rates and costs. It frees the
user of the burden of selecting the best strategy and allows the
selection to change over time.

We perform experiments on rigid bodies of varying geometry
and articulated linkages up to 37 degrees of freedom. Our
results show that strategy performance is indeed problem/region
dependent, and our adaptive method harnesses their strengths.
Over all problems studied, our method differs the least from
manual selection of the best method, and if one were to
manually select a single method across all problems, the
performance can be quite poor. Our method is able to adapt
to changing sampling density and learns different strategies for
each region when the problem is partitioned for parallelism.

I. INTRODUCTION

The motion planning problem is to find a collision free

path to take a moveable object from a start configura-

tion to a goal configuration while avoiding obstacles and

self-collisions. This problem has application in medicine,

robotics, gaming/virtual reality, and search and rescue opera-

tions. Exact motion planning methods become intractable as

the complexity of the robot increases [18]. Sampling-based

motion planning addresses this problem by generating a

subset of nodes representing the robot’s configuration space,

connecting them, and producing a graph containing feasible

trajectories.
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Many methods exist for the various tasks involved in

sampling-based motion planning, but selecting the best one

for a particular input problem is extremely difficult. This

issue is only magnified in heterogeneous environments where

different algorithmic choices may apply for different regions.

A similar need arises in parallel processing where subdi-

vision is often used to increase parallelism so each region

can be processed independently. With different algorithmic

choices to be made, there is a need to select appropriate

ones automatically and adaptively. For example, Hybrid

PRM [6] uses a machine learning approach to dynamically

decide which sampling method to use. However, the problem

of selecting good candidates for node connection is still

daunting and there is no automated way to make this choice.

We introduce Adaptive Neighbor Connection (ANC), a

strategy inspired by the same need as Hybrid PRM: different

problems and/or regions require different algorithmic choices

which are difficult to determine a priori. ANC takes in a list

of neighbor finders (NF) and automatically determines the

best one to use at a given time. Ideally, ANC should:

• pick a NF that is most likely to successfully connect

nodes frequently and punish those that continually do

not,

• ensure that all NFs have some chance of being picked,

• consider the cost of rewarding/penalizing them, and

• adapt to changes in performance.

As shown in our results, ANC rapidly learns the best strategy

to employ based on a trade-off between success rate and

cost. It is able to adapt to changing sampling density as

roadmaps are incrementally constructed or to different region

types when a problem is partitioned.

We compare ANC to 5 other popular connection strategies

over a variety of environments including articulated linkages

up to 37 degrees of freedom (DOF). In scenarios where

roadmaps are incrementally constructed until they solve the

query, ANC is either the best or near the best performer.

Over all problems studied, ANC differs the least from hand

picking the best. In fixed time scenarios, ANC is able to adapt

to the ever changing sampling density. We also show how

ANC naturally fits in a parallel setting where the problem is

partitioned and a strategy must be learned for each region.

II. PRELIMINARIES AND RELATED WORK

Probabilistic Roadmap Methods (PRMs) [11] are

sampling-based motion planning methods that comprise

a two stage process: roadmap construction and query

processing. During roadmap construction, PRMs sample

the configuration space (C-Space), retaining valid ones, and
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attempt to connect them using some local planner. C-Space

comprises all possible placements of the robot, valid or not

[13].

Especially relevant to our work is Hybrid PRM which uses

more than one sampling strategy and adaptively learns which

method to employ over time [6]. We use a similar approach

here, but we apply this methodology to the connection phase.

Other work has investigated learning from prior execution,

particularly for collision checking and local planning [16]

where they use historical information from collision calls to

compute an approximate C-Space representation via a hash

table. They show an improvement in connectivity, but this

approach is limited to low DOF problems.

A. Candidate Neighbor Selection Methods

There have been a number of methods proposed for

locating candidate neighbors for connection. It is intractable

to simply attempt all possible connections since the time

to do so is O(n2). Geraerts and Overmars [5] describe the

properties of these neighbor finding approaches and motivate

research on connections based upon Reachability Analysis.

However, these are expensive and should be limited to ac-

quiring roadmap connectivity and/or seeking asymptotically

shortest paths [10].

