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ABSTRACT
Recently, network coding emerged as a promising technol-
ogy that can provide significant improvements in through-
put and energy efficiency of wireless networks, even for uni-
cast communication. Often, network coding schemes are
designed as an autonomous layer, independent of the un-
derlying Phy and MAC capabilities and algorithms. Con-
sequently, these schemes are greedy, in the sense that all
opportunities of broadcasting combinations of packets are
exploited. We demonstrate that this greedy design principle
may in fact reduce the network throughput. This begets the
need for adaptive network coding schemes. We further show
that designing appropriate MAC scheduling algorithms is
critical for achieving the throughput gains expected from
network coding. In this paper, we propose a general frame-
work to develop optimal and adaptive joint network coding
and scheduling schemes. Optimality is shown for various
Phy and MAC constraints. We apply this framework to two
different network coding architectures: COPE, a scheme re-
cently proposed in [7], and XOR-Sym, a new scheme we
present here. XOR-Sym is designed to achieve a lower im-
plementation complexity than that of COPE, and yet to
provide similar throughput gains.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
communication

General Terms
Algorithms, Design, Performance

Keywords
Multi-hop wireless networks, network coding, throughput
optimality
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1. INTRODUCTION
Wireless multi-hop networks have been advocated as an

efficient and affordable solution for providing access to the
Internet. But, unlike wired networks, wireless networks are
resource constrained. Hence, researchers and industry alike,
strive for designing power efficient and scalable schemes that
provide optimized usage of the available bandwidth. Re-
cently, network coding (NC) emerged as a promising tech-
nology to this end. Our aim is to investigate possible perfor-
mance gains through NC and the optimal way of using NC
for unicast communication in multi-hop wireless networks.

Though NC was first applied mainly in the context of mul-
ticast in wired networks [1, 8], and subsequently in wireless
networks [12, 15], it is found to be particularly amicable
for enhancing the throughput (the number of packets deliv-
ered to the destination per unit time) of wireless networks
even for unicast applications [6, 7, 9, 16, 19, 22]. This is
mainly due to the broadcast property of wireless channel,
meaning that a transmission from a node can potentially be
intercepted by all its neighbors.

The throughput gain via NC in case of unicast sessions
is typically illustrated using the network shown in Figure 1.
Assume that R1(t) = R2(t) = 1 at all time t. Without NC,
packets from a and b arrive at m, and then m transmits
these packets to b and a, respectively, one at a time. This
process requires 4 transmissions to deliver one packet from
each of the sessions. Thus, a throughput λ is achievable if
and only if λ ≤ 1/4, i.e., if λ ≤ (>, resp.) 1/4, then there
exists (does not exist, resp.) a scheduling scheme that arbi-
trates transmissions in various slots such that the through-
put λ is provided to each of the sessions. Now, with NC, m
XORs two packets, one from each session, and then trans-
mits the XOR-ed packet. Because of the broadcast property,
the XOR-ed packet can be received by both a and b simul-
taneously. Now, nodes a and b recover the desired packet by
XOR-ing the received packet from m with their own packet.
Thus, only 3 transmissions are required to deliver one packet
from each of the sessions. Clearly, λ is achievable iff λ ≤ 1/3.
The throughput gain of NC is therefore 4/3 in this example.

The promise of potential throughput gain has instigated
significant research in designing efficient NC schemes for uni-
cast communication in wireless networks. Following are the
two key features of the schemes proposed in the literature:
(i) They advocate the use of NC each time an opportunity
to combine and broadcast packets is available. Indeed, the
schemes are designed to increase the number of NC opportu-
nities through better routing [19] and through opportunistic
listening [7]. (ii) Network coding and scheduling schemes are
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Figure 1: A 3-node network topology handling two ses-

sions, one from a to b and another from b to a. Packets

for both the sessions are routed through relay m. The

network is symmetric, i.e., the required throughputs for

sessions from a to b and from b to a are the same (λ

packets/slot), and the rates on the links (a, m) and (m, a)

((b, m) and (m, b), resp.) are equal to R1(t) (R2(t), resp.)

packets/slot in slot t. Only one of nodes a, b and m can

transmit in a slot.

designed separately. We, however, advocate caution in us-
ing these features. The main motivation of this paper stems
from the following observation regarding the schemes with
at least one of these features:

Systems with NC may have smaller throughputs
than those without it.

This observation may seem counter-intuitive as previous
work shows that one can only gain by using NC, and the gain
can only increase if more opportunities to combine packets
are used. We claim that if NC is used each time an oppor-
tunity arises or if the scheduling scheme does not account
for NC, then the throughput can decrease. We illustrate
this fact with two representative examples. In the first ex-
ample, we fix the scheduling scheme (it provides maximum
throughput when NC is not implemented) and demonstrate
how applying NC reduces the system throughput. This indi-
cates that NC and scheduling should be jointly considered.
In the second example, we compare: (a) the throughput un-
der an optimal scheduling without NC; (b) the throughput
of the same system under an optimal scheduling adapted to
NC. The scheduling in (b) is optimal subject to using NC
at each opportunity. We show again that the throughput
decreases when NC is used. This conclusion is more striking
than that of the first example as here the scheduling scheme
is aware of the NC capabilities.

Example 1: Fading. Consider the network of Figure 1.
Let the links experience random fading. Consequently, their
rates oscillate randomly and independently between 1 and
N : R1(t) and R2(t) are independent and identically dis-
tributed (i.i.d.), and equal to 1 with probability (w.p.) 1/2,
and to N w.p. 1/2. With NC, for correct reception at both
a and b, m has to broadcast at rate min{R1(t), R2(t)}.

First, consider the system without NC and with the fol-
lowing optimal opportunistic scheduling: If R1(t) = N =
R2(t)), schedule link (a,m) w.p. 1/2 and (b, m) w.p. 1/2;
if R1(t) = 1 = R2(t), schedule each link w.p. 1/4; if
(R1(t),R2(t)) = (N, 1), schedule (a,m) w.p. 1/4 and (m,a)
w.p. 3/4; if (R1(t), R2(t)) = (1, N), schedule (b, m) w.p.
1/4 and (m, b) w.p. 3/4. With this scheme, a throughput λ
is achievable iff λ ≤ (1+3N)/16. When NC is implemented,
node m broadcasts XOR-ed packets whenever either (m,a)
or (m, b) is scheduled in the above scheme. For the above
scheduling scheme with NC, λ is achievable iff λ ≤ 1/2 as
m always transmits at rate 1 when scheduled. Note that
applying NC strictly reduces the throughput if N > 7/3.

R 1(t) R 2(t)
1 2

a2 a1 a m b b1 b2

Figure 2: An extension of the network shown in Fig-

ure 1. Here, two sessions from a1 to a2 and b1 to b2 are

added, and these require throughputs of λ1 and λ2, re-

spectively. The maximum transmission rate on (a1, a2)

and (b1, b2) is 1 packet/slot in each slot. We assume that

a1 (b1, resp.) can not transmit when a (b, resp.) is either

transmitting or receiving. This interference model arises

if IEEE 802.11 MAC with RTS and CTS is used.

We make the following two observations on Example 1.
(1) Assume that the rates R1(t) = r1 and R2(t) = r2 are
not time varying, and without loss of generality, let r1 ≤ r2.
Then, irrespective of the scheduling used, NC provides a
higher throughput than that without it. This is because
with NC, packets from m to b (faster link) are transmit-
ted along with packets from m to a (slower link). Since
the transmissions from m to a have to happen in any case,
NC saves transmissions from m to b. (2) With NC, there
exists a scheduling scheme that can provide a throughput
λ iff λ ≤ (1 + 3N)/12 (which is higher than the achiev-
able throughput without NC). The optimal scheme is as
follows: If (R1(t), R2(t)) = (N, 1), then schedule (a,m); if
(R1(t),R2(t)) = (1, N), then schedule (b, m);
if (R1(t), R2(t)) = (N, N), then broadcast XOR-ed packets
from m; if (R1(t),R2(t)) = (1, 1), then schedule transmis-
sions from nodes uniformly at random.

