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Adaptive networks have been recently introduced in the context of disease propagation on complex net-
works. They account for the mutual interaction between the network topology and the states of the nodes. Until
now, existing models have been analyzed using low complexity analytical formalisms, revealing nevertheless
some novel dynamical features. However, current methods have failed to reproduce with accuracy the simul-
taneous time evolution of the disease and the underlying network topology. In the framework of the adaptive
susceptible-infectious-susceptible �SIS� model of Gross et al. �Phys. Rev. Lett. 96, 208701 �2006��, we intro-
duce an improved compartmental formalism able to handle this coevolutionary task successfully. With this
approach, we analyze the interplay and outcomes of both dynamical elements, process and structure, on
adaptive networks featuring different degree distributions at the initial stage.
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I. INTRODUCTION

The vast majority of network-based models of disease
propagation rely on the paradigm of static networks �1,2�. In
this framework, the assumption is made that the time scale
which characterizes the disease propagation is much shorter
than the time scale with which the network structure
changes. In contrast to static networks, some researchers
have investigated the phenomenon of disease propagation on
dynamically evolving networks and have revealed new per-
spectives on the effects of concurrent or casual partnerships
�3–6�, contact mixing �7–9�, and demographic changes �10�.
In these models, however, the rules which govern the evolu-
tion of the network are independent of what happens on the
network. Mutual interactions between the network topology
and the states of the nodes are not taken into account.

Recently, interest has grown for a new class of networks
known under the name of adaptive networks �11,12�. They
are characterized by the existence of a feedback loop be-
tween the dynamics on the network and the dynamics of the
network. Among other applications, adaptive networks have
been introduced in the study of contact processes, such as the
study of opinion formation �13–22� and epidemic spreading
�23–27�. In epidemiological settings, the main idea behind
models featuring adaptive networks is that individuals may
change their behavior under the threat of an emerging dis-
ease �28�. For example, healthy individuals may try to reduce
their chance of catching the disease by adaptively replacing
their contacts with infectious individuals by contacts with
noninfectious ones. This may significantly alter the structure
of the contact network, thus influencing the way the disease
will spread.

Being an emerging field of research, the study of contact
processes on adaptive networks still lacks strong theoretical
foundations. Until now, the analytical treatment of epidemic
models on adaptive networks has been limited to low-order
moment-closure approximations �23,25–27�. Despite their
low complexity, these approaches were able to predict novel
dynamical features, such as bistability, hysteresis, and first-
order transitions. However, their simple design does not gen-
erally allow for accurate predictions about the time evolution

of the system. An integrated analytical formalism able to
account for the complete time evolution of both dynamical
elements, i.e., the spreading disease and the evolving net-
work topology, is still lacking.

In this paper, we present an analytical approach with the
purpose of filling this important gap. Using for its simplicity
the epidemic model of Gross et al. �23� as the basic frame-
work, we develop an improved compartmental formalism in
which nodes are categorized not only by their state of infec-
tiousness, but also by the state of their neighbors. With this
tool, we study the interplay and outcomes of disease and
topology on adaptive networks with various initial configu-
rations. Even if we restrict ourselves to one particular model,
the approach presented here is quite general and could easily
be applied to the study of other contact processes on adaptive
networks.

The paper is organized as follows. In Sec. II, we recall the
model of Gross et al. and introduce our formalism in Sec. III.
Analytical predictions are compared with the results obtained
from numerical simulations in Secs. IV and V. More pre-
cisely, we concentrate on the time evolution of the system in
Sec. IV, while its stationary states are investigated in Sec. V.
Finally, we give further remarks on the endemic stationary
state of the system in Sec. VI and summarize our conclusions
in Sec. VII.

II. SUSCEPTIBLE-INFECTIOUS-SUSCEPTIBLE
DYNAMICS ON ADAPTIVE NETWORKS

We will focus on a simple epidemic model on adaptive
networks introduced by Gross et al. �23�. We consider a ran-
dom dynamical network consisting of a fixed number of
nodes N and undirected links M = �k�N /2, where �k� is de-
fined as the average degree �number of links per node� of the
network. The nodes of the network represent the individuals
of a given population, while the links stand for potential
disease-causing contacts between pairs of individuals. Two
nodes are said to be neighbors if they are joined by a link.
Neither can a node be linked to itself �no self-loops� nor
share more than one link with another node �no repeated
links�. The set of probabilities �pk�t�� that a node chosen at
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random at time t is of degree k, called the degree distribu-
tion, characterizes the topology of the network at this par-
ticular time. The mean degree of a network corresponds to
the first moment of its degree distribution, �k�=	kkpk�t�
=2M /N.