The most common method for PRMs is the K-Closest

approach which returns the k closest neighbors to a node

based on some distance metric, where k is normally some

small constant, and can be done in logarithmic time. The

advantage is that nodes are more likely to be connectable

by the local planner because the volume of C-Space the

connection occupies is smaller. A similar approach is the

r-closest method which returns all neighbors within a radius

r of the node as determined by some distance metric. Here,

the size of the neighbor set is not fixed but is dependent on

the sampling density.

Two randomized variants of these methods are pro-

posed in [14]: K-Closest,K-Rand and R-Closest,K-Rand. K-

Closest,K-Rand randomly selects k neighbors from the k2

closest nodes, where typically k2 = 3k. R-Closest,K-Rand

selects k random neighbors from those within a distance r.

In some cases, these methods outperform K-Closest as they

introduce some useful randomness.

Other methods use data structures to more efficiently

compute nearest neighbors. Metric Trees [22] organize the

nodes in a spatial hierarchical manner by iteratively di-

viding the set into two equal subsets resulting in a tree

with O(log n) depth. However, as the dataset dimensionality

increases, their performance decreases [12]. KD-trees [2]

extend the intuitive binary tree into a D-dimensional data

structure which provides a good model for problems with

high dimensionality. However, a separate data structure needs

to be stored and updated each time a node is added to the

roadmap.

Approximate neighbor finding methods address the run-

ning time issue by instead returning a set of approximate

K-Closest neighbors. These include spill trees [12], MPNN

[23], and Distance-based Projection onto Euclidean Space

[17]. These methods usually provide a bound on the approx-

imation error.

B. Distance Metrics

A distance metric is a function δ that computes some

“distance” between two configurations a = 〈a1, a2, . . . , ad〉
and b = 〈b1, b2, . . . , bd〉, i.e., δ(a, b) → R, where d is the

dimension of a configuration. A good distance metric for

a PRM predicts how likely it is that a pair of nodes can be

connected. In this paper, we study the set of distance metrics

commonly used in PRMs:

Euclidean: The Euclidean distance metric gives equal

weighting for all dimensions:

δ(a, b) =
√

(a1 − b1)2 + (a2 − b2)2 + · · · + (ad − bd)2

The scaled Euclidean distance metric is a variant

δ(a, b) =
√

s(pos mag)2 + (1 − s)(ori mag)2

where pos mag is the Euclidean distance of the positional

dimensions, ori mag is the Euclidean distance of orienta-

tional dimensions, and s is a weighting parameter. In the

results presented here, we use s = 0.5 and refer to this as

“Euclidean”.

Center of Mass: This is the Euclidean distance between

the center of mass of the robot at a and at b.

Swept Volume: Swept volume is the volume generated

by the continuous motion (translation and/or rotation) of a

geometric object through space. The swept volume distance

is the volume swept by the robot while following the motion

prescribed by the local planner. For an articulated linkage,

this becomes the sum of the swept volumes of each of the

links.

C. Spatial Subdivision and Parallelism

A real world motion planning problem is usually non-

uniform and heterogeneous, e.g., a house or factory floor

is composed of logically separate areas. Spatial subdivision

and region identification improves roadmap quality in these

types of environments [3], [15], [20], [24] and naturally

lends itself to parallel processing. Previous work has shown

that by subdividing the space, scalable performance to large

processor counts can be achieved [7], [8], [19].

III. ADAPTIVE NEIGHBOR CONNECTION

The Adaptive Neighbor Connection (ANC) strategy intro-

duced in this paper generates a set of candidate neighbors for

a node q for PRM connection using a list of neighbor finders

nf1, nf2, . . . , nfm. ANC learns a selection probability for

each NF based on its prior success rate and cost.

ANC observes the performance of the local planner on the

neighbors returned by the NF. Similarly to how Hybrid PRM

[6] selects various samplers during roadmap construction,

ANC selects NFs by maintaining a probability pi for each

nfi.

One way to evaluate nfi is to determine how many of the

neighbors returned resulted in a successful connection. As

each NF is used, ANC monitors performance and naturally
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favors those with good performance and invokes them more

frequently. Algorithm 1 gives a description of ANC during

PRM roadmap construction.