From the first observation, it may seem that if the link
rates are constant, then NC improves the throughput perfor-
mance for any topology. And from the second observation,
it may seem that if an optimal scheduling with NC is used,
then again the throughput increases. But, in the following
example, we show that both statements do not hold.

Example 2: Interference. We now provide an example
illustrating why taking all opportunities to combine pack-
ets may result in throughput reduction, even when an op-
timal scheduling is used. Consider, in Figure 2, a simple
extension of the network shown in Figure 1. Let R1(t) = 2
and R2(t) = 1 for all t, i.e., the rates are fixed but differ-
ent. Such scenarios are common in wireless networks, e.g.,
in IEEE 802.11-based mesh networks. One of the possi-
ble reasons for having different R1(t) and R2(t) is simply
because the distances m to a and m to b are different, re-
sulting in different attenuations of the transmitted signals
along these links. Now, for correct receptions at both a and
b, m has to broadcast combined packets at rate 1. Let the
throughput requirements be λ = λ1 = 2/3 and λ2 = 1/3.
We claim that the desired throughputs can be provided if
NC is not used, while they can not be guaranteed if NC is
used. Without NC, to provide the desired throughputs, we
can use a scheduling scheme that activates the links (a1, a2)
and (m, b) simultaneously and (a1, a2) and (b, m) simulta-
neously in 1/3 fraction of slots each, and activates (b1, b2)
and (m, a) simultaneously and (b1, b2) and (a,m) simultane-
ously in 1/6 fraction of slots each. Now we prove that these
throughputs can not be achieved using NC. Indeed, since
λ1 = 2/3, (a1, a2) has to be active in at least 2/3 fraction of
slots. As a consequence, (a, m) and (m,a) can be active in
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at most 1/3 fraction of slots. Thus, to provide a throughput
of 1/3 to each of the two sessions that use (a,m) or (m, a),
these links must transmit at a rate no less than 2 when ac-
tive. This is impossible if NC is used as then m broadcasts
XOR-ed packets at rate 1 only.

Note that a key feature used in the construction of the
above example is that when an XOR-ed packet is transmit-
ted to multiple receivers, all the other nodes in the neigh-
borhood of the receivers have to remain silent: the use of
NC reduces the spatial reuse in the network. Hence, for de-
ciding whether to use NC, one has to evaluate the trade-off
between the reduction in capacity due to the reduction in
the spatial reuse and the capacity improvement due to the
broadcast of XOR-ed packets.

Now, we summarize the insights from the above examples.
Example 1 shows that NC and scheduling should be jointly
designed. Using NC with arbitrary scheduling may result
in performance losses. Example 2 shows that the decision
to use NC has to be a function of many parameters includ-
ing the network topology, the link rates and the throughput
requirements of the various sessions. This calls for the de-
sign of joint NC and scheduling schemes that adapt to the
network topology and link rates and provide the required
throughput to each session, if doing so is at all possible.

Contributions. In this paper, we present the following con-
tributions:
• We propose a general framework that allows us to charac-
terize the throughput region (the set of achievable through-
puts of the various sessions) of networks with NC, and to de-
sign optimal and adaptive joint NC and scheduling schemes.
The schemes are optimal as they provide the required
throughputs, whenever possible. The schemes are adaptive
as they take the scheduling and NC decisions based on the
current system state only, and do not require the knowledge
of channel and arrival statistics a priory.
• We show how our framework can be applied to COPE, a
NC scheme recently proposed for unicast sessions in wireless
networks [7].
• We also propose a novel NC scheme, XOR-Sym, which ex-
hibits a lower computational complexity than that in COPE.
Under XOR-Sym, packets have to be decoded at their des-
tinations only, not at intermediate nodes. In spite of this
additional constraint, we show that XOR-Sym and COPE
may provide similar throughput gains.

The paper is organized as follows. In Section 2, we present
the system model. In Section 3, we characterize the through-
put region of networks with NC and provide optimal schedul-
ing policies in a general setting. These results are then
applied to specific NC schemes: in Section 4, we design
a joint adaptive NC and scheduling scheme for COPE. In
Section 5, we propose XOR-Sym, a computationally simple
NC scheme, and an associated optimal scheduling scheme.
In Section 6, we evaluate the performance of XOR-Sym us-
ing simulations. Section 7 discusses possible generalizations.
Section 8 provides concluding remarks.

2. SYSTEM MODEL

2.1 Network Topology and Sessions
Consider a multi-hop wireless network, represented as a

directed graph G = (V, E), where V and E denote the set

of nodes and links, respectively. The network is used by ses-
sions to transport data packets. A session A is characterized
by a doublet (s(A), d(A)) ∈ V × V , where s(A) and d(A)
denote the source and the destination, respectively, of A.
Note that the sessions are defined at the macroscopic level.
Thus, a session can comprise of many applications that com-
municate between the same source and destination. Let S
denote the set of all sessions. Time is slotted.

We assume that the exogenous packets corresponding to
the session A arrive at s(A) as per a stochastic process
{λA(t)}t≥1, where λA(t) denote the number of packets arriv-
ing in slot t. We assume that all the packets have the same
length. Exogenous arrivals across the slots are assumed to
be i.i.d. Moreover, assume that λA(1) ≤ c < ∞ for every
A and define λA = E[λA(1)]. Packets are stored in infinite
buffers until served.

Packets of session A ∈ S are routed from s(A) to d(A) in,
possibly, multiple hops. We consider fixed routing, and de-
note by RA the route for session A. This route is an ordered
subset of V , RA = {a0, a1, . . . , aNA}, such that a0 = s(A)
and aNA = d(A). For notational convenience, we denote by
eA

k = (ak, ak+1) the (k + 1)-th link used by packets of ses-
sion A for every k ∈ {0, . . . , NA−1}. Furthermore, for every
i ∈ RA and i �= s(A), let si(A) denote the node preceding
node i on the route of session A, i.e., packets of session A use
link (si(A), i). Similarly, for every i �= d(A), di(A) denotes
the node after node i on route of session A.

For each session A ∈ S , each node i ∈ V maintains a queue
qi,A to store packets corresponding to this session. All the
queues are served in First In First Out (FIFO) order. At
the beginning of slot t, the queue length of qi,A is denoted
by Qi,A(t), and its Head of Line (HoL) packet by Pi,A(t).
Finally, let A′ be the symmetric session of A, i.e., s(A) =
d(A′) and d(A) = s(A′). Note that the sets of links traversed
by the packets of symmetric sessions may not be the same.
The notations are illustrated in Figure 3.

2.2 MAC Layer and Scheduling Policies
In networks without NC, a scheduling policy at MAC

layer decides, in each slot, which links should be activated
and which sessions should be served on these links. In net-
works with NC, a scheduling policy has to additionally de-
cide whether and how NC should be used. In other words,
the policy imposes which nodes should use NC, and which
packets should be encoded at these nodes. In this paper,
we restrict our attention to NC schemes that allow bit-wise
XOR of packets only. Thus, the NC scheme defines the set of
possible XORs at each node; but, it is the scheduling scheme
that decides whether and when to perform these XORs. For
illustration, consider Figure 2. Here, NC scheme facilitates
XOR-ing of packets from nodes a and b at node m, but the
scheduling policy will arbitrate whether and when to avail
this facility. For example, if λ = λ1 = 2/3 and λ2 = 1/3,
then a scheduling policy that provides the required through-
puts to all the sessions will not XOR packets at m (refer to
Example 2); but if λ = 4/3 and λ1 = λ2 = 1/3, then a
scheduling policy that provides the required throughputs to
all the sessions will XOR packets at m.