We consider a case of susceptible-infectious-susceptible
�SIS� dynamics. At any time, each node is in a specific state,
either susceptible �S� or infectious �I�. Infectious individuals
contaminate their susceptible neighbors at rate �, while they
recover and become susceptible again at rate �. The coupling
between disease and topology is implemented by adding an
adaptive rewiring rule. Susceptible individuals are allowed to
replace at rate � their infectious neighbors for individuals
chosen at random in the susceptible population. These rules
guarantee that N and M remain constant over time. Even if
the system contains three dynamical parameters, its behavior
is characterized by two independent dimensionless ratios,
e.g., � /� and � /�, since time can always be rescaled accord-
ing to one parameter.

To perform Monte Carlo simulations of epidemic propa-
gation on a network, one requires explicit knowledge of the
network structure. Our networks are generated according to
the following algorithm �29�. We first generate a random
degree sequence �ki� of length N subjected to the initial de-
gree distribution specified by �pk�0��. In this process, we
make sure that 	iki is even since each link consists of two
“stubs.” For each node i, a node with ki stubs is produced,
then pairs of unconnected stubs are randomly chosen and
connected together until all unconnected stubs are exhausted.
Afterward, we test for the presence of self-loops and re-
peated links. All faulty links are removed by randomly
choosing a pair of connected stubs and rewiring them to the
former stubs.

Monte Carlo simulations of SIS dynamics on adaptive
networks are carried out using discrete time steps of length
�t. At each step, the recovery, infection, and rewiring events
are tested with probabilities ��t, ��t, and ��t respectively.
Self-loops and repeated links are explicitly forbidden during
the rewiring process. All simulations start with the random
infection of a fraction � of the individuals in the network. We
use the parameters �t=0.1 and N=25 000 in all simulations.
The recovery rate �=0.005 is used unless explicitly noted.

In what follows, we perform simulations on adaptive net-
works featuring different initial degree distributions. The first
distribution to be used is given by the Kronecker �,

pk
DR = �k,k0

, �1�

which produces a degree-regular �DR� network where each
node has the same degree k0. The second type of distribution
considered is the Poisson distribution,

pk
P =

zke−z

k!
, �2�

which corresponds, in the limit N�1, to networks in which
the presence of a link between two nodes is governed by the
same probability, independent of the links already present in
the network. We will refer to them as Poisson �P� networks,

and their mean degree is given by �k�P=z. Finally, we will
also use a truncated power-law distribution,

pk
PL = 
 1

Ck−�, 0 	 k 
 kc

0, k � kc,
� �3�

where ��0 and C=	k=1
kc k−�, so that the distribution is prop-

erly normalized. This produces power-law-distributed �PL�
networks, where highly connected hubs and individuals with
few connections coexist. The mean degree of networks gen-
erated by Eq. �3� is given by �k�PL=C−1	k=1

kc k1−�. To obtain a
network with �k�PL=2, we use �=2.161 04 and kc=20.

III. IMPROVED COMPARTMENTAL FORMALISM

In order to describe the complete time evolution of the
model defined in the last section, we introduce an improved
compartmental formalism in the spirit of the formalism pre-
sented in the Appendix of Noël et al. �30�.

A. Dynamical equations

Let Skl�t� and Ikl�t� be the fractions of nodes of total de-
gree k and infectious degree l
k that are, respectively, sus-
ceptible and infectious at time t �31�. Here, by total degree
we mean the total number of links that belong to a node and
by infectious degree the number of those links shared with
infectious individuals. We define the zeroth-order moments
of the Skl and Ikl distributions by

S � 	
kl

Skl, I � 	
kl

Ikl, �4�

the first-order moments by

SS � 	
kl

�k − l�Skl, SI � 	
kl

lSkl,

IS � 	
kl

�k − l�Ikl, II � 	
kl

lIkl, �5�

and the second-order moments by

SSI � 	
kl

�k − l�lSkl, SII � 	
kl

l�l − 1�Skl, etc. �6�

Physically, the zeroth-order moments correspond to the den-
sity of S and I nodes, the first-order moments to the density
per node of the various types of arcs, and the second-order
moments to the density per node of the various types of
triplets in the network �32�.