Algorithm 1 ANC

Input. A connecting vertex q, a set of neighbor finders NF ,

a local planner lp and a graph G
Output. A connected graph G with additional edges

Require: Let P be a set of probabilities such that pi is the

probability of selecting nfi . Initialize pi = 1/|NF |,
∀pi ∈ P

1: Randomly pick nfi according to P
2: N = nfi.FIND NEIGHBORS(q, G)

3: for each n 6= q ∈ N do

4: if lp.IS CONNECTABLE(q, n) then

5: G.ADD EDGE(q, n)

6: end if

7: end for

8: Let r be the success rate of lp over N
9: Let c be the cost incurred

10: Update (P, r, c) according to Equation 3 and Equation 4.

A. Learning Selection Probabilities

ANC learns the best NF to use based on its performance

over time. If successful connections increase, the NF gets re-

warded and its selection probability is increased. Otherwise,

it is punished by decreasing its probability. In addition, if its

execution time is expensive, we lower its probability. In the

results presented here, we calculate the cost as the number

of collision detection calls recorded by the planner. Collision

checking takes up a large portion of the computation time

for neighbor finding and thus is a good measure of cost.

ANC maintains a weight for each NF similar to Hybrid

PRM [6]. These weights keep track of the past performance

of the NF. ANC initializes each weight wi to 1. Based on the

weights, ANC computes in a step-wise manner a probability

p∗i for nfi that is insensitive to the cost:

p∗i = (1 − γ)
wi(t)

m
∑

j=1

wj(t)

+ γ
1

m
, i = 1, 2, ..., m, (1)

where wi(t) is the weight of nfi in step t, t is the number

of connection attempts made by the planner, and γ is a fixed

constant. The probability p∗i is a weighted sum of the relative

weight of nfi and the uniform distribution. This ensures that

each NF has some chance of being selected.

Let xi be the reward for the nfi that was selected.

All other rewards for that time step are 0. To update the

weights, we first take into account an adjusted reward that

is not dependent on the cost accrued (calculated as the cost

insensitive probability):

x∗

i = xi/p∗i , i = 1, 2, ...m. (2)

Then we update the weights for all the neighbor finders:

wi(t + 1) = wi(t) exp
γx∗

i

m
, i = 1, 2, ...m. (3)

The new weight is the current weight multiplied by a factor

that depends on the reward received. The exponential factors

enable the weights to adapt quickly.

We now include the cost in the selection probability:

pi =
p∗i /ci

m
∑

j=1

p∗j/cj

, i = 1, 2, ...m, (4)

where ci is the average cost of attempting to connect i. Thus,

a high cost NF has a smaller selection probability.

B. ANC and Spatial Subdivision and Parallelism

Recall that many problems are well-suited for spatial

subdivision, either due to their heterogeneity or to employ

parallelism. ANC naturally fits into this framework by adap-

tively selecting the appropriate connection method for each

region. ANC initializes a set of selection probabilities for

each region. Learning then proceeds as described in each

region independently. In parallel processing scenarios, this

puts no additional strain on communication, a critical barrier

to scalability.

If the environment is indeed heterogeneous, ANC per-

formance would be hampered if the environment is not

partitioned into regions because ANC would be forced to

chose some neutral strategy or to vacillate between several

strategies. In such a situation, it is desireable to subdivide the

problem into homogeneous regions and apply ANC in each

one. As it can be hard to know how to subdivide, one option

is to over partition the problem to increase the likelihood of

homogeneous regions. This naturally lends itself to parallel

processing each region independently. In fact, [7], [8], [19]

uses spatial decomposition to increase parallelism and is

ideally suited for this.

IV. EXPERIMENTS

We compare ANC to several other popular connection

strategies. We first provide details on the experimental setup

in Section IV-A. In Section IV-B roadmaps are incrementally

constructed until a query is solved for a variety of robots.

Section IV-C studies the performance for 21 and 37 DOF

articulated linkages with a bounded computation time. Fi-

nally, Section IV-D shows the usefulness of ANC with region

subdivision needed in heterogeneous environments and in

parallel settings.

A. Experimental Setup

We implement ANC in the C++ motion planning library

which uses the Standard Template Adaptive Parallel Library

(STAPL), a C++ parallel library [4], [21]. We use RAPID [9]

for collision detection. Results are averaged over 10 random

seeds. For the parallel experiments, we perform a single run

and we use a AMD Opteron 2350 processors quad-core, with

8 cores per node, 2.5GHz, 160GB internal disk on each node

and 32GB DDR2 800MHz.