Let L denote the set of L feasible scheduling decisions,
or schedules. Each element of L defines (1) the links that
are activated, (2) the sessions that are served on these links,
and (3) the sessions whose packets are XOR-ed together.
We make the following natural assumption on L.
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Figure 3: A 4-node linear network with symmetric ses-

sions A and A′. s(A) = d(A′) = 1 and s(A′) = d(A) = 4. At

s(A) and s(A′) new packets arrive at rate λA and λA′ , re-

spectively. Here, RA = {1, 2, 3, 4}, while RA′ = {4, 3, 2, 1}.
Regarding node 2 for example: s2(A) = 1 and d2(A) = 3; 2

FIFO queues, q2,A and q2,A′ , corresponding to both ses-

sions are maintained; packets from these queues can be

XOR-ed and broadcasted to nodes 1 and 3.

Assumption 1. If � ∈ L, then every �1 such that the set
of active links under �1 is a subset of that under � also be-
longs to L.

The exact nature of L depends on the MAC and Phy
layer constraints, and also on the NC scheme used. We
provide the description of L after presenting the NC schemes
considered in Sections 4 and 5. But, for illustration, let us
assume that the NC scheme XORs packets corresponding
to symmetric sessions only. Then, each schedule � ∈ L is a
subset of E × S, where S = S ∪ {A ⊕ A′, A ∈ S}. Notation
(e, A) ∈ � means that the link e = (i, j) is active and serves
queue qi,A; (e,A ⊕ A′) ∈ � means that e = (i, j) is active
and serves XOR-ed packets from queues qi,A and qi,A′ . The
MAC and Phy layer constraints further restrict the choice of
valid schedules. For example, if the RTS/CTS mechanism
is used in IEEE 802.11-based networks and link e = (i, j)
is scheduled, then no node in the neighborhood of i and j
can be scheduled. Thus, L can not contain a schedule that
allows nodes in the neighborhood of i and j to transmit,
while simultaneously activating link (i, j). Finally, the set
of feasible schedules in a given slot has to reflect the fact that
the transmissions from empty queues can not be scheduled.

Definition 1 (Scheduling Policy). A scheduling
policy Δ is an algorithm that chooses a schedule � ∈ L in
each slot t.

To describe the system states under policy Δ, we use the
superscript Δ: for example, �Δ(t) will denote the schedule
chosen by Δ in slot t; QΔ

i,A(t) will denote the length of qi,A in
slot t under Δ. Let CL denote the class of scheduling policies
Δ such that �Δ(t) ∈ L for all t. The class CL also includes
the off-line policies that arbitrate scheduling by taking into
account past, present and even future network states.

2.3 The Phy Layer
Now we present generic models to capture the features of

various Phy layer technologies. We categorize the wireless
systems into two classes, namely, systems with fixed link
rates and systems with adaptive link rates.

2.3.1 Fixed Rate Systems
In such systems, the transmitter and receiver of each link

negotiate the link rate during network set-up, and then
always use this rate to communicate. Examples of such
systems are networks based on the IEEE802.11 standards,
where the rate control is performed rarely (at much longer
time scale than that of packet transmissions). Let Re de-
note the rate negotiated on link e. The variations in channel
quality induced by fading and interference can be captured
through packet error probabilities (PEP). Specifically, the
PEP is the probability that the SINR is above certain level.
We denote by peA

k
(�) the PEP on link eA

k for session A un-

der schedule �. The PEP also depends on t if the model
accounts for fading. We assume that peA

k
(�) = 1, if session

A is not scheduled on eA
k under �. Now, we give an example

to show how the PEP is related to the interference model.

Example 3: The Protocol Model. This model is a gen-
eralization of that considered in [5]. A transmission on link
e = (i, j) at the negotiated rate is successful if none of the
nodes in the set Ke is transmitting. Typically k ∈ Ke, if
the distance from k to j is sufficiently small. As a conse-
quence, pe(�) = 0, if all nodes in Ke are inactive under �;
and pe(�) = 1 otherwise. In the network of Figure 3, assume
that all links have the same negotiated rate, say 1, and that
for link (i, j), the interfering nodes are 1-hop neighbors of
j, e.g., K(1,2) = {3}. Then, for example, when (1, 2) and
(3, 4) are simultaneously active, only transmission on (3, 4)
is successful.

2.3.2 Adaptive Rate Systems
In systems with a more elaborated Phy layer, link rates

are adapted to the channel conditions and interference (e.g.,
by using advanced coding capabilities such as Hybrid ARQ).
We denote by ReA

k
(�) the rate of link eA

k for session A under

schedule �. The link rate also depends on t if the model has
to account for fading. We assume that ReA

k
(�) = 0 if session

A is not scheduled on eA
k under �. Here is an example to

show how the link rates relate to the interference model.

Example 4: The SINR-rate Model. Usually the link rate
is related to the SINR at the receiver, and it is often well
approximated by Shannon formula (up to a multiplicative
constant). For example, consider the network of Figure 3,
and assume that all nodes transmit at full power, say 1,

when scheduled. If links eA
1 = (1, 2) and eA′

1 = (3, 4) are
active under � in slot t, then, the rate on link eA

1 is:

ReA
1

(�, t) = W log

(
1 +

G12(t)

N0 + G41(t)

)
,

where Gij(t) is the channel gain from i to j in slot t, N0 is
the noise power, and W is the bandwidth. Now, if node 2
broadcasts XOR-ed packet to nodes 1 and 3 under � in slot
t, then the rates on these links are:

ReA
2

(�, t) = R
eA′
3

(�, t) = W log

(
1+min

{
G21(t)

N0
,
G23(t)

N0

})
.

Note that when a packet is broadcasted on several links,
the rate on each of the links is the minimum of that over all
these links. We make the following assumption.
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Assumption 2. Let �1 be such that the set of active links
in �1 is a subset of that in �. Then, the rate (PEP, resp.)
on every active link in �1 is greater (smaller, resp.) than or
equal to that on the same link in �.

Assumption 2 is typically valid in wireless networks as
activating fewer links reduces interference.

2.4 Design Objectives
Our aim is to propose optimal joint adaptive NC and

scheduling schemes. Next, we introduce various definitions
and then state this optimization problem.

Recall that the set of valid schedules L accounts for the
possible NC opportunities, i.e., for the NC scheme. Most
of the proposed NC schemes, e.g. COPE, are designed un-
der the constraint that XOR-ed packets must to be decoded
at the next hop. Here, we relax this constraint. Thus, en-
coded packets can be further XOR-ed with other, possibly
encoded, packets. Hence, we have to carefully study the de-
codability of packets. For scalability, we impose that pack-
ets are decoded on the fly: if the NC scheme decides that
an XOR-ed packet P has to be decoded at node i, then i
should be able to decode P immediately after it receives P .
Thus, the NC schemes considered have to be correct in the
following sense.

Definition 2 (Correctness). Lat a packet P corre-
sponding to session A arrives in qs(A),A at time t and the
packets of A are to be decoded at node i ∈ RA. Also, let
L = {�(u)}u≥t denote a sequence of valid schedules after
time t such that the first packet containing P (say P ′) ar-
rives at i in slot tL. Then, we say that the NC scheme is
correct, if i can decode P ′ to recover P immediately upon
arrival of P ′ for every valid scheduling sequence L.

Intuitively, the notion of correctness decouples NC scheme
and scheduling strategy. Note that NC scheme only af-
fects the set of valid schedules L. But, once L is defined,
NC oblivious scheduling policy can be designed (see Defini-
tion 1). Moreover, if the NC scheme is correct, then each
packet of every session can be recovered at its respective
destination irrespective of the scheduling decisions as the
packets of each session A must be decoded at d(A).

Next, we define the performance measures of interest.

Definition 3 (Stability). The system is stable under
Δ, if supt≥1{E[QΔ

i,A(t)]} < ∞ for every i ∈ V and A ∈
S. An arrival rate vector λ = [λA : A ∈ S ] is said to be
stabilizable by Δ, if the system is stable under Δ for λ.

Note that stability ensures finite expected delay for every
packet. Moreover, in practice, the buffer capacity is finite,
though large. In such systems, stability guarantees limited
losses due to buffer overflow.

Definition 4 (Throughput Region). The throughput
region of Δ is the set ΛΔ of all the stabilizable rate vectors by
Δ. The throughput region of the class of scheduling policies
CL is ΛL = ∪Δ∈CLΛΔ.