As mentioned in the last section, our model is constrained
by two conservation relations, namely, the conservation of
nodes,

S + I = 1, �7�

and the conservation of links,

SS + SI + IS + II = �k� , �8�

which must hold at any time t. Moreover, since the network
under consideration is undirected, the density of SI links
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must always equal the density of IS links. This yields the
additional constraint

SI = IS. �9�

We now derive an ordinary differential equation �ODE� for
each compartment of the system. Let us illustrate the reason-
ing for Skl. First, nodes can change compartment according
to a change in their own state. Nodes are added to Skl at rate
�Ikl as nodes from Ikl recover and become susceptible again
�Fig. 1�a�� and are removed from Skl at rate �lSkl as they get
infected �Fig. 1�b��.

Second, we have to account for a change in the state of
node’s neighbors. Nodes from Skl are transferred to Sk�l−1�
when one of their infectious neighbors becomes susceptible
again �Fig. 1�c��, which occurs at rate �lSkl. On the opposite,
nodes from Skl are moved to Sk�l+1� when one of their sus-
ceptible neighbors catches the disease �Fig. 1�d��. Since we
do not know the exact number of infectious neighbors con-
nected to each of the �k− l� susceptible neighbors of nodes in
the Skl compartment, our best option is to take an average
over the entire network. In doing so, we make the assump-
tion of zero degree correlation: we assume that nodes, be-
yond the knowledge of the state of infection of each neigh-
bor, are connected at random in the network. Hence, a node
in compartment Sk�l� with l� infectious neighbors will be
reached by following a SS link with a probability equal to
�k�− l��Sk�l� /SS. Thus, SSI /SS gives the average number of
infectious neighbors that a susceptible node reached by fol-
lowing a SS link has. The rate associated with the Skl
→Sk�l+1� transition is therefore ��SSI /SS��k− l�Skl.

Finally, we have to account for the effects of rewiring.
Nodes from Skl become labeled as Sk�l−1� at rate �lSkl as they
break connections with their infectious neighbors �Fig. 1�e��.
Moreover, a node from Skl is moved to the compartment
S�k+1�l if it is chosen as the “new neighbor” in a rewiring
event �Fig. 1�f��. Since the strength of rewiring events is �SI
and a node from Skl is randomly chosen with a probability
Skl /S, this occurs at a rate ��SI /S�Skl. By summing all con-
tributions, we obtain the following ODE governing the time
evolution of the Skl compartment:

dSkl

dt
= �Ikl − �lSkl + ���l + 1�Sk�l+1� − lSkl� + �

SSI

SS
��k − l + 1�Sk�l−1� − �k − l�Skl� + ���l + 1�Sk�l+1� − lSkl� + �

SI

S
�S�k−1�l − Skl� . �10�

A similar reasoning for the Ikl compartment yields the following ODE:

dIkl

dt
= − �Ikl + �lSkl + ���l + 1�Ik�l+1� − lIkl� + �1 +

SII

SI
���k − l + 1�Ik�l−1� − �k − l�Ikl� + ���k − l + 1�I�k+1�l − �k − l�Ikl� . �11�

It is straightforward to show that the infinite system of ODEs
consisting of Eqs. �10� and �11� satisfies the constraints given
by Eqs. �7�–�9�.

B. Initial conditions

In order for the dynamics to be completely specified, we
need to write an initial condition for each compartment. In
the case where a fraction � of the nodes is initially infected at
random, they are given by

Skl�0� = �1 − ��pk�0�k

l
��l�1 − ��k−l, �12�

Ikl�0� = �pk�0�k

l
��l�1 − ��k−l. �13�

Again, we easily verify that this set satisfies Eqs. �7�–�9�.
The complete time evolution of the system is obtained by

integrating numerically the set of ODEs given by Eqs. �10�
and �11� truncated at kmax, together with the initial conditions
�12� and �13�. Constraints �7�–�9� can be used to check the
precision of the numerical integration. The complexity of the
system of equations is O�kmax

2 �.

IV. TIME EVOLUTION: INTERPLAY BETWEEN DISEASE
AND TOPOLOGY

As stated previously, we initialize the dynamics of the
model by infecting a fraction � of the nodes in the network at
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FIG. 1. Schematic illustration of the events described in the text
which result in changing a node from one compartment to another.
Susceptible nodes are represented by open symbols ��� and infec-
tious nodes by filled symbols ���.
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random. Afterward, the states of the nodes and the topology
of the network coevolve according to the rules prescribed in
Sec. II. In this section, we analyze the time evolution of the
system, both from the perspectives of the spreading disease
and of the evolving network topology.