We study the following environments (see Figure 1):

• Maze, spherical rigid robot. (Figure 1(a)) 6-DOF

rigid-body robot that must pass through a series of
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tunnels, avoiding some dead-ends, from the top to the

bottom. Here, there are two large free areas connected

by long narrow passages, and the obstacle occupies the

majority of the planning space.

• U-Tunnel, rod-like rigid robot. (Figure 1(b)) The robot

must navigate through a u-shaped tunnel with two wide

passages and a slender passage between them.

• Cluttered, cube-like rigid robot. (Figure 1(c)) A box

object must pass through different sized passages.

• Walls, {10, 21, 37} DOF linkage. (Figure 1(d)) This

environment has 10, 21 and 37 DOF free-flying robot

scenarios connected by revolute joints. The thin walls

and openings produce situations where exact nearest-

neighbor configurations will be difficult to connect.

• 2D-Heterogeneous, rod-like rigid robot. (Figure 1(e))

This environment has 8 different rooms of different

types including cluttered, free, and blocked.

• 3D-Heterogeneous, spherical rigid robot. (Figure 1(f))

This environment has 4 regions separated by walls

with single openings. Two regions resemble the Maze

environment (Figure 1(a)), one region is comprised

of parallel plates producing narrow passages, and one

region has randomly placed plates.

We use obstacle-based sampling [1] for the rigid body

problems and uniform random sampling for the linkage

problems. Connections are attempted between a node and

its neighbors using a straight-line local planner. Neighbors

are either defined as the exact k nearest neighbors as given

by some distance metric (K-Closest), as k randomly selected

neighbors from the exact k2 nearest neighbors (K-Closest,K-

Rand) where k2 = 3k as in [14], or as k randomly selected

neighbors from within a radius r (R-Closest,K-Rand). For the

parallel experiments, we use 1, 2, 4, 8, and 16 processors.

Distance metrics include scaled Euclidean with s = 0.5
(Euclidean), center of mass (COM), and local planner swept

volume (lpswept). ANC takes all the above connection

strategies as input.

To examine performance, we look at the size of the final

roadmap, its average vertex degree (Edge/Nodes), the total

time needed, the total number of connected components

(CC), and the roadmap connectivity. Roadmap connectivity

is defined here as the percentage of nodes in the largest CC.

For the parallel experiments, we look at scalability and the

ability to produce roadmaps that would solve a given query.

B. Querying the Environment

We analyze the effectiveness of ANC on each of the

environments in Figure 1. Table I reports the results for each

scenario averaged over 10 runs. Boldface entries indicate the

methods that produced the most desirable result for each

characteristic (e.g., smallest roadmap size, shortest running

time, greatest Edges/Nodes ratio, etc.).

In the Maze environment (Figure 1(a)) with k = 10,

ANC comes second to K-Closest,K-Rand(Euclidean) and

R-Closest,K-Rand(Euclidean) (which records approximately

the same time) in terms of time to solve the query and

produces a roadmap with the highest average degree second

(a) Maze (b) U-Tunnel

(c) Cluttered (d) Walls

(e) 2D-Mix Heterogeneous (f) 3D-Maze Heterogeneous

Fig. 1: Problems studied. (a) A spherical rigid body robot in

the Maze. The swept volume shows an example trajectory.

(b) A long rigid body robot in the U-tunnel. (c) A cube-like

rigid body robot must navigate inside different sized narrow

passages. A sample roadmap is shown. (d) Articulated link-

ages (10, 21, and 37 DOF) must travel through a narrow hole

in each wall. (e) A long rigid body robot in a heterogeneous

2D environment. A sample roadmap is shown. (f) A spherical

rigid body robot in a heterogeneous 3D environment.

to the connector method that it learnt as shown in Figure 2.

Such a roadmap is useful when path quality is a concern (e.g.,

paths with high clearances or low power consumption). Note

that while ANC is not the fastest in this environment, three of

the other methods are much slower, some by several orders

of magnitude. Thus, different connection methods have sig-

nificantly different levels of success here and selecting one or

more of them to use intelligently is critical. We also study

k = 20. The results show the same trend as the previous

experiment with k = 10. Thus, ANC is invariant to k in

terms of performance.