Definition 5 (Throughput Optimality). A policy
Δ is said to be throughput optimal in class CL, if ΛΔ = ΛL.

In the next section, we aim at designing a throughput op-
timal scheme within the class CL, for a given set L of valid
schedules. Since L accounts for the NC opportunities offered
by the underlying NC scheme, the throughput optimal pol-
icy is an optimal joint NC and scheduling policy.

3. OPTIMAL SCHEDULING THEOREM
Now, we propose a throughput optimal policy within the

class CL, for any given set of schedules L. In fact, we obtain
a more general result: we provide a throughput optimal pol-
icy that minimizes certain cost. The cost may, for example,
reflect the power consumption in the system, or as explained
in Section 6, may also be used to control the packet header
size. We use the results derived here to obtain the through-
put optimality of the NC and scheduling schemes considered
in Sections 4 and 5.

Let f(�) denote the cost if schedule � is chosen. We assume
that this cost function satisfies:

Assumption 3. The function f(·) is bounded, and for ev-
ery �1 such that the set of activated links under �1 is a subset
of that under �, f(�1) ≤ f(�).

Clearly, Assumption 3 holds if f(�) is the total power re-
quired when schedule � is chosen. Now let the arrival rate
vector be λ. Then, the cost incurred under scheduling policy
Δ is: FΔ(λ) = lim supT→∞

1
T

∑T
t=1 f(�Δ(t)).

Moreover, let CL(λ) denote the set of all policies that
stabilizes λ using schedules in L. Then, define

F
CL(λ)
min = inf

Δ∈CL(λ)
{FΔ(λ)}.

Definition 6 (ε-Optimality). A policy Δ is said to
be ε-optimal for a given λ, if Δ ∈ CL(λ), and FΔ(λ) ≤
F

CL(λ)
min + ε.

We propose a policy that is both throughput optimal
and ε-optimal. Due to space limitations, we obtain the re-
sults only for adaptive rate systems. Similar results can be
obtained for fixed rate systems by replacing ReA

k
(�) with

ReA
k

(1− peA
k
(�)) in the following. We analyze systems with-

out random fading. We generalize the analysis to account
for fading in Section 7.

3.1 Throughput Region
We first characterize the throughput region of CL. Let XL

denote the set of all arrival rate vectors λ for which there
exists a vector α = [α1 · · · αL] such that for all �, α� ≥ 0,∑

�∈L α� = 1, and,

∑
�∈L

α�ReA
k

(�) ≥ λA, ∀ k < NA and ∀A ∈ S. (1)

Let X ◦
L be the set of ν such that there exists λ ∈ XL with

ν < λ coordinate-wise. The following theorem, proved in
appendix, characterizes the throughput region of CL.

Theorem 1. The throughput region ΛL satisfies X ◦
L ⊆

ΛL ⊆ XL. In words, if λ ∈ X ◦
L, then there exists Δ ∈ CL

such that λ ∈ ΛΔ, but if λ �∈ XL, then λ �∈ ΛΔ for every
Δ ∈ CL.

3.2 Optimal Policy
Now, we define a parameterized back-pressure based pol-

icy denoted by Δ∗(κ), and prove its throughput optimality
and ε-optimality. Let ∂Qk,A(t) denote the back-pressure
along eA

k , i.e, ∂Qk,A(t) = Qak,A(t)−Qak+1,A(t). Depending
on the various queue lengths at time t, Δ∗(κ) chooses the
schedule defined by:
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�Δ
∗(κ)(t) = arg max

�∈L

⎧⎨⎩∑
A,k

ReA
k

(�)∂Qk,A(t) − κf(�)

⎫⎬⎭ . (2)

Theorem 2. For all κ < ∞, Δ∗(κ) is throughput optimal
in CL. Moreover, for all ε > 0, there exists κ̂ > 0 such that
for all κ > κ̂, Δ∗(κ) is ε-optimal.

The above theorem is proved in appendix. The problem of
minimizing cost subject to stability has been studied previ-
ously in [3, 14, 20]. However, our result is not a consequence
of the results derived there. In [3, 14], the authors analyze
one hop sessions only. So, the queueing process is driven
primarily by the exogenous arrivals that are independent
of the scheduling decisions. Here, however, the queueing
process is affected by the chosen schedule as the arrivals
in qak,A are the departures from qak−1,A. In [20], Stolyar
has studied multi-hop networks, but under the following as-
sumption: if the set of active links under �1 is a subset of
that under �, then for all links eA

k activated under both �1
and �, ReA

k
(�1) = ReA

k
(�). This assumption does not hold in

typical wireless networks as the link rates depend on the in-
terference caused by the transmissions on other active links.
Thus, typically, ReA

k
(�1) > ReA

k
(�). In view of these dif-

ferences, though the nature of our optimal policy Δ∗(κ) is
similar to those proposed earlier, the proofs from [3, 14, 20]
do not hold here.

Like many other back-pressure based policies proposed
in literature [3, 14, 21, 20], Δ∗(κ) is centralized and has
high computational complexity. Fortunately, back-pressure
based policies are extensively studied, and many schemes
for reducing their complexity [3] and for distributed imple-
mentations [2, 4, 13, 18] have been proposed. We believe
that similar approaches can be developed for the joint NC
and scheduling proposed here. We, however, omit the de-
tailed discussion on the design of computationally simple
distributed implementations as our aim in this paper is to
characterize throughput region of the system that has NC
capabilities.

4. OPTIMAL SCHEDULING FOR COPE
Here, we apply the general framework developed in Sec-

tion 3 to provide an optimal scheduling adapted to COPE,
a NC scheme recently introduced in [7].

4.1 Overview of COPE
COPE is a practical NC scheme designed for improving

the throughput of unicast sessions in networks with arbi-
trary topology. In COPE, nodes send XOR-ed combinations
of packets that can be decoded at the next hop: a node i
sends an XOR-ed packet P1 ⊕ . . . ⊕ Pm only to nodes that
already have m − 1 of m packets P1, . . . , Pm. When a node
j receives an encoded packet, it immediately decodes it. A
node j possesses the m− 1 required packets in two possible
scenarios: (i) these packets have been transmitted by j or
(ii) j has intercepted these packets by listening to the trans-
missions (not meant for j) from its neighboring nodes; this
is referred to as opportunistic listening (OL). Scenario (ii)
is possible because of the broadcast nature of the wireless
channel. We discuss the implications of (i) and (ii).

Advantages and limitations of OL. When OL is used,
nodes may store packets that do not necessarily correspond
to sessions routed through them. This creates more oppor-
tunities to XOR packets, and thereby potentially increases
the sessions’ throughputs. Note however that as shown in
Example 2, the throughput improvement is not guaranteed.
With OL, the increase in NC opportunities comes at the
cost of a higher energy consumption. For example, in IEEE
802.11-based networks, to use OL, nodes have to operate in
promiscuous mode all the time, and can not enter in sleep
mode. Energy consumption in promiscuous mode is signif-
icantly higher than that in sleep mode. Moreover, a larger
buffer is required as the nodes have to store additional pack-
ets. OL also increases the load of signaling messages as each
node has to advertise its buffer content. Finally, OL in-
creases the computational complexity as nodes have to pro-
cess the additional signaling messages from their neighbors
to decide how to XOR packets. In view of these limita-
tions, we do not consider OL in this paper. Note here that
the performance gain achieved by COPE is higher with OL
than that without it, but OL is not an essential feature
of COPE [7]. The OL capability merely provides a way to
trade performance gain with operational complexity and en-
ergy consumption. Thus, the performance of COPE can be
studied without considering OL.

Locally Symmetric Sessions. Since, we do not allow OL,
a node can have the packets required to decode an encoded
packet only if (i) is satisfied. Let packets of sessions A and
B be routed through node i. These sessions are said to be
locally symmetric at node i if di(A) = si(B) and si(A) =
di(B). In this case, node i can XOR packets from sessions
A and B, and send the XOR-ed packet to di(A) and di(B).
The latter nodes will be able to decode the XOR-ed packet
as (i) holds.