A first quantity of interest is the evolution of the disease
prevalence, defined as the fraction of infectious individuals
at time t. According to our previous definitions, it is simply
given by I. In Fig. 2, we illustrate the evolution of I for
networks with different initial topologies, namely, DR, P, and
PL networks featuring a mean degree �k�=2. In Fig. 2�a�, all
systems reach an endemic steady state where the disease
prevalence seems to stabilize at the same value. However,
the time evolution of I follows very different patterns de-
pending on the initial configuration of the system. In Fig.
2�b�, we show that for another set of parameters, the P and
the PL networks converge toward an endemic state, whereas
the rewiring is sufficiently strong to hinder the initial propa-
gation in the DR network and, consequently, the system con-
verges to a disease-free state. This indicates that the initial
network topology may also influence the global outcome of a
particular epidemic scenario.

As the disease propagates, connections between individu-
als are being adaptively rewired, which affects the degree
distribution of the network. The normalized degree distribu-

tions of susceptible and infectious individuals are given in
our formalism by sk�	lSkl /S and ik�	lIkl / I.

We consider the simplest example of a population initially
connected via a DR network with �k�=2. For the same pa-
rameters as in Fig. 2�a�, we show in Fig. 3 the time evolution
of the probabilities sk and ik for low-degree �k=0,1 ,2� and
high-degree �k=3,4 ,5� nodes. At t=0, all nodes are of de-
gree 2. When the disease starts to propagate, both degree
distributions are rapidly modified. The fraction of degree 1
infectious nodes quickly increases, because the susceptible
neighbor of a degree 2 node who has just been infected will
try to rewire its connection. This result in an increase of
degree 3 and higher susceptible nodes. During this first phase
of infection, we observe in Fig. 3�b� that the fraction of high-
degree susceptible nodes smoothly increases, with each de-
gree probability lagging behind the preceding one. Shortly
after t=200, the fraction of susceptibles that are of degree 3
and higher suddenly drops, while the fraction of them that
are either of degree 0 or 1 increases. Since susceptible nodes
cannot lose connections, this means that the infection reaches
an important number of high-degree susceptible nodes that
have formed during the initial stage of infection. Afterward,
the topology settles slowly toward its stationary state.

In order to investigate further the interplay between dis-
ease and topology, it is useful to look at the evolution of
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FIG. 2. �Color online� Disease prevalence I against time t on networks featuring the same mean degree �k�=2 but different initial degree
distributions �pk

DR, pk
P, and pk

PL�. Parameters are �a� �=0.06, �=0.02 and �b� �=0.04, �=0.04. We use �=0.005 and �=0.1 in all simulations.
Points and error bars �if larger than marker size� correspond to the mean and standard deviation computed over 10 000 Monte Carlo
simulations; solid lines are the predictions of our analytical approach.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

s k
,
i k

t

s0
s1
s2
i0
i1
i2

10−2

10−1

100

0 200 400 600 800 1000

s k
,
i k

t

s3
s4
s5
i3
i4
i5

(a) (b)

FIG. 3. �Color online� Degree probability sk and ik for susceptible �open symbols, dashed lines� and infectious �filled symbols, solid lines�
individuals against time t on an adaptive networks with a DR initial degree distribution �k0=2�. The parameters of the system are �
=0.005, �=0.06, �=0.02, and �=0.1, as in Fig. 2�a�. Points and error bars �if larger than marker size� correspond to the mean and standard
deviation computed over 10 000 Monte Carlo simulations; curves are the predictions of our analytical approach. �a� Low-degree nodes �k�0,
1, and 2�. �b� High-degree nodes �k�3, 4, and 5�.
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some important observables of the system. First, we consider
the fraction of SI links in the network. This quantity, given
by SI �or IS�, is directly proportional to the number of new
infections at a given moment in time. While SI is a good
measure of the instantaneous dangerousness of the situation,
it does not yield any information about the potential of the
disease to spread further. To quantify the latter effect, we use
the effective branching factor IS

S �SSI /SI, which is the aver-
age number of susceptible neighbors of a susceptible indi-
vidual reached by following an IS link. Since IS

S is related to
the degree of correlation between susceptible individuals, we
also compute the average fraction CSS�SS / �SS+SI� of con-
nections that susceptible individuals share with other suscep-
tible individuals.