Figure 2 plots the probability that each connection method

is selected in the ANC framework over time for a single

representative run. Figure 2 shows that early on R-Closest,K-

Rand(Euclidean) is selected. However, as roadmap construc-

tion progresses, the success of this method begins to level out

and the probability of K-Closest,R-Rand(Euclidean) begins

to increase and then levels off. This behavior in the learning

plot is indicative of the performance of these two connection

methods in Table I. It also shows ANC’s ability in certain
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TABLE I: Each method constructs a roadmap until the query is solved. ANC is comprised of the other 5 connection methods.

All results are averaged over 10 runs. CC is number of connected components present. CC i% = percentage of nodes in the

ith component. Boldface entries indicate the most desirable (e.g., shortest running time, greatest Edges/Nodes ratio).

Environment Method Nodes Edges/Nodes Total Time (s) CC CC 1% CC 2% CC 3%

Maze, spherical
rigid body robot,
k = 10

ANC 960 13.92 218 97 85.6 0.3 0.2
K-Closest(Euclidean) 1483 13.11 413 209 84.7 0.7 0.3
K-Closest,K-Rand(Euclidean) 502 13.60 100 57 88.4 0.2 0.2
R-Closest,K-Rand(Euclidean) 502 14.60 101 16 96.6 0.5 0.1
K-Closest(COM) 989 13.30 1626 158 83.2 0.4 0.3
K-Closest(lpswept) 1002 13.67 1041 42 89.8 0.6 0.5

Maze, spherical
rigid body robot,
k = 20

ANC 496 14.31 1312 93 64 13 2
K-Closest(Euclidean) 496 14.12 1305 104 63 12 2
K-Closest,K-Rand(Euclidean) 496 13.43 1294 123 52 10 6
R-Closest,K-Rand(Euclidean) 496 14.79 1320 72 88 0.2 0.2
K-Closest(COM) 496 14.06 1693 101 62 12 2
K-Closest(lpswept) 496 14.21 2086 85 71 3 0.2

Cluttered,
cube-like rigid
body robot,
k = 10

ANC 537 10.274 974 29.57 93.66 0.72 0.48
K-Closest(Euclidean) 537 10.326 861 17.29 93.78 3.07 0.31
K-Closest,K-Rand(Euclidean) 573 11.169 1330 25.64 95.06 0.50 0.26
R-Closest,K-Rand(Euclidean) 537 10.328 890 17.01 93.81 2.98 0.21
K-Closest(COM) 537 10.332 977 17.43 93.77 3.07 0.31
K-Closest(lpswept) 537 10.321 991 17.43 93.77 3.07 0.31

U-Tunnel,
rod-like rigid
body robot,
k = 10

ANC 14164 15.164 308 6.4 66.68 7.03 5.20
K-Closest(Euclidean) 21851 14.809 761 5.4 66.99 7.09 5.28
K-Closest,K-Rand(Euclidean) 30323 12.048 610 5.3 66.99 7.09 5.19
R-Closest,K-Rand(Euclidean) 21602 15.839 768 4.2 67.03 7.09 5.38
K-Closest(COM) 31108 15.107 927 7.4 66.38 5.28 4.66
K-Closest(lpswept) 17444 14.621 5780 7.2 72.02 0.08 0.08

Walls, 10 DOF
free-flying
articulated
linkage, k = 10

ANC 644 18.594 26 3.21 45.87 23.62 16.08
K-Closest(Euclidean) 1465 11.799 22 4.64 44.71 30.08 10.81
K-Closest,K-Rand(Euclidean) 3357 11.325 60 8.14 65.39 31.98 1.27
R-Closest,K-Rand(Euclidean) 1322 17.257 37 2.57 82.60 3.07 0.05
K-Closest(COM) 1215 10.505 107 8.07 34.48 32.92 10.81
K-Closest(lpswept) 1358 10.586 125 7.57 40.50 32.99 11.92
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Fig. 2: Learning plot for the maze environment with k = 10.

scenarios to utilize the performance of the better connection

method in the set if one exists. Thus, it is important that ANC

adapts continuously over the roadmap construction process

as the best method to employ changes over time. This pattern

of early learning versus later learning was also seen in Hybrid

PRM with sampler selection [6].

In the Cluttered environment, K-Closest,K-Rand (Eu-

clidean), which was the best performer in terms of running

time for the Maze, is the worst performer. Clearly, one cannot

select the same connection method for different environments

and expect similar performance, even when both robots

are similar as in this case. Instead, K-Closest (Euclidean)

emerges as the winner in running time. However, note that

no one method performs optimally across all the metrics.