As illustrated in Example 1, COPE, associated with an ar-
bitrary scheduling policy, may not provide any throughput
gain. This calls for the design of a joint NC and schedul-
ing policy that will guarantee that the gains expected from
COPE can actually be met. To this aim, we apply the frame-
work of Section 3 and derive a throughput optimal policy
adapted to COPE.

4.2 An Optimal Scheduling for COPE
Let us first characterize the set of valid schedules LCOPE

compatible with COPE. Note that COPE is correct only
if at most two packets corresponding to locally symmetric
sessions are XOR-ed (Theorem 4.1 of [7]). Hence, the set
of schedules compatible with COPE is defined as follows: A
schedule � ∈ LCOPE is defined as a subset of E = ∪e∈E(e ×
S(e)), where S(e) = S ∪ {A⊕B : A, B locally symmetric at
i, e = (i, di(A))}. Notation (e, A) ∈ � means that the link
e = (i, j) is active and serves queue qi,A; (e, A⊕B) ∈ � means
that link e = (i, j) is active and serves XOR-ed packets from
locally symmetric sessions A and B. Now, schedule � belongs
to LCOPE if it satisfies the following constraints: ∀A ∈ S and
∀e = (i, di(A)),

• if (e, A) ∈ �, then for all B, (e, A ⊕ B) /∈ �;

• if (e,A ⊕ B) ∈ �, then (e′, A ⊕ B) ∈ � where e′ =
(i, di(B)), and (e, A) /∈ �, (e′, B) /∈ �.

In addition to the above constraints, any schedule � in LCOPE
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Figure 4: The throughput regions with or without

COPE for the network of Figure 3 - The Phy layer fol-

lows the Protocol model, and interfering nodes are the

1-hop neighbors only.

has to satisfy the Phy and MAC constraints as illustrated
in Section 2.2.

Consider the scheduling policy Δ∗
COPE that depending on

the queue lengths and link rates, selects, in slot t, schedule
� defined as follows:

�Δ
∗
COPE(t) = arg max

�∈LCOPE

⎧⎨⎩∑
A,k

ReA
k

(�)∂Qk,A(t)

⎫⎬⎭ .

We prove that Δ∗
COPE has the largest throughput region

within the class C1 of the joint NC and scheduling policies
with correct NC and that do not use OL.

Theorem 3. The policy Δ∗
COPE is throughput optimal in

C1.

Proof. Since any correct NC scheme without OL can
XOR two packets from locally symmetric sessions only, any
Δ ∈ C1 selects schedules from LCOPE. Thus, from Theo-
rem 2, Δ∗

COPE is throughput optimal in C1.

4.3 Throughput gains of COPE
In general, quantifying the throughput gain achieved with

NC is difficult as it depends on many parameters that in-
clude the network topology, the underlying Phy and MAC
layers and the relative throughput requirements of the ses-
sions. We define the throughput gain by comparing the
throughput region of the set of scheduling policies with NC,
and the throughput region Λ0 of policies without NC. The
gain achieved by COPE for the network of Figure 3 with
a Phy layer satisfying the Protocol model is illustrated in
Figure 4. There, G(u) is the gain in direction u, where u
is the unit vector representing the relative throughput re-
quirements of the sessions A and A′. The throughput gain
is then defined as maxu G(u).

In [16, 17], the authors characterize the maximum through-
put region of 1D networks with NC. In [11], upper bounds on
the throughput gains for large random networks are derived.
Characterizing the throughput gain with NC for more gen-
eral topologies is quite challenging. However, even for an
arbitrary network, one can use Theorem 1 to characterize
the throughput region with or without NC, and numerically
compute the throughput gain. A similar approach is used
in [19].

Now for COPE, one can easily derive a crude bound on
its gain in networks whose Phy layers follow the Protocol
model [7]. The maximum gain is 2, and it is achievable. It
is achieved for a 1D symmetric network as described in Fig-
ure 3 with a large number N of nodes, when the throughput

requirements of the two sessions are the same (the gain is
achieved in direction u1 = u2), and when the link rates are
all identical. To achieve a gain of 2, it is also necessary that
all links interfere with each other (i.e., only one node can
transmit at a time), which is a quite unrealistic assumption.
In that case, the transmission of one packet of each session
from its source to its destination requires 2(N − 1) slots in
absence of COPE and N slots with COPE. The through-
put gain is then close to 2 when N is large. Now assume
that in this 1D network, each link interferes with its closest
neighbors only. Then it can be readily shown that the gain
reduces to 4/3 whatever the number N is.

Finally, note that all the studies mentioned above agree
that the gain achieved by NC is always upper bounded by a
constant, lying typically between 1 and 2, depending on the
network topology and the Phy/MAC layers considered.

5. XOR-SYM: A SIMPLIFIED NC SCHEME
In this section, we design a NC scheme that requires a

minimal change in the present network architecture and yet
provides similar performance benefits as COPE. To this aim,
we enforce the following constraint on the type of NC used
in the network.

C1: Decoding at Destination Only. A packet corre-
sponding to session A is decoded at d(A) only, and not at
any other node.

Many of the NC strategies proposed in the literature (e.g.,
COPE) require that packets are decoded at each node. Thus,
each node has to maintain the packets received and trans-
mitted successfully in the past in order to decode the pack-
ets that will arrive in the future. Moreover, whenever an
encoded packet arrives, in order to decode it, a node has
to perform look-up in its buffer for all but one packets that
compose the incoming packet. The look-up may be com-
putationally expensive, if the node has many packets in its
buffer. We eliminate this potential bottleneck for scalabil-
ity of NC schemes by imposing the constraint C1. Inter-
mediate nodes can then remain simple: they only need to
perform bit-wise XOR of HoL packets; the required addi-
tional functionality can be incorporated without adversely
affecting scalability.

In the following, we propose XOR-Sym, a correct NC
scheme satisfying the constraint C1 and yet providing through-
put benefits.

5.1 The XOR-Sym coding scheme
Figures 5 and 6 provide the pseudo codes for XOR-Sym

in the cases of fixed and adaptive rate systems. The key
feature of XOR-Sym is that it XORs packets corresponding
to symmetric sessions only. Contrast this with COPE which
XORs packets corresponding to locally symmetric sessions
at each node. Due to space limitations, we only describe
XOR-Sym for fixed rate systems. Consider the network of
Figure 3, whose Phy layer follows the Protocol model and
with negotiated link rates all equal to 1 packet/slot (refer
to Figure 5 for systems with heterogeneous rates). If the
scheduling scheme decides to serve session A only on link
(2, 3) in slot t, then node 2 transmits P2,A(t). If P2,A(t) is
successfully received at node 3, then node 2 discards this
packet and replace it with a new packet at the HoL position
in q2,A. P2,A(t) is queued at the end of q3,A. If P2,A(t) is not

141



XOR-Sym for Fixed Rate Systems
begin
1: Assume (e, A) ∈ �Δ(t), where e = (i, di(A));
2: for j = 1, . . . , Re do
3: Transmit Pi,A(t);
4: if di(A) successfully receives the packet then
5: Discard Pi,A(t);
6: Pi,A(t) is replaced by the next in line packet in q(i,A);

7: end if
8: end for
9: Assume (e, A⊕ A′) ∈ �Δ(t), where e = (i, di(A));
10: for j = 1, . . . , min{Re, Re′} do
11: P ← Pi,A(t)⊕ Pi,A′ (t);
12: Broadcast P;
13: if Both di(A) and di(A

′) successfully receive P then
14: Discard P;
15: Pi,A(t) and Pi,A′ (t) are replaced by the next in line packets

in q(i,A) and q(i,A′) respectively;

16: else if Only di(A) successfully receives P then
17: Retain Pi,A′ (t) at HoL position in q(i,A′);
18: Pi,A(t) is replaced by the next in line packet in q(i,A);