In Fig. 4, the time evolution of SI, IS
S , and CSS is illus-

trated for the example of the initial DR network considered
so far. We now put these results in parallel with those ob-
tained in Figs. 2�a� and 3. In the system under consideration,
� and � are significantly larger than �, and therefore the
infection and rewiring processes dominate at early times. At
t=0, everyone is of degree 2, which means that infecting a
susceptible node does not increase the number of SI links.
Hence, SI quickly decreases due to adaptive link rewiring
and the propagation speed gradually decreases. As we saw in
Fig. 3, initial rewiring events result in an increase in high-
degree susceptible nodes. Moreover, we see in Fig. 4 that
those susceptible nodes form a strongly linked community:
near t=100, CSS stays as high as 0.9 even while nearly half
of the nodes in the network are infected. The initial disease
propagation phase is thus characterized by a topological seg-
regation between susceptible and infectious individuals.

However, this situation is unstable. There still are some SI
links in the network, and a strongly connected community of

susceptible nodes is very vulnerable to a rapid infection. The
disease eventually invades the susceptible community: near
t=100, the effective branching factor IS

S rises again, yielding
an increase in the number of SI links, which reaches a peak
near t=200. As the disease propagates in the community of
susceptible nodes, CSS exhibits a sharp decrease. To this in-
vasion of the tightly linked community of susceptible nodes
correspond the second burst of infection observed in Fig.
2�a� and the sudden decrease in high-degree susceptibles ob-
served in Fig. 3, both near t=200. After this second phase of
disease propagation, the system converges smoothly toward
a stationary state.

Figures 2–4 confirm that our formalism is well capable of
tracking the time evolution of disease and topology on adap-
tive networks. Numerical results obtained from Monte Carlo
simulations are in excellent agreement with analytical pre-
dictions. We may mention that a good agreement between
theory and simulations has also been obtained for the time
evolution of degree distributions and topological observables
in systems featuring P and PL initial networks with the pa-
rameters used in Fig. 2�a�.

V. STATIONARY STATES

After studying the time evolution of the system, we now
investigate its stationary states. At first glance, a given epi-
demic scenario may admit three different outcomes. First, the
disease may not be virulent enough to propagate throughout
the network; hence, the system will converge toward a
disease-free state, i.e., a frozen configuration where all the
nodes are susceptible. Second, the disease may reach and
maintain a fixed macroscopic prevalence in the population,
where the number of new infections equals the number of
recoveries at any time. When this endemic state is reached,
the system is in active equilibrium since infection, recovery,
and rewiring events continuously occur. Third, we cannot
reject the possibility that the disease prevalence may never
settle to a constant value, and behave in a periodic, quasip-
eriodic, or even chaotic fashion. In our study, we only re-
ported the first two scenarios, which is consistent with pre-
vious studies of this or similar systems �23,25–27�. The
presence of a stable limit cycle in a narrow region of param-
eter space was theoretically predicted in �23�, and short-lived
oscillations were reported in Monte Carlo simulations of
large systems �33�. In what follows, we do not report any
oscillations. We believe that oscillations could in principle
also be found with our analytical framework. However, due
to the high complexity of our approach, finding the oscilla-
tory regime would require a systematic investigation of the
parameter space beyond the scope of this paper.

A. Bifurcation structure and topology at equilibrium

In order to study the properties of the system at equilib-
rium, we first consider the stationary disease prevalence I�.
In our analytical formalism, I� is obtained by integrating Eqs.
�10� and �11� until convergence is reached toward a stable
manifold. Predictions of our analytical formalism are com-
pared in Fig. 5 with the outcome of Monte Carlo simulations
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FIG. 4. �Color online� Time evolution of the fraction of SI links
SI, the effective branching factor IS

S , and the average number of
connections that susceptible nodes share with other susceptibles CSS

in a system with an adaptive networks featuring a DR initial degree
distribution �k0=2�. The parameters of the system are �=0.005, �
=0.06, �=0.02, and �=0.1. Points and error bars �if larger than
marker size� correspond to the mean and standard deviation com-
puted over 10 000 Monte Carlo simulations; solid lines are the pre-
dictions of our analytical approach.
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for static and adaptive networks with an initial Poisson de-
gree distribution. For comparison, we also illustrate the ana-
lytical predictions of the low-order approach of Gross et al.
�see the Appendix�.