The U-tunnel environment has a long rigid body robot

which behaves much differently than the compact robots in

the prior environments. Here, ANC performs significantly

better than the other methods in terms of running time and

roadmap size and near the best in terms of Edges/Nodes ratio.

Figure 3 provides the learning plot. Again, ANC is able to

adapt and learn a good connection strategy.

For the 10 DOF articulated linkage in the Walls envi-

ronment, ANC comes second fastest in running time but

best in roadmap size and Edges/Nodes ratio. ANC starts

by learning K-Closest,K-Rand (Euclidean), see Figure 4.

As time goes on, it increases the probability of K-Closest

(Euclidean) and then the other methods after. ANC is able

to dynamically adjust probabilities based on the performance

of each method.

We can see from each of these environments that no

connection strategy is always the best. In fact, picking a

single connection strategy for a heterogeneous environment
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Fig. 3: Learning plot for the U-tunnel environment.
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Fig. 4: Learning plot for a 10 DOF linkage in the Walls

environment.

can be quite detrimental. Table II shows the percentage

difference between each strategy and the best strategy in

terms of running time for all of the environments. ANC

consistently accrues the least percentage difference across all

environments and is only a fraction of some of the others.

C. Connectivity Analysis within a Specified Time Range

We perform experiments using the 21 DOF and 37 DOF

articulated linkages in fixed time scenarios. Results are

averaged over 10 random seeds. We fix the time for the 21

DOF experiments to 750 seconds and the 37 DOF to 1500

seconds.

In Table III we see that there is no clear winner for this

environment. For both robots, ANC is able to learn the best

connectivity method and performs second best, which is to

be expected as shown in Figure 5. Figure 5 shows that as the

sampling density increases (over time), R-Closest,K-Rand

(Euclidean) increases in probability indicating how ANC

adapts. Statically picking one method cannot achieve this.

D. ANC with Spatial Subdivision and Parallelism

We perform experiments on two different heterogeneous

environments: a 2D environment with a rod-like robot and

a 3D environment with a spherical robot, see descriptions

in Section IV-A. We start by generating 100 nodes in each
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Fig. 5: Learning plot for the 37 DOF linkage in the Walls

environment.

region and attempt to solve a query. We continue adding

nodes and edges until the query is solved. Both environments

are decomposed into 8 regions on a grid. Regions are

numbered starting from the top left and ending on the bottom

right, i.e., the top row is numbered 1, 2, 3, 4 and the bottom

row is numbered 5, 6, 7, 8 from left to right. Each method

generates roadmaps in the different regions and then attempts

additional connections between regions to form one roadmap.

Table IV shows that ANC indeed learns different connec-

tors in the 4 different regions (out of 8) shown. K-Closest

(lpswept), though expensive, is beneficial in improving con-

nectivity for robots with a large swept volume as for the

rod-like robot here. Thus, it is learned in region 8 where

the room contains two long obstacles with a narrow passage

where rotations would likely be invalid. Yet in most other

regions, this connector is given a low probability as other,

cheaper connectors can make sufficient connections.
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Fig. 6: Running time for each method in the 2D-

Heterogeneous environment.

Figure 6 shows the total running time for each method

broken down into four main phases: sampling, connection

within regions, connection between regions, querying. ANC

outperforms all the other methods as it efficiently selects

appropriate connection methods to use.

Table V shows the same ability of ANC to learn different
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TABLE II: Comparison of the % difference in running time against the best strategy across all environments.

Method Maze (%) Cluttered (%) U-Tunnel (%) Walls, 10 DOF (%) Total (%)

ANC 118.4 13.1 0.0 18.2 149.7

K-Closest(Euclidean) 313.4 0.0 147.1 0.0 460.5

K-Closest,K-Rand(Euclidean) 0.0 54.5 98.1 172.7 325.3

R-Closest,K-Rand(Euclidean) 1.6 3.4 149.4 68.2 222.6

K-Closest(COM) 1516.8 13.5 201.0 386.4 2117.7

K-Closest(lpswept) 914.3 15.1 1776.6 468.2 3174.2

TABLE III: Each method constructs a roadmap for a fixed amount of time, 750 seconds for the 21 DOF linkage and 1500

seconds for the 37 DOF linkage, in the Walls environment. ANC is comprised of the other 5 connection methods. All

results are averaged over 10 runs. CC is number of connected components present. CC i% = percentage of nodes in the ith

component. Boldface entries indicate the most desirable (e.g., shortest running time, greatest Edges/Nodes ratio).