19: else if Only di(A
′) successfully receives P then

20: Retain Pi,A(t) at HoL position in q(i,A);

21: Pi,A′ (t) is replaced by the next in line packet in q(i,A′);
22: else
23: Retain both the packets at HoL positions in their respective

queues;
24: end if
25: end for

end

Figure 5: Pseudo code of XOR-Sym NC scheme
with scheduling policy Δ for fixed rate systems -
These tasks are performed in each slot.

successfully received at node 3, then it is retained at the HoL
position in q2,A. Now, suppose that the scheduling scheme
decides to broadcast an XOR-ed packet from node 2 on links
(2, 1) and (2, 3). Then, 2 broadcasts P = P2,A(t)⊕P2,A′(t).
Three cases arise. (i) Both 1 and 3 receive P successfully.
Then, 2 discards these packets, and new packets come to
the HoL positions in q2,A and q2,A′ . P is decoded at node
1, while it is queued at the end of q3,A. (ii) Only one of
the intended recipients, say node 3, receives P correctly.
Then, P2,A(t) is discarded from q2,A and is replaced by a
new packet at the HoL position of q2,A, while P2,A′(t) is
retained at the HoL position in q2,A′ . P is queued at the
end of q3,A. The case when only 1 receives P correctly is
similar. (iii) Both 1 and 3 do not receive P correctly. Then,
both P2,A(t) and P2,A′ (t) are retained at HoL positions in
q2,A and q2,A′ .

Since intermediate nodes do not decode packets, encoded
packets can be XOR-ed again. For example, in (ii) above,
the XOR-ed packet P is queued in q3,A as it is. When P
comes to the HoL position in q3,A, it can be XOR-ed again
with a packet from q3,A′ . Thus, it is not clear whether the
destinations can decode the received packets. In the follow-
ing lemma, we show that XOR-Sym is correct given that:
for each session A, source s(A) keeps all the packets of A
that it has already transmitted, and destination d(A) keeps
all the packets of A that it could correctly decode.

Lemma 1. The NC scheme XOR-Sym is correct.

Proof. We sketch the proof. Let {P A
k }k≥1 denote the

ordered sequence of session A’s packets, i.e., P A
k is trans-

mitted by s(A) before P A
k+1 and after P A

k−1. Let P (k) =

XOR-Sym for Adaptive Rate Systems
begin
1: Assume (e, A) ∈ �Δ(t), where e = (i, di(A));
2: Transmit Re(�(t)) packets from q(i,A);

3: Discard all the transmitted packets;
4: Assume (e, A⊕ A′) ∈ �Δ(t), where e = (i, di(A));

5: R← min{Re(��(t)), Re′ (��(t))}, where e′ = (i, di(A
′));

6: for j = 1, . . . , R do
7: Broadcast Pi,A(t) ⊕ Pi,A′ (t) (at rate R);

8: Discard Pi,A(t) and Pi,A′ (t);
9: Pi,A(t) and Pi,A′ (t) are replaced by the next in line packets in

q(i,A) and q(i,A′) respectively;

10: end for

end

Figure 6: Pseudo code of XOR-Sym NC scheme
with policy Δ for adaptive rate systems - These tasks
are performed in each slot.

P1 ⊕ · · · ⊕ Pm(k) denote the first packet containing P A
k ar-

riving at d(A) in slot t(k). Because of FIFO service, clearly,
t(k) ≤ t(k + 1) for every k ≥ 1. Now, the result follows
from the following claim: For every k ≥ 1, there does not
exist u ∈ {1, . . . , m(k)} and v > k such that P A

v = Pu.
Thus, P (k) can only contain packets from session A′ or the
packets transmitted before P A

k . The correctness follows by
induction on k.

5.2 An Optimal Scheduling for XOR-Sym
Since XOR-Sym combines packets only from symmetric

sessions, the set of all possible schedules LXOR−Sym is as
follows. A schedule � ∈ LXOR−Sym is a subset of E×S, where
S = S ∪ {A ⊕ A′, A ∈ S}. In addition, if � ∈ LXOR−Sym, it
satisfies the following constraints:

• if (e, A) ∈ �, then (e, A ⊕ A′) /∈ �;

• if (e, A ⊕ A′) ∈ �, then (e′, A ⊕ A′) ∈ � where e′ =
(i, di(A

′)), and (e, A) /∈ �, (e′, A′) /∈ �.

Now, consider the scheduling policy Δ∗
XOR−Sym that, de-

pending on the queue lengths and link rates, selects, in slot
t, schedule � defined as follows:

�Δ
∗
XOR−Sym(t) = arg max

�∈LXOR−Sym

⎧⎨⎩∑
A,k

ReA
k

(�)∂Qk,A(t)

⎫⎬⎭ .

Now, we prove that Δ∗
XOR−Sym has the largest throughput

region within the class C2 of the joint NC and scheduling
schemes with correct NC and that satisfies the constraint
C1. Note that C2 also contains off-line policies.

Theorem 4. The policy Δ∗
XOR−Sym is throughput opti-

mal in C2.

In view of Theorem 2, the above result follows from the
fact that any scheme in C2 chooses schedules from LXOR−Sym

in each slot, which is a consequence of the following lemma.

Lemma 2. Consider a NC scheme satisfying the constraint
C1, and assume that it XORs packets from sessions A and
B, where B �= A′. Then the NC scheme is not correct.

Proof. Consider a NC scheme that allows XOR-ing of
packets from sessions A and B at node i, where B �= A′ and
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i ∈ RA ∩ RB . Also, without loss of generality, let s(B) �=
d(A), and RA = {a0, . . . , aNA} and RB = {b0, . . . , bNB}
with ak = bj = i for some k and j. Furthermore, let PA be
the first packet arriving in qs(A),A at time t. Now, our aim is
to construct a sequence of valid schedules such that the first
packet containing PA arriving at d(A) can not be decoded
correctly. Then, the result will follow from Definition 2. The
construction is as follows: First, let qi,B is empty at t. Then,
find the largest u < j such that qbu,B is non-empty. If no
such u exists, then do not schedule any link until a packet
(say PB) arrives in qs(B),B . Note that a new packet will
arrive at s(B) in finite time w.p. 1 as λB > 0. When a packet
arrives in qs(B),B , we can choose u = 0. Once the value of

u is determined, schedule eB
u , eB

u+1 and so on, one at a time
until a packet arrives in qi,B . Next, schedule a sequence of
links eA

0 , . . . , eA
k−1 one at a time so that PA arrives in qi,A.

Now, multicast PA ⊕PB on eA
k and eB

j , which is possible as
NC allows XOR-ing of these packet at i. Finally, schedule
eA

k+1, . . . , e
A
NA−1 one at a time so that the XOR-ed packet

PA ⊕ PB arrives at d(A). Now, note that because of the
FIFO service, PB is not available at d(A). Thus, PA can
not be recovered at d(A) upon its arrival. This proves the
required.

5.3 Throughput gains of XOR-Sym
Note that for any network, L0 ⊆ LXOR−Sym ⊆ LCOPE,

where L0 is the set of all feasible schedules without NC.
Thus, Λ0 ⊆ ΛXOR−Sym ⊆ ΛCOPE: the throughput gain
achieved with XOR-Sym over policies that do not use NC is
greater than 1, but it may be less than that achieved with
COPE. The scalability of XOR-Sym compared to that of
COPE is obtained at the expense of a smaller throughput
region. Note however, that the maximum gain achieved by
XOR-Sym and COPE are identical, and are achieved in the
1D network as described at the end of Section 4. Moreover,
under XOR-Sym, the computational complexity at inter-
mediate nodes and the throughput gain can be traded by
splitting sessions into several logical sessions. For example,
consider a network where packets of sessions A and B fol-
low the routes RA = {1, 2, 3, 4, 5} and RB = {6, 4, 3, 2, 1}.
A and B are not symmetric as d(A) �= s(B), but both these
sessions traverse through nodes 1, 2, 3 and 4. Now, let us
split each of these sessions into two logical sessions as fol-
lows: A1 = (1, 4), A2 = (4, 5) and B1 = (4, 1), B2 = (6, 4).
Note that now A1 and B1 are symmetric and their packets
can be XOR-ed under XOR-Sym. Thus, splitting sessions
will provide a larger throughput region. But, now the inter-
mediate node 4 has to decode packets, increasing its com-
plexity. Note that XOR-Sym and COPE are identical if the
sessions are split into several logical sessions, each traversing
exactly one link. A technical difficulty with this approach
is that the arrivals at the sources of the logical sessions are
not i.i.d.; however, the analysis in Section 3 can be extended
to this case. Finally, we believe that creating 1-hop logical
sessions everywhere (as in COPE) is not necessary to en-
sure optimal throughput, because most often only few links
are bottlenecks in the network. It may be sufficient to de-
fine logical sessions so as to maximize the NC opportunities
around these links. The logical sessions may also be created
adaptively based on the queue length information.