Figure 5�a�, where each node has a mean degree of �k�
=20, corresponds to the case treated previously by Gross et
al. in �23�. In this highly connected limit, we see that both
analytical formalisms are able to reproduce the correct equi-
librium behavior of the system with and without rewiring. In
Figs. 5�b� and 5�c�, we decrease the mean degree of the
system to �k�=7 and 2, respectively. We see that our formal-
ism continues to remain valid as �k� diminishes, while the
formalism of Gross et al. looses its accuracy. This result can
be mainly explained by the fact that unlike in our approach,
the equations of Gross et al. do not distinguish between the
individual behaviors of nodes with different degrees. These
behaviors become increasingly heterogeneous as �k� is de-
creased �34�. Finally, in Fig. 5�c�, we see that analytical pre-
dictions for I� are more accurate on adaptive than on static
networks. This is due to the fact that link rewiring induces a
certain amount of shuffling in the network connections. In
this case the history of the transmission events that did or did
not happen becomes less important, and the description of
the system at a coarse-grained level is more accurate.

For the systems with link rewiring shown in Fig. 5, we
can clearly see the existence of a bistable regime character-
ized by two first-order transitions. To these discontinuous
transitions correspond two thresholds: the persistence thresh-
old �per, from which an already well-established epidemic
can persist in the population, and the invasion threshold �inv,
where the disease-free state becomes unstable for all finite
values of �. These features have already been recognized as
generic features of epidemic models on adaptive networks
�23,25,26�.

After illustrating the effect that link rewiring has on the
stationary disease prevalence in the system, we can also
study how it affects the topology of the underlying network.
The case of higher interest is the topology of the endemic

state, where the system is in active equilibrium.
In Fig. 6, we illustrate the normalized stationary degree

distributions observed at various rewiring rates in the en-
demic state of a system with an initial P network and �k�
=7. In our formalism, they are given by sk

��	lSkl
� /S� for

susceptible nodes and ik
��	lIkl

� / I� for infectious nodes. For a
static network, shown in Fig. 6�a�, both stationary degree
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FIG. 5. �Color online� Bifurcation diagrams of the stationary disease prevalence I� versus infection rate � on static and adaptive networks
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distributions follow a Poisson distribution. The peak of ik
� is

found at higher degree than the peak of sk
� because high-

degree nodes are more likely to get infected. For adaptive
networks, shown in Figs. 6�b� and 6�c�, both stationary de-
gree distributions get significantly broader, particularly for
susceptible nodes. In Fig. 6�d�, the variance �2 of both dis-
tributions is plotted versus the rewiring rate �. �2 is a
smoothly increasing function of � for both distributions, with
its increasing rate being greater for susceptible nodes. For
comparison, we also indicated the variance of the stationary
distributions on a static network ��=0�. Our results show no
apparent continuous transition between the degree distribu-
tions at equilibrium on static and adaptive networks. Starting
from the equilibrium topology in the adaptive regime, it is
therefore impossible to recover the initial topology by slowly
decreasing the rewiring rate of the system. We will return to
the implication of this observation in more details in Sec. VI.

The results presented in Fig. 6 confirm that link rewiring
has two main effects of opposite epidemiological conse-
quences �23�. On one hand, it locally promotes the isolation
of infectious individuals; but, on the other hand, it triggers
the formation of highly connected individuals, which acts as
superspreaders of the disease. This dual effect may be re-
sponsible for the apparition of a bistable regime in parameter
space, which is not observed in static networks.

The effects of link rewiring on the topology of adaptive
networks have been previously observed in stochastic simu-
lations �23,26�, but until now, no analytical approach was
able to model them correctly. A previous attempt by Shaw
and Schwartz �26� has been unsuccessful, basically because
their formalism was not able to account for the correlations
between the states of neighboring nodes. The results shown
in Fig. 6 highlight that our improved compartmental formal-
ism is able to capture with great accuracy the degree distri-
butions of the system at equilibrium. By characterizing nodes
by their total and infectious degree, we are able to overcome
the correlation problems faced in �26�.

B. Comparison of phase diagrams for different initial
networks

In Sec. V A, we have studied the behavior of the model
on adaptive networks with an initial Poisson degree distribu-
tion. For these particular initial networks, we have confirmed
that there exists a bistable region at finite rewiring rate in
parameter space. In this region, the initial disease prevalence
plays an important role in determining if an epidemic will
either die out or persist in the population. Moreover, we saw
in Sec. IV that the initial network topology also influences
the evolution and outcome of a system. We now study the
location of the persistence and invasion thresholds in sys-
tems featuring different initial topologies.