Environment Method Nodes Edges/Nodes CC CC 1% CC 2% CC 3%

Walls, 21 DOF free-flying
articulated linkage k = 10

ANC 87.50 9.17 4.21 36.35 21.80 20.13
K-Closest(Euclidean) 64.86 9.45 4.14 35.28 27.56 16.90
K-Closest(COM) 64.21 9.54 4.07 36.77 27.74 16.29
K-Closest,K-Rand(Euclidean) 82.43 9.14 4.36 41.11 28.54 11.48
R-Closest,K-Rand(Euclidean) 62.00 10.31 3.93 37.39 28.91 16.32
K-Closest(lpswept) 64.00 9.50 4.07 36.81 27.83 16.15

Walls, 37 DOF free-flying
articulated linkage k = 10

ANC 49.50 7.461 4.29 33.51 22.29 20.24
K-Closest(Euclidean) 50.71 7.572 4.71 32.82 21.51 18.94
K-Closest(COM) 50.71 7.570 4.64 31.71 21.63 20.56
K-Closest,K-Rand(Euclidean) 53.14 7.210 4.79 33.94 24.78 18.53
R-Closest,K-Rand(Euclidean) 52.86 7.574 5.64 25.69 22.11 17.06
K-Closest(lpswept) 50.71 7.579 6.45 31.40 20.43 19.56
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Fig. 7: Running time for each method in the 3D-

Heterogeneous environment)

connection methods for the 3D-Heterogeneous environment.

Figure 7 shows that although ANC is not the best performing

method here, 3 out of 5 of the other connection methods take

orders of magnitude longer than ANC. Here we see that ANC

makes the best of poor connection method choices available.

To demonstrate how ANC works in a parallel setting, we

subdivide the 2D-Heterogeneous environment into 32 regions

and construct roadmaps of equal size. Figure 8 shows that

ANC is one of the fastest methods and scales well. Thus,

in a parallel setting with region subdivision, ANC does not

hamper performance.
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V. CONCLUSION

This paper looks into an intelligent way of choosing

connection strategies for generating PRM roadmaps. It uses a

reward and cost approach to determine how well a connection

strategy performs and decides if it is viable in that particular

environment. We study a host of experiments to confirm

that the different connection strategies perform differently in

varying environments, and we show that our method relieves

the burden of deciding which connection strategy to employ.

Our method is able to adapt to the environment and is very

useful in different environment types. We are also able to

adapt to changing sample density, which other methods are

unable to achieve. Our results show we are able to get

connectivity that is on par with the best connection strategy,
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TABLE IV: Final selection probabilities for connectors in the 2D-Heterogeneous environment for several representative

regions. Boldface entries indicate the winning probability in each. ANC is able to learn different probabilities for each type.

Final Selection Probability
Region Region K-Closest K-Closest K-Closest,K-Rand R-Closest,K-Rand K-Closest
Number Type (Euclidean) (COM) (Euclidean) (Euclidean) (lpswept)

1 stick obstacles 0.073 0.084 0.704 0.074 0.062

4 2 boxes 0.054 0.058 0.752 0.089 0.048

5 free environment 0.011 0.129 0.128 0.648 0.082

8 2 long rods 0.262 0.081 0.115 0.126 0.419

TABLE V: Final selection probabilities for connectors in the 3D-Heterogeneous environment for several representative

regions. Boldface entries indicate the winning probability in each. ANC is able to learn different probabilities for each type.

Final Selection Probability
Region Region K-Closest K-Closest K-Closest,K-Rand R-Closest,K-Rand K-Closest
Number Type (Euclidean) (COM) (Euclidean) (Euclidean) (lpswept)

2 Maze 0.003 0.001 0.006 0.906 0.081

3 Planes 0.084 0.104 0.323 0.094 0.392

4 Maze 0.033 0.023 0.029 0.596 0.319

8 Planes 0.232 0.185 0.183 0.214 0.184

and in some cases outperforms it. Our method has the lowest

time overhead overall in all the environments studied. We

also use parallel computation and decomposition to further

show the usefulness of our approach.
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