5.4 Limitation of XOR-Sym
In NC schemes, to ensure decodability, the header of each

packet contains the identities of all the packets XOR-ed in
this packet. For a packet P = P1 ⊕ · · ·Pm, we say that its
packet header size is m. Now, if two packets of header sizes
m and n are XOR-ed, then the header length of the resulting
packet is at most m + n. With XOR-Sym, since packets are
decoded at destinations only, the header sizes can be quite
large. Theoretically, it is possible to construct an example
where the header size can become arbitrarily large even for
networks with simple topologies as in Figure 3; however, as
shown in Section 6, we have verified using simulations that
in fact, the header size remains modest unless the network
becomes heavily loaded. In Section 6, we also propose some
solutions to limit the header sizes.

6. NUMERICAL EXPERIMENTS
In this section, we present some numerical experiments

verifying the analytical results of the previous sections. We
give the performance of XOR-Sym and of the associated
optimal scheduling policy Δ∗

XOR−Sym. Due to space lim-
itations, we present results in the case of simple 1D net-
works. Refer to [?] for results on networks with more gen-
eral topologies.

Consider a 1D network as depicted in Figure 3 but with N
nodes. Interference follows the protocol model, and we as-
sume that the reception at a node is interfered by the trans-
mission of the 1-hop neighbors, i.e., for instance, using the
notation of Section 2.3.1, K(i,i+1) = {i+2}. The negotiated
link rates are all equal to 1. It is then easy to prove (see [?])
that the throughput regions with and without XOR-Sym
are independent of N and represented in Figure 4. In this
example, the NC gain is maximized when the arrival rates of
the two symmetric sessions are equal, λA = λA′ , and COPE
and XOR-Sym provide similar throughput gains.

Figure 7 (top-left) provides the mean end-to-end packet
delay as a function of the session rate for Δ∗

XOR−Sym. The
results are compared with those obtained without NC, but
with a throughput optimal policy. Note that as expected,
these schemes achieve maximum throughput, i.e., the mean
packet delay is finite for all λA < 1/3 with XOR-Sym, and
for all λA < 1/4 without NC. In Figure 7 (top-right) we
present the mean packet header size using XOR-Sym. When
the network size is small, e.g. N = 4, the mean header
size remains small unless the system load approaches the
stability limit. The header size increases with N .

To reduce the number of packets XOR-ed into a single
packet, we associate a cost to the XOR-ing procedure: for
any schedule � chosen at time slot t, we denote by f(�, t)
the total number of packets involved in XORs under � (e.g.,
if under �, only packets P1 ⊕ P2 and P3 are XOR-ed, the
cost is 3). Note that this cost function does not strictly
correspond to the framework of Section 3; but the latter can
be readily modified to account for this kind of costs. Figure
7 (Bottom) presents the mean packet header size using the
optimal policy Δ∗

XOR−Sym(κ), for different values of κ in a
network of N = 8 nodes. The choice of κ allows us to tune
the trade-off between packet header size and delay.
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Figure 7: [Top] Mean packet delay as a function of ses-

sion throughputs λ = λA = λA′ with or without XOR-Sym

and policy Δ∗
XOR−Sym - [Middle] Mean packet header size

using Δ∗
XOR−Sym - [Bottom] Mean packet header size us-

ing Δ∗
XOR−Sym(κ) for κ = 0, 0.1, and 0.13, N = 8.

7. GENERALIZATIONS
Here we present two generalizations of the framework de-

veloped in Section 3. The first extension aims at taking ran-
dom fading into account, and the second one at providing a
joint scheduling and congestion control scheme maximizing
some network utility.

7.1 Accounting for fading
In wireless networks, the links are subjected to fading

variations, and as a result, the packet loss probability or
the achievable rate of these links are time-varying. Here, as
in Section 3, we restrict the analysis to adaptive rate sys-
tems. To model fading variations, we introduce a finite set
of fading states Γ. A fading state γ ∈ Γ describes the ra-
dio conditions of all links, so that the model can capture
correlations between the radio conditions on various links.
Denote by ReA

k
(�,γ) the service rate of session A on link eA

k

when the fading state is γ and when the schedule � is cho-
sen. Now, the fading state evolves according to a stochastic
process {γ(t)}t≥1 assumed to be stationary ergodic, with
equilibrium distribution [πγ : γ ∈ Γ]. Denote by CL the

class of policies that choose schedules in L. Then as in the
absence of fading, we can characterize the throughput region
of CL, and provide an optimal adaptive scheduling scheme.

The throughput region of CL is XL, the set of all ar-
rival rate vectors λ for which there exist vectors αγ =
[αγ ,1 · · · αγ ,L], γ ∈ Γ such that for all �, γ, αγ ,� ≥ 0,∑

�∈L αγ ,� = 1, and∑
�∈L

∑
γ∈Γ

πγ αγ ,�ReA
k

(�,γ) ≥ λA, ∀ k < NA and ∀A ∈ S.

An optimal scheduling policy Δ∗(κ) chooses in slot t, the
schedule defined by:

�Δ
∗(κ)(t) = arg max

�∈L

⎧⎨⎩∑
A,k

ReA
k

(�, γ(t))∂Qk,A(t) − κf(�)

⎫⎬⎭ .

7.2 Maximizing network utility
When the network handles data traffic, the rates λ of ses-

sions should be adapted to the level of congestion in the
network. Usually, optimization approaches are used to an-
alyze or design congestion control algorithms. More pre-
cisely, these algorithms are assumed (or designed so as) to
maximize a certain network utility:

∑
A∈S U(λA), where U

is an increasing and strictly concave function. The frame-
work developed in Section 3 can be extended so as to design
a joint congestion control, NC and scheduling policy that
maximizes the network utility while stabilizing all buffers.
This type of extensions has been already proposed in the lit-
erature in case of networks without NC, see e.g. [10]. This
policy is obtained by adding the following rate control algo-
rithm to the scheduling strategy Δ∗(0) (no cost function is
considered). Each session A releases, in slot t, an amount of
packets λA(t) defined by:

λA(t) = arg max
0≤r≤c

{
U(r) − r

NA−1∑
k=0

Qak,A(t)

}
.

8. CONCLUSION
We have investigated the use of network coding (NC) in

wireless multi-hop networks for unicast sessions. Surpris-
ingly, we could build simple and realistic examples of net-
works where NC reduces the throughput performance. This
happens when the NC schemes are greedy in the sense that
all opportunities to combine and broadcast packets are ex-
ploited. We have also observed that if NC and scheduling
are designed separately, then the throughput gain expected
from NC may not be achieved.

These observations have demonstrated the need of adap-
tive schemes that use NC opportunities only when they can
provide performance benefits. It seems also critical that the
scheduling choices and the NC decisions should be coupled.
Hence, we have developed a generic framework to design
joint optimal NC and scheduling schemes. We have applied
this framework to propose an optimal scheduling scheme
adapted to COPE, a recent and popular NC scheme. We
have also designed XOR-Sym, a new NC scheme, and its
associated optimal scheduling scheme. XOR-Sym exhibits a
lower complexity than that of COPE but yet offers similar
performance gains.
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APPENDIX

A. PROOFS OF THEOREMS 1 AND 2
First we state the supporting lemmas that we use to prove

Theorems 1 and 2. Due to space constraints, proofs for some
of the lemmas are omitted.