Phase diagrams in the plane �� ,�� for three systems fea-
turing different degree distributions at the initial stage with
�k�=2 are illustrated in Fig. 7. Locations of both thresholds
�per and �inv were obtained with our improved compartmen-
tal formalism using a bisecting algorithm, with �=0.0001 for
�inv and �=0.99 for �per. Figure 7 shows that all three net-
works display a bistability region between regions where

only one stationary state, either endemic or disease-free, is
stable. At fixed recovery rate �, the extent of this bistability
region depends on the rewiring rate � and the initial topology
of the network. The invasion threshold �inv grows much
faster as � is increased in systems with an initial DR network
than in systems with initial P and PL networks. These results
suggest that for the same link density �k� and at small �, link
rewiring as a disease control strategy is more efficient in
homogeneous networks, i.e., networks with small fluctua-
tions in their degree distribution. As we mentioned previ-
ously, adaptive rewiring tend to suppress disease propagation
on a local scale, but has the potential to create high-degree
susceptible nodes on a global scale, which favors the spread-
ing of the disease. On static networks, the initial spreading
phase is known to be slower on homogeneous networks than
on strongly heterogeneous networks �35�. When an adaptive
rewiring rule is added, it is then easier for homogeneous
networks to hinder the initial propagation of the disease on a
local scale before it reaches a macroscopic prevalence and a
critical concentration of high-degree nodes is attained. Con-
sequently, �inv is higher in homogeneous adaptive networks.

Except at very small rewiring rates, Fig. 7 shows that the
persistence threshold is the same for the three systems. Since
this threshold marks the point from which a stable endemic
state appears in the system, this supports the existence of a
universal endemic state common to those systems, regardless
of the initial topology. We will return to this point in Sec. VI.
We believe that the persistence thresholds differ when � is
small because the network does not evolve rapidly enough in
all systems to converge toward a topology on which an en-
demic state would be stable, even if such a topology exists.

The results presented in this section illustrate the impor-
tance of initial conditions in determining the global outcome,
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either endemic or disease-free, of a given epidemic scenario.
The initial network topology determines the size of the bi-
stability region, and inside the latter, the initial disease preva-
lence determines which stationary state will be reached.

VI. FURTHER REMARKS ON THE ENDEMIC
STATE

In the last sections, we have gathered much evidence sup-
porting the claim that the endemic state found in systems
featuring an adaptive network is only determined by the dy-
namical parameters of the system, �� ,� ,��, and the link den-
sity �k�. For a given set of these parameters, the endemic
state appears to be universal, i.e., it does not depend on the
particular initial conditions of the system.

Let us briefly recall the results that corroborate this idea.
For systems with the same value of �� ,� ,�� and �k�, we
showed in Sec. IV that even if their evolution toward the
endemic state—if ever reached—is different, the disease
prevalence I converges in all cases to the same value. In
addition, Fig. 8 displays the fact that their degree distribu-
tions also converge to the same distribution. In Sec. V A, we
found no continuous transition in P networks between the
stationary degree distributions of susceptible and infectious
individuals as link rewiring is turned on. Moreover, we com-
puted in Sec. V B the value of the persistence threshold �per,
and found that it has the same value in systems featuring
adaptive networks with different initial topologies but the
same mean degree �k�.

It is reasonable to ask if this claim makes sense. In the
coevolutionary model studied here, susceptible individuals
are allowed to avoid contact with infectious individuals by

changing acquaintances. As the disease propagates, links are
being rewired and the network slowly loses memory of its
initial structure. As already mentioned, the endemic state of
the system is active. For a system able to reach it, the coevo-
lution process between state and topology lasts for an infi-
nitely long time. Hence, at some point, the information about
its initial structure is completely lost.

This phenomenon can be interpreted in the framework of
statistical mechanics. The endemic state can be thought as
the state of maximum entropy of the system. It only depends
on the density parameter of the system, �k�, and the interac-
tion parameters between particles �nodes� of the system,
�� ,� ,��. As the system evolves dynamically toward the state
of maximum entropy, information is lost. Therefore, the evo-
lution process toward the endemic state is irreversible.

However, even if there is much evidence in favor of the
existence of a universal endemic state for given �� ,� ,�� and
�k�, this statement still remains at the conjecture level. Since
our improved compartmental formalism does not seem to
admit an analytical solution for the equilibria of the system,
it is impossible to mathematically demonstrate that the solu-
tion for the endemic state does not depend on the particular
initial conditions of the system. Another approach may be
needed to solve this problem.