Lemma 3. The throughput region satisfies ΛL ⊆ XL.

Let CL denote the space of all the policies that are al-
lowed to schedule transmission from qi,A in slot t even when
Qi,A(t) = 0. Scheduling a transmission from an empty
queue corresponds to transmitting a pseudo packet. The
pseudo packets are immediately discarded by the receiving
node. We note that we use such policies only to obtain a
compact proof of the optimality of Δ∗, and we do not allow
policies to schedule transmissions from empty queues. Note
that CL ⊆ CL.

Lemma 4. If λ ∈ X ◦
L, then there exists δ1 > 0 such that

for every 0 < δ < δ1, there exists α = [α1 · · · αL] that
satisfies

L∑
�=1

α�ReA
k

,A(�) = λA + (k + 1)δ, ∀ k < NA and A ∈ S

L∑
�=1

α� = 1, and α� ≥ 0 for every �.

Proof. The result follows from Assumption 1, and the
fact that for every λ ∈ X ◦

L, there exists δ1 > 0 and such that
for every 0 < δ < δ1, λ + δ ∈ X ◦

L.

For rest of the section, fix any λ ∈ X ◦
L. Also, fix δ1 > 0

that satisfies the conditions in Lemma 4. Now, we define
a randomized policy Δ1(δ) ∈ CL as follows. Under Δ1(δ),

�Δ1(δ)(t) = � w.p. α� in every slot t independent of the
queue lengths and the decisions in the previous slots. The
vector α is a solution of the following Linear Program (LP)
for 0 < δ < δ1.
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LP(δ) :- Minimize: U(δ) =
∑L

�=1 α�f(�)
Subject to:
1)

∑L
�=1 α�ReA

k
,A(�) = λA + (k + 1)δ for every k < NA and

A ∈ S
2)

∑L
�=1 α� = 1, and α� ≥ 0 for every �.

Lemma 5. For every ε > 0 there exists δε > 0 such that

for every δ < δε, F
CL(λ)
min ≥ U(δ) − ε w.p. 1.

Proof. First, we show that U(0) ≤ F
CL(λ)
min w.p. 1. Let

Δ ∈ CL(λ). Such Δ exists because of Lemma 4. Fix any
non-trivial sample path. Let γ� denote the fraction of time
� is scheduled by Δ. Clearly, by stationarity of Δ,

L∑
�=1

γ� = 1, and γ� ≥ 0 for every �. (3)

Then, by stability of Δ, we also know that

λA =

L∑
�=1

γ�ReA
k

,A(�),∀ k < NA and A ∈ S , (4)

FΔ =
L∑

�=1

γ�f(�). (5)

Equations (3) and (4) show that γ is a feasible solution for
LP(0). Moreover, (5) is the objective function for LP(0).
Since Δ is an arbitrary policy in CL(λ), we conclude that

U(0) ≤ F
CL(λ)
min w.p. 1. (6)

Since the feasible set of LP(δ) is convex and compact,
and f(�) is a bounded function, by continuity, we conclude
that U(δ) → U(0) as δ → 0. Thus, for every ε > 0 there
exists δε > 0 such that for every δ < δε, U(δ) ≤ U(0) + ε.
From (6), we conclude that

U(δ) ≤ F
CL(λ)
min + ε w.p. 1. (7)

Now, since CL(λ) ⊆ CL(λ), the result follows.

Note that FΔ1(δ) = U(δ). Thus, Lemma 5 forges the
first link between the costs under policies in CL(λ) and that
under CL(λ). Let us denote the drift in the backlog of qk,A

in slot t under Δ as ∂RΔ
k,A(t), i.e.,

∂RΔ
k,A(t) =

⎧⎪⎨⎪⎩
ReA

k−1,A(�Δ(t)) − ReA
k

,A(�Δ(t)) : k �= 0, NA

ΛA(t) − ReA
k

,A(�Δ(t)) : k = 0

0 : k = NA.

Now, consider any Δ ∈ CL and observe that

QΔ
ak,A(t + 1) = max

{
QΔ

ak,A(t) + ∂RΔ
k,A(t), 0

}
. (8)

Let ξΔ(t)
def
=

∑
k,A

[(
QΔ

ak,A(t + 1)
)2

−
(
QΔ

ak,A(t)
)2

]
.

With (8) and some elementary algebra, it follows that

E[ξΔ|Q] ≤ Z + 2
∑
A

Qa0,AλA − 2κE[f(�Δ)|Q]

−2E

⎡⎣∑
k,A

ReA
k

,A(�Δ)∂Qk,A − κf(�Δ)|Q
⎤⎦ ,(9)

where Z = |S|(c2 +R2
max). We have omitted t for notational

simplicity. Then,

Lemma 6. Given the queue lengths, Δ∗(κ) maximizes the
last term in (9) among all the policies in CL.

Now, from Lemma 6 and (9), we conclude that

E[ξΔ∗(κ)|Q]

≤ Z + 2
∑
A

Qa0,AλA − 2κE[f(�Δ
∗(κ))|Q]

−2E

⎡⎣∑
k,A

ReA
k

,A(�Δ1(δ))∂Qk,A − κf(�Δ1(δ))|Q
⎤⎦ .(10)

Since the choice of schedule is independent of the queue
lengths under Δ1(δ), it follows that

E

[
f(�Δ1(δ))|Q

]
= E

[
f(�Δ1(δ))

]
=

∑
�

α�f(�) = U(δ).

E

[
ReA

k
,A(�Δ1(δ)))|Q

]
=

∑
�

α�ReA
k

,A(�) = λA + (k + 1)δ.

Substituting the above quantities in (10), we obtain

E[ξΔ∗(κ)|Q]

≤ Z−2κE[f(�Δ
∗(κ))|Q]−2δ

∑
k,A

Qak,A+2κU(δ).(11)

Note that the process {QΔ∗(κ)(t)}t≥1 is a Markov chain.
Thus, to show stability under Δ∗(κ), it suffices to show that
the queue length process is positive recurrent.

Lemma 7. For every λ ∈ X ◦
L, {QΔ∗(κ)(t)}t≥1 is positive

recurrent for every κ < ∞.

Proof. Note that E[ξΔ∗(κ)|Q] denote the expected Lya-
punov drift. From (11), κ < ∞ and finite support of f(·),
it follows that E[ξΔ∗(κ)|Q] < ∞ for every Q. Moreover,

E[ξΔ∗(κ)|Q] < −1 whenever
∑

k,A Qak,A > (Z + κU(δ) +

1)/2δ. Thus, the positive recurrence follows from Foster’s
Theorem.

Lemma 8. For all λ ∈ X ◦
L, FΔ∗(κ)(λ) ≤ Z

2κ
+ U(δ) w.p.

1.

Proof. From Lemma 7, for every λ ∈ X ◦
L, the queue

length is stationary under Δ∗(κ). Thus, the result follows
by taking the expectation in (11) with respect to station-
ary distribution of the queue length process, and observ-
ing from the Renewal Reward Theorem that E[f(�Δ

∗(κ))] =

FΔ∗(κ)(λ) w.p. 1.

Now, we prove Theorems 1 and 2.

A.1 Proof of Theorem 1

Proof. (Theorem 1) From Lemma 7, X ◦
L ⊆ ΛΔ∗(κ) ⊆ ΛL

for every κ ≥ 0. Thus, the result follows from Lemma 3.

A.2 Proof of Theorem 2

Proof. (Theorem 2) From Lemma 7, Δ∗(κ) is through-
put optimal for every κ < ∞. Now, we show ε-optimality.
Fix ε > 0. From Lemma 5, choose δ > 0 such that U(δ) −
F

CL(λ)
min ≤ ε/2. Also, choose κ̂ such that Z/κ̂ = ε. Now,

ε-optimality follows from Lemma 8 for every κ > κ̂.
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