VII. CONCLUSION

In the spirit of the formalism presented in the Appendix of
�30�, we have introduced an improved compartmental for-
malism in the framework of a simple SIS model on networks
featuring an adaptive rewiring rule �23�. In our approach,
individuals are put in compartments according to their state
of infectiousness, their total degree k, and their infectious
degree l. With these considerations, a set of ODEs describing
the dynamics of the system is obtained and can be integrated
numerically to yield its evolution and stationary states. The-
oretical predictions were found to be in excellent agreement
with numerical results for adaptive networks with various
degrees of heterogeneity at the initial stage. Being capable of
reproducing the complete time evolution of both dynamical
elements, process and structure, the approach presented in
this paper marks an important step forward in understanding
the complex behavior of adaptive networks.

As a pedagogical example, we have analyzed in detail the
coevolution of disease and topology in a system featuring a
degree-regular network at the initial stage. By tracking the
evolution of meaningful observables, we were able to point
out the dual effect of link rewiring in the population. Besides
bringing better insights about the interplay between disease
and topology on adaptive networks, this simple example
showed that our formalism is very well suited for the study
of these complex systems.

Moreover, the results obtained show that the initial con-
ditions, i.e., disease prevalence and network topology, play
an important role in determining the evolution and outcome
of a particular epidemic scenario on an adaptive network. It
does not only affect the speed at which stationarity is
reached, but can also determine which stationary state is
reached—either endemic or disease-free. In contrast, the
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properties of the endemic state do not seem to be affected by
the initial topology of the network. We have presented strong
evidence that it only depends on the dynamical parameters of
the system, �� ,� ,��, and the mean degree of the network,
�k�. However, since our model cannot be solved analytically,
this conjecture remains to be proved.

The use of the model of Gross et al. as the framework of
this paper served the purpose of proof of concept. Despite its
appealing simplicity, this particular model is actually lacking
in realism. Possible directions for further research could con-
sist of including more realistic features in epidemic models
on adaptive networks. A first step in this direction could be
the introduction of cliques �36� in the network to account for
the community structure observed in many real-world net-
works �37�. Another interesting effect to implement would be
some mechanism of preferential rewiring. For example, this
could be modeled by choosing nodes with a probability pro-
portional to the inverse of their degree in the rewiring pro-
cess. This would account for the fact that people may be
aware that being in contact with a highly connected indi-
vidual is more dangerous than with someone having only
few acquaintances. This feature could potentially hinder to
some extent the formation of high-degree susceptible nodes
in the network.
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APPENDIX: THE FORMALISM OF GROSS et al.

Until now, existing models of epidemic spreading on
adaptive networks have been studied analytically with the
help of low-order moment-closure approximations
�23,25–27�. Here, we present the formalism of Gross et al.
for SIS dynamics on adaptive networks �23�.

Let �X1�, �X1X2�, and �X1X2X3�, where Xi� �S , I�, repre-
sent the zeroth-, first-, and second-order moments of the sys-
tem. �X1� corresponds to the fraction of X1 nodes in the net-
work, �X1X2� is the density of X1X2 links per node, and
�X1X2X3� is the density of X1X2X3 triplets per node in the
networks. The variables used by Gross et al. then relate to
those in our formalism by the relations �S�=S, �I�= I, �SS�
=SS /2, �II�= II /2, �SI�=SI= IS, �SSI�=SSI, and �ISI�=SII.
Conservation relations �7� and �8� can now be written as
�S�+ �I�=1 and �SS�+ �SI�+ �II�= �k� /2. In addition to the lat-
ter constraints, the dynamics of the zeroth- and first-order
moments of the system are described by the following bal-
ance equations:

d�I�
dt

= ��SI� − ��I� , �A1�

d�II�
dt

= ���SI� + �ISI�� − 2��II� , �A2�

d�SS�
dt

= �� + ���SI� − ��SSI� . �A3�

This dynamical system captures the effect of rewiring via the
first term in Eq. �A3�. However, it does not yet represent a
closed model because of the appearance of the second-order
moments in the last two equations. For this reason, the pair
approximation technique is used. The latter consists of ap-
proximating the second-order moments by �X1X2X3�
��X1X2��X2X3� / �X2�, which gives in this case �ISI�
��SI�2 / �S� and �SSI��2�SS��SI� / �S�. Together with this ap-
proximation, Eqs. �A1�–�A3� and the two conservation rela-
tions constitute a closed model which can be studied in the
framework of nonlinear dynamics.

The main difference between our improved compartmen-
tal formalism and previous approaches resides in the level of
coarse graining in the system. The variables Skl and Ikl, on
which our formalism is based, simply correspond to the un-
derlying distributions of the moments �X1� and �X1X2�.
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